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Le dualisme « Ondes-corpuscules » et la démonstration de 1'identité
entre le principe de Fermat et le principe de Maupertuis;

Par Georces BIBEN.

I. — Introduction.

La théorie du champ massique et électromagnétique, malgré sa perfection
et sa cohérence, n’est qu’une approximation. Adoptant le point de vue de
M. Louis de Broglie, cette théorie doit étre considérée comme étant 'approxi-
mation de I'optique géométrique par rapport a I'optique ondulatoire.

En nous placant dans le cadre de la mécanique ondulatoire des particules
sans spin, nous verrons que les trajectoires du champ massique et électro-
magnétique sont aux ondes, ce que sont leslignes bicaractéristiques aux variétés
caractéristiques d’une équation linéaire aux dérivées partielles du second ordre
que nous appellerons équation d’Ondes.

Nous écrirons « I'équation d’ondes » sous la forme invariante donnée
par MM. Cotton et Levi-Civita

du

P + Cu=o.

(1) J(e)y=0,u~+ B>
O, u est le second paramétre différentiel de Beltrami-Lamé

I d ~ \ 23 du
\/___9 ()7(‘ —pAm dmﬁ)

(nous n’avons pas écrit les signes sommatoires pour simplifier ’écriture)
relatif & un espace de Riemann défini par la métrique

ds*= A,y dz* dx? (e, B=1,2,...,0)

o est le discriminant de laforme quadratique du ds*, de plus nous ferons 'hypo-
thése essentielle que le ds* a le caractére hyperbolique normal, ¢’est-a-dire
qu'il comprend un carré positif et (n—1) carrés négatifs. Nous avons

pris y— p parce que dans nos applications le nombre n sera pair.
Les ondes Q(z', z?, ..., "), compatibles avec I'équation (1), sont, comme
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on le sait, données par la forme quadratique du second degré

Q2 0Q

(2) A(:v“, xB .‘T, 7): 0,0 = A8 02 0Q

or* Jx3 =

0.

La surface définie par I’équation (2) est un conoide qui devient un céne
lorsque les coefficients A** sont constants. On sait qu'a I'intérieur de ce conoide
le probléme de Cauchy est correctement posé, ¢’est-a-dire qu'il n’admet qu’une
solution. Sur la surface, I’équation (1), en général, n’a pas de solution, ou au
contraire elle en admet plusieurs. Les caractéristiques sont en fait des « Ondes »
si I'on admet les conceptions d'Hugoniot, c’est-a-dire comme étant la surface
de contact entre deux solutions.

Les lignes bicaractéristiques de M. Hadamard s’écrivent, en posant

0Q
Pa= o’
dz*  dP,
(3) TOx T 1N =d.
2 JP, 2 Jr*

En posant A, = -;A, on écrit (3) sous la forme hamiltonienne

@ drt 0\, APy OA,
: dy —or,’ d) T da®
En posant
dz* ) dP, 0A, dA,
- — — = — —p — —— X
an e g =T GE=0

et, en opérant la transformation de Legendre,
L= 2,4%+ 0%, — A,.

Aprés un calcul élémentaire ('), les équations (4) s'écrivent sous la forme
lagrangienne :
oz*  db\dz* ’ ap*  db\ dp,
Ce sont les équations de la dynamique des points libres. En général, la
forme A étant indépendante des p,, I'on a Q*=o et I'on obtient avec

M. De Donder

JL d ([ JL dz* .
/ J— —_—
(5 W‘%(%’T)—O’ 2~
De I’équation (3), on tire
dz* 1 0A
T =5 ope NP

(*) C.R. Acad, Sc., 208, p. 1975,
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en multipliant par A3, on trouve

d %
Aus ;9 =Py,

d’ot 'on déduit le théoréme de M. De Donder

dz* dzb
(2) A“ﬁPaP.g:Aag ;;é %:0,

c’est-a-dire que les bicaractéristiques sont des lignes de longueur nulle (d6* = o).

Les deux formes (2) et (2') sont équivalentes, mais 'une est écrite en
coordonnées tangentielles tandis que l'autre est écrite en coordonnées
ponctuelles.

dx* P :
Posons —- = w®, et nous écrirons (2’) sous la forme

5 (z*, 2B, » ,wﬁ)_ ~Aygwreb:

Remarquons que 93¢
q q d X

degré 2 par rapport aux variables w®, d’aprés le théoréme d’Euler

=Ag0f = PB La forme # étant homogéne et de

Pyw*=—24C.

