In this paper, we consider the equation
for integers and , with and . We extend work of the first and third-named authors by finding all solutions in the cases and . We do this by constructing a Frey–Hellegouarch -curve defined over the real quadratic field , and using the modular method with multi-Frey techniques.
Dans cet article, nous considérons l’équation
pour des entiers et , avec et . Nous prolongeons le travail des premier et troisième auteurs en trouvant toutes les solutions dans les cas et . Nous faisons ceci en construisant une -courbe de Frey–Hellegouarch définie sur le corps quadratique réel , et en combinant la méthode modulaire avec des techniques multi-Frey.
Révisé le :
Accepté le :
Publié le :
Keywords: Lebesgue–Nagell, Elliptic curves, Frey curve, multi-Frey, $\mathbb{Q}$-curves, modularity, level-lowering, Galois representations, newforms.
Bennett, Michael A. 1 ; Michaud-Jacobs, Philippe 2 ; Siksek, Samir 2
CC-BY-ND 4.0
@article{JTNB_2023__35_2_495_0,
author = {Bennett, Michael A. and Michaud-Jacobs, Philippe and Siksek, Samir},
title = {$\protect \mathbb{Q}$-curves and the {Lebesgue{\textendash}Nagell} equation},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {495--510},
year = {2023},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {35},
number = {2},
doi = {10.5802/jtnb.1254},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1254/}
}
TY - JOUR
AU - Bennett, Michael A.
AU - Michaud-Jacobs, Philippe
AU - Siksek, Samir
TI - $\protect \mathbb{Q}$-curves and the Lebesgue–Nagell equation
JO - Journal de théorie des nombres de Bordeaux
PY - 2023
SP - 495
EP - 510
VL - 35
IS - 2
PB - Société Arithmétique de Bordeaux
UR - https://www.numdam.org/articles/10.5802/jtnb.1254/
DO - 10.5802/jtnb.1254
LA - en
ID - JTNB_2023__35_2_495_0
ER -
%0 Journal Article
%A Bennett, Michael A.
%A Michaud-Jacobs, Philippe
%A Siksek, Samir
%T $\protect \mathbb{Q}$-curves and the Lebesgue–Nagell equation
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 495-510
%V 35
%N 2
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1254/
%R 10.5802/jtnb.1254
%G en
%F JTNB_2023__35_2_495_0
Bennett, Michael A.; Michaud-Jacobs, Philippe; Siksek, Samir. $\protect \mathbb{Q}$-curves and the Lebesgue–Nagell equation. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 2, pp. 495-510. doi: 10.5802/jtnb.1254
[1] On the Lebesgue–Nagell equation and related subjects, Ph. D. Thesis, University of Warwick (2010)
[2] On the equation , Acta Arith., Volume 163 (2014) no. 4, pp. 327-343 | MR | Zbl
[3] Differences between perfect powers: prime power gaps (2021) (https://arxiv.org/abs/2110.05553v1, to appear in Algebra Number Theory)
[4] Differences between perfect powers: the Lebesgue–Nagell equation, Trans. Am. Math. Soc., Volume 3776 (2023) no. 1, pp. 335-370 | MR | Zbl
[5] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | MR | Zbl
[6] On the Diophantine equation , Acta Arith., Volume 80 (1997) no. 3, pp. 213-223 | Zbl
[7] Galois representations attached to -curves and the generalized Fermat equation , Am. J. Math., Volume 126 (2004) no. 4, pp. 763-787 | DOI | MR | Zbl
[8] The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields, Compos. Math., Volume 151 (2015) no. 8, pp. 1395-1415 | DOI | MR | Zbl
[9] Fermat’s last theorem over some small real quadratic fields, Algebra Number Theory, Volume 9 (2015) no. 4, pp. 875-895 | DOI | MR | Zbl
[10] Efficient resolution of Thue–Mahler equations (2022) (https://arxiv.org/abs/2207.14492v1)
[11] Sur les équations et , Acta Arith., Volume 108 (2003) no. 4, pp. 326-338 | MR | Zbl
[12] On the sum of fourth powers in arithmetic progressions, Int. J. Number Theory, Volume 17 (2021) no. 1, pp. 191-221 | MR | DOI | Zbl
[13] Fermat’s Last Theorem and modular curves over real quadratic fields, Acta Arith., Volume 203 (2022) no. 4, pp. 319-352 | DOI | MR | Zbl
[14] On the arithmetic of abelian varieties, Invent. Math., Volume 17 (1972), pp. 177-190 | DOI | MR | Zbl
[15] -Curves and abelian varieties of -type, Proc. Lond. Math. Soc., Volume 81 (2000) no. 2, pp. 285-317 | DOI | MR | Zbl
[16] Abelian varieties over and modular forms, Algebra and Topology 1992 (Korea Advanced Institute of Science and Technology), Mathematics Research Center, 1992, pp. 53-79
Cité par Sources :





