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JOURNAL

MATHEMATIQUES

PURES ET APPLIQUEES.

Sur une propriéié des fonctions méromorphes

et de leurs dérivées;

Par H. MILLOUX.

INTRODUCTION.

La recherche de critéres de normalité de familles de fonctions
analytiques constitue I'un des points essentiels de la théorie des
familles normales. Sous I'impulsion du créateur de cette théorie, la
recherche de critéres s’est étendue 4 des familles de fonctions consi-
dérées en méme temps que leurs dérivées. Citons deux exemples :

En complétant une importante étude de M. Bureau, M. Miranda a
achevé en 1935 la démonstration du critére suivant, pressenti par
M. Paul Montel : une famille de fonctions holomorphes dans un
domaine ot elles ne prennent pas la valeur zéro et dont les dérivées ne
prennent pas la valeur 1, est normale dans ce domaine. '
~ Le deuxiéme exemple est fourni par l'étude des conditions suffi-
santes permettant d’affirmer qui si certaines familles-de fonctions
holomorphes sont normales, les familles des dérivées sont aussi

Journ. de Math., tome XXXI. — Fasc. 1, rg52. I



2 i H. MILLOUX.

normales. M. Mandelbrojt a précisé certaines de conditions (*). L'un
des points de cette étude complété par M. Biernacki (*), a servi de
base 4 ce dernier pour démontrer que toute fonction entiére d’ordre
fini posséde, en commun avec ses dérivées et ses intégrales succes-
sives, au moins une direction de Julia.

La question se posait de savoir si ceite derniére propriété s’étend

“aux directions de Borel (nous dirons : directions de Borel-Valiron).
Cette. question a été récemment résolue et complétée (*). En parti-
culier il a été démontré que toute direction de Borel-Valiron d’une
Sfonction entiére d’ordre fini se conserve dans I'intégration. A l'origine
de ce théoréme, qui s’étend & une classe importante de fonctions
entiéres d’ordre nul, se place une propriété des fonctions holomorphes
dans un cercle, proprlete qu'on peut énoncer quahtatlvement sous
la forme suivante : si le module d’une telle fonction est supérieur a 1
et si la dérivée de cette fonclion s’annule un grand nombre de fois
dans un cercle intérieur, alors dans ce dernier cercle, la variation
relative de la fonction est trés faible.

Cette propriété a été démontrée a 'aide de la formule de Jensen et
et du lemme de Schwarz. Le but de cet article est d’en donner une
nouvelle démonstration, basée sur les théorémes de M. R. Nevanlinna
et s'appliquant aux fonctions méromorphes. Nous verrons notam-
ment (th. 4) que si une fonction méromorphe dans le cercle unité ne
prend pas plus de = fois trois valeurs a, b, ¢, dont les distances sphé-
riques prises deux a deux sont inférieures 4 e™, si la dérivée de la
fonction s’annule plus de n’ fois dans un cercle intérieur et si le

n' : ' A e .
rappol — est assez grand, alors la variation, dans ce cercle intérieur

presque lout entier, du point représentant la fonction donnée sur la
sphére de Riemann, est trés faible.

(*) S. ManpeLBrOIT, Sur les suites de fonctions holomorphes (J. Math. pures
et appl., t. 8, 1929, p. 179-195).

(*) M. Biernackl, Sur la théorie des fonctions entiéres (Bull. Acad. polo-
naise Sc., Varsovie, 1929, p. 529-590).

(*) H. MlL’l ovx, Sur les directions de Borel des fonctions entieres, de leurs
dérivées et de leurs intégrales(J. d’ Anal math., Jérusalem, a paraitre en 1952,

p. 244 et suiv.).
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Un résultat plus précis est obtenu au préalable (th. 3) lorsque les
trois valeurs a, b, ¢, sont o, 1, ®.

Le théoréme 4 pourra servir ultérieurement dans ’étude compara-
tive des directions de Borel-Valiron d’une fonction méromorphe
d’ordre fini et de sa dérivée.

