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JOURNAL 
DE 

MATHÉMATIQUES 
PURES ET APPLIQUÉES. 

Sur , une propriété des fonctions méromorphes 
et de leurs dérirées; 

P.u H. MILLOUX. 

INTRODUCTION. 

La recherche de critères de normalité de familles de fonctions 
analytiques constitue l'un des points essentiels de la théorie des 
familles normales. Sous l'impulsion du créateur de cette théorie, la 
recherche de critères s'est étendue à des familles de fonctions consi-
dérées en même temps que leurs dérivées. Citons deux exemples : 

En complétant une importante étude de M. Bureau, M. Miranda a 
achevé en 1935 la démonstration du critère suivant, pressenti par 
M. Paul Montel : une famille de fonctions holomorphes dans un 
domaine où elles ne prennent pas la valeur zéro et dont les dérivées ne 
prennent· pas la valeur 1, est normale dans ce domaine. 

Le deuxième exemple est fourni par l'étude des conditions suffi-
santes permettant d'affirmer qui si certaines familles de fonctions 
holomorphes sont normales, les familles des dérivées sont aussi 
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2 H. MILLOUX. 

normales. M. Mandelbrojt a-précisé certaines de conditions ( 1 ). L'un 
des points de cette étude complété par M. Biernacki (2), a servi de 
base à ce dernier pour démontrer que toute fonction entière d'ordre 
fini possède, en commun avec ses dérivées et ses integrales succes-
sives, au moins une direction. de Julia. 

La question se posait de savoir si cette dernière propriété s'étend 
• aux directions de Borel (nous dirons : directions de Borel-V aliron ). 
Cette question a été récemment résolue et complétée (3). En parti-
culier il a été démontré que toute direction de Borel-Valiron d'une 
fonction entz"ère d'ordre fini se conserre dans l'intégration. A l'origine 
de ce théorème, qui s'étend à une classe importante de fonctions 
entières d'ordre nul, se place une propriété des fonctions holomorphes 
dans un cercle, propriété qu'on peut énoncer qualitativement sous 
la forme suivante : si le module d'une telle fonction est supérieur à 1 

et si la dérivée de cette fonction s'annule un grand nombre de fois 
dans un cercle intérieur, alors dans ce dernier cercle, la variation 
relative de la fonction est très faible. 

Cette propriété a été démontrée à l'aide de la formule de Jensen et 
et du lemme de Schwarz. Le but de cet article est d'en donner une 
nouvelle démonstration, basée sur les théorèmes de M. R. Nevanlinna 
et s'appliquant aux fonctions méromorphes. Nous verrons notam-
ment ( th. 4) que si une fonction méromorphe dans le cercle unité ne 
prend pas plus de n fois trois valeurs a, b, c, dont les distances sphé-
riques prises deux à deux sont inférieures à e-n, si la dérivée de la 
fonction s'annule plus de n' fois dans un cercle intérieur et si le 

rappot est assez grand, alors la variation, dans ce cercle intérieur 

presque tout entier, du point représentant la fonction donnée sur la 
sphère de Riemann, est très faible. 

( 1) S. MANDELBROJT, Sur les suites de fonctions holomorphes (J. Math. pures 
et appl., t. 8, 1929, p. 179-195). , 

(i) M. BrnRNACKI, Sur la théorie des fonctions entières (Bull. Acad. polo-
1iaise Sc., Varsovie, 1929, p. 529-590). 

( 3) H. M1uov.x, Sur les directions de Borel des fonctions entières, de leurs 
dé ri rées et de leurs intégrales.( J. d'4nal. math., Jérusalem, à paraître en 1952, 
p. 244 .et suiv. ). 



SUR UNE PROPRIÉTÉ DES FONCTIONS MÉROMORPHES. 3 
Un résultat plus précis est obtenu au préalable ( th. 3) lorsque les 

trois valeurs a, b, c, sont o, 1, oo. 
Le théorème 4 pourra servir ultérieureme'Ilt dans l'étude compara-

tive des directions de '.Borel-Valiron d'une fonction méromorphe 
d'ordre fini et de sa dérivée. 

