@article{M2AN_1991__25_3_371_0,
author = {Paumier, J.-C.},
title = {Existence and convergence of the expansion in the asymptotic theory of elastic thin plates},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {371--391},
year = {1991},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {25},
number = {3},
mrnumber = {1103094},
zbl = {0759.73034},
language = {en},
url = {https://www.numdam.org/item/M2AN_1991__25_3_371_0/}
}
TY - JOUR AU - Paumier, J.-C. TI - Existence and convergence of the expansion in the asymptotic theory of elastic thin plates JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1991 SP - 371 EP - 391 VL - 25 IS - 3 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/M2AN_1991__25_3_371_0/ LA - en ID - M2AN_1991__25_3_371_0 ER -
%0 Journal Article %A Paumier, J.-C. %T Existence and convergence of the expansion in the asymptotic theory of elastic thin plates %J ESAIM: Modélisation mathématique et analyse numérique %D 1991 %P 371-391 %V 25 %N 3 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/M2AN_1991__25_3_371_0/ %G en %F M2AN_1991__25_3_371_0
Paumier, J.-C. Existence and convergence of the expansion in the asymptotic theory of elastic thin plates. ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 3, pp. 371-391. https://www.numdam.org/item/M2AN_1991__25_3_371_0/
[1] (1974) : On the existence uniqueness and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O., R2, 129-151. | Zbl | MR | Numdam
[2] (1980) : A justification of the von Kármán equations. Arch. Rat. Mech. Anal. 73, 349-389. | Zbl | MR
[3] , (1979) : A justification of the two-dimensional linear plate model. J. Mécanique 18, 315-344. | Zbl | MR
[4] , (1980) : Two dimensional approximations of three dimensional eigenvalues in plate theory. Comp. Methods Appl. Mech. Eng. 26, 149-172. | Zbl | MR
[5] , (1986) : A justification of the Marguerre - von Kármán equations. Comp. mech. 1, 177-202. | Zbl
[6] (1980) Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques. Thesis, Université P. et M. Curie, Paris.
[7] (1981) Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité. RAIRO An. Num. 15, 331-369. | Zbl | MR | Numdam
[8] (1973) Perturbation singulière dans les problèmes aux limites et en contrôle optimal. Lecture notes in maths 323, Berlin, Heidelberg, New-York : Springer. | Zbl | MR
[9] (1985) Analyse de certains problèmes non linéaires, modèles de plaques et de coques. Thesis, Université P. et M. Curie
[10] (1990) Existence Theorems for Non Linear Elastic Plates with Periodic Boundary Conditions, Journal of Elasticity, 23, 233-252. | Zbl | MR
[11] (1985) Constructiond'un modèle d'évolution de plaques, Annali di Matematica Pura et Applicata CXXXIX, 361-400. | Zbl | MR
[12] , (1961) A boundary-layer theory for elastic plates, Comm. Pure Appl. Maths. 14, 1-33. | Zbl | MR
[13] Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity, Prikl. Mat. Mech. 26, 668-686 (English translation J. Appl. Math. Mech. (1964), 1000-1025). | Zbl | MR





