@article{M2AN_1976__10_2_39_0,
author = {Falk, Richard S.},
title = {A {Ritz} method based on a complementary variational principle},
journal = {Revue fran\c{c}aise d'automatique, informatique, recherche op\'erationnelle. Analyse num\'erique},
pages = {39--48},
year = {1976},
publisher = {Dunod},
volume = {10},
number = {R2},
mrnumber = {433915},
zbl = {0363.65084},
language = {en},
url = {https://www.numdam.org/item/M2AN_1976__10_2_39_0/}
}
TY - JOUR AU - Falk, Richard S. TI - A Ritz method based on a complementary variational principle JO - Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique PY - 1976 SP - 39 EP - 48 VL - 10 IS - R2 PB - Dunod UR - https://www.numdam.org/item/M2AN_1976__10_2_39_0/ LA - en ID - M2AN_1976__10_2_39_0 ER -
%0 Journal Article %A Falk, Richard S. %T A Ritz method based on a complementary variational principle %J Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique %D 1976 %P 39-48 %V 10 %N R2 %I Dunod %U https://www.numdam.org/item/M2AN_1976__10_2_39_0/ %G en %F M2AN_1976__10_2_39_0
Falk, Richard S. A Ritz method based on a complementary variational principle. Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, Tome 10 (1976) no. R2, pp. 39-48. https://www.numdam.org/item/M2AN_1976__10_2_39_0/
1. , Complementary Variational Principles, , Clarendon Press, Oxford, 1970. | Zbl | MR
2. , Approximation by Hill Functions, Commentations Math. Univ. Carolinae, Vol. 11, 1970, p. 387-811. | Zbl | MR
3. , Approximation by Hill Functions, II, Technical Note BN-708, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1971.
4. , The Finite Element Method with Lagrangian Multipliers, Numer. Math. 20, 1973, p. 179-192. | Zbl | MR
5. , The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (editor), Academic Press, New York, 1972. | Zbl | MR
6. , , Problèmes aux limites non homogènes et applications, Vol. 1, Paris, Dunod, 1968. | Zbl | MR
7. and , An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N.J., 1973. | Zbl | MR