Par un calcul élémentaire, les équations (4) prennent la forme
d (ose dsc
A\ 9w3) " o =
En effectuant la transformation de Legendre H =P, w*— &, il vient

dz* oM dP, ol

’ —_— —_—Z —_———
(&) day — op,’ 4y T 02*

II. — Démonstration de 1'identité entre le principe de l-‘ermat
et celui de Maupertuis.

Supposons que nous sachions intégrer les équations (4'), alors on en
tirerait 2%, P, en fonction de 0 et de 2n constantes arbitraires; c’est-a-dire

H(z* Py)=H(9,B,, ...).
Ea différentiant par rapport a'une des constantes, B, par exemple, on aurait

OH _ OH da*  oH 0P,

9B, — J0z* dB, ' 9P, 0B,

et, en tenant compte des équations (4'),

OH  dP, dz*  dz* P, _  d [, Ox a< de),
9B, - 49 9B, © 49 9B, 0(1:'°‘013,>+0131 Pa G5 )3

Journ. de Math., tome XXI. — Fasc. 1, 1943. . 8
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or nous savons que P,w*=23¢, donc

dH—2)  d P dx*
0B, — db “on,)'

En posant S=23¢ — H = 4¢, il vient en intégrant

o . 0&53‘»0_
(5) dB,f Sd()_(m“/ (ILdO__[Pa(—jB—i‘L,

en prenant pour limite d’intégration, deux points A et B situés sur une ligne
bicaractéristique, il vient

o * o [ 03¢ dar
: _— ) = —— == =1 -
(6) dB,fA S db dlx.f,\ 5 d [dw“ dB,]A
L’on peut poser sans ambiguité 0% = ¢ et nous obtenons
1
B B :
aiac
) — L df =
(7) afA S df afA 2 db [dw“ 2|,

B
L’intégrale f S d9 n’est pas autre chose que I'action « maupertuisienne »
A

B
quant a I'intégrale Sf # d; elle exprime, selon M. De Donder, le théoréme
A
de Fermat généralisé.

En effet, en vertu de la relation g = Pa_ o 5 et du fait que ¢ = o, il vient

(8) af SdO._af a0 dh = [dsz—o

En conclusion : parmi tous les chemins possibles pour aller du point A au
point B, les rayons de I’onde Q, aussi bien que les trajectoires du corpuscule
suivent les lignes extrémales définies par les équations lagrangiennes

aae d [ dx
(9) o2 T di W) =

Réciproquement on peut démontrer que si les trajectoires du corpuscule
satisfont aux équations (9), il y aura identité entre le principe de Maupertuis
et le principe de Fermat. Dans le dualisme Ondes-corpuscules le caractére ondu-
latoire est représenté par la surface caractéristique, tandis que le caractére
corpusculaire en est donné par les lignes bicaractéristiques.

III. — Sur les différentes formes du principe de moindre action.

Considérons avec M. Hadamard une forme quadratique quelconque

G(z', ...;z" dx, ..., dz") = ZAqg dz* daf (G =122¢),
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I'intégrale

f\/G(:I:‘, oot de'y oo dam) f\/G d.:c' ceey )dﬂ

représente la longueur d’un arc de courbe. Les lignes géodésiques sont
définies par
/ dx! dx"
afv G (G o Sy ),

dont 'équation différentielle est

oG _4 (of) .

P Ow?

Nous avons vu que les équations lagrangiennes des lignes bicaractéristiques

étaient (au facteur % prés)

96 d ( "_G>__
. dr* di\dw* )
Comme le remarque M. Hadamard « ces deux formes (qui correspondent
4 deux formes du principe de moindre action) ne sont pas exactement équi-
valentes, mais le deviennent moyennant une condition ». En effet

WG jo<ds/fi>_l oG d(_'__"ﬁ>:<..

