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On the distribution in the arithmetic progressions
of reducible quadratic polynomials in short
intervals, I1

par GIOVANNI COPPOLA et SAVERIO SALERNO

REsUME. Ce texte donne de nouveaux résultats sur la répartition
dans les progressions arithmétiques (modulo un produit de deux
nombres premiers) des valeurs (an + b)(cn + d) prises par un
polynéme quadratique réductible lorsque Pentier n varie dans
des intervalles courts n € [z,z + %], ot ¥ € (0,1]. Nous uti-
lisons ici la méthode de dispersion, pour obtenir un niveau de
répartition au deld du niveau classique 8. Nous obtenons pour
niveau 39/2, améliorant en cela la valeur 39 — 3/2 obtenue par le
grand crible. Nous terminons par une comparaison graphique des
deux approches.

ABSTRACT. This paper gives further results about the distri-
bution in the arithmetic progressions (modulo a product of two
primes) of reducible quadratic polynomials (an + b)(cn + d) in
short intervals n € [z,z + 2?], where now ¥ € (0,1]. Here we use
the Dispersion Method instead of the Large Sieve to get results
beyond the classical level 9, reaching 3¢/2 (thus improving also
the level of the previous paper, i.e. 39 —3/2), but our new results
are different in structure. Then, we make a graphical comparison
of the two methods.

1. Introduction and statement of the results

In this paper we continue the study of the distribution in the arithmetic
progressions of the polynomial sequence n(n + 2) and, also, of sequences of
reducible quadratic polynomials, in short intervals that we started with [2].
Here, instead of the Large Sieve (see [1]), we use the Dispersion method
(see [6]) to get results which are independent (even if from some point of
view stronger) of the ones in [2].

We first briefly recall the arguments thereby treated.
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We want to show the heuristically reasonable estimate (d is odd and
square-free):

h
E 1= E E 1+ Rd(ﬁ, h),
z<n<z+h tld
n(n+2)=0modd 5{T<t<z+h

where h is the length of the interval and R4(z,h) is "good” on average.

When this holds on average over d ~ D, i.e. over D < d < 2D, with
D = 2% (¢ > 0 is "small”), we say that the distribution level of the
sequence (here n(n +2)), in the arithmetic progressions, is (at least) a.

For example, standard arguments give the distribution level ¥ for n(n+
2), when n € [,z + z?]. For instance, we refer to [3], where classical sieve
methods are used.

A higher distribution level is reached using bilinear forms; in the ones we
consider we use the bounded coefficients ~,,d,, where ¢ ~ Q and r ~ R.
Here the level of distribution is obviously log(QR)/ log(x).

(In the sequel we will write s = a(m) for s = a mod m).

A non-trivial treatment of the bilinear form of the error in

D2 w1

qNQ TNR nSz
n241=0(qr)

allowed Iwaniec to show in 1978 [5] that the level of distribution in this
case is 16/15; he then used this to prove that n2 + 1 = P, for infinitely
many n (here P, denotes an integer with at most k prime factors), whilst
the trivial level of distribution, that is 1, enables one to get only P;.

We study the bilinear form over prime moduli, i.e. (here QR > 2h + 2)

DD IL7 D D

I~ ~R z<n<z+h
"~e T n(n+2)=0(gr)

where ¢ and r are distinct primes.

This restriction is connected with the arithmetical nature of the problem
and is essential for our results. We hope in the future to manage also the
case of general moduli.

We expect that the following estimate holds

2h
D Wb D 1=3 mb | T+ 1+ > 1
~Q z<n<z+h ~Q q z<n<z+h z<n<z+h
r~R n(n+2)=0(qr) r~R n=0(qr) n=-2(qr)

with a "good” error term, that is O(h!~¢).
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In this paper we use elementary methods (that is, essentially the Di-
spersion method) to get level of distribution 3¢/2, i.e. 3/2 in large intervals
(see our Corollary 1). As we saw in [2], the Large Sieve gives different ranges
for @ and R, even if in the case 4 < 1 the level of distribution is lower
(i.e. 39 —3/2).

Our results are the following.

Theorem 1. Let >4, 0<9<1, 2° <h<z, 0<e< L let QR be
in [1,h/2[ and ~y,, 6, be bounded arithmetical functions with support on
the primes of ]Q,2Q), |R,2R] (respectively). Then, for (q,7) =1

(1) Z'Yq5r Z 1=Z’Yq5r (21—?4‘ 1+ Z 1

q~Q z<nlz+h q~Q z<n<z+h z<n<z+h
r~R n(n+2)=0(qr) r~R n=0(qr) n=-2(qr)
+O(h'~%),

provided R < h'=%, Q < RY2h~¢, QR > 2h + 2.