1. Rappelons d'abord le théorème suivant, dont la démonstration 
est basée sur la formule de Jensen et le lemme de Schwarz (4) : 

THÉORÈME t. - Soit g( x) une fonction holom01phe dans le cercle 
unité, où son module est supérieur à 1. On désigne par n' une quantité 
au moins égale au nombre des zéros de g' ( x) sz"tués dans le cercle 
1 x IL fJ. < 1 et l'on suppose que ( r - fJ. ) 3 n' dépasse une certaine cons-
tante numérique a. Pour I x IL fJ. on a alors les inégalités suivantes: 

( l) 1- d(p.) < tg\ g~x; ! < 1 + d(p.), og1g o i 
avec 

Iogd(µ.) =- (i - µ.)2 n'. 
_ 10 

Il résulte du théorème i que sin' est très grand, la variation relative 
de log I g( x) j est très faible dans le cercle intérieur. A fortiori, il en 
est de même de la variation relative de I g(x) j. C'est ce résultat que 
nous allons retrouver à partir de la théorie de M. R. Nevanlinna. 

2. Nous allons nous appuyer sur une forme précise de la deuxième 
inégalité fondamentale de R. Nevanlinna. Soit g( x) une fonction 
méromorphe dans le cercle unité; nous supposons que l'origine n'est 
ni un zéro, ni un pôle de cette fonction et nous désignons g( o) par c0 

et g'( o) par ci. Pour;< r< R< 1, on a l'inégalité ( 5 ) 

m(r,f)<2/i+2log2+3logR I r+4l~gT(R,t), 

(i) H. M1LLoux, loc. cit. Voir th. 2, p. 257. 
(•) R. NEVANLINNA., Le théorème de Picard-Borel et la théorie des fonctions 

méromorphes (Paris, Gauthier-Villars, 1929). Voir inégalité (5), p. 6i; on 
l, 1· ' . · I . g( x) app 1que 1c1 a a 1.oncl10n -- • 

Co 
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et comme 
T (r, ! ) L T(r, g) + ltig"T¾T, 

il vient 
(3) m(r, ~) < 29 + 3 log-R 1 + 4 l;g ltig-1-1 - 1 + 4l;gT(R, g). , g - r l'o 

Toujours d'après M. R. Nevanlinna ( 6), on a 

(4) m(r, ~) + m(r, g 1 1) + m(r, g) < 2 T(r, g) - N1 (r, g)-+ S (r') 
avec 

(5) l N1 (r, g) = [ 2N(r, g) - N (r, g')] + N(r, ? ) , 
S(r) = 2m(r, g1) + m(r, --1_ ') + log-1 

3
1 4 log2. g, g- I . Ct 

On suppose"ici et non nul. 
Le crochet intervenant dans la définition de l'indice N 1 n'intéresse 

que les pôles multiples de g. Si a est un tel pôle et si son ordre est q, 
ce point intervient dans le crochet avec la multiplicité q-1. Dans 
tous les cas, N 1 ( r, g) est au moins égal à N (r, i' }· 

Il est utile de remarquer que N1 (r, ~)=Ni (r, g). En effet, il ne 
pourrait y avoir de doute que pour les zéros multiples de g : on les 
retrouve de part et d'autre avec les mêmes coefficients, dans les deux 
membres de l'égalité précédente. De plus, d'après sa définition, 
l'indice N1 ne change pas si l'on remplace g par o:g+ (~et étant 
des constantes). En combinant ces deux propriétés, on constate que 
l'indice N1 (r, g) es_t inmriant quand on opère une transformation 
homographique à coefficients constants sur la fonction g. 

Utilisons maintenant l'inégalité ( 3) pour majorer S(r). En tenant 
compte de ce que l'on a 

+ + 

il vient 
logT(R, g-1) < logT(R, g) + log2, 

+ I + + 1 
S(r) < 12 logT(R, g) + g log R-- + 8 loglog-\-l -r c0 

+ + I 1 
+ 4 log log I Co_ 1 I +log~ + 95. 

( 6) Loc. cit. ( Voir p. 66 ). 
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Quant au premier membre de (4), il s'écrit 

T(r, !.)' + T(r, _r _) + T(r, g)- N(r, !.)-N(r, - 1 -)-N(r, g). g g-1 g g-r 

D'après le premier théorème de R. Nevanlinna et la formule de 
Jensen, l'ensemble des trois premiers termes précédents diffère de 
moins de log2 de l'expression 3 T(r, g)- log I c0( Co - 1) J. 

D'où la forme suivante de la deuxième inégalité de R. Nevanlinna : 

(6) I 
. T(r, g) - 12 logT(R, g) - 9 log R- r 

. < N(r, !..) + N (r, - 1-) + N(r, g) - N1(r, e) + 8 l;g l;g-1-1-1 g g- 1. Co 
+ + · I l + 4 log log I + log I co(co- 1) 1 + log-·-1 +96. 