0x% A0\ 00 ) TG 0 ad\ 3G 90

Comme ces équations sont inchangées par le changement de 0 en ¢(0),s11’on
suppose que 0 soit choisi de maniére a ce que G = const, alors dans ces condi-

peut sortir du signe de différentiation et1’on obtient

0G4 (9G] _,
_aﬁ—;m(m_—-

tions le dénominateur ——
2 \/G

G _d WG\ 1
d.l‘z dO Id&)a - 2\/6
Dans ces conditions on peut écrire

B B B
(10) af s(m:af ¢Ed9:af dQ—o.
. A A A

Dans le cas particulier des systémes stationnaires, c’est-a-dire si nous sup-
posons que la forme J¢ ne dépend pas explicitement de la variable z*, les
équations de Lagrange donnent

d (03¢ —
df W)_ '
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»

‘ ose . . . .
d’ott I'on conclut que 5= est uninvariant le long de laligne qui jointle point A

au point B, c’est-a-dire que (daﬂ) = (‘MC> .
‘ A B

dw" 3%
>

Sinous laissons les extrémités fixes, cx' =. . . =sz"'=oel puisque {))% =
)I

B B B
(1) 5f Sd0:6f 5€d0:6f dQ
A A A

o\ . - N . . R B
— (dw">"(0mu Yy — (_—()o)" > . (0.0") = (0r™)y — (Ca™)y = 6/ dz.
’ A

La variable " étant la variable temporelle, on obtient la formule classique

B B
(12) a[ Sdu:af d.
LAY A

Sil'on pose G =2(T — U) (T étant 'énergie cinétique et U I'énergie poten-
tielle), on peut écrire

I,

B B
(13) 6f \/E(T——U)\/A,-/cd.z"'dx“:af dt (Lk=1,...,n—1).
A A

IV. — Les diverses formes de 1'équation de Jacobi.

Notre fonction S n’est autre que la fonction de Jacobi, qui, & notre point
de vue, coincide avec la fonction Q. En écrivant I'intégrale d’action sous la
forme classique ‘

(14) S:f[.szl—ac]dO :fpa dx“—f:!(’d‘),

d’ot 'on tire
2S 0S

= d?’ JC:—aﬁ--

p

De sorte que l'équation de la variété caractéristique est équivalente a
q q q q
I'équation

. oS a8
(15) A o g =
car il faut tenir compte du fait que #0 = — % _ o
P q 20 .

La forme sous laquelle nous écrivons I’équation de Jacobi peut choquer
& priori, mais nous allons montrer que notre point de vue est trés naturel et
trés légitime, si 'on tient compte du caractére spécial que jouent nos formes
quadratiques (A), (H) et (4€) qui sont identiquement nulles.

Considérons, avec M. Mieghem, I'expression '

L*(z, dz) = ds*= A, dz* daB,
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dx*

b
ds

d’ou I'on tire, en posant u*=—
L, de) = Ay b = wruy = A*Buug—1;

en posant u,= P, et u*= w?, on trouve

S:f}’adxlhf&’ds, H=Ag0*0bf=1;

_OS oS
=0 KT T

on trouve alors

et I'équation de Jacobi prend la forme

JS 08
=1.

23
A dr* 9rd

Seulement 1’équation de Jacobi, écrite sous cetle forme présente, le grave
défaut de ne pas étre homogéne. C’est pour remédier & ce défaut que
M. De Donder introduit au lieu de la fonction S la fonction

S=S—u,
et il obtient la forme identique a la notre '
\as 95 95 (oS : S
AT -d?!' m — m =0 pUISque m e

Pour obtenir I'équation d'onde, appliquons le procédé de M. De Donder
en posant

du du
J(u)y=A* Bd 2 g8 =
N I .
grace a ce principe variationnel %—M)—] = 0, nous obtiendrons O,u=o.
o du

M. Louis de Broglie m’a fail remarquer que pour pouvoir assimiler les
bicaractéristiques aux trajectoires, il faut ramener ’équation d’onde & la
forme O,u =o. '

M. De Donder appelle fonction d’onde absolue, toute fonction Q(z*, 22, ...,2")
qui satisfait identiquement a l’équation d’ondes; 1'équation Q =o définira
une onde absolue. Par contre toute fonction Q(x', 22, ..., "), qui satisfait
a I’équation d’ondes en vertu de Q = o, définira une onde relative.

