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Sur U'approximation des fonctions continues ;

Par Torure VIOLA ().

1. Dans un article publié en 1946 sous ce méme titre (%),
M. A. Ghizzetli a proposé une nouvelle méthode d’interpolation,
dont il a démontré quelques propriétés fondamentales. Nous croyons
reconnaitre dans cette méthode beaucoup d’originalité, de simplicité,
plusieurs avantages effectifs sur d’autres méthodes, méme dans les
- applications du calcul numérique (*), ce qui nous encourage a pour-
suivre l'analyse faite par 'auteur.

En premier lieu nous rappelons briévement les principes de cette
méthode et les résultats déja obtenus.

Soient donnés, dans le plan xy, n 41 points quelconques

Po(xo; o), Pul@s, y1), ooy Pul(@ny ya), avec xi<<xy<...<Zn

Posons xy=a, x,=b et indi;quons par ®,(z), ®,(x), ... une
suite de fonctions absolument continues sur (a, &), nulles en a, dont
les dérivées @, (x)=o,(x), P (x)=19.(x), ... soient a carrés
sommables sur (a, b), y formant un systéme orthogonal et complet
(pour I'approximation linéaire en moyenne). Un entier p > o quel-.
conque étant fixé, considérons la classe «o"» de fonctions

0, n4+p—1

(1) gp(x)=yo+ 2 cn ®n(x)

h

(*) Travail exécuté dans I'Institut National d'Italie pour les applications du
Calcul.

(1) Voir Atti Reale Acad. Sc. Toriro, vol. 80, 1944-1945.
~ () De ce dernier point de vue, nous renvoyons a la Note : Su un nuovo

procedimento di interpolasione, publiée par 'auteur dans- Ricerca Scientifica
(Revue du Conseil national des Rechérches d’1lalie), janvier 1946.
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correspondant 4 tout choix possible des n -l—p constantes ¢, ¢, .. .,
Corp1; de fagon que la courbe y = g,(«) passe par les n -+ 1 points
donnés. L'existence, dans cette classe, d’une fonction g,(x) qui rende

minimum l'intégrale
’ dgp\*

est bien évidente. M. Ghizzetti a démontré que, pour p suffisamment
élevé, la fonction minimante gp(a;) est unique et donnee par l’equatwn
du premier degre

gp(x)—yo, ZA@h(xo)(I)h(x), ZA (I)/,(xl)(l);,(w), vy ZA(I)h(xn_,)(I)/l(x)
A}/o

. r . o

Ayny
les sommes X étant effectuées pour l'indice 4 variable de zéro a
n—+p—i, étant pose en outre :
A}’o =Y1— Yo A(I)lx(xo‘) :Qll(wi)_q)h(wo))
Ay, =ys—yi. - ADu(z) =Dp(@s) — Pi(2y),

A}/n—l =Yn— Yn—1 A (I)/L(xll—i ) =&, (xn) — q)lz (xn—l )

(h=o0,1,2,...),
(P) {(P) ()

oo o} o ol
(» ) ()

S D= s o} e 1
p= )
(P) (1) ()
a0 ol R Gy et -

avec
0, n4+p—1 0, n+p—1

= 2‘ ADy (k) A‘I)h(mz)— E kaﬂcp;,(z)dxfzm-cp;,(x) dz

(kyl=o,1,:.., n—1).
"Ona '
-limaﬁ{’,’:{ si k=,
L pre Az = 23,04 — 24 si k==,
et par suite

lim D= Azo Azy . . . Azpy.
P
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La minimante g,(x) converge uniformément sur (a, b), pour p — w,
vers la fonction y(x) qui représente la polygonale PP, ... P,. On a
de plus ‘

b
lim | [g,(z) =Y (z)]Pdzr=o0.
pr= a : .
Cette derniére formule exprime la convergence en moyenne,
pour p — o, de g\,(x) vers y'(«). Nous donnerons, au contraire, des
conditions suffisantes pour la convergence

lim g, (2) =Y ()
P>

en un point bien déterminé de (a, b), ou sur tout un intervalle partiel
de (a, b), et nous en ferons ensuite l’apphcatlon au probleme indiqué
dans notre titre (*).

