@article{M2AN_1987__21_1_63_0,
author = {Hlav\'a\v{c}ek, I.},
title = {Shape optimization in two-dimensional elasticity by the dual finite element method},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {63--92},
year = {1987},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {21},
number = {1},
mrnumber = {882687},
zbl = {0611.73021},
language = {en},
url = {https://www.numdam.org/item/M2AN_1987__21_1_63_0/}
}
TY - JOUR AU - Hlaváček, I. TI - Shape optimization in two-dimensional elasticity by the dual finite element method JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1987 SP - 63 EP - 92 VL - 21 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/M2AN_1987__21_1_63_0/ LA - en ID - M2AN_1987__21_1_63_0 ER -
%0 Journal Article %A Hlaváček, I. %T Shape optimization in two-dimensional elasticity by the dual finite element method %J ESAIM: Modélisation mathématique et analyse numérique %D 1987 %P 63-92 %V 21 %N 1 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/M2AN_1987__21_1_63_0/ %G en %F M2AN_1987__21_1_63_0
Hlaváček, I. Shape optimization in two-dimensional elasticity by the dual finite element method. ESAIM: Modélisation mathématique et analyse numérique, Tome 21 (1987) no. 1, pp. 63-92. https://www.numdam.org/item/M2AN_1987__21_1_63_0/
[1] , Approximations of elliptic boundary value problems. J. Wiley-Interscience, New York, 1972. | Zbl | MR
[2] , Problems and methods of optimal structural design. PlenumN. V. BANICHUK, Problems and me Press, New York and London, 1983. | Zbl | MR
[3] , , Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Appl. Math. & Optim. 2 (1975), 130-169. | Zbl | MR
[4] , Convergence of an equilibrium finite element model for plane elastostatics. Apl. Mat.24 (1979), 427-456. | Zbl | MR
[5] , Dual finite element analysis for some elliptic variational equations and inequalities. Acta Applicandae Math. 1 (1983), 121-150. | Zbl | MR
[6] : Optimization of the domain in elliptic problems by the dual finite element method. Api.Mat.30 (1985), 50-72. | Zbl | MR
[7] , , Approximation of the Signorini problem with friction by a mixed finite element method. J. Math. Anal. Appl. 86 (1982), 99-122. | Zbl | MR
[8] , , The approximation of the optimal shape control problem governed by a variational inequality with flux cost functional. To appear in Proc. | MR
[9] , , On the existence of optimal shapes in contact problems, Numer. Funct. Anal, and Optimiz. 7 (1984), 107-124. | Zbl | MR
[10] , , , On optimal shape design of an elastic body on a rigid foundation. To appear in Proc. of the MAFELAP Confe-rence 1984. | Zbl | MR
[11] , , Mathematical theory of elastic and elasto-plastic bodies.Elsevier, Amsterdam 1981. | Zbl | MR
[12] , , An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems. Internat. J. Solids Structures 4 (1968), 857-873. | Zbl