1. Rappelons d’abord le théoréme suivant, dont la démonstration
est basée sur la formule de Jensen et le lemme de Schwarz (*) :

Tatorime 1. — Soiz g(x) une fonction holomorphe dans le cercle
unité, ot son module est supéricur @ 1. On désigne par n' une quantité
au moins égale au nombre des zéros de g'(x) situés dans le cercle
|z| L <1 et Uon suppose que (1— p.)*n' dépasse une certaine cons-
tante numérique a. Pour | x| < 1 on a alors les inégalités suivantes :

!
(1) 1~3(H)<%§£—§;—!-<1+3(H):
avec
_— 2
(2) logB(p):—(i-I—OEl-n’.

Il résulte du théoréme 1 quesin'esttrés grand, la variation relative
~de log|g(@)|est trés faible dans le cercle intérieur. 4 fortiort, il en
est de méme de la variation relative de | g(x)|. C’est ce résultat que
nous allons retrouver & partir de la théorie de M. R. Nevanlinna.

2. Nous allons nous appuyer sur une forme précise de la deuxiéme
inégalité fondamentale de R. Nevanlinna. Soit g(x) une fonction
méromorphe dans le cercle unité; nous supposons que l'origine n’est
ni un zéro, ni un péle de cette fonction et nous désignons g(o) par c,

et g'(o) parcy. Pouri < r<R<1, on al'inégalité (*)

1

R—r

g : g
m(r, §><24+2log2+3log —|—4logT<R, ;‘)’

o

(*) H. MiLroux, loc. cit. Voir th. 2, p. 257.

(®) R. NevaNLINNA, Le théoréme de Picard-Borel et la théorie des fonctions
méromorphes (Paris, Gauthier-Villars, 1929). Voir inégalité (5), p. 61; on
glz)

I'applique ici & la fonction "
0
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et comme
T<r i)AT(r )+ log —
) ) ] co == 2 g g lcol 4
1l vient -
+ + +
(3) m(r, §><29+310gﬂl_r + 4 log log IcIol + 41ogT(R, g).

Toujours d’aprés M. R. Nevanlinna (°), on a

.(4) m<r, i;) -+ m<r, ! >+ m(r,g)<<2T(r, &) — Nu(r, &)+ S(r)

g—1
avec
/
Ni(r, &) =[2N(r, &) — N(r, g’)]—I—NKr, éj)’
()

/N 3 .
S(ry= 2m(r, é;) -+ m(r, gi 1) + logm + 4 loga.
On suppose’ici ¢, non nul.
Le crochet intervenant dans la définition de I'indice N, n’intéresse
que les pdles multiples de g. Si a est un tel pdle et si son ordre est ¢,
ce point intervient dans le crochet avec la multiplicité ¢ —1. Dans

tous les cas, N, (r, g) est au moins égal & N(r, gi">

Il est utile de remarquer que N,(r, é): Ni(r, ). En effet, il ne
pourrait y avoir de doute que pour les zéros multiples de g : on les
retrouve de part et d’autre avec les mémes coefficients, dans les deux
membres de I'égalité précédentle. De plus, d’aprés sa définition,
I'indice N, ne change pas sil’on remplace g par ag+ (§ (« et § étant
des constantes). En combinant ces deux propriétés, on constate que
I'indice N,(r, g) est invariant quand on opére unc transformation
homographique a coefficients constants sur la fonction g.

‘Utilisons maintenant I'inégalité (3) pour majorer S(r). En tenant
compte de ce que 'on a }
. lggT(R, g—1)< lggT(R, &)+ loga,
il vient .

I

S(r)y<<ia lggT(R, g) + glogR__ = -+ 81;g lggl—clo-r

hloglog— 4 log 4 o5
4= 0g Og]co_lv,v 0g|01]+9.

(®) Loc. cit. (Voir p. 66).
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Quant au premier membre de (4), il s’écrit

10 T 1 1
T(r, - +T(r, >+T r, —N(r,—)_—N(r,
< z) g—1) T Tne g 5—

D’aprés le premier théoréme de R. Nevanlinna et la formule de
Jensen, I'ensemble des trois premiers termes précédents difféere de
moins de log2 de I'expression 3T (7, g) —log|e,(c,—1)|.

D’ou la forme suivante de la deuxiéme inégalité de R. Nevanlinna :

I) — N(r, 8).