As an application we get the level of distribution 3:/2

Corollary 1. Let =z,4,¢,q,T, 7, 0 be as above. Then the estimate (1)
of Theorem 1 holds for QR = h3/2%¢,

As in [7] we generalize Theorem 1 and Corollary 1 to get (here we set
[4,B,C] =l.c.m.(A, B,C))

Corollary 2. Let (an+b)(cn+d) be a polynomial without fized divisors.
Let =z,9,h,e,q,7,7 and 0, be as above, with qr coprime with
[a,c,ad — bc]. Then the same conclusions of Theorem 1 and Corollary 1
hold true with (an + b)(cn +d) in place of n(n + 2).

We point out that the Dispersion method improves on the trivial level
of distribution ¥ for any ¢ > 0, whilst with the Large Sieve method (see
[2]) this is true only for ¢ > 3/4.

In fact, the level of distribution given by the Large Sieve is lower then
the one given by the Dispersion.

Nevertheless, the main Theorems (like, also, the respective Corollaries)
are independent, due to different ranges of Q and R covered by the two
results.

The situation is depicted in section 3.
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The paper is organized as follows:

- in section 2 we give the ”elementary” proof of Theorem 1, based on the
Dispersion method;

- in section 3 we compare the present results with the results given in [2],
showing the feasible regions for the quantities log@/logz and log R/logz
in both cases.

2. Proof of Theorem 1 (and of the Corollaries)
Let g, be distinct primes (as in the sequel) and define

I= Zz'yqdr Z 1.

qNQ r~R z<n<lz+h
n(n+2)=0modgqr

We get

I=Y 76| Y, 1+ Y 1+ Y 1+ >

qa~Q z<n<z+h z<n<z+h z<n<z+h z<n<z+h
r~R n=0(r) n=0(q) n=0(qr) n=-2(qr)
n=-2(q) n=-2(r)

Thus to prove (1) it will suffice to prove

(2) Ywh Y 1=y 2 ”"‘5 +O(h).

q~Q z<n<z+h q~Q
r~R n—O(r) r~R
n=-2(q)

Clearly, it is sufficient to show that

3) 2= Y 1-Y v Y %<<h1_e;

~Q z<n<z+h q~Q z<n<z+h
r~R n=0(r) r~R n=0(r)
n=-2(q)

in fact the difference between the main terms of (2) and (3) is negligible,
because

S 3 2-h Y M= S, 0(1/9) < R

~Q z<n<z+h q q~Q ~Q
r~R n=0(r) r~R r~R

and R < h!~¢ by hypothesis.
Since gr > 2h + 2 and q is prime

@ == quar Y o1- ¥ c|+om,

~ z+h
9 Zomgzth Z<m<
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O(R) being negligible as before; we then get by Cauchy inequality

¥ < VRVA,
where, say, A = A(z, h,Q, R) equals

2
1
=S| £ - 2 L
r~R [¢g~Q Zomgzth zemgzth
mr=—2(q) (m.@)=1

Thus, to prove that ¥ < hl~¢, we shall prove the bound
(5) A < h*%/R.

In order to do this we apply the Dispersion method on A; we expand
the square and exchange the sum over r and the inner sums to get

A= Z Yo Ve Z Z E,

91,92~Q ﬁ(mls# -2%<m25%1'-

(m1,91)=1 (m2,92)=1

where E = E(m;,m2,q1,92,%Z,h,R) is defined as

= _ 1 1 1
E= Z ! Z Q@ Z ql+ Z g’

X<r<Y X<r<Y X<rlY X<rY
rmy=-2(q1) rmy1=-2(q1) rma=-2(q2) -
rma=-2(q2)

with X = X(my,mg2,z,h,R) defined as X = max(R,z/m1,z/m2) and
Y =Y (my,ma,z,h,R) as Y = min(2R, (z + h)/m1, (z + h)/m2); here all
the sums over r have (r,q1q2) = 1.

Hence, by these definitions and the hypothesis on R, we see that each
one of the sums over m; and mgy has length O(h/R).

We will implicitly assume this in the following estimates.

First of all, we evaluate the diagonal of A, i.e. A’ say

= Z ' Yq |2 Z z E,
"~Q Fr<m STt g <ma<Zgh

(m1,91)=1 (m2,92)=1

where this time E = E(my,ms,q,q,z,h, R) is, say, E = E; +E2+E3 +Ey:

1
> 1= > ri > ;+ Z Z
X<r<Y X<r<Y X<r<Y X<r<Y

rmy=-2(q) rm)=-2(q) rmz——2(q)
rmo=-2(q)
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The contribute of E; to A’ is bounded by

> X )OED DS £ DD Y (F:j@“)<

~Q Zocmy<Zth  R<r2R gz, czth ~Q . cm <Eth
2R ="R Zocrczth T, 2R ="R
rmy=-2(q)
hR Qh
Lh=—+Q=<Kh+—
Rz Q R

(having exchanged the sum over r w1th the sum over msg), since, by our
hypotheses, QR > h and h < z.

The contribute of E; (that of E3 is analogous) is bounded by (since

QR > h) |
Iy Y Y 1«Xiyacn

q~Q r~R ’<m2<—+— 1<m1<_+_ q~Q r~R
m1r=—2(q)

after the exchange of the sum over r with the double sum over m;,ms.

