Let (the -th Jordan totient function, and for the Euler phi function), and consider the associated error term . When , both and are finite, and we are interested in estimating these quantities. We may consider instead since from [AS] and from the present paper . We show that belongs to an interval of the form , where as . From a more practical point of view we describe an algorithm capable of yielding arbitrary good approximations of . We apply this algorithm to the small values of and obtain and .
@article{JTNB_1991__3_2_311_0,
author = {P\'etermann, Y.-F. S.},
title = {Oscillations d'un terme d'erreur li\'e \`a la fonction totient de {Jordan}},
journal = {S\'eminaire de th\'eorie des nombres de Bordeaux},
pages = {311--335},
year = {1991},
publisher = {Universit\'e Bordeaux I},
volume = {2e s{\'e}rie, 3},
number = {2},
mrnumber = {1149800},
zbl = {0749.11041},
language = {fr},
url = {https://www.numdam.org/item/JTNB_1991__3_2_311_0/}
}
TY - JOUR AU - Pétermann, Y.-F. S. TI - Oscillations d'un terme d'erreur lié à la fonction totient de Jordan JO - Séminaire de théorie des nombres de Bordeaux PY - 1991 SP - 311 EP - 335 VL - 3 IS - 2 PB - Université Bordeaux I UR - https://www.numdam.org/item/JTNB_1991__3_2_311_0/ LA - fr ID - JTNB_1991__3_2_311_0 ER -
Pétermann, Y.-F. S. Oscillations d'un terme d'erreur lié à la fonction totient de Jordan. Séminaire de théorie des nombres de Bordeaux, Série 2, Tome 3 (1991) no. 2, pp. 311-335. https://www.numdam.org/item/JTNB_1991__3_2_311_0/
[AS] and , On an error term related to the Jordan totient function Jk(n), J. Number Theory 34 (1990), 178-188. | Zbl | MR
[ES] and , The existence of a distribution function for an error term related to the Euler function, Canad. J. Math. 7 (1955), 63-75. | Zbl | MR
[M] , Fluctuations in the mean of Euler's phi function, Proc. Indian Acad. Sci. (Math.Sci.) 97 (1987), 239-245. | Zbl | MR
[P1] , Existence of all the asymptotic λ-th means for certain arithmetical convolutions, Tsukuba J. Math. 12 (1988), 241-248. | Zbl
[P2] , On the distribution of values of an error term related to the Euler function, Proc. Conf. Théorie des nombres Univ. Laval juillet 1987, 785-797, Walter de Gruyter, Berlin (1989). | Zbl | MR
[P3] , On the average behaviour of the largest divisor of n which is prime to a fixed integer k, prépublication.
[W] , Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin (1963). | Zbl | MR