(6) T(r,8)—12l0gT(R, g)—9glog

- <N<r, 1)+N<r, -
g ‘g—

+log|co(co—1)| + log

R__
)-T—N("; &) — Nx(",g)ﬂ—Sloglo

le |

log log ———— : :
—l—l;og i p— 7 e +96

Cette formule suppose que ¢,, c,—1 ete, ne sont pas nuls.
Nous allons distinguer deux cas, suivant que |c, | est inférieur ou
égal & ¢, ou non.
Premier cas : | ¢,| < e. — Un calcul numérique simple montre que
I'on a .
+

4 loglog ﬁ+logico—1|<ﬁlogé—4<2

Deuxiéme cas : |c,| >e. — On applique alors la formule (6) ala
fonction = P la somme des quatre premiers termes du second membre

reste inchangée. La somme des cinq derniers devient

1——’+log

8 log log[ Co |+ 4 log log

‘—*—log

expressxon qu1 est inférieure a

v 4
8loglog|c, | + log

Co +
o 97.

Dans tous les cas, on peut donc écrire I'inégalité suivante :

(6)  T(r, h) —1210gT(R, k) — glog

1 I
<N<r, —>+N(r
. 8 ‘g —

+ o+ +  +
— Ny (r, &) + 8loglog|c, | + 8log log — lcll
1]

ol 4 est, tantdt la fonction g, tantét la fonction -
o

1
R_
I)—bN(r‘,g)

+ log
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3. Noas allons étudier le premier membre de I'inégalité (6') par
la méthode de M. Borel sur les fonctions croissantes, sous la forme
précise que lui a donné M. Bureau (") :

Soit U(r) une fonction réelle positive non décrotssante pour o < r<_1
et satisfaisant a l'inégalité

I

+
R+t logU(R),

(7) U (r) Lo +oylog

quel que soit le chorx du couple r, R, avec

ro<<r<<R<i, o o0, o1 20, > 8.
. ) I
Alor:s,On a, lorsque r dépasse r, et 1 — o

(8) . U(r)yLeo(os+1) + 01 (o2+ 3) log

I—7Tr

-

En fait, les coefficients de cette derniére inégalité peuvent étre
ameéliorés, par exemple en reportant la majoration (8) dans le second
I+r

membre de (), aprés avoir choisi R = - Ainsi, dans le cas ou

. - I . . . ,
=0, 6,=24, 0, =12 (donc,ré = ), il vient, aprés un calcul numé-
rique simple, '

(8) U(r) <75 + 28log-

1

I1—7r

Transformons quelque peu cet énoncé par homothétie, en sup-

posant
r<r<<R<r<i.

Nous ramenons au cas précédent en remplacant r,, r et R respec-
. : , re T R . .
tivement par r,= —, — et —- St donc, pour tout couple r, R de I'inter-
ry ry ry .
; - Yo . . . i . '
waller, r,, on a l'tnégalité

(9) U(r) £ 24 log g +12logU(R),

r

(") Sur ce.sujet consulter : G. VaLiron, Sur les valeurs exceptionnelles des
Jonctions méromorphes et de leurs dérivées (Act. Sc. et Ind., Hermann, Paris,
1937, ne 570). Voir p- 12, -
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alors, pour

ro<<r, u rZr <y,
12
on a l'tnégalité
(10) U(r) <75+ 28 log—1—.
ry—r
Remarque 1. — Supposons, pour fixer les idées, ,> 0,95. Alors

I'inégalité (g) est entrainée par I'inégalité

1 o
R_r——lzlogU(R)é——z

’

(9" ' U(r) — 24 log

-el, d’autre part, I'inégalité (10) entraine I'inégalité

L
—."v

(x0) U(r)<75+2810g

ry
Remarque I1. — L’inégalité (10') entraine la propriété suivante :
le premier membre de 'inégalité (g’) est supérieur & I'expression

I + 1
- 2[;logR_r —xgloglogri_R — So.

Il suffit, pour le voir, de majorer le dernier terme de ce premier
membre en utilisant (10).
En particulier, si 'on choisit
_r+nr

1—r=—2a(1—ry), R_—z—,

'expression précédente est elle-méme supérieure &

1
I—7r

‘— 28log

— 92.
.. 11 ‘. T .

Les conditions T et ri>>0,95 sont vérifiées si 'on suppose
r>0,9. Nous pouvons énoncer la proposition suivante :

Lemwe. — Soit U(2) une fonction positive non décroissante dans
Uintervaller—tr,, avec

> 0,0, 1—r=2(1—ry).
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L'un ou I’autre des deux cas suivants se présente nécessairement :-
Premier cas. — Dans Uintervalle précédent, on peut trouver deux
nombres r', R'(r' < R’) tels que U'on ait I'inégalité
J I * N~
U(I )—2410g RT"J' ——IZIOgU(R)>—- 2

et, a fortiori,

U(r) — g log —12logU(R) > 53.