Co- 11 \ C1 

Cette formule suppose que c0 , c0 - 1 et c1 ne sont pas nuls. 
Nous allons distinguer deux cas, suivant que I c0 / est inférieur ou 

égalà e, ou non. 
Premier cas: 1c0 1 e. - Un calcul numérique simple montre que 

l'on a 
+ + 1 

4loglog . I +loglco-11<4log4-4<2. 
\ Co- I 

Deuxième cas : 1 c0 1 > e. - On applique alors la formule ( 6) à la 
fonction~; la somme des quatre premiers termes du second membre g 
reste inchangée. La somme des cinq derniers devient 

8 l;g l;g I c0 1 + 4 l;g l;g 1 1 + log 1 1 - _!.. 1 + log 1 1 + 96, 
Co-I c 0 c1 

expression qui est inférieure à 

8 l;g l;gl Co 1 + log 1 1 + 97. 

Dans tous les cas, on_peut donc écrire l'inégalité suivante : 
+ I 

(6') T(r, h)-12logT(R, h)-9logR-r 

<N(r, ~)+N(r, - 1 -)+N(r, g) . g g-1 . 

- N1 (r, g) + 8 l;g l;gl c0 1 + 8 l;g l;g-1-1- 1 +log 1 :!,I + 98, 
Co C1 

où h est, tantôt la fonction g, tantôt la fonction ~. 
b 
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5. Nous allons étudier le premier membre de l'inégalité (6') par 
la méthode de M. Borel sur les fonctions croissantes, sous la forme 
précise que lui a donné M. Bureau ( 7) : 

Soit U( r) une jonction réelle positire non décroissante pour o < r < r 
et satisfaisant à l'inégalité 

quel que soù le choix du couple r, R, arec 

Alors.on a, lorsque r dépasse r0 et l - ..2., 
. 0"'2 

(8) 
'Il.. 

En fait, les coefficients de cette dernière inégalité peuvent être 
améliorés, par exemple en reportant la majoration (8) dans le second 
membre de ( 7 ), après avoir choisi R = 1 +,. • Ainsi, dans le cas où 

2 - . 

cr= o, cr 1 = 24, cr2 • r 2 ( donc r::::::,. : : ) , il vient, après un calcul numé-
rique simple, 
( 8') U(r) < 75 + 28log-1-· 

1- r 

Transformons quelque peu cet énoncé par homothétie, en sup-
posant 

r0 < r < R < r 1 < I • 

Nous ramenons au cas précédent en remplaçant r0 , r et R respec-
• ' ro r R s· · d l R d l' • t1vement par r0 = -, - et - • z one, pour tout couper, e mter-

r 1 r1 r1 . • 

mlle r0 , r11 on a l'inégaliié 
r1 + 

(g) U(r) L 24 log R- r + 12 logU(R), 

(7) Sur c~sujet consulter: G. VALIRON, Sur les valeurs exceptionnelles des 
jonctions méromorphes et de leurs dériPées (Act. Sc. et lnd., Hermann, Paris, 
l<,;137, Q 0 570), Voir p. l2, 
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alors, pour 

on a l'inégalité 

(10) 

r'0 < r, 

,. 
U (r) < 75 + 28 log--1 -· 

r1- r 

,.., 
/ 

Remarque I. - Supposons, pour fixer les idées, r1 ::::::,,. o,g5. Alors 
l'inégalité ( g) est entraînée par l'inégalité 

( g') 
I + -

U ( r) -~ 24 log R _ r - 1 2 log U ( R) L- 2 

-et, d'autre part, l'inégalité ( 1 o) entraîne l'inégalité 

( 10') 
. ·1 

U(r) < 75 + 28 log--• 
r1 - r , 

Remarque Il. - L'inégalité ( 1 o') enlraîne la propriété suivante 
le premier membre de l'inégalité (g') est supérieur à l'expression 

I + I 
- 24 log R _ ,. - 1 2 log log ,.1 _ R - 5o. 

Il suffit, pour le voir, de majorer le dernier terme de ce premier 
membre en utilisant (10'). 

