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Sur quelques appücations des fonctions convexes et concaves 
au sens de I. Sc!tur; 

PAR ALEXANDRE 0STROWSIU 
(Bâle). 

'1. Dans plusieurs travaux, M. Montel (1) a mis en relief l'intérêt que 
présentent les fonctions sousharmoniques comme une généralisation 
naturelle des fonctions convexes d'une variable. Toutefois, pour 
certaines questions spéciales, d'autres généralisations des fonctions 
convexes au cas de plusieurs variables présentent un certain inlérêt. 
Parmi ces généralisations celle due à 1. Schur (2) est peut-être la 
moins connue et la plus importante. 

Cependant la notion introduite par Schur peut êlre encore généra-
lisée, puisque Schur s'est borné aux fonctions des variables positires, 
une condition qui devient trop restrictive dans certaines applications. 
D'autre part les criLères établies par Schur pour les fonctions qu'il a 
introduites sont un peu incomplètes, puisque sa condition suffisante 
suppose l'existence des dérivées secondes. 

2. Schur a appliqué sa théorie au problème suggéré par le célèbre 
théorème d'Hadamard. Soient 

n 

( I) Il (X)= h[kV;'r'-Xv, 

't'-,'l=l 

(1) Cf. par exemple l12]. (Les numéros entre crochets se rappol'tent à la 
bibliographie à la fin du Mémoil'e.) 

( 2 ) Cf. I. SCHUR [ 18]. 
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une forme hermitique des coordonnées xi., ... , x,. d'un vecteur X 
et wi., ... , w,. les racines fondamentales de la matrice H = ( hµ.v ), que 
nous supposons ordonnées en croissant 

Alors l'inégalité d'Hadamard se réduit à l'inégalité ( 3) 

(3) 

valable pour chaque forme hermitique positire; et le résultat principal 
de Schur consiste en ce qu'une fonction G( xi., ... , x,,) concave dans 
le sens qu'il définit, satisfait toujours l'inégalité 

pour chaque forme ( 1) posilive. 

5. Nous démontrons dans cette direction ( théorème XV, n° 27) que 
pour chaque k, 1 / k < n, et pour chaque fonction G( Xi, ... , x1.-) 
concave au sens de Schur et croissante en Xi, ... , X1.-, on a l'inégalité 

(4) 

Il existe une inégalité analogue pour chaque fonction F(x1 , ••• , x") 
convexe et croissante en x 1, • _. • , x" : 

(5) 

ou ai., ... , cr,. sont les racines fondamentales de H ordonnées dans 
l'ordre non croissant 

(6) 

La méthode utilisée dans la démonstration,de (4) et (5) peut être 
aussi utilisée pour généraliser certaines inégalités établies depuis 1949 
par MM. H. Weyl, Ky Fan, G. Polya et A. Horn ( 4). Nous 

k 

montrons ( n°' 20-35) que les fonctions du type I cp( .:rx), utilisées par 
1(=:1 

('1) Cf. E. FISCHER [51. 
(') Cf. [3], [8], [17] et [22] dans la bibliographie. 
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ces auteurs dans leurs énoncés, peuvent être remplacées par des fonc-
tions beaucoup plus générales. 

4. Le paragraphe I ( n°' â-1 J) de ce Mémoire est consacré à la 
discussion d'une classe de transformations linéaires introduite 
par 1. Schur et que nous appelons les transformaàons S. Hardy, 
Littlewood et Polya (5) ont donné une condition nécessaire et suffisante 
pour que· deux n-tuples de nombres soient liés par une transfor-
mation S. Leur démonstration étant difficile, nous donnons dans le 
paragraphe l une autre démonstration de ce théorème. Ensuite nous 
démontrons un lemme (le théorème II) qui est fondamental pour nos 
développements et qui permet d'étendre la plupart des résultats 
connus de cette théorie aux cas essentiellement plus généraux. 

Au paragraphe II ( n°' 12-16) nous considérons les fonctions de 
plusieurs variables convexes S et concaves S et établissons différentes 
inégalités valables pour ces fonctions. 

Dans le paragraphe III (n°' 17-2:1) nous établissons des critères 
différentiels pour la convexité S en généralisant et précisant quelques 
résultats de Schur. Ces critères nous permettent au paragraphe IV 
d'établir pour certaines classes de fonctions ( n°' 2:1-2â) de plusieurs 
variables le caractère de convexité S ou concavité S. La plus grande 
partie de ces fonctions a été déjà considérée par Schur. Nous avons 
dù revenir sur ces exemples pour établir aussi le caractère de 
monotorue de ces fonctions, qui joue un rôle important dans nos 
développements. 

Enfin nous donnons au paragraphe V ( n°' 26-58) les applications de 
la théorie générale à la généralisation des théorèmes mentionnés de 
Schur, vV cyl, Ky Fan et A. Horn. 

On peut d'ailleurs déduire nos généralisations du théorème de 
Schur de ce théorème même, beaucoup plus directement en appliquant 
un théorème important, mais apparemment un peu oublié ( théo-
rème XVII), d'après lequel les racines fondamentales des mineurs 
principaux d'ordre n - I d'une matrice hermitique d'ordre n séparent 
les racines fondamentales de cette matrice. 

(5) Cf. l7l, p. gr. Cf. aussiKaramata[9J. 
Journ. de Math., tome XXXI. - Fasc. 3, 1952. 
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On peut d'ailleurs obtenir, en combinant le théorème XVII avec 
les inégalités ( 4) et ( 5 ), un résultat généralisant considérablement le 
principe de Fischer-Courant ( 6) ( théorème XIX). 

1. - Les transformations S. 

â. Une transformation 
Il 

Yµ,=~ Sµ,vX,1 

\1==1 

sera appelée une transformation S et sa matrice une matrice S, si elle 
satisfait aux trois postulats suivants : 

1. Sil'onaX1=,,, =Xn=X, ilensulttoujoursr1=,,, =rn=X. 
II. miny11 :::::::,, minxv. 

f1 '/ 

III. On a toujours Y1 + ... + Yn=X1 + ... +xn. 

Du postulat II il résulte évidemment 
(8) (p., 11 =1, ... , n), 

puisque si skz était< o, on aurait une contradiction en posant Xz= I, 

x, = o ( v~ l). Les postulats I et III donnent les conditions 
n n 

(9) Sµ.,1 ~ Sµ.,,= I ( /J-, 11 = I, ••• , n), 
V=,1 f1=1 

et l'ensemble des conditions ( 8) et ( g) est évidemment équivalent aux 
postulats I, II et III. Il résulte d'ailleurs de ces trois postulats que le 
produit des transformations S est toujours une transformation S. 

Une matrice S conserve cette propriété si l'on permute d'une 
manière quelconque les lignes et les colonnes. Supposons donc que 
pour deux systèmes (y11 ), (x, ), liés par ( 7 ), on ait 
( 10) 

On a alors le théorème suivant, dû à Hardy, Littlewood et Polya (7). 

( 0 ) Cf. R. COURANT [2], p. 19 et E. F1sCHllR [li,]. 
(7) Cf. [6] et 17], p. 91. 
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_: THÉORÈME 1. - Pour que les 2 n.nombres ( 1 o) soient liés paru ne trans-

formation S, ( 7 ), les relatz'ons suivantes sont nécessaires et suffisantes: 
(rra) Y1+ ... +yn=x1+ ... +xn, 
(11b) y 1 + .. _.+ykLx1 + ... +xk (k=r, ... ,n-1). 

6. Démonstration. - En sommant les k premières relations ( 7) on 
obtient une ide.ntité 

k ,, 

' ( I 2) 

où les tv satisfont aux relations 
Il 

En soustrayant des <l'eux côtés de (12) x 1 + ... + x1., on a 
k k k-1 n 

( 14) !iYP--!, Xv= .Ii (tl(- l) (xl(- Xk) + Ii t,.(xi.- Xk)_, 

p.=:1 ;=1 ,t:=1 À=k+l 

et ici chaque terme de droite est Lo d'après ( 13) et ( 10 ). ·La néces-
sité des relations ( 11 b) est démontrée. 

