@article{M2AN_1989__23_3_445_0,
author = {Luskin, Mitchell and Sell, George R.},
title = {Approximation theories for inertial manifolds},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {445--461},
year = {1989},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {23},
number = {3},
mrnumber = {1014485},
zbl = {0688.58035},
language = {en},
url = {https://www.numdam.org/item/M2AN_1989__23_3_445_0/}
}
TY - JOUR AU - Luskin, Mitchell AU - Sell, George R. TI - Approximation theories for inertial manifolds JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1989 SP - 445 EP - 461 VL - 23 IS - 3 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/M2AN_1989__23_3_445_0/ LA - en ID - M2AN_1989__23_3_445_0 ER -
%0 Journal Article %A Luskin, Mitchell %A Sell, George R. %T Approximation theories for inertial manifolds %J ESAIM: Modélisation mathématique et analyse numérique %D 1989 %P 445-461 %V 23 %N 3 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/M2AN_1989__23_3_445_0/ %G en %F M2AN_1989__23_3_445_0
Luskin, Mitchell; Sell, George R. Approximation theories for inertial manifolds. ESAIM: Modélisation mathématique et analyse numérique, Attractors, Inertial Manifolds and their Approximation. Proceedings of the Marseille-Luminy... 1987, Tome 23 (1989) no. 3, pp. 445-461. https://www.numdam.org/item/M2AN_1989__23_3_445_0/
, (1971), Dissipative periodic processes, Bull. Amer.Math. Soc, 77, pp. 1082-1088. | Zbl | MR
, and (1988), Smoothness of inertial manifolds, Preprint. | Zbl | MR
(1988), A construction of inertial manifolds, Preprint. | Zbl | MR
, , , (1989), Integral manifolds and inertial manifolds for dissipative partial differential equations, Applied Mathematical Sciences, No 70, Springer-Verlag. | Zbl | MR
, , , (1989), Spectral barriers and inertial manifolds for dissipative partial differential equations, J Dynamics and Differential Equations, 1 (to appear). | Zbl | MR
, , (1985), Attractors representing turbulent flows, Memoirs Amer. Math. Soc., 314. | Zbl | MR
, , and (1988), Low dimensional behavior in the complex Ginzburg-Landau equation, Nonlinearity (to appear). | Zbl | MR
, and (1988), Construction of inertial manifolds by elliptic regularization, J. Differential Equations, to appear. | Zbl | MR
, , , , (1988), On the computation of inertial manifolds, Physics Letters A, Vol. 131, No 7, 8, pp. 433-436. | MR
, , , (1988), Inertial manifolds for the Kuramoto Sivashinsky equation and an estimate of their lowest dimensions, J. Math. Pures Appl., 67, pp. 197-226. | Zbl | MR
, and (1986), Inertial manifolds for nonlinear evolutionary equations, IMA Preprint No 234, March, 1986 Also in, J. Differential Equations, 73 (1988), pp. 309-353. | Zbl | MR
, and (1988), Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dynamics and Differential Equations, to appear. | Zbl | MR
and (1979), Some analytic and geometric properties of the solutions of the Navier-Stokes equations, J. Math. Pures Appl., 58, pp. 339-368. | Zbl | MR
, Discrétisation en temps et variétés inertielles pour des équations d'évolution aux dérivées partielles non linéaires, Preprint. | Zbl
(1988), Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence. | Zbl | MR
and (1988), Inertial manifolds for gradient Systems.
(1981), Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, No 840, Springer-Verlag, New York. | Zbl | MR
(1988), Explicit construction of an inertial manifold for a reaction diffusion equation, J. Differential Equations (to appear). | Zbl | MR
(1981), Hopf's conjecture for a class of chemical kinetics equations, J. Soviet Math., 25, pp. 836-849. | Zbl
and (1988), Parabolic regularization and the construction of inertial manifolds, Preprint.
(1976), Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations, 22, pp. 331-348. | Zbl | MR
and (1987), Inertial manifolds for reaction diffusion equations in higher space dimensions, IMA Preprint No. 331, June 1987, Also in, J. Amer. Math. Soc, 1, No. 4 (1988), pp. 805-866. | Zbl | MR
(1977), Reduction of semilinear parabolic equations to finite dimensional C1 flows, Geometry and Topology, Lecture Notes in Math., vol. 597, Springer-Verlag, New York, pp.361-378. | Zbl | MR
, (1981) On the dimension of the compact invariant sets of certain nonlinear maps, Lecture Notes in Math,, vol. 898, Springer-Verlag, New York, pp. 230-242. | Zbl | MR
(1988), Inertial manifolds associated to partly dissipative reaction diffusion equations, J. Math. Anal. Appl. (to appear). | Zbl
(1983), Finite dimensional attracting manifolds in reaction diffusion equations, Contemporary Math., 17, pp. 353-360. | Zbl | MR
and (1987), Existence and non-existence of finite dimensional globally attracting invariant manifolds in semilinear damped wave equations, Dynamics of Infinite Dimensional Systems, Springer-Verlag, New York, pp. 187-210. | Zbl | MR
and (1988), The singular limit dynamics of semilinear damped wave equations, Preprint, Univ. Autònoma Barcelona. | Zbl | MR
, and , (1987), Some global dynamical properties of a class of pattern formation equations, IMA Preprint No. 381. | Zbl | MR
(1983), Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol.44, Springer-Verlag, New York. | Zbl | MR
(1964), On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, NYU Preprint No. 333, October 1964.
(1965), A new approach to the perturbation theory of invariant surfaces, Comm. Pure Appl. Math., 18, pp.717-732. | Zbl | MR
(1969), A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech., 18, pp.705-762. | Zbl | MR
and (1988), Inertial manifolds : The non self adjoint case, Preprint. | Zbl
(1988), Finite dimensional asymptotic behavior for the Swift-Hohenberg model of convection, Nonlinear Analysis, TMA, to appear. | Zbl | MR
(1988), Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York. | Zbl | MR