Q. Il est utile d’examiner les » sommes
0, n+p—1

2 A®,(x;) DPr(2) ({l=o0,1,2,...,n—1),
A

rangées dans la premiére ligne du déterminant (2). Si I’on dérive
ces sommes par rapport a z, on obtient les réduites d’ordre n+p—1
des séries de Fourier

o 0,

’ > Tl g
(3). ?AQ/‘(x[)q;,(w)~2‘f on(x)dx . op(x) (l=o0,1,2,..., n—1)

(*) Nous avons pris soin de choisir ces conditions, avec une généralité qui
s’accorde avec celle qui a inspiré la méthode de M. Ghizzetti. On verra que les
conditions -choisies sont lides, en substance, aux propriétés des fonctions égales
a la constante 1 dans un intervalle partiel de (a, &), 4 la constante o hors de cet
intervalle. Nous pensons, si nous sommes bien informés, que ces propriétés,
pour un systéme @o(x), ¢1(2), ... orthonormal et complet tout a fait général,
n’ont pas été encore suffisamment mises en relief.

Pour ce qui concerne les notations, nous précisons ici que, dans la suite, nous
indiquerons toujours par le symbole &p(x) (en correspondance d'un indice p
suffisamment élevé) la minimante, unique et bien déterminée, parmi les fonctions
interpolatrices de la classe (1).
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des n fonctions :

() o pour tout 2 de («, b) extérieur a (x;, Z111),
\z) = . s
1 » nterieur » ,
({=o,1,2, ..., n—1).

Démontrons un premier théoréme fondamental.

Treorime 1. — Supposons qu’en un point x de (a, b) les conditions
suivantes soient satisfaites :
1° @), () = @,(x) pour chaque indice h=o, 1, 2, ... (*);
2° les réduites des séries (3) forment un ensemble numérique borné;
3 la fonction ' (x) soit développable en série de Fourier.

On a, dans ces conditions,

lim g(7) = v/ ().
P> ‘

Démonstration. — Soit ¥ (k, l=o, 1, 2, ..., n—1) le complé-
ment algébrique de ¢}/ dans le déterminant D,. On a
. 1 [Fk
(4) lim o = ° = ki
P> ij Axg .o -A-Z'/;_1 A$k+1 . A.z‘,z_, si [=—k.

En résolvant I’équation (2) par rapport & g,(x) (p étant suffisam-

ment élevé), on obtient
0, n—1 0, n4p—1

I
(@) =yot - X ol Ay X ACu() Bu(2)
k1 h

et, en dérivant par rapport a x au point z,
0, n—1 0, n+p—1

(@ =5 X oA X Aby@) ()
k! h

0, n—1
— 2 A}’/c
k

0, n—1 0, n+p—1

Z &I);Zz) Z A(I);,(aw) (P/,(jz‘) .
! .

h

(*) La continuité absolue des @, (x) (voir §1) nous assure, a priori, que cette
premiére condition est vérifiée presque partout en (a, b).
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La troisiéme condition nous assure que

0, ) 0,n—1

0,0 5 X
(5) Y/(E) —_:Z f Y (z) pr(x) de. %(5):2 f 2 i—ii AD; (zx)
e A

k

().

Un nombre ¢ > o arbitraire étant fixé, il est donc possible de déter-
miner un entier . = .(¢) > o tel que, pour chaque p >y, 'on ait

n4-p,eo | 0, n—1

2 2 'ykA(Dh(xA)

Déterminons ensuite [¢f. les relations (4)] un entier v=v(e) >o0
tel que, pour chaque p > v, I'on ait -

on(z) | <

(p)
Ay]")‘*’ |<e si 1k,
Ayrolf]  Ayi .
|TP——A—x—k <€ st {—=k.

Pourp >{f, on aura alors

B B 0, n—1 0, n—1 o 0, n+4-p—1 ]
5@ @<+ T DS ami) %<zz>$
-0, n—l 0, n-a{p 1 g .