En particulier, si l'on choisit 
R= r+ r1, 

2 

l'expression précédente est elle-même supérieure à 

l' ·_ 28log-- -92. 
I- r 

Les conditions ::r12r et ,.,::::::,,.0,95 sont vérifiées si l'on suppose 
,. ::::::,,. 0,9. Nous pouvons énoncer la proposition suivante : 

LEMME. - Soit U ( t) une fonction positire non décroissante dans 
l' interoalle r L t L 1\, arec 

r:::::,.o,g, 



8 H. MILLOUX. 

L'un ou l'autre des deux cas suivants se présente nécessairement: 

Premier cas. - Dans l'intèrvalle précédent, on peut trouver deux 
nombres r', R'(r' < R') tels que l'on ait l'inégalité 

. \ 

. I + 
R'-r' -12 logU(R') >- 2 

et, a fortiori, 
I + 

U ( r') - g log R' _ r' - 12 log U ( R') > 53. 

Deuxieme cas. - Ar, on peut associer R(r< R < r1) de façon que 
l'on (lit l'inégalité 

- I + I 
U(r) - 24 log R- r - 12 logU(R) >- 28 logï=r -92 

et, a fortiori 
I + 1 

U(r)-g log R- r -12 logU(R) >-13 log ï=r - 65. 

Remarque. - L'inégalité concluant le deuxième_cas est, a fortiori, 
vérifiée dans le premier cas, après changement du couple ( r, R) en 
le couple (r', R'). • -

4. Appliquons le lemme précédent à l'étude faite au paragraphe 2, 
en faisant U(r) = T(r, h ). Nou·s obtenons le théorème suivant: 

THÉORÈME 2. - Soit g( x) une fonction mérommphe dans le cercle 
unité du plan x et telle que g( o) est différent de o, 1, oo et g' ( o) diffé-
rent de o. On a l'inégalité suivante: 

(Il) 

- 163, 

arec 

Quant à r', c'est une certaine quantité compn"se entre r et 1 ___:_ ~, 
2 

r étant un quantité arbitraire comprise entre 0,9 et 1. 
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a. Avant de continuer cette étude, rappelons quelques définitions 

et propriétés ( 8 ). Étant donné deux points a et b intérieurs au cercle 
unité, on appelle pseudo-distance de ces deux points une expression 
qui se réduit à la distance euclidienne lorsque l'un des points est à 
l'origine et qui est invariante dans toute transformation homogra-
phique du cercle sur lui-même. 

Soit n points fixes intérieurs au cercle et un point variable M. 
Formons le produit des pseudo-disrances du point variable aux points 
fixes. Les points M pour lesquels le logarithme de ce produit est 
inférieur à - 7 n constituent des domaines appelés domaines d'exclu-
sion, qui peuvent être enfermés dans des cercles en nombre au plus 
égal· à n, intérieurs au cercle unité et dont la somme des pseudo-
rayons (pseudo-distance constante d'un point du cercle au centre 
non euclidien de ce cercle) est inférieur à o ,o 1. 

Ces cercles s'appellent cercles d'exclusion; les points intérieurs à 
ces çercles constituent un ou plusieup domaines connexes intérieurs 
au cercle unité et dont aucun ne peut traverser toute couronne circu-
laire suffisamment épaisse. D'une façon plus précise, si u et r sont 
les rayons des cercles frontières ( u < r < 1 ), lesquels sont centrés 
en O et si l'on a l'inégalité:.=.!:'..< 459 , alors il existe un cercle de 

I- U I 

centre 0, intérieur à la couronne et dont tous les points sont exté-
rieurs aux cercles d'exclusion. 

D'après leur définition, sur la frontière des domaines d'exclusion, 
le logarithme du produit des pseudo-distances aux n points fixes est 
égal à - 7 n. Donc les domaines d'exclusion se correspondent dans une 
transformation conforme du cercle unité sur lui-même. On peut, par 
suite, faire correspondre également les cercles d'exclusion. 

Enfin, le pseudo-rayon d'un cercle étant inférieur ou égal à son 
rayon, étant donné deux points situés hors des cercles d'exclusion, 
il est toujours possible de les joindre par une courbe composée de 
segments de droite et d'arcs de cercle, <;lont la longueur (euclidienne) 
est inférieure à 2 +0,011t < 2,04. • 

. 
(8) Voir II. M1uoux, loc. cit., p. 258-260. 