Supposons maintenant que les relations ( 1 o ), ( 11 a) et ( 11 b) soient 
_ satisfaites. En soustrayant de. chacun des xv, Yv une constante C, les 
relations ( 10 ), ( II a) et ( II b) restent inchangêe_s, et d'autre part, 
l'existence de la transformation S, ( '7 ), n'est pas influencée. No~s 
po;uvons donc supposer que l'on a, au lieu de ( 11 a), • 

(15) 

L'assertion du théorème est alors immédiate si tous les Xv s'annulent, 
car dans ce cas y 1 , le maximum des Yv, _est~ o, donc en vertu de ( 15), 
chaque Yv s'annule. Donc, en démontrant notre théorème, nous 
pouvons supposer que l'on a 

7. Pour n = 2 la démonstration du théorème I est immédiate: Dans 
ce cas ( 15) el ( 11 b) se réduisent aux relations 
(_16) o LyjLx1, y 2=-y1, x 2=- x1, 
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et il s'agit de trouver un i::, o LE L 1, pour lequel on a 

Mais ces relations se réduisent en vertu de ( 16) à la relation 

Y1=(1-2i::)xi, qui peut être toujours satisfaite pouroLi::L;en 

vertu de la première inégalité ( 16 ). 
Nous pouvons donc supposer que notre théorème soit déjà 

démontré pour toutes valeurs plus petites de n. 
Si l'on a dans ( 11 b) le signe d'égalité pour k = m, nous dirons 

qu'il y a une coi'ncidenc.e entre les xv et Yv pour l'indice m. 
L'assertion du théorème se vérifie maintenanL immédiatement s'il 

y a une coïncidence pour un indice m < n. En effet, dans ce cas, les 
relations ( 11 b) et ( 15) se réduisent aux deux systèmes de relations 

......... , 
Yt +- • · • ·+ Ym- Xi+ • •; + x,,,, 

Ym+1LXm+t1 

......... ' 
Ym+1+ • • • +Yn=Xm+t+ • • • +.xn· 

Mais alors, en appliquant notre théorème pour met m - n, on déduit 
les yl-' des x, par une transformation S décomposable dans deux trans- • 
forinations partielles S d'ordre m l'une et d'ordre n - m l'autre. 

8. Nous pouvons donc ~upposer qu'il n'y a de signe d'égalité 
en ( 11 b) po'ur aucun k < n. 

Soient maintenant Xp le plus petit x., positlf et Xq le plus grand x,1 

négatif: Xp > o > Xq, Formons n nombres z 11 ••• , Zn : 

(17) Zv==X,1 

Ces n nombres sont ordonnés en décroissant pour E > o suffisamment 
petit et en tout cas pour oLi::Lmin(xp, -xq), et l'on a alors 
assurément 

j z1+ ... +;:,kLx1+ ... +xk 

1 ;:,1 -l- • • • + Zn= O. 
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Je dis que les z" se déduisent des x" par une transformation S. En effet, 

il y a dans les relations ( 18) une égalité pour k = 1 si p est > 1 e·t 
pour k = n - 1 si q est < n. Il suffit donc de considérer le cas p = 1, 

q = n, c'est-à-dire le cas où l'on a 
X~== ••• == Xn-1 ::= o, 

Mais alors, il suffit de démontrer qu'on peut exprimer z 1 , Zn par x 1 , 

Xn moyennant une transformation S binaire, et ceci résulte immédia-
.tement du théorème I pour n = 2, . 

Donnons maintenant à E dans ( 17) la plus petite valeur positive pour 
laquelle ou bien il y a une coïncidence pour un indice m.< n entre 
les z" et les y,, ou bien zpzq s'annule. Dans le premier cas les Yv 
peuvent être exprimés par les z" moyennant S et l'assertion du 
théorème I est démontrée. • 

Dans le second cas nous avons remplacé les x, par les n nombres z-,, 
où le nombre des zéros parmi les z" est plus grand_que le nombre des 
zéros parmi les x". 

En itérant le même procédé on remplace finalement les x, par un 
système de n nombres consistant en zéros et le théorème I est 
démontré. 

9. On déduit du théorème I très facilement un critère analogue, 
relatif au cas où les nombres ( 10) sont ordonnés en croissant : 
(10a) x 1Lx2 L ... _L:i:n; y 1Ly2 L ... LYn• 

THÉORÈME I a. - Pour que les 2n nombres ( JO a) soient liés par une 
transformation S, ( 7 ), les relations suirantes sont nécessaires et suffi-
santes: 
( II a) 
( I I C) 

X1+ .. , + X11=)'1+ • .. +Yn, 

X1+ . .. +xkLy1+ ... +yk (k=1, ... , n-1). 

Démonstration. - Posons 

Les relations ( 11 a) et ( r I c) sont alors équivalentes avec les :relations 
·n, + • • • + YJn = ~1 + • • • + ~n, 

YJ1 + • • .+ "f/k~~t +. • .+ ~k 
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qm, d'après le théorème I, sont nécessaires et suffisantes pour que 
les Y]v soient représentables par les ~v moyennant une trans-
formation S. Mais une telle représentation est équivalente à un 
système de formules ( 'J ). 

10. Nous aurons à utiliser dans la suite le lemme suivant: 

THÉORÈME II. - Supposons que les 2 n nombres xv, Yv ( 'J = 1, ... ,n) 
satùfont les relations ( IO) et • 

( 19) 

Alors on peut trouver n nombres .z 1 , ••• , Zn satisfaisant aux relatz"ons 

Z) '----. .::;2=::::,,_· • _:::::,,_ .::;n, 

i .::;1 +.· .. + Zn=X1 + ... + x,,, 

/_ ::1+ ... +.::;kLx1+ ... +xk (k=r, ... , n-1). 

Démonstration. - Nous allons faire croître les Yv de sorte que les 
relations ( 10) subsistent et dans les inégalités ( 19) on obtient le signe 
d'égalité pour l'indice k de plus en plus grand. Faisons d'abord 
croître y 1 jusqu'à ce qu'on ait le signe d'égalité dans une des 
relations ( 1 g) et soit k = m le plus grand indice pour lequel on a le 
signe d'égalité. Alors on peut écrire les inégalités ( 19) 

) 
)'1+-,.+)'k-LX1+ ... +Xk 

)'1+- . . +)'m=x1+ .. . + Xm, 

)'1+---+)'1 <x1+ .•. +.-c1 

(k<m), 

(l>m), 

où m est~ 1. Soit m < n, on a assurément 
)'m:::::,,_ x·m':::::,,_ a:,,,+1 > )'m+1• 

Pour m = 1 c'est évident, pour m > i on obtient la première et la 
dernière relation ( 24) en comparant les relations ( 23) relatives 
à k = m - 1, m, m + 1 . 

De (24) il résulte que si l'on remplace Ym+i par Xm+1 , on aurait le 
signe d'égalité dans la relation ( 23) pour· k = m + 1, tandis que les 
inégalités ( 1 o) subsistent. Donc, en faisant croître Ym+i, on obtient 
pour la première fois le signe d'égalité en ( 23) pour un indice .l > m, 
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tandis que (10) subsiste, c'est-à-dire, on parvient à Templacer 
l'indice m par un indice plus grand. En répétant le même procédé, on 
obtient enfin le signe d'égalité dans la relation (19) pour k = n, et le 
théorème II est démontré., 

:1.1. Dans le travail déjà cité, Hardy, Littlewood et Polya ( 8) ont 
démontré le théorème suivant : 

THÉORÈME III. - La possibilité de satisfaire aux relations ( 10 ), ( 1 ia) 
et ( 11 b ), après un chan15ement de numérotage conPenable, est nécessaz're 
et suffisante pour que l'iné15alité 

soit valable pour toute fonction q,( x) continue et conrexe. 

Nous allons démontrer ce théorème ensemble avec le théorème 
suivant, analogue au théorème III : 

THÉORÈME Ill a. - Une condition nécessaire et suffisante pour que la 
relation ( 25) soit satisfaite pour chaque fonction q,( x) continue, 
conrexe et croissante, consiste en ceci, qu'après un changement conve-
nable de numér<;>tage, les relations suivantes sont sati~faites : 

(10) X1:::::,,_,, ,:::::,,_Xnj )'1:::::,,_•, ,::::,,_y,,, 

(19) Y1+ ... +ykL.x1 + ... +xk (k=r, ... , n-r, n). 