1
R—7r

Deuxiéme cas. — A r, on peut associer R(r <R <r,) de facon que
Uon ait U'inégalité

U(r) — 24 log i i ml;gU(R) > —28log -

1
R —r
et, a fortiori

U(r) — g log

1 + 1
g —12]0gU(R)>—131vog — — 65.
Remarque. — L’inégalité concluant le deuxiéme cas est, a fortiorr,
vérifiée dans le premier cas, aprés changement du couple (7, R) en
le couple (7, R). :

4. Appliquons le lemme précédent a 'étude faite au paragraphe 2,
en faisant U(r)=T(r, &). Nous obtenons le théoréme suivant :

Tukorkme 2. — Soit g(x) une fonction me’romdrphe dans le cercle
unité du plan x et telle que g(0) est différent de o, 1, © et g'(0) diffé-
rent de o. On a l'inégalité suivante :

1 g(o) (', g) — ’J,_I__ r 1 — N(r
(1) tog| £ >N, ) = N(, ) = (7, 22 ) = N, 8)
—13logI . ——810g10°|g(o)[~—810510g' ()l —163,
avec !
L L.
(13)  Ni(rg)=3N(r, §)— N(7, g>+N(r,g,)§N(r,g,)

I1—r
Quant a 7" c’est une certaine quantzte comprzse entreret 1 — —

r étant un quantité arbitraire comprise entre 0,9 et 1.
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5. Avant de continuer cette étude, rappelons quelques définitions
et propriétés (*). Etant donné deux points a et b intérieurs au cercle
unité, on appelle pseudo-distance de ces deux points une expression
qui se réduit 4 la distance euclidienne lorsque 'un des points est &
I'origine et qui est invariante dans toute transformation homogra-
phique du cercle sur lui-méme.

Soit n points fixes intérieurs au cercle et un point variable M.
Formons le produit des pseudo-distances du point variable aux points
fixes. Les points M pour lesquels le logarithme de ce produit est
inférieur & — 7n constituent des domaines appelés domaines d’exclu-
ston, qui peuvent étre enfermés dans des cercles en nombre au plus
égal a n, intérieurs au cercle unité et dont la somme des pseudo-
rayons (pseudo-distance constante d’'un point du cercle au centre
non euclidien de ce cercle) est inférieur 4 o,01. .

Ces cercles s’appellent cercles d’exclusion; les points intérieurs &
ces ¢ercles constituent un ou plusieu;s domaines connexes intérieurs
au cercle unité et dont aucun ne peut traverser toute couronne circu-
laire suffisamment épaisse. D’une facon plus précise, si u et ¢ sont
les rayons des cercles frontiéres (u< < 1), lesquels sont centrés

en O et sil'on a l’lnegahte < =+ alors il existe un cercle de

centre O, intérieur & la couronne et dont tous les points sont exté-
rieurs aux cercles d’exclusion. _

D’aprés leur définition, sur la frontiére des domaines d’exclusion,
le logarithme du produit des pseudo-distances aux » points fixes est
égal & — 7n. Donc les domaines d’exclusion se correspondent dans une
transformation conforme du cercle unité sur lui-méme. On peut, par
suite, faire correspondre également les cercles d’exclusion.

Enfin, le pseudo-rayon d’un cercle étant inférieur ou égal & son
rayon, étant donné deux points situés hors des cercles d’exclusion,
il est toujours possible de les joindre par une courbe composée de
segments de droite et d’arcs de cercle, dont la longueur (euclidienne)
est inférieure & 2 40,01 7 < 2,04.