Journ. de Math., tome XXXI. - Fasc. 1, 1952. 2 



10 H. MILLOUX. 

Utilité des pseudo-dista;,_ces. - On est conduit très souvent à faire 
des transformations conformes du cercle unité sur lui-même, de façon 
à amener un point déterminé à l'origine. Or, le produit des distances 
euclidiennes de l'origine à certains points intérieurs au cercle u'nité 

s'introduit naturellement dans les indices N (r, g I a)• Dans certaines 
études, il est nécessaire de pouvoir majorer ces indices. • 

Ainsi, supposons que dans le cercle unité du plan x, le nombre total 

des zéros de g ( x ), g( x - 1) et g/x) soit au plus égal à n et soit p le 
nombre de ces zéros situés dans le cercle I x I L1J < 1. Supposons 
encore que l'origine O soit hors des cercles d'exclusion y relatifs aux 
zéros précédents. Alors, on a l'inégalité 

N(r', .:.) + N( r', - 1-) + N(r', g) < 7P + p Iogr' < 7p L7n. g \ g-1 

L'utilité d'une telle inégalit~ est évidente quand o~ se reporte à 
l'inégalité (II). 

6. Poursuivons maintenant l'étude de la fonction méromorphe g(x) 
à partir du théorème~, en introduisant les hypothèses complémen-
taires suivantes : 

A. Dans le cercle unité, la fonction g( x) ne prend pas plus den fois 
au total les valeurs o, 1, oo. 

B. Dans le cercle I x IL fL( o,8 L fi·< 1 ), le nombre total des zéro~ 
de g'(x) et de pôles multipless de g(x), chacun de ces derniers étant 
pris avec son ordre de multiplicité diminué d'une unité, est au moins 
égal à n'. 

Rappelons que ces points ( zéros de g' et pôles multiples) sont ceux 
qui interviennent dans la définition de l'indice N1 et que cet indice N1 

est invariant si l'on change g en.:.• g 

C. L'origine est en dehors des cercles d'exclusion relatifs aux zéros 
de g 1-g .:.. 

' ' g 
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D. La fonction g(x) n'est ni trop petite, ni trop grande à l'origine. 
D'une facon précise, 

- D .<'.'.'.'.:log I g (o) 1 L'.'.'.:D (D > e). 

Ceci posé, choisissons,.= 1 - 1 
2 fi-, d'où r::::::,,. o,g et 1 - , 1 > 1 P.• 

On a donc 
r' n'(1 u) N ( r' g) :::::S. n' lo" - > · - 1~ 

1 ' -. "p. 3 ' 

d'où, en application de l'inégalité (11), 

logl g(o) 1 > n'(i - p.) - 7n - 13100- - 1 - - 8 logD- 182. 
g' ( 0 ) 3 t:, I - /J-

Cette inégalité est évidemment vérifiée encore si g' ( o) est nul. 

7. Nous nous proposons maintenant d'étudier le comportement 
d'une fonctio9 15(x) méromorphe dans le cercle unité, ne prenant 
qu'un petit nombre de fois les valeurs o, 1, oo ( ou plus généralement 
trois valeurs distinctes) et dont la dérivée s'annule un grand nombre 
de fois dans le cercle intérieur I x IL ),(À ::::::C,. o,8). Nous allons voir 

• que dans le domaine d constitué par l'intérieur du cercle I x IL À 
duquel on a enlevé les points intérieurs aux cercles d'exclusion, la 
fonction 8 ( x) varie rel~tivement très peu. 

Nous allons faire les hypothèses suivantes: 

N. Identique à l'hypothèse A du paragraphe 6; 

B1• Identique à l'hypothèse B du paragraphe 6, après remplace-
ment de la lettre p. par la lettre À;. 

C1 • On suppose vérifiées les inégalités suivantes : 

Ceci posé, distinguons deux cas, suivant que dans le domaine d 
la fonction g(x) n'est pas uniformément voisine, soit de oo, soit de o, 
ou bien est uniformément voisine· de l'une de ces deux valeurs. 
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Premier cas. - Dans le domaine Â il existe au moins un point x 0 

en lequel on a 
(15) -D<logjg(xo)l<D, 

avec 
( I 51) 

Si nous effectuons une transformation conforme du cercle unité du 
plan x sur le cercle unité du plan u, de façon qu'un point x= oc de 
module au plus égal à À corresponde au pointu= o, alors au cercle 
1 x IL.~ correspond un cercle dont les points sont situés à une distance 

de l'origine inférieure ou égale à p.=~)•' comme le montre la 
1+ ,-

formule de transformation 
x-a 

u=----• 
1-X(J. 

On remarquera que 1-11. est compris entre (i-Â)2 et (i-À)2 • 
r I ,64 2 

Effectuons la transformation homographique 

u= X-X_!l. 

I-X.X0 

Soit G( u) la fonction transformée de g( x ). On a 

G'(o~= (1-jx0 l2 )g'(xo). 