_ZA

z A (I);l(xk) <ph(x)

0, n—1 0, n4-p—1
Ayrofi A.)’k
ZE+ — ok A (D,l(xk) /,(x)
; D, 2 ¢
0, n—1 0, n+p-—1
Ayrof)

+ 2

I#k 2
0, n—1
<8I:1+n2 :I
!

La deuxiéme condition nous permet enfin de déduire le résultat
annonce.

14

Y Adu(m) o)
2

0, n-p—1

E A @;,(.Z[) cp/,(.;)
A

Observation. — Il est sous-entendu, dans ce qui précéde (cf. la
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troisiéme condition), que £z (l=1, 2, ..., n—1), du moins si
les valeurs y'(z)) ({=1, 2, ..., n—1)n’existent pas (ce quiest le cas,
en général). Mais si, en posant = a; (pour un certain / tel que
11l n—1), la série de Fourier écrite au deuxiéme membre de (5)

converge et si S est sasomme (ce qui arrive par exemple pour les séries
I

trigonométriques pour lesquelles S=—[y'(2})+ y'(2;)]), alors le

raisonnement précédent peut étre évidemment imité, pour démontrer

(les conditions 1° et 2° étant conservées) que
p>ws

3. Cherchons ensuite des conditions suffisantes pour la convergence
uniforme '
lim g, (2) =7'(=),
P>

dans un intervalle (u, ¢) partiel de (a, &), supposé x,< u < ¢ < Xy
pour un certain /=o, 1, 2, ..., n—1. A ce propos, le théoréme
suivant peut étre facilement démontré.

Taeoreme II. — Supposons que, dans I'intervalle (u, v), les conditions
sutvantes sotent satisfaites :

1° @ (2) = gu() pour chaque h=o0, 1,2, . ..;

2° les réduites des séries (3) soient également bornées (*);

3° la fonction y'(x) soit développable en série de Fourier unifor-
mément convergente. '

Orn a, dans ces conditions
lim g (z) = /()
pPr=

uniformément sur (u, v).

(®) Cette condition est sans doute vérifiée, par exemple si les fonctions dites
de Lebesgue :

sl on
L,,(t):f an;,(t)cp;,(w) dz (n=o,1,2,...),
“ 3

sont également bornées en (u; 'v‘)'z(voir S. Kaczmarz ét H. SteiNaavs, Theorie
der Orthogonalreihen, Warszawa, 1935, p. 154 et suiv.).
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La démonstration de ce théoréme est tout a fait semblable a celle
du théoréme précédent, étant entendu que x varie sur (u, ¢). Il suffit
d’observer que les limitations trouvées pour| g, (z) — v/ () | subsistent
(dans les conditions actuelles) indépendamment de x sur (u, ¢). Ceci
est une conséquence de la possibilité de choisir maintenant p.(¢) indé-
pendant de x, et de borner les termes

0, n-p—1

2 Ady(x)) (p/l(;:)
h

indépendamment de p et de z.

4. 1 est intéressant d’étudier le probléme de P’approximation
d’une fonction continue, ainsi que M. Ghizzetti lui-méme I’a proposé
dans son article.

Soit f(x) une fonction continue dans un intervalle (a, b). En
décomposant (a, b) en parties suffisamment petites, par un nombre fini
de pointsw, (=0, 1,2, ..., n;a=x, x,<...< x,=b),laligne
polygonale ayant les points P,[ #;, ()] pour sommets, représentera
une certaine fonction continue y(x) : et I'on pourra toujours obtenir -
que cette fonction y(«) s’approche de f(x), sur tout (a, b), & ¢ prés
(e étant une quantité positive, arbitrairement donnée a l'avance).
La possibilité d’approcher uniformément une fonction continue f(x),
arbitrairement donnée en (a, b), par une suite de fonctions minimantes,
c'est-a-dire de fonctions du type g,(x) étudié par M. Ghizzelti, est
donc évidente.