Démonstration de la nécessité des conditz'ons des théorèmes III 
et III a. - Supposons que dans l'hypothèse (10) la relation ( 25) soit 
satisfaite pour chaque fonction q,( x) continue, convexe et croissante. 
Appliquons ( 25) à la fonction donnée par 

• { X-Xk 
<p(x)= o 

(x~xk), 

(xLxk), 

où k est un des nombres r, ... , n. On a évidemment pour ce q,( x) : 

(8) Cf [6] et [7], p. 89. Cf. aussi Karamata f9]. 
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L'expression de droite en (25)devient alors égale à.ri+• . . +x1.--kx,.. 
D'autre_part, on a, d'après (27), 

et l'expression de gauche eri ( 25) est ::::::,,.yi + ... + yk- kx,., de sorte 
qu'on a 

et la kièmc inégalité ( 1 g) est démontrée (k = I, ... , n ). 
Si l'inégalité ( 25) est aussi valable pour les fonctions convexes, 

continues et décroissantes, on obtient en l'appliquant à - x : 

ce qui, pris ensemble avec l'inégalité ( 19) pour k = n, donne 
l'égalité ( 1 r a). 

Le fait, que les conditions des théorèmes III et III a sont suffisantes, 
résultera dans la suite des théorèmes V a et IV, en les combinant avec 
le théorème XII. 

Il. - Convexité S et concavité S. 

12. Soit J un intervalle ouvert quelconque sur l'axe des x, fini ou 
infini dans une ou deux directions. L'intervalle symétrique à J par 
rapport à l'origine sera désigné par - J, celui obtenu de J en 
remplaçant chaque point x de J par x -t;- C, sera désigné par J + C. 

Pour un entier k::::::,,.1 nous désignons par DJ le domaine 

dans l'espace à k dimensions. Nous écrirons parfois au lieu de D1 , Dik\ 
pour indiquer le nombre des dimensions de l'espace en question. 
Par D nous désignons dans la suite DJ où J est l'intervalle x > o. 

Soit 
k 

)'µ= !.sµ•,Xv (p.=1, ... ,k) 
'1==1 

une transformation S • quelconque, c'est-à-dire satisfaisant aux 
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relations 

k k 

(3o) ~s 11"= ~Sµv=r 
V=1 11=1 

Si le point x 1, ••• , x,, est situé dans un domaine DJ, il en est de 
même pour le point Yi, ... , Yk• 

Une fonction F(x1, ... , x1c), k > 1, sera désignée comme com·exe S 
dans D" si pour chaque système x 1 _, ••• , x1c satisfaisant à (28) on a 
l'inégalité 
(31) F(y1, ... , yk)L'.'.'.'.F(x1, .. . , Xk), 

où les y 11 sont liés aux xv par une transformation S quelconque, (29 ). 
Évidemment, chaque permutation des variables x 11 est une trans-
formation S et il en est de même pour l'inverse de cette permutation. 
Il résulte qu'une fonction F(x0 ... , x") convexe S en DJ y est 
symétrique. 

Nous appelons en particulier une fonction F conc1exe S au sens 
étroit dans DJ, si pour chaque point de DJ et pour chaque trans-
formation S, ( 29 ), on a 

sauf si Yi, ... , y1; sont une permutation des x 1 , . ••• , x". 
D'une manière analogue, une fonction G(x1 , ••• , x1c)sera appelée 

concaçe S dans DJ, si l'on a pour chaque point de D, et pour chaque 
transformation S, ( 29 ), 

(33) 

G sera appelée concaçe S au sens étroit en D." si le signe d'égalité 
dans (33) n'est possible que si y 1 , .•. , .Y1c sont une permutation 
des Xi, ... , x1;. On obtient évidemment d'une fonction convexe S 
(au sens étroit), en là multipliant par - 1, une fonction concave S (au 
sens étroit) en DJ et vice versa ( 9 ). . 

Il résulte des définitions données que si F(x1 , ••• , x") est une 

( 9 ) I. Schur, qui a introduit ces notions, ne considère [ 18] que les fonctions 
concav~s et le domaine D. 
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fonction convexe en DJ, pour chaque constante C, 
F(x1+C,~2+C, ... ,a,k+C) 

est convexe dans DJ-c• Une remarque analogue s'applique aux fonc-
tions concaves aussi bien qu'aux fonctions convexes et concaves au 
sens étroit. 

Il résulte des définitions ( 31) et ( 33) que si F( x 1 , ••• , x 1.) est 
convexe S dans DJ la fonction F( - x 1 , .•. , - x 1,) est· convexe S 
dans D_J• Le fait analogue subsiste pour les fonctions concaves S 
dans DJ. 

La fonction x 1 + ... + x1r est évidemment convexe et concave à la 
fois dans tout l'espace. 

15. THÉORÈME IV. - Soit F(x1 , •.• , x1c) pour k > I, croissante (1°) 
en, x 1 , ••• , xk et con!'exe S dans DJ. 

Soient x 1, ••• , x"; y 1 , .•. , Y1c 2k nomb,es situés en J, et satisfaisant 
aux relations 
(34) Y1~-. ;~yk; X1~-. -~Xk, 

(35) -y1+ . .. +y,véx,+ . .. +xY. (x=I, ... , k). 

Alors on a l'in'égalité ( 31) ( 11 ). 
Si Fest con!'exe au sens étroit dans DJ, le signe d'égalité en (31)n'est 

possible que sil' on a 

Démonstration. - D'après le théorème II, il existe k nombres 
z1, ... , z1, satisfaisant aux relations 
(34 a) 

Z1 +. • .+ z,v<'.'.'.'.X1 + ... +X" 
Zt + ... + Zk=X1 + ... + Xk• 

(10 ) Nous disons ici et dans la suite : cc croissant» au lieu de « non décrois-
sant •> et « décroissant n au lieu de « non croissant». S'il s'agit des fonctions 
strictement croissantes ou strictement décroissantes, nous ajouto~s les mols : <tau 
sens étroit >>. 

(11 ) La Note [17] de M. Polya contient ce résultat pour le cas où F(x1, .•• , Xk) 

a la forme particulière 9(xi) + 9(x2) + ... + o(xk)• Mais l'artifice par lequel 
M. Polya démontre son résultat ne paraît pas être généralisable au cas général. 
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On a donc 

(36) 

D'après le théorème I, les z.,. se déduisent des x" par une trans-
formation S. Les z.,. sont donc situés dans Jet l'on a 

(31) est démontré. 
Si F est conî!exe au sens étroit dans DJ et l'on a le signe d'égalité 

dans (31), on a le signe d'égalité dans (36) et (37). Mais alors, F 
étant croissante au sens étroit (1 2 ), on a 

(x = 1, ... , k) 

et il résulte de l'égalité en ( 37) et .de ( 34 ), ( 34 a) que l'on a en effet 
Yx=Xy. (x=1, ... ,k). 

Le théorème IV est démontré. 

14. Comme corollaire on obtient facilement : 

THÉORÈME IV a. - Soient x 1 ~ • •.• ~x11 ; y 1 ~ ••• ~y,, 2n nombres 
situés en J et satisfaisant aux relations 
(38) 
(3g) 

(x=1, ... , n-1), 
)'1 + ... + y,.=x1+• .. + Xn• 

Alors, si pour un k, k= 2, .. , . , n, G(x1 , ••. , x1c) est concaî!e S 
dans DJ et pour k < n croissante en x,, ... , x1r, on a 
(4o) G(y,,, Yn-1, .. . , Yn-k+t)::::O,.G(x,,, Xn-1, .•. , Xn-k-1-1)• 

Démonstration. - D'après le théorème I, il résulte de' nos hypo-
thèses que les Yx se déduisent des x.,. par une transformation S. Donc 
en posant 

- Y n-Y.+I = ·ti.,., •• - Xn·-Y.+I = ~Y. 