Le point u = o est en dehors des cercles d'exclusion relatifs aux 

zéros de G, G- 1, IT-' d'après la position du ~oint x 0 • D'autre part, 
le nombre total des zéros de G'(u), augmenté du nombre des pôles 
multiples de G( u ), est au moins égal à n' dans le cercle de centre 0 
et de rayon 1 - (i Â) 2 

• On se trouve dans les conditions d'applica-

tion, à cette fonction, de l'inégalité (13) qui donne ici 

1 
G(o) 1 n'(1-À)2 2 • -•, 

log G'(oi. > 6 -7n-13log( 1 -À)2 -8.10 -n (1-À)2 -182, 

d'où plus simplement,. en utilisant les inégalités ( 14) et après un 
calcul numérique simple, 

IG(o)I -. , • 
log G'(o), >o,o8n (1-À)-. 
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D'où résulte que l'on a, au point x = x 0 , l'inégalité 

(16) log I t(<;] 1 <- log(1 - À2) - 0,08 n 1(1 - À)2<- o,o7 n'(1. - À)2. 

Nous allons maintenant démontrer que le premier membre de l'iné-
galité ( 16) est in/ érieur à - 0,06 n' (1 - À )2 pour tout point x du 
domaine d. 

Tout d'abord, celte propriété est vérifiée, nous venons de le voir, 
en x 0 et, par continuité, au voisinage de x 0 • Supposons qu'elle ne 
soit pas vérifiée dans tout. d. Dans ce domaine, il existe donc un 
point x = x 1 en lequel on a l'inégalité 

(17) log I g1(x) 1 ::::::,._ o 06 n'(1 - À)2 
g(x) - ' , 

laquelle n'est pas vérifiée au voisinage de x 0 • 

Joignons x 0 et x 1 par la ligne L la plus courte en dehors des cercles 
d'exclusion. Comme nous l'avons vu au paragraphe a, la longueur 
euclidienne de cette ligne Lest inférieure à 2,04. Quitte à rappro-· 
cher x 1 du point x 0 sur la ligne, on peut toujours supposer que le 
premier membre de ( i 7) est inférieur au second membre tant que x 
reste entre x 0 et x 1 sur la ligne L et égal au second membre en x 1 • 

Il résulte de ce qui précède qu'en évaluant logg(x1) à partir de 
logg(x0) par le déplacement de x sur la ligne L, on a l'inégalité 
suivante: 

Cette inégalité montre que logjg(x1 )1 est compris entre logjg(x0)j+E 
et log I g(x1) j- E, donc a fortiori entre -D E et D + E. • 

Effectuons la transformation 
v= 

Soit H(ç) la transformée de g(x). On a 

H'(o) = (1-Ix11 2 ) g1 (x1), 

d'où, en rappelant que l'inégalité (17) est vérifiée pour x= x 0 

(18) log 1 ;,~~)) 1 < log 1 
1 À-J. + 0,06 n'(1 -.À)2. 
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On peut encore appliquer les résultats du paragraphe 6 à la fonc-
tion H(ç). Dans l'inégalité ( 13 ), on remplace toujours 1 - p. par (i 2 À)"• 

Par contre, d'après ce qui précède, on remplace D par D + 2, D étant 
défini par (151). La conclusion reste cependant la même que pour 
la fonction G( u) 

l • 1 H ( o) 1 's ' ( ' )• og H'(o) >o,o n I-1\ • 

Elle est en contradiction avec l'inégalité ( I 8). Par suite, l'hypothèse 
sur laquelle nous nous sommes basés est fausse. En d'autres termes, 
l'inégalité ( 17) n'est vérifiée en aucun point du domaine A. La propriété 
suivante en résulte : 

Soit x' et x" deux points quelconques de ce domaine. En les 
joignant par un chemin convenable et en définissant log g( x") par 
continuité à partir de logg( x'), on a l'inégalité 

l logg(x')- logg(x'1) 1 < 2,04 e-o,onn'11-i,)', 

d'où résulte 

8. Résumons les résultats obtenus dans l'étude de ce premier cas. 

THÉORÈME 3. - Soit g( x) une fonction· méromorphe dans le cercle 
unité, où elle ne prend pas plus de n fois les valeurs o, 1, oo. Soit .:ile 
domaine intérieur au cercle J x J L. À< I, dont tous les points sont exté-
,-ieurs aux cercles d'exclusion ( voù· § ô) entourant les zéros de g, g- 1, 

; rappelons que l'ensemble de ces cercles est très petit, puisque la somme g 
de leurs pseudo-rayons est z'nférieure à 0,01. 