(®) Voir H. MiLLoux, loc. cit., p. 258-260.
Journ. de Math., tome XXXI. — Fasc. 1, 1g52. 2
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Utlité des pseudo-distances. — On est conduit trés souvent a faire
des transformations conformes du cercle unité sur lui-méme, de fagon
a amener un point déterminé a 'origine. Or, le produit des distances

T

euclidiennes de l'origine a certains points intérieurs au cercle unité

s'introduit naturellement dans lesindices N (r, — .
g

études, il est nécessaire de pouvoir majorer ces indices.
Ainsi, supposons que dans le cercle unité du plan @, le nombre total

a) . Dans certaines

des zéros de g(x), g(x—r1) et ﬁ soit au plus égal & n et soit p le
nombre de ces zéros situés dans le cercle |x| 7 < 1. Supposons
encore que l'origine O soit hors des cercles d’exclusion v relatifs aux

zéros précédents. Alors, on a I'inégalité

N(r’, é) + N(r’, gi - > +N(r, &) <yp+plogr'<<gp<Z7n.
L’utilité d'une telle inégalité est évidente quand on se reporte a
'inégalité (11). '

6. Poursuivons maintenant]’étude de la fonction méromorphe g(z)
a partir du théoréme 2, en introduisant les hypothéses complémen-
taires suivantes :

A. Dans le cercle unité, la fonction g(#) ne prend pas plus de z fois
au total les valeurs o, 1, .

B. Dans le cercle |z| < 1(0,8 = 1+ < 1), le nombre total des zéros
de g'(x) et de poles multipless de g(), chacun de ces derniers étant
pris avec son ordre de multiplicité diminué d’une unité, est au moins

gal an.

Rappelons que ces points (zéros de g’ et péles multiples) sont ceux
qui interviennent dans la définition de I'indice N, et que cet indice N,

est invariant si l'on change g en ;?

" C. L'origine est en dehors des cercles d’exclusion relatifs aux zéros

deg’ 1—8, 1§



SUR UNE PROPRIETE DES FONCTIONS MEROMORPHES. 11

D. La fonction g(«) n’est ni trop petite, ni trop grande a Porigine.
D’une facon précise,

—Dlog|g(o)|<D  (D>e).

~ . , P . 11— H. y o 1— lu'
¢l posé, choisissons r—1— —F&, d’ou r>.0,9et 1 —7 _—
(Je p P} : o ’ et ’9 > 4

On adonc

N Ve '
Ni(r’, g)}_'l' log_;_’: > ﬂl_g_ﬂ,

d’ol, en application de l'inégalité (11),

n'(1—p)

0
g(0) > 3 ——7n—13logI

&' (0)

(13) log

e 8logD —182.
—

Cette inégalité est évidemment vérifiée encore si g'(0) est nul.

7. Nous nous proposons maintenant d’étudier le comportement
d'une fonction g(«) méromorphe dans le cercle unité, ne prenant
qu'un petit nombre de fois les valeurs o, 1, © (ou plus généralement
trois valeurs distinctes) et dont la dérivée s’annule un grand nombre
de fois dans le cercle intérieur || ZA(A>>0,8). Nous allons voir
- que dans le domaine A constitué par l'intérieur du cercle |z| <2
duquel on a enlevé les points intérieurs aux cercles d’exclusion, la
fonction g(x) varie relativement trés peu. '

Nous allons faire les hypotheses suivantes :

A’. Identique & ’hypothése A du paragraphe 6;

'B’. Identique a I'hypothése B du paragraphe 6, aprés remplace—
ment de la lettre w par la lettre ;.

C’. On suppose vérifiées les inégalités suivantes :
(14) n’(l-ll)3> 108, n <<1o=*n'(1—A)3.
" Ceci posé, distinguons deux cas, suivant que dans le domaine A

la fonction g(z) n’est pas uniformément voisine, soit de «, soit de o,
ou bien est uniformément voisine de I'une de ces deux valeurs.
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Premier cas. — Dans le domaine A il existe au moins un point x,
en lequel on a
(15) —D <log|g(xa) | <D,
avec
(15%) logD =10—27/(1 — 1)

Si nous effectuons une transformation conforme du cercle unité du
plan @ sur le cercle unité du plan u, de fagon qu’un point z =« de
module au plus égal & A corresponde au point u = o, alors au cercle
|| £ A correspond un cercle dont les points sont situés a une distance
22

-, comme le montre la
1~ )v.‘

de Vorigine inférieure ou égale & =

formule de transformation
xXr — \

U= —
I—xd

. . — ) — )
On ‘rémarquera que I-— (L est compris entre (a ) et ( A) .