( 12) En effet, si F était constante en x 1 dans un sous-intervalle J I de J pour 
un système des valeurs co."ustantes x 2 , ••• , Xk, on aurait évidemment le signe 
d'égalité dans ( 31) pour des valeurs constantes des x 1 , ••• , xk; y 2 , ••• , )'k et pour 
une valeur variable de y 1, ce qui serait•en contradiction avec la convexité au 
sens étroit. 
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les YJx se déduisent des çx par une transformation S et l'on a, ·/Jx et ç" 
étant dans l'ordre décroissant, les relations 

"f/1 + · • • + "f/n= Çt + • • • + Ç,i, 

"f/1 + · · · + YJxL ~1 + • • • + Çx 

D'autre part, la fonction -G(-x1 , ••• , -x,,) est convexe S 
dans D_J et pour le< n croissante en x 1 , ••• , x". Donc, puisque 
YJo ... , YJ1;i ç1·, ... , t;1, sont situés dans -J, on a par le théorème IV. 

-G(-"f/1, ... , -YJk)L-G(-~1, ... , -çk), 

G(y,,, • .. , Yn-k+t)~G(x,,, .. . , Xn-k+d· 

in. Indiquons mai1'tenant les énoncés correspondant aux théo-
rèmes IV et IV a dans le cas où les inégalités ( 35) sont valables, 
les Yv et les Xv étant ordonnés dans le sens croissant. 

THEORÈME V. - Soit G(x1 , ••• , x,,} pour k>i, croissante en 
x 1 , •.• , .XJf.- et CO!l,Cai'e S dans DJ. Soient 

2k nombres situés en J et ordonnés dans le sens croissant. Alors si l'on a 
(x=1, ... , k), 

il résulte l'inégalité 
(42) G(y1, ... , yk) G(x1, ... , xk). 

Si Gest concare au sens étroit dans DJ, le signe d'égalité en (42) 
n'est possible que si l'on a 

Eneffet,posons-xv=Yj,,, -y.,=ç.,(v=r, ... , k), 

-G(-.r1, ... , -xk)=F(x1, ... , Xk), 

Alors on a 
(x=1, ... , k), 

F est convexe et croissante en D.0 . de sorte qu'on a, d'après le 
théorème IV, 

F("f/1, ... , YJk)LF(/;1, ... , ~k), 

ce qui est identique avec ( 42 ). 
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THÉORÈME V a. - Soient 

(43) 

2 n nombres situés en .J e"t satis/ aisant aux relations ( 38) et ( Jg ). Alors, 
si pour un k, k = 2, ... , n, F( x 0 ... , x,,) est convexe S dans DJ et 
pour k < n croissante en x 1 , •.• , x1;, on a 

On déduit (44) immédiatement du théorème [V a en appliquant ce 
théorème à la fonction G(xu ... , x1c)=-F(-x0 ... , -x1c) et 
aux nombres YJv=-xv, t=-:rv(v=r, ... , le), qui satisfont aux 
conditions du théorème IV a. 

16. THÉOI\ÈME VI. - Soient pour k>r, G(x11 ..• , x1c) croissante 
en x 1 , ••• , X1c et concave S dans DJ, et F( x 1, ••. , x1;) croissante 
en x 1 , ••• , X1c et convexe S dans DJ• 

Soient pour n > le les x 1 , ••• , x,, sziués en J. Déstgnons les xv 
ordonnés en croissant par 
(2) W1L, .. LWn, 

et ordonnés en décroissant par 

(6) 

Alors, si les )1 0 ••. , y,. se déduùent des x 1 , ... , x 11 par une trans-
formation S, ( 7 ), on a les z'négalités 

( /45) 
( /46) 

G(y1, ... ,J'k):::::,.G(w1, ... , wk), 
F(y1, ... ,yk)L'.'.'.:F(cr1, .. ,,crk)• 

Dans le cas où Fest conPexe au sens étroit dans D" le signe d'égalz'té 
en ( 46) n'est possible que si .Yi, ... , )'1c sont une permutation des 
cr,, ... , cr,,. Le fait analogue subsiste pour G( x 1, ... , x1c). 

Démonstratz·on.-Dansleshypothèsesdu théorème-G(-x 1 , •• • ,-x1.) 
est croissante en x 1 , ••• , x1c et convexe S dans D_J• Il suffit donc dans 
la démonstration du théorème de se borner à la démonstration 
de(4G). 

On peut évidemment supposer que l'on ait ,Y1 ~ .• -~)11,, F étant 
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line fonction symétrique. Désignons les Yv ordonnés en décroissant 
par YJ 1 •••• YJ,,. On a alors assurément 

... ' 
D'autre part, (7) peut être écrite après des permutatio1,1s conve-

nables des lignes et des colonnes dans la forme 
n 

YJµ= ~S~vŒv (p,=1, ... , n), 
V=1' 

où la matrice ( s'µ,) est une matrice S. On a donc·, d'après le théorème I, 
(x=r, ... , k) 

et d'après ( 47 ), 

Mais alors le théorème IV est applicable et ( 46) résulte de (31 ). 
Le théorème VI est démontré. 

III. - Critères de convexité S et concavité S. 

i 7. THÉORÈME VII. - Pour qu'une fonction _F( x 0 ... , x1c) symé-
trique et douée des ·dérivées partielles continues du premier ordre 
dans DJ, y soit com•exe S, il est nécessa;·re etsuffisant que l'on ait pour 
chaque point x 0 ... , xk de D.1 : 

(48) 

• Déinonstratwn. - Supposons que F(x0 ... , x1c) soit convexe S 
dans DJ. On a alors pour la transformation S : 

/ 

Y1=(r-s)x1+sx2, Y2,=Ex1+(1-s)x2, y~=x,,, 
F(x1, ... , Xk) - F(y1, ... , Yk) 
--------=------=---'- :::::,,, 0 

ê 
(4g) (o<s<1). 

( 13 ) Dans le Mémoire de Schur [18 J, p. 11 la condition analogue à (48) pour 
les· fonctions concaves ne se trouve indiquée que comme une condition néces-
saire. 
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Pour i:: + o l'expression de gauche en ( 49) tend vers l'expression de 
gauche en ( 48 ), et la nécessité de notre condition es't démontrée. 

Notre démonstration que la condition ( 48) est suffisante, repose sur 
le théorème suivant : 

THÉORÈME VIII. - Si une Jonction F(x1, ... , x1;) symétrique 
continué et douée des .dérirées partielles continues du premier ordre 
en DJjouit de la prophëté que l'on ait dans DJ: 

(5o) 

chaque foù que x 2 .1:1, F est conrexe S au sens étroit dans DJ (1 4 ). 

18. Démonstration du théorème VIII. - F étant symétrique, il 
résulte évidemment de (5o) que chaque fois que l'on a x"< xÀ, 

on a aussi 

Soit x 1 , ••. , ::c1( un système de variables situées dans J, que nous 
supposons ordonnées dans l'ordre croissant 
(52) X1LX2 / ... / Xk-

Quand est-il possible, que dans les conditions du théorème VIII, 
on ait 
(53) 

où les Yx se déduisent des xi, par une transformation S, ( 29) '?. 
L'expression de gauche en ( 53) étant unè fonction continue des 

coefficients stJ.~ de la transformation ( 29 ), qui forment un ensemble 
fermé, il existe une transformation S, ( 29 ), S 0 , pour laquelle 
l'expression de gauche en ( 53) atteint son maximum. 

