@article{JSFS_2000__141_1-2_149_0,
author = {Istas, Jacques},
title = {Identification des param\`etres d'un processus gaussien fractionnaire},
journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique},
pages = {149--166},
publisher = {Soci\'et\'e fran\c{c}aise de statistique},
volume = {141},
number = {1-2},
year = {2000},
language = {fr},
url = {https://www.numdam.org/item/JSFS_2000__141_1-2_149_0/}
}
TY - JOUR AU - Istas, Jacques TI - Identification des paramètres d'un processus gaussien fractionnaire JO - Journal de la Société française de statistique PY - 2000 SP - 149 EP - 166 VL - 141 IS - 1-2 PB - Société française de statistique UR - https://www.numdam.org/item/JSFS_2000__141_1-2_149_0/ LA - fr ID - JSFS_2000__141_1-2_149_0 ER -
%0 Journal Article %A Istas, Jacques %T Identification des paramètres d'un processus gaussien fractionnaire %J Journal de la Société française de statistique %D 2000 %P 149-166 %V 141 %N 1-2 %I Société française de statistique %U https://www.numdam.org/item/JSFS_2000__141_1-2_149_0/ %G fr %F JSFS_2000__141_1-2_149_0
Istas, Jacques. Identification des paramètres d'un processus gaussien fractionnaire. Journal de la Société française de statistique, Volume 141 (2000) no. 1-2, pp. 149-166. https://www.numdam.org/item/JSFS_2000__141_1-2_149_0/
[Ayache et Lévy-Vehel (1999)] et (1999). Generalized Multifractional Brownian Motion: definition and preliminary results. In. M. Dekking, J. Vehel, E. Lutton and C. Tricot (eds) Fractals : Theory and Application in Engineering. Springer-Verlag, 17-32. | Zbl | MR
[Ayache et Lévy-Vehel (2000)] et (2000). The generalized multifractional brownian motion. Stat. Inf. Stoc. Proc. (A paraître). | Zbl
[Bachelier (1900)] (1900). Théorie de la spéculation. Gautier-Villars, Paris. | JFM
[Benassi et al. (1996)] , et (1996). Gaussian Processes and Pseudodifferential Elliptic operators. Revista Mathematica Iberoamericana. 13 (1) 19-90. | Zbl
[Benassi et al. (1998a)] , , et ( 1998a). Identification of Filtered White Noises. Stock. Proc. Appl. 75 31-49. | Zbl | MR
[Benassi et al. (1998b)] , , ( 1998b). Identifying the multifractional function of a Gaussian proces. Stat. and Proba. Letters. 39 337-345. | Zbl | MR
[Benassi et al. (2000)] , , , et (2000). Identification of the Hurst index of a Step Fractional Brownian Motion. Stat. Inf. Stoc. Proc, Vol. 3, Issue 1/2, p. 101-111. | Zbl | MR
[Benassi et Istas (2001)] et (2001). Processus autosimilaires. Fractals et Lois d'échelle, IC2, Abry, P. Goncalves, P. Lévy-Vehel Eds., Hermès (A paraître).
[Beran (1994)] (1994). Statistics for long memory process. Chapman and Hall. | Zbl | MR
[Bertrand (2000)] ; (2000). A local method for estimating change points: the hat-function. Statistics, Vol. 34, n° 3, p. 215-235. | Zbl | MR
[Black et Scholes (1973)] et (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy. 81 7-54. | Zbl
[Cœurjolly (2000a)] ( 2000a). Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inf. Stoc. Proc. (à paraître). | Zbl
[Cœurjolly (2000b)] ( 2000b). Simulation et identification of the fractional brownian motion: a bibliographical and comparative study. J. Stat. Software, Vol. 5.
[Cœurjolly et Istas (2000)] et (2000). Cramer-Rao bounds for Fractional Brownian Motions. Stat. and Proba. Letters. | Zbl
[Cohen (1999)] (1999). From self-similarity to local self-similiraty: the estimation problem. In Fractals : Theory and Applications in Engineering, 3-16. M. Dekking, J. Lévy Véhel, E. Lutton and C. Tricot Eds, Springer Verlag. | Zbl | MR
[Cohen (2001)] (2001). Processus localement auto-similaires. in Fractals et Lois d'échelle, IC2, Abry, P. Goncalves, P. Lévy-Véhel Eds., Hermès (A paraître).
[Dalhaus (1989)] (1989). Efficient parameter estimation for self-similar processes. Ann Statist. 17 (4) 1749-1766. | Zbl | MR
[Grenander (1981)] (1981). Abstract inference. Wiley, New York. | MR
[Guyon et Léon (1989)] (1989). Convergence en loi des h-variations d'un processus gaussien stationnaire. Ann Inst. Poincaré. 25 265-282. | Zbl | MR | Numdam
[Hall et al. (1994)] , et (1994). Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings. J. Time Ser. Anal. 6 587-606. | Zbl | MR
[Hall et Wood (1993)] , (1993). On the performance of box-counting estimators of fractal dimension. Biometrika. 80 246-252. | Zbl | MR
[Istas (1996)] Estimating the singularity function of a gaussian process with applications. Scand. J. Statist. 23 (5) 581-596. | Zbl | MR
[Istas et Lang (1994)] et (1994). Variations quadratiques et estimation de l'exposant de Holder local d'un processus gaussien. Cr. Acad. Sc. Paris, Série I. 319 201-206. | Zbl | MR
[Istas et Lang (1997)] et (1997). Quadratic variations and estimation of the Holder index of a gaussian process. Ann. Inst. Poincaré 33 (4) 407-436. | Zbl | MR | Numdam
[Kolmogorov (1940)] (1940). Wienersche und einige andere interessante Kurcen im Hilbertsche Raum. (German). C; R. (Dokl) Acad. Sci. URSS.26 115-118. | Zbl | MR | JFM
[Léger et Pontier (1999)] et (1999). Drap Brownien fractionnaire. C.R. Acad. Sc. Paris, Série I. 329 893-898. | Zbl | MR
[Mandelbrot et Van Ness (1968)] et (1968). Fractional Brownian Motions, Fractional Noises and Applications. SIA M Review. 10 422-437. | Zbl | MR
[Meyer (1990)] (1990). Ondelettes et Opérateurs. volume 1. Hermann, Paris. | MR
[Neveu (1968)] (1968). Processus alatoires gaussiens. Presses de l'Université de Montréal, SMS. | Zbl | MR
[Peltier et Lévy-Véhel (1994)] et (1994). A new method for estimating the parameter of fractional brownian motion. Rapport de recherches 2396, 1-40, disponible sur http://www-syntim.inria.fr/fractales/.





