Let denote the number of partitions of into parts, each of which is at least . By applying the saddle point method to the generating series, an asymptotic estimate is given for , which holds for , and .
On désigne par le nombre de partitions de l’entier en parts supérieures ou égales à . En appliquant la méthode du point selle à la série génératrice, nous donnons une estimation asymptotique de valable pour , et .
@article{JTNB_2000__12_1_227_0,
author = {Nicolas, J.-L. and S\'ark\"ozy, A.},
title = {On partitions without small parts},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {227--254},
year = {2000},
publisher = {Universit\'e Bordeaux I},
volume = {12},
number = {1},
mrnumber = {1827850},
zbl = {1005.11049},
language = {en},
url = {https://www.numdam.org/item/JTNB_2000__12_1_227_0/}
}
Nicolas, J.-L.; Sárközy, A. On partitions without small parts. Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 1, pp. 227-254. https://www.numdam.org/item/JTNB_2000__12_1_227_0/
[1] , , Partitions without small parts. Number theory, Vol. I (Budapest, 1987), 9-33, Colloq. Math. Soc. János Bolyai 51, North-Holland, Amsterdam, 1990. | Zbl | MR
[2] , , Partitions sans petits sommants. A tribute to Paul Erdõs, 121-152, Cambridge Univ. Press, Cambridge, 1990. | Zbl | MR
[3] , , , Partitions into parts which are unequal and large. Number theory (Ulm, 1987), 19-30, Lecture Notes in Math., 1380, Springer, New York-Berlin, 1989. | Zbl | MR
[4] , , On the statistical theory of partitions. Topics in classical number theory, Vol. I, II (Budapest, 1981), 397-450, Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam-New York, 1984. | Zbl | MR
[5] , , Partitions into distinct large parts. J. Australian Math. Soc. Ser. A 57 (1994), 386-416. | Zbl | MR
[6] , An asymptotic formula in the theory of partitions. Quart. J. Math. Oxford 2 (1951), 85-108. | Zbl | MR
[7] , Some asymptotic formulae in the theory of partitions II. Quart. J. Math. Oxford 4 (1953), 96-111. | Zbl | MR






