An explicit formula for the Mahler measure of the -variable Laurent polynomial is given, in terms of dilogarithms and trilogarithms.
On montre une formule explicite pour la mesure de Mahler du polynôme en termes de dilogarithmes et trilogarithmes.
@article{JTNB_2002__14_2_683_0,
author = {Smyth, Chris J.},
title = {An explicit formula for the {Mahler} measure of a family of $3$-variable polynomials},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {683--700},
year = {2002},
publisher = {Universit\'e Bordeaux I},
volume = {14},
number = {2},
mrnumber = {2040701},
zbl = {1071.11018},
language = {en},
url = {https://www.numdam.org/item/JTNB_2002__14_2_683_0/}
}
TY - JOUR AU - Smyth, Chris J. TI - An explicit formula for the Mahler measure of a family of $3$-variable polynomials JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 683 EP - 700 VL - 14 IS - 2 PB - Université Bordeaux I UR - https://www.numdam.org/item/JTNB_2002__14_2_683_0/ LA - en ID - JTNB_2002__14_2_683_0 ER -
%0 Journal Article %A Smyth, Chris J. %T An explicit formula for the Mahler measure of a family of $3$-variable polynomials %J Journal de théorie des nombres de Bordeaux %D 2002 %P 683-700 %V 14 %N 2 %I Université Bordeaux I %U https://www.numdam.org/item/JTNB_2002__14_2_683_0/ %G en %F JTNB_2002__14_2_683_0
Smyth, Chris J. An explicit formula for the Mahler measure of a family of $3$-variable polynomials. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 683-700. https://www.numdam.org/item/JTNB_2002__14_2_683_0/
[B1] , Speculations concerning the range of Mahler's measure. Canad. Math Bull. 24 (1981), 453-469. | Zbl | MR
[B2] , Mahler's measure and special values of L-functions. Experiment. Math. 7 (1998), 37-82. | Zbl | MR
[B3] , Uniform approximation to Mahler's measure in several variables. Canad. Math. Bull. 41 (1998), 125-128. | Zbl | MR
[B4] , Mahler's measure and special values of L-functions-some conjectures. Number theory in progress, Vol. 1 (Zakopane-Koscielisko, 1997), 27-34, de Gruyter, Berlin, 1999. | Zbl | MR
[BRV] , , Mahler's measure and the dilogarithm. I. Canad. J. Math. 54 (2002), 468-492. | Zbl | MR
[K] , Über die Transcendenten, welche aus wiederholten Integrntionen rationaler Formeln entstehen. J. für Math. (Crelle) 21 (1840), 328-371. | Zbl
[L] , Dilogarithms and Associated Functions. Macdonald, London, 1958. | Zbl | MR
[R] , Relations between Mahler's measure and values of L-series. Canad. J. Math. 39 (1987), 694-732. | Zbl | MR
[RV] , Modular Mahler measures. I, Topics in number theory (University Park, PA, 1997), 17-48, Math. Appl., 467, Kluwer Acad. Publ., Dordrecht, 1999. | Zbl | MR
[Sc] , Polynomials with Special Regard to Reducibility. With an appendix by Umberto Zannier. Encyclopedia of Mathematics and its Applications, 77, Cambridge University Press, Cambridge, 2000. | Zbl | MR
[Sm] , On measures of polynomials in several variables. Bull. Austral. Math. Soc. Ser. A 23 (1981), 49-63. Corrigendum (with ): Bull. Austral. Math. Soc. Ser. A 26 (1982), 317-319. | Zbl | MR
[Z] , The Bloch- Wigner-Ramakrishnan polylogarithm function. Math. Ann. 286 (1990), 613-624. | Zbl | MR






