Let be a prime number. In this paper we prove that the addition in -ary without carry admits a recursive definition like in the already known cases and .
Soit un nombre premier. Nous montrons dans cet article que l’addition en base sans retenue possède une définition récursive à l’instar des cas où et qui étaient déjà connus.
@article{JTNB_1999__11_2_307_0,
author = {Laubie, Fran\c{c}ois},
title = {A recursive definition of $p$-ary addition without carry},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {307--315},
year = {1999},
publisher = {Universit\'e Bordeaux I},
volume = {11},
number = {2},
mrnumber = {1745881},
zbl = {0997.11013},
language = {en},
url = {https://www.numdam.org/item/JTNB_1999__11_2_307_0/}
}
TY - JOUR AU - Laubie, François TI - A recursive definition of $p$-ary addition without carry JO - Journal de théorie des nombres de Bordeaux PY - 1999 SP - 307 EP - 315 VL - 11 IS - 2 PB - Université Bordeaux I UR - https://www.numdam.org/item/JTNB_1999__11_2_307_0/ LA - en ID - JTNB_1999__11_2_307_0 ER -
Laubie, François. A recursive definition of $p$-ary addition without carry. Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 2, pp. 307-315. https://www.numdam.org/item/JTNB_1999__11_2_307_0/
[1] , Nim, a game with a complete mathematical theory. Ann. Math. Princeton 3 (1902), 35-39. | MR | JFM
[2] , , Lexicographic Codes, Error Corrrecting Codes from Game Theory. IEEE Trans. Inform. Theory 32 (1986), 337-348. | Zbl | MR
[3] , , Sumsets in vector spaces over finite fields. J. Number Theory 71 (1998), 12-39. | Zbl | MR
[4] , On linear greedy codes. to appear.
[5] , Nim Multiplication. Séminaire de Théorie des Nombres de Bordeaux 1977-78, exposé 11, (1978). | Zbl | MR
[6] , A class of Systematic Codes. Soviet Math Dokl. 1 (1960), 368-371. | Zbl | MR
[7] , N-person Nim and N-person Moore's Games. Int. J. Game Theory 7 (1978), 31-36. | Zbl | MR
[8] , A generalization of the Game called Nim. Ann. Math. Princeton 11 (1910), 93-94. | MR | JFM






