@article{M2AN_1991__25_1_111_0,
author = {Lippold, G\"unter},
title = {Error estimates and step-size control for the approximate solution of a first order evolution equation},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {111--128},
year = {1991},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {25},
number = {1},
mrnumber = {1086843},
zbl = {0724.65065},
language = {en},
url = {https://www.numdam.org/item/M2AN_1991__25_1_111_0/}
}
TY - JOUR AU - Lippold, Günter TI - Error estimates and step-size control for the approximate solution of a first order evolution equation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1991 SP - 111 EP - 128 VL - 25 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/M2AN_1991__25_1_111_0/ LA - en ID - M2AN_1991__25_1_111_0 ER -
%0 Journal Article %A Lippold, Günter %T Error estimates and step-size control for the approximate solution of a first order evolution equation %J ESAIM: Modélisation mathématique et analyse numérique %D 1991 %P 111-128 %V 25 %N 1 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/M2AN_1991__25_1_111_0/ %G en %F M2AN_1991__25_1_111_0
Lippold, Günter. Error estimates and step-size control for the approximate solution of a first order evolution equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 1, pp. 111-128. https://www.numdam.org/item/M2AN_1991__25_1_111_0/
[1] , Error estimates over infinite intervals of some discretizations of evolution equations, BIT 24 (1984), 413-429 | Zbl | MR
[2] and , Error estimates for adaptive finite element computations, SIAM J Numer Anal 75 (1978), 736-754 | Zbl | MR
[3] and , An adaptive method of lines with error control for parabolic equations of the reaction-diffusion type, J Comp Phys 63 (1986), 33-66 | Zbl | MR
[4] , and , Time discretization of par abolie problems by the discontinuons Galerkin method, M2AN 19 (1985), 611-643 | Zbl | MR | Numdam
[5] , and , Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | Zbl | MR
[6] , Discrete-time Galerkin methods for nonlinear evolution equations, Math Nachr 84 (1978), 247-275 | Zbl | MR
[7] , and , An a posteriori error estimate for a backward Euler discretization of a parabolic problem, SIAM J Numer Anal, 27 (1990), 277-291 | Zbl | MR
[8] , Method of Rothe in evolution equations, Teubner Leipzig, 1985 | Zbl | MR
[9] and , Problèmes aux limites non homogènes et applications I, Dunod, Paris, 1968 | Zbl
[10] , Adaptive approximation, ZAMM 67 (1987), 453-465 | Zbl | MR
[11] and , On the smoothing property of the Galerkin method for par abolic equations, SIAM J Numer Anal 19 (1981), 93-113 | Zbl | MR
[12] , Application of Rothe's method to abstract parabohe equations, Czech Math J 24 (1974), 496-500 | Zbl | MR | EuDML
[13] , Sur l'approximation de certaines équations d'évolution linéaires et non linéaires, J Math Pures Appl 46 (1967), 11-107, 109-183 | Zbl
[14] , An adaptive method for linear parabolic partial differential equations, ZAMM 67 (1987), 557-565 | Zbl | MR
[15] , Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben, Math. Ann. 102 (1930), 650-670. | MR | JFM | EuDML
[16] and , Stability and convergence in the PDE/stiff ODE interphase, Report NM-R8619, Centre for Mathematics and Computer Science Amsterdam, 1986.
[17] and, On Galerkin methods in semilinear parabolic problems, SIAM J. Numer. Anal. 12 (1975), 378-389. | Zbl | MR
[18] , An H-1 Galerkin method for a parabolic problem in a single space variable, SIAM J. Numer. Anal. 12 (1975), 803-817. | Zbl | MR