Supposons maintenant que 1’équation J() ne soit pas linéaire, dans ce cas
il faudrait écrire, & la place de ’équation (2), I’équation

A(x*, Q,Py)=o,

et les lignes bicaractéristiques de M. Hadamard s’écriraient

dz* _ dP, dQ
dA| - ()A| N dAi
JP, oz 2‘ rIoR

(3% = db.
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CYig : ICIRAY
Dans le cas ou 1'équation J(«) est linéaire 5g = 0, donc

dr* dpP, ds2

—_— e = T =
aN, T o\, T o 4,
Po,  Ox*
d’ou I'on tire
dQ
(16) o =5

De(3) et de(16)1'on déduit les deux théorémes suivants dus @ M. De Donder :

a. SiQ est une fonction d’onde absolue, cette fonction est invariante le long

de tout rayon.
b. Si Q estune fonction d’onde relative, cette fonction est un invariant relatif
le long de tout rayon.
Soit Q(x*, 0) = o une fonction d’onde. On aura, en vertu de (16),
(o) d 02 0@ drx 02 . 09
17 WMo A T T gy T
L’équation{17)a été appelée par M. Mieghem la forme jacobienne de|'équa-
tion d’onde; en fait elle est identique a notre équation (15) puisque le fait

que JC soit identiquement nulle entraine aussi ' =o.

V. — Les différentes théories de la mécanique ondulatoire.

Nous avons dit que, pour.pouvoir assimiler les bicaractéristiques aux trajec-
toires, il faut ramener I’équation d’ondes a la forme O,u=o. Pour cela
considérons I'équation fondamentale de la mécanique ondulatoire pseudo-
euclidienne, en 'absence de champ

2.1 2 ¢ 2,1 LBy —
10?7(‘)~I’+‘)¥ dy)__[;_m(

LA S A A STk ¢ b emiety (o — 2L
(18) Qe dr? Jdy? + 02 h? Y=L (’(— L)

I’équation correspondante de la variété caractéristique sera
_ 1 (0Q\? o\
(19) ﬁ(W) —Z<0_x) =o.
Ty Y2

Cette équation représente les surfaces d'ondes d'une propagation avec la
vitesse c, et les lignes bicaractéristiques représentent des mouvements avec la
vitesse c. Mais ces trajectoires ne sont pas celles dont la masse propre m,>= o,
car I'équation de cette particule est

) = m} ;"",

(20) | <d£2> Z(

)55
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et les trajectoires orthogonales représentent des mouvements s’effectuant avec
une vitesse inférieure a c.
Or il est facile de ramener ’équation (18) & la forme O, ¥ =o; pour cela,

on peut employer soit le procédé de M. de Broglie, soit le procédé "
de M. De Donder.

Dans le procédé de M. de Broglie, on pose
Y =a(x,y,s) et (E étant une énergie donnée),
ce qui signifie que ¢ est une solution particuliére de I'équation
o L0
Y OERT T

I’équation (18) prend alors la forme

2 4
(21) A“%M—AKIIZO avec A“':"f,'l]a(;f’

I'équation de la variété caractéristique de I’équation (21) s’écrit

o 0Q mic? 1 [0Q\? o0\
(22) M= (-5 )| 2 (5) -2 (G) =

£, ¥, 5

qui, pour Q = E¢t—Q,(z, y, 3), donne I'équation de Jacobi

1/ 0Q)? A
—<W> -2 (ai) = M e

EREES

Dans I'équation de propagation (21), il faut tenir compte de la dispersion,
car la vitesse de propagation des ondes au lieu d’étre c est égale a

C c
V= "=
7 mict R
Vi
: : . - m?c? .
par analogie avec l'optique géométrique 1'on pose n:\/l— § e qui

signifie que I'indice de réfraction varie avec la fréquence.
M. De Donder considére I’espace & quatre dimensions plongé dans un espace
a cinq dimensions, ce qui conduit a poser
9%y s .
—_— =Yg
(().Z‘o )2 Y4 0 4‘?
et si l’on pose

Q(x', 2, &8, xt, 20) = Qt, 2t 1t b)) — myex?,

on retrouve bien I'équation de Jacobi.
La théorie de M. De Donder permet de former I’équation relativiste des
particules ponctuelles sans spin, en tenant compte du champ électromagnétique
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extérieur; il est donc naturel d’envisager une variété a cinq dimensions, car
I'on sait depuis un Mémoire célébre de MM. Einstein et Mayer qu'une telle
variété permet de faire la théorie unitaire de la gravitation et de 1'électricité.
On peut alors partir de I’expression
A
ds‘z:Z Ga3 dz* dab + e®y da* dad+ e @5 dad dad + 2 @, Oy (dao) — (dao)?