1,64 2
Effectuons la transformation homographique
u=2_"% .
1— 2.2,

Soit G(u) la fonction transformée de g(z). On a
G(0)= (1— | ") &' (20)
Le point z =0 esf en dehors des cercles d’exclusion relatifs aux
zéros de G, G —1, é, d’aprés la position du point z,. D’autre part,

le nombre total des zéros de G’(u), augmenté du nombre des péles

multiples de G(u), est au moins égal a »n’ dans le cercle de centre O

- 2.
( ‘2;\) - On se trouve dans les conditions d’applica-

et de rayon 1 —
tion, & cette fonction, de I'inégalité (13) qui donne ici

G (o)
G'(o).

1L — 1)? ,
n(16 1) —7n—13log(l*_27)—,_;-8.»10—212’(1—7\)2—182,

log

d’oli plus simplement, en utilisant les inégalités (14) et aprés un
calcul numérique simple,
G(o)

8|57 (o)

| > §,68 n'(x— ).
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D’ou résulte que I'on a, au point x = z,, 'inégalité

(16) log

g’( )l<—log(1—7\“)-—o08n(1—7\)2 —o o7n(1—-7‘)z

Nous allons maintenant démontrer que /e premier membre de I'iné-
galité (16) est inférieur @ — 0,06 n'(1— A)* pour tout point x du
domaine A.

Tout d’abord, cette propriété est vérifiée, nous venons de le voir,
en x, et, par continuité, au voisinage de x,. Supposons qu’elle ne
soit pas vérifiée dans tout.A. Dans ce domaine, il existe donc un
point x = x, en lequel on a l'inégalité

(17) log

‘ZT—J(({—; i > — 0,06 7/ (1 —A)2
laquelle n’est pas vérifiée au voisinage de z,. -

Joigrions x, et z, par la ligne L la plus courte en dehors des cercles
d’exclusion. Comme nous I’avons vu au paragraphe 3, la longueur
euclidienne de cette ligne L est inférieure & 2,04. Quitte a rappro-
cher z, du point x, sur la ligne, on peut toujours supposer que le
premier membre de (17) est inférieur au second membre tant que =
reste entre x, et x, sur la ligne L et égal au second membre en «,.

Il résulte de ce qui précéde qu’en évaluant logg(x,) a partir de
logg(x,) par le déplacement de z sur la ligne L, on a I'inégalité

suivante : )
| log g(@1) — logg () | < 2,04 e~0wnlt—hr—¢,

Cetteinégalité montre que log|g(x,)| est compris entre log| g(x, )|+
et log|g(x,)| —¢, donc a fortiori entre — D — e et D +-«.
Effectuons la transformation
- x— x4
= ——"-
1—2.24

Soit H(¢) la transformée de g(x). On a
| H'(0) =(1— |z ') g/ (),
d’ol, en rappelant que I'inégalité (17) est vérifiée pour z =z,

H(o)

(18) log (o)

|<log — + 0,06 ' (1 — )%
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On peut encore appliquer les résultats du paragraphe 6 & la fonc-
' (=
2

tion H(v). DansI'inégalité (13), on remplace toujours 1 — y par

Par contre, d’aprés ce qui précéde, on remplace D par D +- ¢, D étant
défini par (15'). La conclusion reste cependant la méme que pour
la fonction G(u)

log

H(o)
H'(o0)

|> 0,68 n'(1—3)2.

Elle est en contradiction avecl’inégalité (18). Par suite, ’hypothése
sur laquelle nous nous sommes basés est fausse. En d’autres termes,
Uinégalité (1) n'est vérifiée en aucun point du domaine A. La propriété
suivante en résulte :

 Soit &' et 2" deux points quelconques de ce domaine. En les

joignant par un chemin convenable et en définissant logg(«”) par

continuité a partir de logg(«’), on a l'inégalité

- (19) |logg(a') —logg (") | < 2,04 e~0%nt=hr,

d’ot1 résulte “
BTy ()

19/ AR Al B

e |5

8. Résumons les résultats obtenus dans I’étude de ce premier cas.
TutoriMe 3. — Soit g(x) une fonction méromorphe dans le cercle
unité, oi elle ne prend pas plus de n fois les valeurs o, 1, . Soit A le
domaine intérieur au cercle | x| ) <1, dont tous les points sont exteé-
rieurs aux cercles d’exclusion (voir § 8) entourant les zéros de g, g — 1,

1 . . . :
- ; rappelons que Uensemble de ces cercles est trés petit, puisque la somme
g

de leurs pseudo-rayons est inférieure a o,01.