Nous pouvons donc supposer que F(yi, ... , y1J ait déjà la valeur 
maximum. On peut faire évidemment l'hypothèse 
( 54) 

(H) Dans le Mémoire [18], p. 12-14 de Schur, on trouve une condition suffi· 
sante pour les fonctions concaves au sens étroit qui implique l'existence des 
dérivées secondes. 
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Si l'on a X1 = ... = x1r, les y 1 , .•. , y1; ont la même valeur et 
l'assertion du théorème VIII est évidente. Supposons donc que l'on 
ait dans ( 52) 

l'assertion du théorème VIII se réduit maintenant à ce qu'on a 

19. Soient x. un des nombres 1, ... , p et À un des nombres 
p + 1, ... , k, de sorte que • 

(55) 

Soient d'autre part, ex et deux indices, avec 

(56) 

et supposons que l'ont ait 

Alors, pour chaque E o suffisamment petit, on peut déduire de 
la transformation ( 29) une autre transformation, S2 ~ en posant 

S~),= Sr,.), - E; 

S~i.= S~), + E 

et en laissant les autres coefficients de ( 29) inchangés. Se est, pour E 

suffisamment petit, encore une transformation S. En désignant 
par y\, ... , y~ les valeurs obtenues des x 1 , ••• , x1; par la trans-
formation Se, on a ' 

y~=yr,.+ e(xx- X).), y~=y~-,e(xx- x,.), y~=Ya-
Yr1-y~-(y~ -yr,.) + 2E(Xi, - Xx), 

Posons 

on a alors 

sign cp' (ë) = sign[y~- )'r,. + 2 E(X). - xx) ]. 
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Mais alors il résulte de ( 54 ), ( 55) et ( 56) que l'on a ip' ( E) > o pour 
toutes ë > o suffisamment petites, et ceci est en contradiction avec 
l'hypothèse que la valeur de F(y1 , ••• , Y1c) est déjà maximum. 
On a donc 

20. Écrivons maintenant la matrice S 0 sous la forme 

où PP et Q,,-p sont des matrices quadratiques d'ordre p, k-'- p; je dis 
que les matrices Ri, R 2 ne consistent qu'en zéros. En effet, supposons 
qu'un élément de R.1 , sx/(1..Lp, À >P), ne soit pas zéro. Alors il 
résulte de ( 57) que· l'on a 

de sorte qu'en particulier tous les éléments de R 2 s'annulent. 
En appliquant maintenant les relations (3o) aux p premières 

colonnes de S0 , on obtient 

(58) 
!X/IT=l 

Mais alors, en appliquant les relations ( 3o) aux p premières lignes 
de S 0 , il résulte de (3o) et (58) que tous les éléments de R 1 

s'annulent, contrairement à l'hypothèse. 
La démonstration que R 2 = o se fait d'une manière symétrique, 

de sorte que la matrice S 0 est complètement décomposable: 

(5g) S -(Pp o ) o- O Qk-p • 

L'assertion du théorème VIII résulte maintenant immédiatement 
pour k = 2, puisque alors d'après ( 55 ), on a p = k - p = 1 et 
d'après ( 3o) S 0 devient la matrice unité d'ordre 2. 

Nous pouvons donc supposer que le théorème VIII soit démontré 
pour les valeurs plus petites de ! •. D'après ( 59 ), ( 55) et ( 3o) on a 
maintenant 

Yi=•. -=YP=x1=- .. =xp, 
Journ. de Math., tome XXXT. - Fasc. 3, 1952. 
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de sorte que la relation ( 53) devient 

Il s'agit donc maintenant d'une fonction de k- p variables et de la 
matrice Qk-p, qui est naturellement aussi une matrice S. Mais alors le 
théorème VIII est applicable à cette fonction, on obtient 

et le théorème VIII est démontré. 

2i. Retournons maintenant au théorème VII du n°· 17, et 
supposons que la condition ( 48) soit satisfaite. Considérons la 
fonction 

Ici on a évidemment 

( .'l'2 - X1) (j'.,,, - j~,1 ) = ( X2 - X1 )2 > 0 

Alors pour chaque E > o la fonction 

salisfait la condition ( 5o) du théorème VIII, de sorte qu'il en résulte 
l'inégalité générale 

(60) F(y1 , .. ,,Yk)+èf(Y1, ... ,yk)LF(x1, ... ,xk)+èf(x1, .. ,,xk) 

et pour E ..j,, o il résulte de ( 60) que F est en effet une fonction 
convexe S. Le théorème VII est démontré. 

IV. - Exemples des fonctions convexes Set concaves S. 

22. Dans ce qui suit nous utilisons le symbole 

Nous désignons les fonctions élémentaires symétriques des variables 
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Xi, ... , x,, par ci, ... , ck, de sorte que l'on a 

(62) 

De même nous désignons pour k > 2 les fonctions élémentaires 
symétriques des x 3 , X 4 , ••• , xk par dt, ... , d1c_2 ( u) et les fonctions 
élémentaires symétriques des x 2 , ••• , x1c par D1 , ••• , Dk-1• Nous 
posons en outre 

Alors on' a 

(63) 

(64) 

Rappelons les inégalités connues valables dans le domaine D0 , 

c'est-à-dire pou~ les x"- positives, 

(65) 

(66) 

THÉORÈME IX. - Les fonctions 
C2 C3 Ck -, -, ... , 
C1 C2 Gk-1 • 

sont concaç;es au sens étroit, amsl que croissantes au sens étroit 
dans D (1 6). 

La concaç;ité resulte des formules qu'on déduit immédiatement 
de(63): 

(68) l Ac1<=(x1-X2)d1<-2 (x=2, ... , k), 

c~ A CJ<+i = (Xi- xn (dL1- d1(-2 dY.) + (x1 -X2) (d.,__, d.,_- dY.-2 dJ<+i), c.,_ 

(io) Cf. SCHUR [18], P· 15 . 

. ( 16 ) La concavité des fonctions (67) au sens étroit se trouve démontrée dans 
Schur [ 18], p. 15. 
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puisque d..,__ 2 ( k 2) et, d'après les inégalités ( 65) appliquées aux d..,_, 
les expressions ( d!_1 - d..,__ 2 d..,_), ( d..,__1 d..,_ - d..,__ 2 d..,_+i) sont > o en D. 

En utilisant ( 64), on a 

et la monotonie des fonctions ( 67) est démontrée. 

23. THÉORÈME X. - Les fonctions 
(69) 

sont pour 

concares au sens étroit et croissantes en x 1 , ••• , X1c d~ns D ( 1 7 ). 

Démonstration. - On obtient, d'après (68), 

et ici l'expression entre crochets est o, puisqu'on a en appliquant 
les inégalités ( 66) aux d 1 , ••• , dk : 

d d-À' (k )X ( k). 2) d d-X.-À 

), t ....::,. - 2 ( k - 2 ) x.+"A t • 

x+À 

Donc 8x,"A est concave en D au sens étroit. D'autre part, on obtient 
en vertu de ( 64) 

à • 
:.-- g..,,, ), > x n1-1 D),+2 + D~ D),+1 - y x., ), Dx.+À+1, 
UX1 

-X-À 1 Ù -À-1 -x.-1.-1 
Dl - àx1gx,À>DÀ+1D1 -rx,ÀDx+),+1D1 • 

( 17 ) La concavité des fonctions (69), dans le cas x +À+ 2 = k, se trouve 
démontrée dans Schur (18], p. 16. 
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Mais il résulte des inégalités (66) appliquées aux D,: 

( :) 
D),+1 D1A-1::::,,_ ( k - I )X ( k - I ) Dx+).+1 D1x-A-1 

x+À+I 

( k- 2) 
.___ ( 1 )X À D D-X-1,-1 == ,c - I ( k - 2 ) x+),+1 L , 

x+À 

et l'on voit que l'expression de gauche en ( '71) est> o, de sorte que g.,.,À 

est croissante en x 1 , ••• , x1c dans D. 

THÉORÈME XI. - Les expressions 

sont conrexes au sens étroit dans D pour p > 1 et p < o. sP est con\Jexe 
au sens étroit dans tout l'espace, si p est un entier pair posittj. 

Cela résulte immédiatement de l'identité ~sp= p(x~-1 - x~-'). 

24. THÉORÈME XII. - Soit q,(x) continue et com•exe pour x -<J. 
Alors 

En effet, il résulte de ( 29 ), d'après ( 3o ), que l'on a pour chaque f'·: 
k 

cp(yfl,) L~ SfJ.vCf(Xv), 
V :::::1 

( 18 ) Cf- ScuuR[18], p. 16. 



ALEXANDRE OSTROWSKI. 

et en sommant p~r rapport à p. on obtient 

<p (y1) + ... + <p (yk) L <p (xi) + ... + <p ( Xk ). 