Nous nous demandons maintenant s’il est possible, étant supposé
de plus que f(x) soit douée, sur tout (a, b), d'une dérivée continue,
d’approcher méme f’(x) par une suite de dérivées de fonctions mini-
mantes g,(x), et cela uniformément, du moins a 'intérieur de (a, &),
c’est-a-dire du moins dans chaque intervalle (a’, b') intérieur a(a, b).

Pour aborder cette question, il est convenable d’introduire certaines
hypotheéses préjudicielles [en les choisissant naturellement parmi les
moins restrictives (°)]a propos du systéme complet o,(x), 9, (x),. .

."'C,.r,’ \

2.

(°) Celles que nous allons faire, sont largeinent: ailsfaltes par exemple par
les séries trigonométriques.
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Nous supposerons précisément que :

a. L'on ait @, (x) = ¢,(2) partout a 'intérieur de (a, b) et pour
chaque h=o, 1,2, ...; - N
3. Pour chaque intervalle (u, ¢) partiel de (a, b), la fonction

o pour tout z de («, &) extérieur & (u, ¢),

i n=|

» intérieur » s

~soit développable en série de Fourier uniformément convergerile sur
tout intervalle (», s) intérieur a (a, b), pourvu que les points u, ¢
soient extérieurs a (r, 5); '

v. Un intervalle (a', ) intérieur & (@, b) étant arbitrairement
donné, il existe un nombre H=H(da’, &) > o tel que, quel que soit
I'intervalle (u, ¢) partiel de (a, b), les réduites de la série de Fourier
de la fonction {(x;u, ¢) restent en tout (@', &") et a partir d’un certain
ordre ("), plus petites que H en valeur absolue.

Sous ces hypothéses préjudicielles, nous pouvons démontrer le
théoréme suivant :

Tutorime [[I. — Soit f(x) une fonction dérivable en (a, b), et
soit f'(x) continue sur (a, b). Un intervalle (a', b') intérieur a (a, b) et
un nombre <> o étant arbitrairement donnés, il existe un autre nombre
- 8> o0 tel que, quelle que soit la décomposition de (a, b) effectuée par
les points ¢, (=0, 1, 2, ..., n; a=z, ;< 2, ... &, =0b)
avec Ax,;< 8, Uon ait
(6) l&(2)—fl@)|<e, lg(2)—S(2)i<e  surtout(d, b)),
pour chaque indice p < p, p étant un entier convenable (*) et g,(x) étant
la fonction minimante d’indice p (construite selon les régles données).

Démonstration. — L’existence d’un nombre ¢ > o et ensuite d’un
entier p, de facon que la premiére des limitations (6) soit satisfaite,
n’a pas besoin d’étre prouvée, aprés ce qui a été démontré par
M. Ghizzetti. :

(") Cet ordre dépendra, en général, de &', &', u, v.
(8) Dépendant, en général, de la décomposition effectuée.
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Il suffit donc de s’occuper de la deuxiéme limitation (6), et pour
cela nous diviserons notre démonstralion en trois parties :

a. Considérons d’abord une décomposition de (a, b) tout a fait
générale, et indiquons par

0, n4+p—1(0, u—1

Snapi () = Z Z AlIJ;. xk)gc?h( x)

une réduite, d’ordre n+ p — 1, de la série de Fourier de y'(2). Choi-
sissons ensuite, avec une loi arbitraire, » points x, (/=1, 2, ..., n),
chacun 4 chacun 4 'intérieur des n intervalles (z,_,, ;).

3

Par rapport a4 un quelconque des n»—1 intervalles (wl, ;vm)

“({=1,2, ..., n—1), lasérie de Fourier de y'(«) peut étre envisagée

comme la somme, terme par terme, de deux autres séries de Fourier,
c’est-a-dire : -

1° de celle de 1a fonction

Y () pour tout z de («, b) extérieur a (z;—y, Zryy),

T'u(x)Z{

Y’ (£1> » intérieur » H

2° de celle de la fonction

pour tout z de (a, b) extérieur a (z;, Z14),

, . (]
Y?l(‘r) _{ Yl(x) . T,(‘;’> « intérieur »

