Using the natural extensions for the Rosen maps, we give an infinite-order-chain representation of the sequence of the incomplete quotients of the Rosen fractions. Together with the ergodic behaviour of a certain homogeneous random system with complete connections, this allows us to solve a variant of Gauss-Kuzmin problem for the above fraction expansion.
En utilisant les extensions naturelles des transformations de Rosen, nous obtenons une représentation de la chaîne d'ordre infini associée à la suite des quotients incomplets des fractions de Rosen. Associé au comportement ergodique d'un certain système aléatoire homogène à liaisons complètes, ce fait nous permet de résoudre une version du problème de Gauss-Kuzmin pour le développement en fraction de Rosen.
@article{JTNB_2002__14_2_667_0,
author = {Sebe, Gabriela I.},
title = {A {Gauss-Kuzmin} theorem for the {Rosen} fractions},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {667--682},
year = {2002},
publisher = {Universit\'e Bordeaux I},
volume = {14},
number = {2},
mrnumber = {2040700},
zbl = {1067.11044},
language = {en},
url = {https://www.numdam.org/item/JTNB_2002__14_2_667_0/}
}
Sebe, Gabriela I. A Gauss-Kuzmin theorem for the Rosen fractions. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 667-682. https://www.numdam.org/item/JTNB_2002__14_2_667_0/
[1] , , , Natural extensions for the Rosen fractions. Trans. Amer. Math. Soc. 352 (2000), 1277-1298. | Zbl | MR
[2] , , Backward continued fractions and their invariant measures. Canad. Math. Bull. 39 (1996), 186-198. | Zbl | MR
[3] , , The Hurwitz constant and Diophantine approximation on Hecke groups. J. London Math. Soc. 34 (1986), 219-234. | Zbl | MR
[4] , A basic tool in mathematical chaos theory: Doeblin and Fortet's ergodic theorem and Ionescu Tulcea-Marinescu's generalization. In: Doeblin and Modern Probability (Blaubeuren, 1991), 111-124. Contemp. Math. 149, Amer. Math. Soc. Providence, RI, 1993. | Zbl | MR
[5] , On the Gauss-Kuzmin-Lévy theorem, III. Rev. Roumaine Math. Pures Appl. 42 (1997), 71-88. | Zbl | MR
[6] GRIGORESCU, Dependence with complete connections and its applications. Cambridge Univ. Press, Cambrigde, 1990. | Zbl | MR
[7] , Diophantine approximation on Hecke groups, Glasgow Math. J. 27 (1985), 117-127. | Zbl | MR
[8] , Lagrange's theorem for Hecke triangle groups. In: A tribute to Emil Grosswald: number theory and related analysis, 477-480, Contemp. Math. 143, Amer. Math. Soc., Providence, RI, 1993. | Zbl | MR
[9] , Metrical theory for a class of continued fraction transformations and their natural extensions. Tokyo J. Math. 7 (1981), 399-426. | Zbl | MR
[10] , Continued fractions, geodesic flows and Ford circles. In: Algorithms, fractals, and dynamics (Okayama/Kyoto, 1992), 179-191, Plenum, New York, 1995. | Zbl | MR
[11] , A class of continued fractions associated with certain properly discontinuous groups. Duke Math. J. 21 (1954), 549-563. | Zbl | MR
[12] , , Hecke groups and continued fractions. Bull. Austral. Math. Soc. 46 (1992), 459-474. | Zbl | MR
[13] , Remarks on the Rosen λ-continued fractions. In: Number theory with an emphasis on the Markoff spectrum (Provo, UT, 1991), 227-238, Lecture Notes in Pure and Appl. Math., 147, Dekker, New York, 1993. | Zbl