1

(a0, 3=1,2,3,4)

X
(les gus sont les potentiels d’Einstein, et les ®, les potentiels du champ électro-
magnétique).
Si nous supposons
(),.’,";_’1 _ Jb, . ()(1):-; -
0‘1/‘" o0, '(-).F == .(’.Z'_O =0,

nous avons

[y=T0;=I,;=I,=I;=0, I, =edF,, I, =edF,,, o

355

on retrouve, ainsi que nous l'avons déja signalé ('), les équations de

MM. Einstein-Mayer

(P\,,z—— ig,,,l{) — (Fk,,— 2é’quk1F“> =0,

0, —
Fri =1 2 (V= gFm)=o.
k \/_ g dx,‘ (\’ & )
M. De Donder écrit alors 'équation fondamentale de la mécanique ondu-
latoire sous la forme

du . Jd*u e 00/ —g du
(23) D,u+2e®“m+(a 01@“_1)(dx0)2+ = Py T =
ey '
(E_ moc‘2>’
C e e . , . Iy — g®°
si I'on tient compte de la relation complémentaire de Maxwell — e =0,
il vient
NPu . u
(24) D’u+zaq’lm+(5“b“q’a—lwzo.

Lesondes Q(x', x*, 2*, x*; x° ) compatibles avec les équations (23), (24) sont

of 0 0Q aQ g9 02\ _
(25) g“p<w+5®a m) <()7§ '4-'8(1)[-17‘;6)—(%‘;) =0,

si I’on pose
Q= 2, 2, 25 2°) = Q(2, 2, &, 2*) — meca’,

(*) C. R. Acad. Sc., 208, 1939, p. 1975.
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on obtient

. [ 90 ¢ 0Q e R
(26) ) B <¢);v" - (l)l) (5—3 . Z ([)3> — mlc?
équation analogue & celle de Jacobi écrite plus haut, a la condition
e remplacer — par o— — -®,.
Silon remplace Q par S, nous aurons N
S e i8] .

(27) &8 (g — 1 0:) (7 — ) — mier=o,

Posons S = klog{ (4 étant une constante), nous obtenons

J

(28) &8 (/. ())’)1 — - (l 14&) kl- L)qi — - q"-' ‘J> —myetdio= o

La forie (28) est équivalente a la forme

J(q;):/f'—’glﬁ(;)lpa _dd_l.[/ﬂ_ —a2k - (D"L‘Jd)" + [g(l"”il)u——/)z,ﬁ(:ZJLP‘J:U;

I’équation d’ondes est alors donnée par le principe variationnel

1 oV =z2iv]|

g b 29

, V— g oW

-d ‘,
ce qui1 donne

e 1 d(y—gd*)

(29) /.E]q./——Q/r dw(m k—"\/_——é S+ [ oD, —m? c-Jq,:.)
ou
. seg, X 1e 1 (0 g0¥) R
(30) Ot =7V ko= o (| i [§=o.

Sil'on pose & — ﬁ—i, on obtient, avec M. De Donder, I’équation

(31) [:I__,g!;_é./l_t. € () (2L'> [411)"([) —mjc? ll!J
L ¢
20m e 1 ()([)z\/, 3
— - b=o.
h o« Vo2 T ozt
Tueorime. — L'équation (29) peut s'écrire
e ¢ v
T _}ET./ bad 1

I 9 .- . 3
(32) Doq/——/;l-m()('-’y:o si b=e

En effet reprenons l’équation

I() = x@( qaq,) (/.%—4 qv;,r,b)—mgczqﬂ:o.

Journ. de Math., tome XXI. — Fasc. 1, 1943. 9
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Nous avons
0 _ A el oy weg
oz% ¢ [axz“/céd’“q’J’
d'ou
. qu e _ -Z(E j' Dy da= d{p
kdxz—zd)aq}-—e k()x“
et

J(@) =0, — mic{=o;
grace au principe variationnel

V=P
—s % "

on obtient I'équation

. h
ce qui donne, pour k= —, '
(33) Dz‘;—(zlg)gmﬁcﬂ@:b.

Ceci n'est d’ailleurs pas sans analogie avec la théorie des espaces tordus de
la mécanique ondulatoire considérée par M. Roubaud-Valette.

Ce résultat va nous permetire de montrer que, méme en tenant compte du
champ électromagnétique, 1'équation de Jacobi peut s’écrire sous la forme

& (Y
D,S’— (%) = 0.

