Numbers which are only orders of abelian or nilpotent groups
Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 2, pp. 453-466

Refining a result of Erdős and Mays, we give asymptotic series expansions for the functions A(x)-C(x), the count of nx for which every group of order n is abelian (but not all cyclic), and N(x)-A(x), the count of nx for which every group of order n is nilpotent (but not all abelian).

Soient C(x), A(x) et N(x) les fonctions qui comptent le nombre de nx tels que chaque groupe d’ordre n soit respectivement cyclique, abélien et nilpotent. En affinant un résultat de Erdős et Mays, on donne des développements asymptotiques des fonctions A(x)-C(x) et N(x)-A(x).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1251
Classification : 11N37, 20D60
Keywords: group numbers, asymptotic series

Just, Matthew 1

1 Department of Mathematics University of Georgia Athens GA 30602 United States
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2023__35_2_453_0,
     author = {Just, Matthew},
     title = {Numbers which are only orders of abelian or nilpotent groups},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {453--466},
     year = {2023},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {2},
     doi = {10.5802/jtnb.1251},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1251/}
}
TY  - JOUR
AU  - Just, Matthew
TI  - Numbers which are only orders of abelian or nilpotent groups
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 453
EP  - 466
VL  - 35
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1251/
DO  - 10.5802/jtnb.1251
LA  - en
ID  - JTNB_2023__35_2_453_0
ER  - 
%0 Journal Article
%A Just, Matthew
%T Numbers which are only orders of abelian or nilpotent groups
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 453-466
%V 35
%N 2
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1251/
%R 10.5802/jtnb.1251
%G en
%F JTNB_2023__35_2_453_0
Just, Matthew. Numbers which are only orders of abelian or nilpotent groups. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 2, pp. 453-466. doi: 10.5802/jtnb.1251

[1] Begunts, Aleksandr V. On an asymptotic formula for F 1 (x), Vestn. Mosk. Univ., Volume 5 (2001), pp. 57-59

[2] Dickson, Leonard E. Definitions of a group and a field by independent postulates, Trans. Am. Math. Soc., Volume 6 (1905), pp. 198-204 | DOI | MR | Zbl

[3] Erdős, Pál Some asymptotic formulas in number theory, J. Indian Math. Soc., Volume 12 (1948), pp. 75-78 | MR | Zbl

[4] Erdős, Pál; Mays, Michael E. On nilpotent but not abelian groups and abelian but not cyclic groups, J. Number Theory, Volume 28 (1988) no. 3, pp. 363-368 | DOI | MR | Zbl

[5] Halberstam, Heini; Richert, Hans-Egon Sieve methods, London Mathematical Society Monographs, 4, Academic Press Inc., 1974

[6] Mays, Michael E. Counting abelian, nilpotent, and supersolvable group orders, Arch. Math., Volume 31 (1978), pp. 536-538 | DOI | MR

[7] Narlikar, M. J.; Srinivasan, S. On orders solely of abelian groups. II, Bull. Lond. Math. Soc., Volume 20 (1988) no. 3, pp. 211-216 | DOI | MR | Zbl

[8] Norton, Karl K. On the number of restricted prime factors of an integer I, Ill. J. Math., Volume 20 (1976), pp. 681-705 | MR | Zbl

[9] Pazderski, Gerhard Die Ordnungen, zu denen nur Gruppen mit gegebener Eigenschaft gehören, Arch. Math., Volume 10 (1959), pp. 331-343 | DOI | MR | Zbl

[10] Pollack, Paul Numbers which are orders only of cyclic groups (submitted)

[11] Pomerance, Carl On the distribution of amicable numbers, J. Reine Angew. Math., Volume 293/294 (1977), pp. 217-222 | Zbl | MR

[12] Scourfield, Eira J. An asymptotic formula for the property (n,f(n))=1 for a class of multiplicative functions, Acta Arith., Volume 29 (1976) no. 4, pp. 401-423 | DOI | MR

[13] Szele, Tibor Über die endlichen Ordnungszahlen, zu denen nur eine Gruppe gehört, Comment. Math. Helv., Volume 20 (1947), pp. 265-267 | DOI | Zbl

[14] Titchmarsh, Edward C. A divisor problem, Rend. Circ. Mat. Palermo, Volume 54 (1930), pp. 414-429 | Zbl | DOI

Cité par Sources :