For let be a subgroup of the Atkin-Lehner involutions of the Drinfeld modular curve . We determine all and for which the quotient curve is rational or elliptic.
Pour désigne un sous-groupe d’involutions d’Atkin-Lehner de la courbe modulaire de Drinfeld. On détermine tous les et tels que la courbe est rationnelle ou elliptique.
@article{JTNB_1998__10_1_107_0,
author = {Schweizer, Andreas},
title = {Involutory elliptic curves over $\mathbb {F}_q(T)$},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {107--123},
year = {1998},
publisher = {Universit\'e Bordeaux I},
volume = {10},
number = {1},
mrnumber = {1827288},
zbl = {0930.11040},
language = {en},
url = {https://www.numdam.org/item/JTNB_1998__10_1_107_0/}
}
TY - JOUR
AU - Schweizer, Andreas
TI - Involutory elliptic curves over $\mathbb {F}_q(T)$
JO - Journal de théorie des nombres de Bordeaux
PY - 1998
SP - 107
EP - 123
VL - 10
IS - 1
PB - Université Bordeaux I
UR - https://www.numdam.org/item/JTNB_1998__10_1_107_0/
LA - en
ID - JTNB_1998__10_1_107_0
ER -
Schweizer, Andreas. Involutory elliptic curves over $\mathbb {F}_q(T)$. Journal de théorie des nombres de Bordeaux, Tome 10 (1998) no. 1, pp. 107-123. https://www.numdam.org/item/JTNB_1998__10_1_107_0/
[A&L] and , Hecke Operators on Γ0(m), Math. Annalen 185 (1970), 134-160. | Zbl
[Ge1] , Drinfeld-Moduln und modulare Formen über rationalen Funktionenkörpem, Bonner Mathematische Schriften 119 (1980). | Zbl | MR
[Ge2] , Automorphe Formen über Fq (T) mit kleinem Führer, Abh. Math. Sem. Univ. Hamburg 55 (1985), 111-146. | Zbl | MR
[Ge3] , Analytical Construction of Weil Curves over Function Fields, J. Théor. Nombres Bordeaux 7 (1995), 27-49. | Zbl | MR | Numdam
[G&N] and , Fundamental domains of some arithmetic groups over function fields, Internat. J. Math. 6 (1995), 689-708. | Zbl | MR
[G&R] and , Jacobians of Drinfeld Modular Curves, J. Reine Angew. Math. 476 (1996), 27-93. | Zbl | MR
[Ke] , A note on involutory Weil curves, Quat. J. Math. Oxford (Ser. 2) 27 (1976), 401-405. | Zbl | MR
[Kl] , On the normalizer of ro(N). Modular Functions of one Variable V, Springer LNM 601, Berlin Heidelberg New York 1977, 239-246. | Zbl | MR
[M&SD] and , Arithmetic of Weil Curves, Invent. Math. 25 (1974), 1-61. | Zbl | MR
[Sch1] , Zur Arithmetik der Drinfeld'schen Modulkurven X0(n), Dissertation, Saarbrücken 1996
[Sch2] , Modular automorphisms of the Drinfeld modular curves X0(n), Collect. Math. 48 (1997), 209-216. | Zbl | MR
[Sch3] , Hyperelliptic Drinfeld Modular Curves, in: Drinfeld modules, modular schemes and applications, Proceedings of a workshop at Alden Biesen, September 9-14, 1996, (E.-U. Gekeler, M. van der Put, M. Reversat, J. Van Geel, eds.), World Scientific, Singapore, 1997, pp. 330-343 | Zbl | MR