Supposons, d'autre part, que dans le cercle J x I LÀ, le nombre des 
zéros de i ( x ); augmenté du nombre des pôles multiples de g( x ), açec 
indice de multiplicité diminué d'une unité, soit au moins égal à n'. 

Supposons enfin vérifiées les inégalités suirantes : 

n < rn-3 n' ( r -'- À ) 3 , 
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Alors, dans le domaine .ii, ou bien la fonction g( x ), ou bien la fonc-

tion gtx) est uniformément grande; d'une façon précise, 

( 21) log log I g( x) i ::-:,,,_ A = 10-2 n' ( 1 - À)' 

ou 
1 

log log lg(x) ! ::-:,,,.A; 

ou bien la variation relative de g( x) est très faible et in f én"eure à e-o,o.n'11-Al•. • 

Comparaison avec le théorème i rappelé au paragraphe 1. - Suppo-
sons maintenant g( x) holomorphe dans le cercle unité et de module 
supérieur à 1. C'est le cas visé dans le théorème i. 

Dans ce cas, il n'y a pas de cercle d'exclusion : le domaine D 
d'exception dans l'appJication du théorême 3 n'existe pas. Ce théorème 
nous montre que, dans le cas où log log! g( o) ! est in/ érieur au second 
membre de l'inégalité ( 21 ), alors la majoration de la variation 
de log I g ( x) 1 dans le cercle j x IL À est comparable à celle qui est 
fournie par le théorème i. Mais l'intérêt du théorème 3 est qu'il 
s'applique à des cas nettement plus généraux que le théorème i. 
Les applications qui ont été tirées de ce dernier ( voir référence dans 
l'introduction) concernent par ailleurs uniquement des cas où 

• log log I g( o) 1 est très inférieur au second membre d~ ( 2 1 ), donc des 
cas où le théorème 3 est plus intéressant, parce que plus général, que 
le théorèm, i. 

• 9. La méthode développée au paragraphe 7, dans le cas où la 
fonction g( x) n'est ni uniformément petite, ni uniformément grande 
dans le. domaine .ii, peut aussi s'appliquer, avec un certain succès, 
dans les deux cas écartés. 

On peut se contenter d'étudier le cas où la fonction est unifor-
mément grande, cas de l'inégalité ( 2 1 ), quitte à changer g en : 

b 

les zéros des dérivées coïncident en général; si l'on y adjoint les pôles 
multiples des fonctions, la coïncidence est totale. 

Nous ne développerons pas les calculs, qui se conduisent comme au 
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paragraphe 7. On commence par établir, àlaplacedel'inégàlité(1?), 
. l'inégalité 

( 17') log I g'((.x) 1 <- o, 06 n'(1 - À) 2 + 8 log logj g(x
0

) i, g X) : 

où x 0 est un point fixe quelconque ( du domaine Â); x est un point 
variable quelconque du même domaine. Cette inégalité résulte de 
l'inégalité (13), où le 4• terme du second membre joue un rôle qui 
n'est plus négligeable. 

Enfin, de (1 '7') on déduit la majoration suivante de la variation 
de log [ g( x) [ dans le même domaine : 

(22) , [ log I g(xo) J 117 e-o,o.n'(1-lJ•. 

En fait l'exposant 1'7 du premier facteur peut être ramené à une 
valeur proche de 8 et même, en améliorant la méthode, de 4. Même 
avec l'exposant 4, l'expression (22) est moins favorable que celle qui 
est fournie par le théorème i, il est vrai dans le cas des fonctions 
holomorphes ne s'annulant pas, c'est-à-dire dans un cas moins général. 
Si l'on se reporte au théorème 1, on constate, eu~ effet, au lieu de la 
majoration ( 22 ), une majoration o-ù l'exposant I '7 du premier facteur 
est remplacé par 1. Cet avantage est probablement dû à l'utilisation 
du lemme de Schwarz dans la démonstration du théorème i. 

Signalons - sans démonstration-'-- qu'en partant du théorème 1, 
on pe_ut réduire à 1 l'exposant I'7 de l'expression (22). 