Supposons, d’autre part, que dans le cercle ||, le nombre des
zéros de g'(x), augmenté du nombre des poles multiples de g(x), avec
indice de multiplicité diminué d’une unité, soit au moins égal a n'.

Supposons enfin vérifiées les inégalités suivantes :

(20) n'(1— 1)’ >10%, n<<1o—?n'(1— 1), Axo0,8
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Alors, dans le domaine A, ou bien la fonction g(x), ou bien la fonc-

. I . . s -
tion —— est uniformément grande; d’une facon précise,

8(x)
(21) loglog| g(z) i~ A =10"2n/(1—4)
ou
! ! ~ .
(21) , . Iog]ogig(x)!__A,

ou bienlavariation relative de g(x) est trés faible et inférieure a e™"%""",

Comparaison avec le théoréme A rappelé au paragraphe 1. — Suppo-
sons maintenant g(z) holomorphe dans le cercle unité et de module
supérieur a 1. C'est le cas visé dans le théoréme 1.

Dans ce cas, il n'y a pas de cercle d’exclusion : le domaine D
d’exception dans’application du théoréme 3 n’existe pas. Ce théoréme
nous montre que, dans le cas ou loglog|g(o)| est inférieur au second
membre de linégalité (21), alors la majoration de la variation
de log|g(x)| dans le cercle |x| <A est comparable a celle qui est
fournie par le théoréme 1. Mais I'intérét du théoréme 3 est qu'il
s'applique a des cas nettement plus généraux que le théoréme 1.
Les applications qui ont été tirées de ce dernier (voir référence dans
I'introduction) concernent par ailleurs uniquement des cas ou

‘loglog|g(0)| est trés inférieur au second membre de (21), donc des
cas ol le théoréme 3 est plus intéressant, parce que plus général, que
le théorémg 1.

* 9. La méthode développée au paragraphe 7, dans le cas ou la
fonction g(«) n’est ni uniformément petite, ni uniformément grande
dans le domaine A, peut aussi s’appliquer, avec un certain succes,
dans les deux cas écartés.

On peut se contenter d’étudier le cas ou la fonction est unifor-

. a L L . x ) §
mément grande, cas de l'inégalité (2r1), quitte a changer g en - :
‘ g

les zéros des dérivées coincident en général; sil’on y adjoint les péles
multiples des fonctions, la coincidence est totale.
Nous ne développerons pas les calculs, qui se conduisent comme au
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paragraphe 7. On commence par établir, alaplace del'inégalité (1),

I'inégalité

g(x)
g(x)

(17 log

'<—0,06n (1 — A)2 - 8loglog| g () |,

ou x, est un point fixe quelconque (du domaine A); « est un point
variable quelconque du méme domaine. Cette inégalité résulte de
l’inégalité (13), ou le 4° terme du second membre joue un roéle qui
n’est plus négligeable.

Enfin, de (17') on déduit la majoration suivante de la varlatlon
de log|g(x)| dans le méme domaine :

(22) V B [log I g(xo) Hi':' e““:°5"'(1—7~)’.

En fait I'exposant 17 du premier facteur peut étre ramené a une
valeur proche de 8 et méme, en ameéliorant la méthode, de 4. Méme
avec I'exposant 4, I'expression (22) est moins favorable que celle qui
est fournie par le théoréme 1, il est vrai dans le cas des fonctions
holomorphes ne s’annulant pas, c’est-a-dire dans un cas moins général,
Si I'on se reporte au théoréme 1, on constate, en effet, au lieu de la
majoration (22 ), une majoration ol I’exposant 17 du premier facteur
est remplacé par 1. Cet-avantage est probablement dii &4 I'utilisation
du lemme de Schwarz dans la démonstration du théoréme 1.

Signalons — sans démonstration — qu’en partant du théoréme 1,
on peut réduire & 1 I'exposant 177 de ’expression (22).