En appliquant à ( 13) les théorèmes IV et V a ( pour le - x ), on voit 
immédiatement que les conditions des théorèmes III a et III sont 

. suffisantes, ce qui achève la: démonstration de ces deux théorèmes. 
' 

THÉORÈME XIII. - Soit cp ( x) pour x -< J positive, douée de la dériçée 
première et convexe ainsi que logcp ( x ). Posons, c,,_ étant définie par ( 62 ), 

Alors T,,_ est conçexe dans DJ, et même conçexe dans DJ au sens étroit 
si cp( x) n'est constante dans aucun sous-interçalle de J. T ,,_ est croissante 
si cp ( x) est croissante. 

Démonstration. - On a en différentiant 

aaT,,_ = [ <p (x2 ) dx-2 + d,,__i] <p' (xi), 
X1 

ou dans dx-1 et d,,__2 on a remplacé x 3 , ... ; xk par cp( X3 ), ••• , ip(xk)• 
En soustrayant on obtient 

( 7 5) Îl T x = dx-1 [ <p 1 ( X2 )- <p' ( X1)] + <p ( X1 ) <p ( X2) dx-2 [ i :: ? - i ;1
1?] 

et l'on voit que pour x 2 > x 1 LiT,,_ est ::::::::.o, puisque, d'après les hypo-
thèses, les expressions entre crochets sont::::::::. o. 

Supposons maintenant que qi(x) n'est constante dans aucun sous-
intervalle de J. Alors, si 9 ( x) est linéaire dans un intervalle ( u, ç ), 
cp(x)=ax+b, a~o, on a 

q/(x) a -- =---, <p(x) ax + b 

et cette fonction étant croissante d'après les hypothèses dans ( u, v ), 
y est croissante au sens étroit. Mais alors la deuxième partie du théo-
rème s'obtient de ( 15) immédiatement. • 

23. THÉORÈME XIV. - Soit S(x1 , ••• , xk) croissante en x,,_ et 
conçexe S dans D J• Soit cp ( x) com·exe dans J 1 et telle que la valeur 
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de q,(x) en J1 appartient à J. Alors S[q,(x1 ), ••• , q,(x1;)] est convexe 
en D J,. Cet énoncé reste vrai, si l'on y remplace partout com•exité par 
concarité. 

En effet, on a en vertu de ( 29) et ( 3o) 
k 

cp(ytJ,) L!istJ,,cp(x.,), 

donc, S étant croissapte et convexe S, 

Le raisonnement pour le cas de concavité est complètement analogue. 
En multipliant S par - 1, on obtient deux énoncés analogues : 

Si S( xi, ... , ·x,c) est décroiss,ante en x 1 , ••• , xk et si tune des fonc-
tions S, tp(x)estconrexe S etl'autreconcareS1,S[tp(x1 ), •• • , q,(x1;)] 
présente le même caractère que S( x 1 , ••• , xk)• 

V. - Applications des théorèmes IV et V. 

26. Les inégalités ( 4) et ( 5) peuvent être exprimées d'une façon 
un peu plus générale en introduisant un système « orthonormé >> de 
vecteurs 

Par une transformation unitaire orthogonale, qui ne change pas 
les w,, on peut faire les éléments de la diagonale principale de H 
égaux aux 

H(Xi), ... , H(X,,). 

Les inégalités ( 4) et ( 5) se transforment alors dans les inégalités 

G[H(Xt), ... , H(Xk)]:::o,,.G(w1,••·, wk), 

F[H(X1), ... , H(Xk)]LF(0"1, ... , O'k)· 
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27. THÉORÈME XV. - Soit ( 1) une forme hermitique a_ux racines 
fondamentales que nous désignons en les ordonnant en croissant par (2) 
et en les ordonnant en décroissant,par ( 6 ). Soient pour un k, 1 L.. k L.. n, 
F(x1, ... , xk), G(x1, ... , x1c) deux fonctions en x 1, ... , x" crois-
santes pour k < n, dont la première est conrexe S et la seconde concare S 
dans DJ où w1 -<J, wn -<J. Alors, si X 1 , ••• , X,. sont k vecteurs ortho-
normés, ona(78)et(7g) (1 9). 

Démonstration. - Désignons les coordonnées des vecteurs Xµ, du 
sysLème orthonormé ( 76) par 

(p-=r, ... ,n), 

alors on a 
n Il 

( /J-, V = I, , .. , Tl). 

Donc, en posant J x:;1 J 2 = sw,, on obtient une matrice S. 
On peut écrire la forme hermitique H(X) dans la forme 

H (X)= W11X11 2 + ... + Wn I Xn j2, 

après une transformation préalable unitaire orthogonale dans l'espace 
des xv. Les expressions des H(Xµ,) deviennent alors 

IL 

et les inégalités ( 78) et ( 79) découlent pour k < 'n immédiatement 
des formules ( 45) et ( 46) du théorème VI et pour k = n des for-
mules (31) et (33). Le théorème XV est démontré. 

On déduit comme un corollaire immédiat du théorème XV les 
relations 

(So) 
( 8 I) 

minG[H(Xi), ... , H(Xk)]=G(w1 , ... , wk), 
maxF[H(X1), ... , H(Xk)]=F(u1, ... , O'k), 

où X, ... , X1; parcourent tout système de k vecteurs orthonormés ( 76 ). 

( 19 ) Pour k=n, DJ=D, ce théorème se trouve chez Schur [18], p. 17. 
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On peut remplacer en particulier dans les relations (80) et (81) les 
fonctions F(x1 , .•• ,x1;), G(x1,·•·,xt.) par la somme x 1 + ... +x·1;, et 
l'on obtient alors deux relations trouvées il y a un an par 
M. Ky Fan ( 20 ). ,. 

28. En appliquant (78) à c1,=X1 ... xt., on obtient dans le cas 
d'une forme hermitique posùil,)e l'inégaliLé 

(k=r, ... , n), 

qui permet évidemment une interprétation géométrique très simple. 
Considérons par exemple pour n = 3, k = 2 l'ellipsoïde 

(83) 

el soient P, Q deux points sur cet ellipsoïde tels que l'on ait 
OP J_ OQ; alors on a 
(84) OP x OQ,,,-: ab. 

On obtient dans les mêmes hypothèses, du théorème IX : 

(v=r, ... , k-r), 

une inégalité qui admet évidemment une interprétation géométrique 
très élégante. 

Il résulte du théorème IX que 

(86) 

est une fonction croissante et concave en D ( 21 ). On a donc de ( 78 ), 

( 20 ) Cf. [3], la première note, p. 653. 
(" 1 ) Ceci résulte en particulier de la propriété suivante qu'on déduit immé-

diatement des définitions (31 ), (33): Si 91-' (x\, .... '.C,,) (p.= r, 2, .. , m) so11t 
tous con vexes S ou tous concaves S dans D1 et si j( z 1, ... , Zm) est croissante 
pour les valeurs .zl-' que les fonctions cpl-' prennent indépendamment dans DJ, alors 
/( 9 1 , ... , cpm) est dans DJ, convexe S dans le premier cas et concave S dans le 
second. 
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pour une forme H positiPe, 

H ( X1 ) ... H ( xk) fl ( X1) + ... + 1-J ( xk) ,___ ------ ::::o.--------_____:,. I. 
W1 .. . Wk W1 + .. . +Wk -• 

En appliquant ( 79) aux ex.pressions ( 72) du théorème XI, on 
obtient pour une forme H posùiPe les inégalités 

(88) 

Dans le cas général, où H n'est pas supposée nécessairement posi-
tive, on obtient en àjoutant à H la forme u([x 1 [2 + ... +[xn[ 2 ) 

pour u > - <D,, l'inégalité 

D'après le théorème XII la fonction eP·,,.•+ ... + ef''"k est convexe et 
croissante dans tout l'espace pour chaque constante positive p. On 
obtient donc de ( 79) 

k k 

(go) ef!Il(Xk) L. eP'h. 

