On the Finiteness of Perfect Powers in Elliptic Divisibility Sequences
Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 247-258

We prove that there are finitely many perfect powers in elliptic divisibility sequences generated by a non-integral point on elliptic curves of the form y 2 =x(x 2 +b), where b is any positive integer. We achieve this by using the modularity of elliptic curves over real quadratic number fields.

Nous prouvons qu’il n’existe qu’un nombre fini de puissances parfaites dans les suites de divisibilité elliptiques générées par un point non entier sur une courbe elliptique de la forme y 2 =x(x 2 +b), où b est un entier positif non nul. Nous y parvenons en utilisant la modularité des courbes elliptiques sur les corps quadratiques réels.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1244
Classification : 11B83, 11D61, 11G05
Keywords: Modular methods, Elliptic divisibility sequences, Perfect powers

Alfaraj, Abdulmuhsin 1

1 Department of Mathematical Sciences University of Bath Claverton Down Bath, BA2 7AY UK.
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2023__35_1_247_0,
     author = {Alfaraj, Abdulmuhsin},
     title = {On the {Finiteness} of {Perfect} {Powers} in {Elliptic} {Divisibility} {Sequences}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {247--258},
     year = {2023},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {1},
     doi = {10.5802/jtnb.1244},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1244/}
}
TY  - JOUR
AU  - Alfaraj, Abdulmuhsin
TI  - On the Finiteness of Perfect Powers in Elliptic Divisibility Sequences
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 247
EP  - 258
VL  - 35
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1244/
DO  - 10.5802/jtnb.1244
LA  - en
ID  - JTNB_2023__35_1_247_0
ER  - 
%0 Journal Article
%A Alfaraj, Abdulmuhsin
%T On the Finiteness of Perfect Powers in Elliptic Divisibility Sequences
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 247-258
%V 35
%N 1
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1244/
%R 10.5802/jtnb.1244
%G en
%F JTNB_2023__35_1_247_0
Alfaraj, Abdulmuhsin. On the Finiteness of Perfect Powers in Elliptic Divisibility Sequences. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 247-258. doi: 10.5802/jtnb.1244

[1] Blasius, Don; Rogawski, Jonathan D. Motives for Hilbert modular forms, Invent. Math., Volume 114 (1993) no. 1, pp. 55-87 | DOI | MR | Zbl

[2] Bosma, Wieb; Cannon, John; Playoust, Catherine The Magma Algebra System I: The User Language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl

[3] Bugeaud, Yann; Mignotte, Maurice; Siksek, Samir Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math., Volume 163 (2006) no. 3, pp. 969-1018 | DOI | MR | Zbl

[4] Carayol, Henri Sur les représentations -adiques associées aux formes modulaires de Hilbert, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 3, pp. 409-468 | DOI | MR | Zbl

[5] Carayol, Henri Sur les représentations galoisiennes modulo attachées aux formes modulaires, Duke Math. J., Volume 59 (1989) no. 3, pp. 785-801 | MR | Zbl

[6] Darmon, Henri Serre’s conjectures, Seminar on Fermat’s last theorem (CMS Conference Proceedings), Volume 17, American Mathematical Society, 1995, pp. 135-153 | MR | Zbl

[7] Diamond, Fred; Shurman, Jerry A first course in modular forms, Graduate Texts in Mathematics, 228, Springer, 2005, xv+436 pages

[8] Everest, Graham; King, Helen Prime powers in elliptic divisibility sequences, Math. Comput., Volume 74 (2005) no. 252, pp. 2061-2071 | DOI | MR | Zbl

[9] Everest, Graham; Reynolds, Jonathan; Stevens, Shaun On the denominators of rational points on elliptic curves, Bull. Lond. Math. Soc., Volume 39 (2007) no. 5, pp. 762-770 | DOI | MR | Zbl

[10] Freitas, Nuno; Le Hung, Bao V.; Siksek, Samir Elliptic Curves over Real Quadratic Fields are Modular, Invent. Math., Volume 201 (2015) no. 1, pp. 159-206 | MR | Zbl | DOI

[11] Freitas, Nuno; Siksek, Samir The Asymptotic Fermat’s Last Theorem for Five-Sixths of Real Quadratic Fields, Compos. Math., Volume 151 (2015), pp. 1395-1415 | DOI | MR | Zbl

[12] Freitas, Nuno; Siksek, Samir Criteria for irreducibility of mod p representations of Frey curves, J. Théor. Nombres Bordeaux, Volume 27 (2015) no. 1, pp. 67-76 | DOI | MR | Numdam | Zbl

[13] Fujiwara, Kazuhiro Level optimisation in the totally real case (2006) (https://arxiv.org/abs/math/0602586v1)

[14] Ingram, Patrick; Silverman, Joseph H. Uniform estimates for primitive divisors in elliptic divisibility sequences, Number theory, analysis and geometry, Springer, 2012, pp. 243-271 | DOI | Zbl

[15] Jarvis, Frazer Correspondences on Shimura curves and Mazur’s principle at p, Pac. J. Math., Volume 213 (2004) no. 2, pp. 267-280 | DOI | MR | Zbl

[16] Livné, Ron Communication networks and Hilbert modular forms, Applications of algebraic geometry to coding theory, physics and computation (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 36, Kluwer Academic Publishers, 2001, pp. 255-270 | MR | Zbl | DOI

[17] Rajaei, Ali On the levels of mod Hilbert modular forms, J. Reine Angew. Math., Volume 537 (2001), pp. 33-65 | MR | Zbl

[18] Reynolds, Jonathan Perfect powers in elliptic divisibility sequences, J. Number Theory, Volume 132 (2012) no. 5, pp. 998-1015 | DOI | MR | Zbl

[19] Silverman, Joseph H. The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 1986, xii+400 pages | DOI

[20] Silverman, Joseph H. Wieferich’s criterion and the abc-conjecture, J. Number Theory, Volume 30 (1988) no. 2, pp. 226-237

[21] Silverman, Joseph H. Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiii+525 pages

[22] Streng, Marco Elliptic divisibility sequences with complex multiplication, 2006 (Master’s thesis, Universiteit Utrecht)

[23] Taylor, Richard On Galois representations associated to Hilbert modular forms, Invent. Math., Volume 98 (1989) no. 2, pp. 265-280

[24] Ward, Morgan Memoir on elliptic divisibility sequences, Am. J. Math., Volume 70 (1948), pp. 31-74

[25] Wiles, Andrew J. On ordinary λ-adic representations associated to modular forms, Invent. Math., Volume 94 (1988) no. 3, pp. 529-573

Cité par Sources :