10. Terminons sur un énoncé un peu plus général que celui du
théoréme 3, en nous placant cependant dans des conditions un peu
plus restrictives :

TacorkME 4. — Soit h(x) une fonction méromorphe dans le cercle
unité, ou elle ne prend pas plus de n fois, au total, trois valeurs a, b, ¢
" dont les images sur la sphére de Riemann sont distantes deux a deux
d’au moins e™. On suppose, en outre, que la dérivée h'(x) s’annule au
moins ' fois dans le cercle | x|\ < 1 et que les znegalztes (20) sont
vérifiées. . -

Alors, étant donné deux points quelconques x' et &' situés dans le
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domaine A précisé au théoréme 3, la distance sphérique de h(x') a h(z")
estinférieure a
n =W
e — e_ 30

Remarque. — Dans 1'énoncé précédent, on peut désigner par »’ un
nombre inférieur ou égal au nombre des zéros de #'(x) augmenté du
nombre des pdles multiples (avec indice de multiplicité diminué d’une
unité).

Démonstration.—D’apréslaremarque précédente, on peut démontrer

I
&
(pour laquelle a, b, ¢ sont remplacés par leurs inverses). On peut
donc supposer que des trois quantités a, b, ¢, deux au moins sont de
modules < 1. Désignons-les par a et b; c pourra étre de module supé-
rieur ou inférieur ou égal a 1.

le théoréme précédent, soit pour la fonction 4, soit pour la fonction

3 : ‘. A s s . P y €
Si la distance sphérique de 2(x) & a, 0ua b, ouac, estinférieure a .

dans A, alors le théoréme est démontré. Sinon, il existe au moins un
point z, dans A, en lequel les distances sphériques de A(x) a a, a bet

. , . L€ c a1 .
& c, sont toutes trois supérieures a ~- Considérons la fonction

h(z)—a c—a
h(z)—b c—b

g(z)=

Cette fonction ne prend pas plus de n fois, au total, les valeurs o,
1, o, Dans le cercle |z| %, le nombre des zéros de sa dérivée,
-augmenté du nombre des pdles multiples (avec ordre de multiplicité
diminué d’une unité) est supérieur ou égal a n’. En effet, cette somme
des deux nombres précédents estinvariante dans toute transformation
homographique (voir § 2). '
Les inégalités (20) du théoréme 3 sont vérifiées. Ce théoréme est
donc applicable. Montrons que parmi les trois conclusions possibles,
les deux premiéres sont a rejeter.

3. L Cc—b 4. L .
Tout d’abord, considérons ~— - Si|c|est supérieur a 2, ce rapport

est inférieur en module & 3. Si|c| est inférieur ou égal 4 2, comme la
Journ. de Math., tome XXXI. — Fasc. 1, 1g52. 3
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distance sphérique est inférieure a la distance euclidienne, ce rapport
est inférieur a 3e".
. h(x)—a

A M : ’
————» montre
Le méme raisonnement, appliqué a - (my 5’ montre que ce

. . pae ) . s
deuxiéme rapport est inférieur en module & _- Donc | g(#,)| est infé-
. .18 s e, .. Y .
rieur & ——e" : P'inégalité (21) est a fortior: non vérifiée au point z,.

On démontre de la méme fagon que I'inégalité (21’) est aussi non
vérifiée en x,.

Done, c’est la troisiéme conclusion qui s’impose pour la fonc-
tion g(z)

g(z') — g(z") e
I &(2) l<e =2,
d’ot
h(z') — h(z") e
[A(z) — b]|h(z") — a] < g, <#ten<1ioe.

D’ot 'on déduit a fortior:

| (&) — h(x")
L1 A& [+ ][] R(2")]+1]

<10¢s

Cette inégalité entraine tout de suite le fait q\ie la distance sphérique
de A(2') & h(2") est inférieure a ¢ et le théoréme 4 est établi.

11. Nous nous proposons de montrer, dans un autre Mémoire,
que le théoréme 4 peut s’étendre au cas ou ’on substitue 4’hypothése
relative aux zéros de la dérivée A'(x), une hypothése analogue
relative aux zéros de A'(x) — «, oli « est une constante quelconque.
Dans ce cas, la conclusion est & modifier comme suit : la majoration
de la distance sphérique concerne, non plus la fonction (), mais
la fonction A(z) — ax.

On congoit que si, étant donnée une fonction méromorphe A(x)
dans le cercle unité, on peut trouver deux valeurs distinctes de «
pour lesquelles les hypothéses sont vérifiées, les deux conclusions
sont en contradiction, sauf si 4(x) est trés grand dans le domaine A.
Des conséquences en résultent pour la théorie des fonctions méro-
morphes. '