10. Terminons sur un énoncé un peu plus général que celui du 
théorème. 3, en nous plaçant cependant dans des conditions un peu 
plus restrictives : 

THÉORÈME 4. - Soit • h(x) une fonction méromorphe dans le cercle 
unité, où elle ne prend pas plus de n fois, au total, trois valeurs a, b, c 
dont les ùnages sur la sphère de Riemann sont distantes deux à deux 
d'au moins e-n. On suppose, en outre, que la dérzçée h'(x) s'annule au 
moins .n' fois .dans le cercle [ x [ L. À < 1 et que les inégalités (20) sont 
vérifiées . . 

Alors, étant donné deux points quelconques x' et x" situés dans le 
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domaine A précisé au théorème ·3, la distance sphérique de h( x') à h( x") 
est inférieure à 

Remarque. - Dans l'énoncé précédent, on peut désigner par n' un 
nombre inférieur ou égal au nombre des zéros de h' ( x) augmenté du 
nombre des pôles multiples ( avec indice de multiplicité diminué d'une 
unité). 

Démonstration.-D' à.près la remarque précédente, on peut démontrer 

le théorème précédent, soit pour la fonction h, soit pour la fonction i, 
(pour laquelle a, b, c sont remplacés par leurs inverses). On peut 
donc supposer que des trois quantités a, b, c, deux au moins sont de 
modules L. 1. Désignons-les par a et b; c pourra être de module supé-
rieur ou inférieur ou égal à 1. 

Si la distance sphérique de h( x) à a, ou à b, ou à c, est inférieure à; 
dans A, alors le théorème est démontré. Sinon, il existe au moins un 
point x 0 dans A, en lequel les distances sphériques de h( x) à a, à b et 

à c, sont toutes trois supérieures à;• Considérons la fonction 

h(x)-a c-a 
g(x)= h(x)-b: c-b 0 

Cette fonction ne prend pas plus de n fois, au total, les valeurs o, 
1, oo, Dans le cercle I x IL À, le nombre des zéros de sa dérivée, 

• augmenté du nombre des pôles multiples ( avec ordre de multiplicité 
diminué <l'une unité) est supérieur ou égal à n'. En effet, cette somme 
des deux nombres précédents est invariante dans toute transformation 
homographique (voir§ 2). 

Les inégalités ( 20) du théorème ;~ sont vérifiées. Ce théorème est 
donc applicable. Montrons que parmi les trois conclusions possibles, 
les deux premières sont à rejeter. 

Tout d'abord, considérons: : . Si ICI est supérieur à 2, ce rapport ' 
est inférieur en module à 3. Si I c I est inférieur ou égal à 2, comme la 

Journ. de Math., tome XXXI. - Fasc. 1, 1952. 3 
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distance sphérique est inférieure à la distance euclidienne, ce rapport 
est inférieur à 3en. 

L . • l' , , h(xo)- a e meme raisonnement, app 1que a h ( xo) _ b, montre que ce 

deuxième rapport est inférieur en module à • Donc I g( x 0 ) 1 est infé-

rieur à \8 e" : l'inégalité ( 21) est a fortiori non vérifiée au point x 0 • 

On démontre de la même faç'?n que l'inégalité (21 1) est aussi non 
vérifiée en x 0• 

Donc, c'est la troisième conclusion qui s'impose pour la fonc-
tion g(x) 

1 
(x') - (x") 1 -"'(1_-i-J' 

{J {J < e lO = g2 
g(~) ' 

d'où 
1 

h(x') - h(x") 1 ê2 2 n 
[h(x')-b][h(x")-aj <b-a<e e <roe._ 

D'où l'on déduit a fortiori 

1 h(x') - h(x") . < IOE, 
llh(x')l+1Jllh(x")l+1J • 

Cette inégalité entraîne tout de suite le fait que la distance sphérique 
de h( x') à h( x") est inférieure à E et le théorème 4 est établi. 

1. i .. Nous nous proposons de montrer, dans un autre Mémoire, 
que le théorème 4 peut s'étendre au cas où l'on substitue à l'hypothèse 
relative aux zéros de la dérivée h' ( x ), une hypothèse analogue . 
relative aux zéros de h'(x)- a, où IX est une constante.quelconque. 
Dans ce cas, la conclusion est à modifier comme suit : la majoration 
de la distance sphérique concerne, non plus la fonction h( x ), mais 
la fonction h(x)- IXX. 

On conçoit que si, étant donnée une fonction méromorphe h( x) 
dans le cercle unité, on peut trouver deux valeurs distinctes de IX 

pour lesquelles les hypothèses sont vérifiées, les deux conclusions 
sont en contradiction, sauf si h(x) est très grand dans le domaine Â. 
Des conséquences en résultent pour la théorie des fonctions méro-
morphes. 


