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The size function h° for quadratic number fields

par PAOLO FRANCINI

RÉSUMÉ. Nous étudions le cas quadratique d’une conjecture énon-
cée par Van der Geer et Schoof prédisant le comportement de
certaines fonctions définies sur le groupe des diviseurs d’Arakelov
d’un corps de nombres. Ces fonctions correspondent à la fonc-
tion usuelle h° relative aux diviseurs de courbes algébriques.
Nous montrons qu’elles atteignent leur maximum en les diviseurs
d’Arakelov principaux, et nulle part ailleurs. De plus, nous intro-
duisons une fonction k°, qui est l’analogue de exp h° sur le groupe
de classes, et on montre que cette fonction atteint elle-aussi son
maximum en la classe triviale.

ABSTRACT. We study the quadratic case of a conjecture made by
Van der Geer and Schoof about the behaviour of certain functions
which are defined over the group of Arakelov divisors of a number
field. These functions correspond to the standard function h° for
divisors of algebraic curves and we prove that they reach their
maximum value for principal Arakelov divisors and nowhere else.
Moreover, we consider a function which is an analogue of
exp h° defined on the class group, and we show it also assumes its
maximum at the trivial class.

Introduction

Given a number field F, let RF be the set of its real places and let CF
be the set of its complex places, i. e., CF is given by picking one of each two
distinct conjugate embeddings F ~ C. An Arakelov divisor is a couple
D = (JD, (a, 0)) where JD is a fractional ideal of the ring of integers OF
and (a,,3) E R RF X We call JD the ideal, or even the finite, part of
D; the vector (a, (3) is said to be the infinite part of D, as its components
correspond to the infinite primes of F. We denote by N(JD) the ordinary
norm of JD as a fractional ideal, and we define the norm of D in the
following way:

Manuscrit regu le 30 octobre 1999.
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where we write a = and )3 = and we define the degree
of D as deg(D) = logN(D). One should observe that the Arakelov divisors
of a number field form a group, which will be denoted by Div(F), and that
zero-degree Arakelov divisors are a subgroup Div°(F) of Div(F). Another
subgroup of Div(F) is PDiv(F), the set of principal Arakelov divisors:

where Izl stands for the standard absolute value of the complex number z.
The product formula for number fields says that the inclusion

holds. We define the Picard group of F as ’

and then we put We observe that Pic°(F) fits into
the exact sequence

where T is a real torus of dimension #(RF) + #(CF) - 1. More details
about this sequence are explained in [3].
One can view the ring as well as any fractional ideal, as a real

lattice in JRRF x COF, via the embeddings corresponding to the infinite
primes. When S is a subset of a lattice in a Euclidean space, we attach to
it the real number 

- - .....1

w‘

Some properties of this function have been studied in [1]. Following this
direction, one can consider an Arakelov divisor D just as JD endowed with
a metric specified by the infinite part of D, in the following way: given
x G JD, we put

.

We now define k°(D) as the number An equivalent definition is
the following: for x E F and D = (JD, (a"(3)) E Div(F), put

/ ~ - , ,

and consider the lattice D = JD ~. Then we set 

In this sense, changing the infinite part of D produces different
lattices lying in the same, fixed, Euclidean space x CCF, with the
standard inner product given by
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This will be our favourite point of view. An important remark to be made
is that the value of the function ko on the Arakelov divisor D depends just
upon the class of D in We shall be concerned with the following
conjecture, which is stated in [3]:

Conjecture. Let F be numbers field which is Galois over Q or over an
imaginary quadratic number field. Then the function k° on Pico(F) as-

sumes its maximum on the trivial class OF.

We recall from [3] that the function h° = log ko can be seen as an ana-
logue of the classical function ho over the divisors of a curve: indeed, even
in this setting, a Riemann-Roch theorem holds. Under this analogy, the
above conjecture corresponds to the standard property of algebraic curves,
which says that h°(D) = 0 for any non principal zero-degree divisor D and
h°(D) =1 when D is principal. We shall prove this fact in the quadratic
case.

Theorem 1. Let F be a quadratic number field. The f unction kO on 
has a urtique global maximum at the identity element.

When F is a complex quadratic field, the proof reduces to estimate the
number of representations of a given integer by binary quadratic forms. In
the real case, we look at the lattices D, recalling that the main contributions
to 1~° come from the shortest lattice vectors. The key point is that, for x E
OF - {0}, we have 2 and, when x is not a unit, 4.

From this we get some bounds for the contributions to ko(D) from distant
poins of D, which permit to reduce the problem to a local one.