Y..(@) est une combinaison linéaire de fonctions {(x; u, ¢) se
rapportant a des couples de points u, ¢, dont chacun est extérieur
a (5,, 51“) : sa série de Fourier, en vertu de’hypothése préjudicielle 83,
converge donc uniformément sur (z;, ,.,) vers la constante y'(z,).
La série de Fourier de v',,(x), en vertu de ’hypothése préjudicielle v,
a ses réduites plus petites que Ho, en valeur absolue, sur tout (a’, 4)
et & partir d'un certain ordre, o étant la discontinuité de y'(x) en ;.

b. La continuité uniforme de f'(x) sur (a, b) nous donne la possi-
bilité de choisir ¢ suffisamment petit pour que, une décomposition
quelconque de (a, ) en parties Ax; toutes < & étant effectuée, 'on

Journ. de Math., tome XXXI. — Fasc. 2, 1952. 13
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ait d’abord

r@-v@I<t

pour chaque valeur x de z différent des x;; en outre, une quelconque

de telles valeurs étant fixée, soit par exemple x intérieure a (x;, 14 )
(l=o0,1,2,...,n—1),'on ait

lr@—r@l<;

pour tout x appartenant & (&, u,) (si /< n—1), et pour tout =
appartenant a (@,_y, #,,) (si />>0); enfin la discontinuité de y'(x),

en chacun des n—1 points x,, @, ..., Tny, soit < Zfsﬁ’ avec
H=H(d, b).
Nous supposerons, de plus, & < a'—a, 3< b—1b'.

c. Supposons effectués le choix de & et la décomposition de (a, &)
selon les indications énoncées en b, enfin le choix des points z,
Zay - . ., Tn (voir a). Il en résulte, pour x sur (a, b'),

| gy (2) — fl(z) | Z| gy (x) — ¥ (@) |+ |y (@) — (@) |
+ @) — fla)| <l gh(z) —y (@) |+

_:El::El(w) étant, parmi les points i, s, ..., Tn, celui tel que
33[4 X < Lpyqe

Nous obtiendrons une hmltatlon favorable pour Ig,,(x)— Y (x,)
en rattachant la démonstration du théoréme I & ce qui a été observé

en a. La convergence de la série de Fourier de y'(x) aux points z;,
nous assure que pour p suffisamment élevé, on a d’abord

n+p,= (0,
Z % Z A—y'Ad’/z(wk)%:p;l(:E,? <<

h k

pour chaque /=1, 2, ..., n. On en déduira ensuite, sur tout (o', '),
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la limitation suivante :

|Aé’x';(-7«') — Y'(EZ)‘ < % + I Snrp—1(®) — Sn+p—l(5l)|

0, n—1 0, n—1 0,n+p —1

EMZ

0, n—1

—2

‘Toujours pour p suffisamment élevé, on aura, sur tout (a’, ') (cf. a)

(xz)cp/l(x)g

0, n+p—1
PR ACH @n(w)% -
3

[ Sn+p—1(~7’) — Spip— (";1)1 < ZF;

et

0, n—1 1 0, n+p—1
(7) 2 s Z A () wzz(x)s

0, n-—iA so n+p 1

BYk \
- vy PRI AEN w(x)%
k h
0, n—1 0, n+p—1

~

<din > Ady(@) gul)

en vertu du raisonnement du paragraphe 2, v étant un nombre positif
auxiliaire, arbitrairement petit. Enfin, en vertu de I’hypothése préju-
dicielle vy, la somme écrite au deuxiéme membre de (7) est inférieure,
pour z sur (a’, b'), a un certain nombre fixe M (pourvu que p soit

. . : € . syt
suffisamment élevé). Si nous supposons dpnc 71_< Shr, Linégalité (7)
donne (pour p plus grand qu'un certain entier p),
lsp(@) =y (@) <2, done |g(2)—fi(a)|<e
sur tout (a’, b'). : C. Q. F. D.

Observation. — Avec des retouches trés petites, la démonstration
peut étre reprise, en supposant, plus généralement, que f(z) soit
dérivable seulement a l'intérieur de (a, b), f'(x) y étant continue.