Fina,lly, the contribute of E4 is (again by QR > h)

Z > > 2 1<<QZR2 QR

@ 7 T <mi<EER 2 omy<2th X<r<Y

Thus p2-2
h@Q e
!
A< h+ R < R
as required in (5) (our hypotheses on @, R imply that R < h'~%¢ and that

Q < A7)

Now we estimate A — A’ (the non-diagonal terms of A).

We first show that we can drop the condition (r,g¢1¢g2) =1 from the last
three sums of £ in A—A'. In fact the sums in E which have (r,¢1q2) > 1
are (since ¢; and go are distinct primes), say

P=- Y liy L. y liy L

xaosy B xgor N2 x<zy N xooy 1192
rmy=-2(q1) (raq1)=1 rmo=-2(q2) (rg2)=1
azlr a2lr q1lr qlr
and, say,
E” —_ 1

X<r<Y Nn92
aqzlr
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Their contribute to A — A’ is negligible, i.e. is @(h%2~%/R), as required
in (5); in fact exchanging back the sums on r and m;,ma we get

> ¥ #-

F<miSZEE Fr<ma<ph

(m1,q1)=1 (m2,92)=1
1
LY T il S oo
i F<magett il E<migeth
a2lr qlr

and this gives a contribution O(h) to A — A’, which is negligible, as we
saw (we have used the hypothesis QR > h).

In the same way, E” contributes to A — A’ as (since 4Q? < R)
1 h2 h?
1 h,
MZ > I« ) CERS@rRSM
‘Il,¢12~Q r:}fr =<m1$—+— q q2~Q
e §<'"2S£F-

which is also negligible (again, we have used QR > h).

Hence, by a direct calculation, F in A — A’ equals
Y-¢ X—-c 1 Y +2my X +2my
([QIQ2]—[QIQ2])_Q_2([ q ]_[ Ul ])
1 ([Y+2m_2] B [X+2m—2D LY=X
Q1 92 92 q192

¢ = —2maq1q1 — 2M1q2q2 mod q1¢2

where

with
mim; =1mod ¢; Tmamo = 1 mod ¢
gl =1modg g2¢2 =1modgq,

which is O(1), because the main terms cancel and the fractional parts give
1,1
(] (1 + rm + q—l)
Thus we get
h2
2
- Y Y Y i<el
q1,92~Q —<m1<-+— Fa<ma<ZEh

and this is O(h2~2¢/R), since Q? < Rh™%, as required in the hypotheses
of our Theorem 1.
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As regards the proof of Corollary 1, it is immediate from Theorem 1,
choosing R = h1"% and Q = h'/2~%, Corollary 2 can be proved along
the same lines of the proof of Corollary 1.2 in [7].

3. Graphics comparing the two methods

Here we give four different examples (depending on the value of ¥) of
feasible regions, respectively the shaded triangle for the standard classical
estimate (which gives the “trivial” level of distribution, 9), the triangle
for the Dispersion method (with the level of distribution 319/2) and the
rectangle for the Large Sieve (giving the level of distribution 3(4 — 1/2));
in all the following graphs we have ignored all the e-contributes.

The “classical” region is the one due to the standard classical estimates
(see section 1). The two “non-classical” regions are the ones due to the
Dispersion method and to the Large Sieve (see section 1 and our previous
paper). In the legends “Both methods region” indicates the intersection
in which the two methods give the same results. The Dispersion-region is
always non-empty (for any ¥4 > 0), while the Large Sieve-region is non-
empty for any 4 > 1/2.

The graphic below shows the first case, ¥ = 5/8.

logR/log x

1I

B Dispersion region
&8 Both methods region
Large Sieve region

logQ /logx

1

FIGURE 1. Case ¥ = 5/8

The second example is ¥ = 3/4. This a limit case, since the level reached
by the Large sieve method is the trivial one; in fact, the results given in our
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first paper are non-trivial when 4 > 3/4 (while our present result is always
non-trivial).

logR/log x
1}

M Dispersion region
#% Both methods region
Large Sieve region

1 logQ/log x

3
1
FIGURE 2. Case ¥ = 3/4

The graphic below describes the third case, namely ¥ = 7/8.

logR/log x
1}

_Iw oI

M Dispersion region
# Both methods region|
Large Sieve region

1 logQ/logx

7
8

FIGURE 3. Case 9 =7/8
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The last particular value of ¥ we give is ¥ = 1, which describes the
important case of “long intervals”.

logR/1log x

W Dispersion region
¥ Both methods region
Large Sieve region

logQ/log x

1 1
2

FIGURE 4. Case 9 =1

This graphic shows clearly that, although the distribution level is the
same, 3/2, the Large Sieve is stronger than the Dispersion method on long
intervals (and, in fact, the Dispersion-region is all contained in the Large
Sieve-region).
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