In the last part, we define a function l~° on Cl(F) as follows:

where 7r is the projection appearing in the exact sequence (*), the symbol
[J] denotes the class of the ideal J and integration is made with respect to
the Haar measure on ~r-1 ( (J~ ) normalized to R, the regulator of F. This is
a natural analogue of k° on the class group and it should be reasonable to
expect it still has the maximum value at the trivial class. Indeed we prove
the following:

Theorem 2. Let F be a quadratic number field. Then the function k-0 on
Cl(F) assumes its maxirraum at the trivial class and nowhere else.

About this subject we also would like to mention [4], where special em-
phasis is put on computational aspects, and [2], which is focused on a
harmonic analysis approach. Moreover, the author wishes to thank Prof.
Rene Schoof for his help.
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1. Complex quadratic fields

When F is a complex quadratic field, the group Pic°(F) is finite and
coincides with the class group Cl(F). This follows from the sequence (*).
Given a fractional ideal J of O F, we have k°(J) = 
Proposition 1.1. Let F be a complex quadratic numbers field. Then the

function k° attains its maximum at the identity element ofPicO(F) = Cl(F)
and nowhere else.

Proof. As a first step, observe that, given an ideal J in O F, we have that

where with {3} a Z-basis for J, is a representa-
tive for the SL2(Z)-orbit of quadratic forms associated to the ideal class of
J. The form cp is primitive, positive definite and has the same discriminant
A as the field F. It represents the integer 1 if and only if it is equivalent
to the principal form, i. e., when J is a principal ideal.

° 2 
1 

2 
.H 

..

Clearly, we have kO(OF) &#x3E; 1 + En21 e 2n2 &#x3E; 1+ . Hence it is enough
r en1r e1r

to show that, for a form p which is not equivalent to the principal one, we

have 1 + e 2 . 2 Moreover, when OF is a principal ideal&#x3E; e 1r

domain, the statement is trivial, so we may assume A  -15. If we put
~ = e-21r, we may write the above series as

where R(h) stands for the number of representations of the number h by
the integral binary form cp. Now, in order to write an upper bound for
R(h), let PR(h) denote the number of proper representations of h by cp,
2. e., those by coprime integers. Since OF  -15, we have from [5, 9.3] that
PR(h)  2s, where

So we have PR(h)  2h and therefore

Hence, we obtain that

as required.
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2. Real quadratic fields

Let F be a real quadratic field of class number h and regulator R. The
connected component of the identity of the group Pic°(F), will be called
the principal component, which is the subgroup whose representatives in
DIVO(F) are Arakelov divisors D with JD a principal ideal . We notice
that this group has h component and that the principal component may
be identified with a circle R Indeed, for each of these elements, there isRZ’
a unique t E [0, R) such that Et = (OF, (t, -t)) lies in the same PicO(F)-
class. We can summarize the above considerations by writing the exact
sequence (*) for the real quadratic case:

We remark that, for the lattice Et, we have I

fore 
_

), and there-

.. -/

where - is a fundamental unit of OF- Moreover, we have that

B / B / B / B /

since quadratic extensions are normal. This gives a picture of the R-
periodicity and the symmetry of the function t H 

Lemma 2.1. Let S # {(0,0)} be a subset of a lattice in ll82 which is sym-
metric with respect to the origin, such that, for any pair of distinct points
_

Proof. Given r ~ 2 and J  J2, let us consider the set

Now, the angle between two points in Ar,5, seen as two vectors in JR2,

has to be at least 2 arcsin V Indeed, this angle corresponds to

a pair of points x and y such that lix - yll = V2, with llxll = r and
Ilyll = r + 6. As the set S is symmetric with respect to the origin, and

since the inequality 2 arcsin j j holds, the number of
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elements in is at most 2([~] 2013 1), where
v - V’

the number of points of A,,6 which are contained in a half-plane cannot
exceed 7r divided by the minimal angle. In order to have v2,a - 5, we

so that the contribution

to ko(S) from the points in A2 ó is at most 8 Therefore we obtain:, e4,7r 1r

and, as the function t H ~~. decreases for t &#x3E; 4,

To simplify the notation, we now fix an embedding F - R and we look
at the elements of F as real numbers. Moreover, for each x E F, we denote
by x its Galois conjugate.

Corollary 2.2. Let F be a real quadratic number field and D E Divo (F) -
If JD is not a principal ideal, then we have ko(D)  

Proof. Let D = (JD, (a, b)) E Divo(F). The condition deg(D) = 0 means,
by definition, that = N(JD). Then we have

where we put and ~ 1 For every non-zero

x E JD, we have that ( = 2 N(JD), since JD is not a

principal ideal. Hence yx2 + yt2 &#x3E;, 4N(JD) for all non-zero x E OF, so
that D is a lattice whose non-zero shortest vector has length at least 2. In
particular, we can apply lemma 2.1 and conclude that ko(D)  1 + 3 
1 + ~  1~°(C~F). °