Y.=1 Y..=1 

D'autre part, pour p > o, rp(x) = el',., rp(x) et logrp(x) sont 
convexes et croissantes dans tout l'espace. On obtient donc en appli-
quant les théorèmes XV et XIII par exemple à x. = 2 et k = 3, l'iné-
galité 
( 91) ePlll(X,J+lliX,l] + ef''.ll{X,)+II(X,!] + ePil[(X,J+ll(X1JlL_ eP(cr,+cr,) + ePIŒ,+Œ,) + e!'(cr,+cr,i_ 

29. Soit A une matrice quadratique non singulière d'ordre n. Dési-
gnons les racines fondamentales de A, c'est-à-dire des racines de 
l'équation [ xE- A [ = o, par ),v( v = r, ... , n) dans l'ordre décrois-
sant des modules: 

Le produit AA * de A avec la matrice renversée conjuguée A* de A a, 
comme on sait, les racines fondamentales positives que nous désignons 
par p!, ... , p~, où 
(g3) 
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On doit à Aitken et Turnbull (2 2) d'un côté et à IL Weyl (2 3) d'un 

autre les relations 

(94) (11=1, ... , n), 

ou l'on a natureUement le signe d'égalité pour v = n. On peut évi-
demment écrire 

k k 

( 95 )' ~log I Àvl L!.logpv (k=r, ... ,n-r), 

n n 

(96) 

Nos inégalités (31) et (4o) sont donc applicables et l'on obtient le 
théorème suivant : 

THÉORÈME XVI. -Soient pour I Lk~n, 1>(xi., ... , x")etf(x1 , .•• ,x!i) 
définies pour Xi, ... , x" positifs, et telles que la première des fonctions 

(97 a) 

(97 b) 
«l>(e''\ ... , e·~•) = F(x1, ... , xk), 

f(e''", ... , e.rk)=G(x1, ... , xk) 

est convexe S et la seconde concave S dans tout l'espace. Alors on a, si 
pour le< n,,<I>, r sont en outre croissantes en x 1 , : •• , x1r, 

(98 a) 

(~8 b) 
«l>(IÀ,I, ... , [Àk])L(()(p1, ... , Pk), 

r ( 1 ),n 1, ... , i "n-k+I 1) ::::o. r ( Pn, ... , Pn--,-k+d· 

En effet, il suffit d'appliquer aux fonctions (97 a) et (97 b) les iné-
galités (31) du théorème IV et (4o) du théorème IV a. Dans les cas 
ou l'on a 

k 

(99 a) «l>(x1, ... , Xk)=~<p(xx), 

k 

( 99 b) f(~1, ... , xk) = yi(xx), 

• ( 22 ) Dans le livre [1], p. 110, exemple 17. 
(2 3 ) Dans la Note [22]. 
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on retombe sur le résultat donné par H. Weyl, avec une certaine 
restriction relative au comportement de gi(x) et Hx) pour x t o, qui 
a été levée par M. G. Polya (2 4). 

30. En démontrant ( 98 a) et ( 98 b ), nous n'avons évidemment 
utilisé que les relations (92), (93) et (94). Or, les systèmes des rela-
tions analogues ont été déduits par MM. Ky Fan (2") et A. Horn ( 26 ) 

dans quelques problèmes apparentés à celui traité par M. Weyl. 
M. Ky Fan a montré que si l'on considère pour oc:::::,,.o, ~::.::::,.o, 

oc+ = 1 les racines fondamentales de ocAA * + ~A* A et les désigne 
dans l'ordre décroissant par p'/, ... , p~2 avec p'1 , ••• , p~, positives, on 
a les relations • • 

( IOO) 1 À1 j .. -1 Àv IL p'1 •.• p~ ( v = 1, ••• , n ), 

( 101 ) p / + ... + pl L p; + ... + pJ ( v = r, ... , n). 

On voit d'ailleurs immédiatement, les traces des matrices AA * 
et ocAA *+~A* A étant égales, qu'on a en (101) l'égalité pour v = n : 

Il résulte de ( 100 ), par le théorème IV, les relations 

(103) (k = 1, ... ; n), 

où <Pest définie comme dans le théorème XVI et est supposée crois-
sante pour k = n aussi. • 

Des relations (rn1) et (102) on obtient les inégalités 

(mi a) F(p'/, ... , p,nLF(p;, ... , pfc) (k=1, ... , n), 

(104 b) G(p~2 , ••• , p;,':_k+i)::::e,.,G(p;;, ... , P!-k+i) (k=1, ... , n). 

Ici on suppose F, G croissantes pour k < n, F convexe S et G 
concave S dans DJ, où r:-<J, p~ -<J. On trouve les inégalités (103) 
et (ro4a) dans le cas (99a) chez M. Ky Fan. 

(2•) Dans la Note [17]. 
(.2") Dans [3], la seconde note. 
('6) Dans [81, 
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51. D'autre part, M. A. Horn (2 6) a démontré que si A, B 

et AB= C sont des matrices quadratiques non singulières d'ordre n 
et les racines fondamentales de AA *, BB*, CC* sont désignées respec-
tivement, écrites dans l'ordre décroissant, par av, ~v, )'v ( v = 1, ... , n) 
on a 
(105) (v=r, ... ,n). 

Ici on a naturellement le signe d'égalité pour v = n. On obtient donc 
en faisant sur w(x1 , ••• , x"), f(x1 , •• • ,x1c), les mêmes hypothèses 

• que dans le théorème XVI, 

(106 a) 

(106 b) 

On trouve (106a) dans le ~as (gga) chez M. A. Horn.· 

52. Pour A= ( aµv) et le vecteur X= ( Xq ... , Xn) l'expression 
n 

A(X) = L aµ.vXµXv 
(-L, V= 1 

sera désignée comme la valeur de A pour le vecteur X. D'après 
O. Tœplitz (2 7), chaque racine fondamentale À.de A est la valeur de A 
pour un vecteur unirnodulaire, X. 

D'après un théorème connu de 1. Schur, il existe une matrice uni-
taire U -= ( uµ.v) telle que l'on a 

(108) 

où tous les éléments de la matrice de droite au-dessus de la diagonale 
principale s'annulent. Désignons le vecteur formé par les éléments de 
la si•m• colonne de U par 

( rog) (s=1, ... ,n). 

( 21) [21 ], P· igo. 
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Les vecteurs X, forment un 5ystème orthonormé de vecteurs. D'autre 
part, on obtient de ( roS ), en calculant ]'expression d'un élément),, de 
la diagonale principale dans la malrice de droite ' 

n 

µ, 'V==t 

( l l O) (s=1, ... ,n). 

On voit que l'ensemble des racines fondamentales de A peut être 
représenté comme l'ensemble des valeurs de A pou, un système ortho-
normé de vecteurs ( 28 ). 

55. D'après Tœplitz ( 20 ), A peut êlre décomposée d'une manière 
unique darîs la forme 
(1 II) A=H+ iK, 

où H et K. sont des matrices hermitiques, et l'on a en parliculier 

( l l 2) H=A+A*, 
2 

Il résulte de ( c ro) et (111) 

dl Às = H (X_,), 

1- A-A* '-= --. -• 
2l 

Désignons les racines fondamentales de H et K., ordonnées dans le 

( 28 ) On obtient de (110), (107) et (109), 
n n 

f,,= I Uµs~aµ,,lly_,; 

f'-=1 'l=I 

et par l'inégalité de Cauchy-Schwarz 

1 À,j 2L±1 ±aµvUvsl
2 = 1 AX_,/2, 

tJ-=1 V =1 

oü [ AX, j est la longueur du vecteur AXs. Les inégalités I À, 1 L. 1 AX, 1 ( s=1, ... , n) 
ont été indiquées par M. Ky Fan [3], la première note, p. 655. 

( 29 ) [21 ], p. 189. 



FONCTIONS CONVEXES ET CONCAVES AU SENS DE I. SCHUR. 285 
sens décroissant, respectivement par a-,,, cr', : 

(II3) 

A.lors on a, en appliquant le théorème XV, les inégalités 

(114 a) • F(OlÀ1, ... , OlÀk)LF(o-1, .... o-k) (k=1, ... , n), 
(rr4 b) G(Ol),1, ... , Ol),k)::-:,,.G(o-n, • .. , O'n-k+d (k=1, ... ,n), 
( r r 5 a) F ( _1 À1, ... , ,1 Àk) L F ( O'~ , ... , O'~ ) (k=1, ... , n), 

( l I 5 b) G ( ;J'. À1', ... ' 3 ?k) ::-:,,. G ( O'~" ••• ' O'~-k+i), (k=1, ... , n). 