We observe that we also could have deduced proposition 1.1 from
lemma 2.1, just in the same way as for corollary 2.2. We preferred to
give the other proof, since it contains essentially the same argument we
shall use in proposition 3.1.
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Corollary 2.3. Let F be a real quadratic number field, let R be its regu-
lator and Et = (OF, (t, -t)) e 1ft E [! log 25, 2 ~, then we have
kO(Et)  

Proof. Let OF be the discriminant of F and e be the fundamental unit of
OF larger than 1. For s e [1, ê], consider the set

Observe that if wx E Bs, then 1, i. e., x E By Dirichlet’s
unit theorem, these element are, up to sign, powers of the fundamental unit
6*. Hence, to determine the set Bs amounts to finding the solutions of the
inequality

For 8, we have e # 1 + J2, so there exist solutions for this only if
m E 10, - 11. The case m = 0 corresponds to the shortest vector of the
lattice Et, for small values of t. Moreover, we have that w ~ E Bs if and

6

only if s &#x3E; (2 - ~)~2.
Now, for 5,8,13, we have - 1&#x3E; 2 + B/3, so that (2 - )e2 &#x3E; E,

hence BS - for all s E [1,.El. Therefore, in this case, we can
apply lemma 2.1 to Et for t E ~ 2 log 25 , 2 ~ and obtain:

6 
- -

Therefore lemma 2.1 implies that, for all’

At last, we deal with Q( B1"5), where F As a first step,
we point out that, in this case, for all s E [1, ~~, we have that Bs -

and hence

As a second step, we notice that s ~ k° (Bs ) is a decreasing function when
s E [1,,E]: this fact can be verified by direct calculations on the derivative.
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Then we obtain that for all 1

Our assertion is proved. D

At this point, in order to finish the proof of theorem 1, it is enough to
show the following:
Lemma 2.4. Let F be a real quadratic number field and, for every t E If,
set Et = (OF, t, -t) E Div°(F). The function k°(Et) is strictly decreasing
when t E 

Proof. Define, for s E R+ , the function

Our next task is to see that f is decreasing on the interval [1, i] . Observe
that, since f (s) = f ( s ), we have f’(1 ) = 0, hence it is enough to check that
f"(s)  0 for all s E [1, 25~. Therefore, we have to prove that

that amounts to showing that

which may be rewritten as:

Here, the left hand side may also be viewed be as

where Ls is the lattice As in the proof of lemma 2.3, we have
2

Wx E Bs only when x E (9~.
Now, for F ~ Q(V5), we have Bs = for each s E [1,~~].

Therefore, for everY S E (1, 25 27, it happens that
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Thus, since we clearly have ), it is enough to see
that, for all s

which is readily checked.
When F = Q(v,’5-), there are minor complications due to the fact that,

in this case, Bs = Hence we have
e E

where e = is the fundamental unit of Q( V5). Thus, it is sufficient to
see that

for all s E [1, 25 ~’ Such inequality can be obtained from direct computation,
for instance by splitting (1, 2~ ~ as [1, ~] U 100’ 50 U ( ~o ~ 2~ ~ and, for each
interval, evaluating maxima of terms on the left and minima of terms on
the right. D

3. A function on Cl(F)
When F is a complex quadratic field, Cl (F) _ Pic°(F) , so the function

k° coincides with ko. Indeed, the properties of this function are very similar
in both the real and the complex case.

Let F be a real quadratic field having discriminant A and let J be an
ideal in the ring of integers OF. For h E Z, we define the set

which is either empty or infinite. In this second case, the group at of units
with positive norm acts on S(h) by multiplication and the number Or(h) of
orbits is finite. Elements in S(h) correspond to the various representations
of h by the integral quadratic form = where 

is any 7G-basis of J. To write an upper bound for Or(h), we first consider the
number POr(h) of proper orbits, i.e., those which do not contain elements
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of the kind mx, with x E J and 1  m E Z. This amounts to considering
the orbits of proper solutions of the equation n) = h. Following [5,
9.3], each orbit is characterized by an integer x which is a solution to the
congruence x2 = ~ (mod 41hl) such that 0  x  2 ~ h ~ . Therefore we have
POr(h) x Ihl and
,

We can now prove theorem 2 by showing the following.

Proposition 3.1. Let F be a real quadratic field. Then the f unction io
attains its maximum at the trivial class and nowhere else.

Proof. Let 6 be the fundamental unit of OF. Set -y = 1 if N(é) = 1 and
~ = 2 if = -1. Let J be an ideal of OF. We have that:

Hence, setting 1
J

and using the same notation as in the above discussion, we obtain:
11

Therefore we have that
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When J is not a principal ideal, from the discussion above, we have that
- - -

The last inequality comes from writing

The fact that 

1- concludes the proof. 
’.r-
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