Dans ( 1 l 4 a) et ( 115 a) Fest supposée convexe Set pour k < n crois-
sante dans DJ oùJ contient cr 1 et cr,, pour (114 a) et cr'1 et cr:, pout(u5 a). 
G est supposée concave S et pour k < n croissante dans D., où J 
contient cr1 et cr,, pour ( 114 b) et cr', et cr~ pour ( 115 b ). 

M. Ky Fan ( 30 ) donne les inégalités correspondant à (114 a) dans 
le cas où Fa la forme ( 99 a), ip( x) étant supposée convexe et crois-
sante, et indique l'existence des inégalités analogues pour J),,. 

54. Les relations ( 78) et ( 79) du théorème XV qui se trouvent 
pour k = n déjà chez I. Schur ont été démontrées ici pour k < n en 
utilisant le théorème II. On peut aussi déduire ces résultats 
pour le< n du cas considéré par Schur, en appliquant le théorème 
suivant: 

THÉORÈME XVII. - Désignons les racines fondamentales de la forme 
hermitique 

ll-1 

(II6) H1(X)= h(J,vXµ,Xv, 

(J.,'1=1 

section ( n - 1 yème de la forme hermitique ( 1 ), par 
' 

Ces racines «séparent» les racines fondamentales ( 2.) de la forme H (X) : 

( l 18) 

(~0) [3], la seconde note, p. 34. 
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Ce théorème ( 31 ) peut être démontré de différentes manières. 
Voici uoe démonstration par un calcul algébrique assez rapide : 

Les racines (117) et (2) restent évidemment invariables si l'on 
exerce sur les variables x,, ... , Xn-i une transformation unitaire, 
en laissant inchangé x,,. Nous pouvons donc supposer dès le commen-
cement que l'on a 

où h" est réel. Il suffit de considérer le cas où dans (119) les w',, sont 
différents cmtre eux et tous les hµ.. sont~ o. On en déduit le théorème 
dans le cas général par un passage à la limite. 

Les polynomes fondamentaux de H 1 et H sont respectivement 
n-1 

),-w; 0 0 - h1 
0 ). - (tJ; 0 - h2 

( I 20) D"(),)= 
0 0 ). -w:,_, - h"-1 

-- l11 -h! - lîa-1 ). - hn 

En développant ce déterminant on obtient 

Or, l'expression entre crochets change évidemment le signe entre - oo 

( "') I. Schur utilise ce théorème par exemple dans [ 19 ], p. 289 et [ 20 J, sans 
donner des indications bibliographiques précises. Cf. aussi G. JULIA [ 10 ], p. 200. 

( 32 ) L'expression entre crochets est une fonction rationnelle « à termes entre-
lacés>> au sens de M. Montel, cf. [13] et [1!i, ]. 
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et tù'u entre w\ et w'2 , ••• , entre w~_ 1 et l'infini, et le théorème XVII 
est démontré. 

35. Voici un corollaire du théorème XVII. Nous posons pour la 
matrice A= ( aµ.v) : 

(122) 

Alors on a, d'après une formule bien connue, 
n 

où p~ sont les racines fondamentales de la matrice AA *. Si, en parti-
culier, A est hermitique et positive, les Pv en ( 123) sont les racines fon-
damentales de A. 

THÉORÈME XVIII. - On a pour les matrices hermitiques ( 1) et ( 116 ), 

supposées définies positù•es 

En effet, en exprimant les deux côtés de ( 124) moyennant les racines 
fondamentales (2) et (117) de H, Hi, (124) résulte de l'inégalité 

n n-1 n-1 

et cette inégalité résulte immédiatement de ( 1 1 8) ( 3 3 ). 

36. Pour déduire maintenant les inégalités ( 78) et ( 79) pour k < n, 
en les supposant connues pour k = n, considérons la forme hermi-
tique 

('13 ) Pour une application de cette inégalité, cf. la Note [ 15] de M. M. Parodi. 
Journ. de Math., tome XXXI.- Fasc. 3, 1952. 3o 
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qui s'obtient de (1) en posant Xk+i, ... =Xn=o. Désignons les 
raëines fondamentales de la matrice de H 1"l par 

et 

Il résulte en appliquant (n8) successivement à H, tt1n-1 i, ... , ffikJ: 

Mais alprs on obtient les inégalités 

F(hw .. . , hkk)LF(o-~, ... , o-Z), 
G(hu, ... , hkk):::::,.,G(w;, . .. , wiJ 

valables pour la forme Hl'•l et (78) et (79) s'obtiennent en observant 
que d'après (126) on a 

57. En appliquant plusieurs fois le théorème XVII, on en déduit 
facilement : 

THÉORÈME XVII a. - Soit 

une sectl·on [ième de ( 1) et 
(128) 

n 

ses racines fondamentales. A_lors on a 

En effet, ce théorème est déjà démontré pour l = 1 et en le suppo-
sant démontré pour H1_ 1 (X) on obtient 

En utilisant (129), on peut déduire des inégalités (78) et ( 19) les 
relations suivantes, généralisant le principe de Fischer-Courant (3 4) : 

( 3') Cf. R. CouRANT [2], p. 19 et E. F1sct1ER [ft.]. 
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THÉORÈME XIX. - On a, dans les hypothèses du théorème XV, 

pourm+ kLn: 

( 13o a) 

Ici, X0 ... , X1; parcourent le système général des k vecteurs orthonomés 
qui sont orthogonaux sur mvecteurs donnés C1 , ••• , Cm. On prend alors 
le maximum de Fen ( r 3o a) et le minimum de G en ( r 3o b) pour chaque 
système de m vecteurs C1 , ••. , C,,, et considère alors en ( r 3o a) le mini-
mum de tous les maxima de F et en ( 1 3o b) le maximum de tous les 
minima de G en variant C1 , ••• , Cm arbitrairement. 

Le principe de Fischer-Courant s'obtient en prenant k = 1 

et F(x) = G(x) = x. 

58. Démonstration. - Considérons d'àbord la relaLion (r3o a) et 
commençons par montrer que pour un certain choix des. vecteurs Cµ 
on a, 

A cet effet, supposons H dans la forme 

H(X) = cr1[ X1[ 2+., .+ crn[ X'n[ 2 

et posons 
(132) 

Ôvµ étant le symbole de Kronecker. Pour ce choix des Cµ l'expression 
de gauche en ( 131) se réduit à 

H,,,(X) = cr,,,+1 [ Xm+1 [2 +.,. + crn] Xn] 2 

et la relation (131) s'obtient en appliquant (Sr) à la forme H111 (X). 
Nous avons maintenant à montrer que pour chaque choix des vec-

teurs C1 , ..• , Cm on a • 

(133) max F[H(Xt), ... , H(Xk)]::::,,.F(crm+1> ... , O-m+k)-
c.,_xkcc:o 
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Or on peut évidemment, en orthogonalisant Ci, ... , Cm, les sup-
poser comme formant un système orthonormé del vecteurs pour IL. m, 
et l'on peut donc, après une transformation unitaire, supposer que 
l'on ait 

(p.=1, ... , l). 

Les relations d'orthogonalité Xx C11 = ose réduisent donc en ceci que 
dans chacun des vecteurs Xx les l premières coordonnées s!annulent. 
Désignons la forme qui s'obtient de H (X) en y posantx1= ... = x 1=o 
par Hz(X). 

La relation (133) se réduit alors à la relation 

Or, en désignant les racines fondamentales de Ht(X) par 

on a en appliquant (81) à H1(X): 

donc, d'après (129), 

(13oa) est démontré. 
La démonstration de ( 13o b) s'obtient maintenant en appli-

quant (r3oa) à la fonction 

et.à la forme - H( X), dont les racines fondamentales sont 
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