S=klogy e S=klogy,

En effet

par conséquent
S=S— fftbadx“.
(4

Mais, comme nous I'avons déja dit, pour pouvoir assimiler les bicaractéris-
tiques aux trajectoires, il faut ramener 1’équation d’ondes a la forme 0O ,u=o;
si nous posons

' nous aurons
(34) 0:F — g =
et I’équation de la variété caractéristique prendra la forme
(35) - as— (&)=
ou, si nous posons S'=S(z*', z*, @, z*) — m,cz’,

| (35) ' 0:S = m}c.
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On peut alors démontrer, avec M. Gehéniau, que les Lrajectoires des points
massiques et électromagnétiques sont les lignes transversales a la sur-
face 2 = const.

Remarquons que, dans un systéme de coordonnées normales, ou isothermes
suivant I'expression de M. Chazy, et grice a la relation complémentaire
de Maxwell, le procédé variationnel est équivalent 4 la méthode des opérateurs.

Partons de I’équation (26)

,;"15(;‘31 — Ed)l) (giz — (l)g) -mict=o.

Si nous posons

0@ k9 dsz__/ )
Pa=om=oma DT am T o ans
et si l'on tient compte de la relation de Maxwell W_gb_, I’équation (31)
T o ’
est identique a
7} e h 0 e v o ly
(37) [.gB(zrz arz—;“’“><mm—z"’@>—’"°"_]‘P—"’

P

2% 0!

puisque, dans un tel systéme, O, = g** 5

\ . . . ) P .
De méme, si I'on associe & la quantité m,c l'opérateur — — —— et sil'on
2Tl 0x°

tient compte de la relation S(I)az m,ce®,, I'équation (24) est identique-a

0 h 0
(38) [gzp<2m P +°®“2:T.i W)

(PO a0 AR P
ori 028 | CPoni 0ad ami) oz | T T

En particulier, lorsque le ds? est galiléen, on retrouve ’équation classique
de la mécanique ondulatoire dans le cadre de la relativité restreinte.

Nous avons consacré, a 'intégration de M. De Donder, quatre Notes aux
Comptes rendus de I’Académie des Sciences de Paris, et un Mémoire sur cette
question est en préparation.

Avant de terminer, nous voudrions faire remarquer que la méthode de Jacobi
permet de définir trés simplement la notion d’intégrale premiére en mécanique
ondulatoire.

Reprenons I’équation (17)

0
0

-+ ¥ =o0.

On sait alors (Goursar, Legons sur l'intégration des équations aux dérivées
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partielles du premier ordre), que I'intégration de cette équation se raméne a celle de

dz*  0x dP, aaC

a9 dp,, dV T 9a®
et que toute intégrale A de ce systéme doit vérifier la relation

oA

(39) )

+— (3, \):==o,

Nous dirons alors que (A) est une intégrale premiére de la mécanique ondu-
latoire, si elle satisfait a I'équation (3g). Cette définition est équivalente a celle
de M. Louis de Broglie, malgré la différence de forme; nous expliquerons ceci

dans un prochain Mémoire consacré a lintégration des équations
de M. De Donder.

Remarquons que notre méthode est aussi valable dans le cas dela mécanique
ondulatoire des particules douées de spin. Car 'on passe de la mécanique
ondulatoire des particules sans spin a celles des particules douées en spin en
linéarisant le second paramétre différentiel de Lamé-Beltrami, ce qui donne,
a la place d'une équation du second ordre, un systéme d’équations du premier
ordre, en sorte que 'équation de la variété caractéristique est

0:S=o.

Ainsi, M. Racah a démontré, en s’appuyant sur une méthode indiquée
par M. Levi-Civita, que la surface de la variété caractéristique de I’équation
de Dirac est donnée par I'équation

I 5 2 2 4
0,L= g PP} - P, —Pi=0.
Nous avons (') établi les équations des caractéristiques des équations du

photon de M: Louis de Broglie. Nous avons alors démontré que la variété
caractéristique des équations du premier groupe

100,  [/&,+ @)\ J Ay @\ J . A+ @3\ 0
c o T | 2 1)7'+( 2 av 2 dz

A - B,
+y_:}.0(~(—(' ‘_'l ¢ '>]d'1/;

2

est
0,Q@=~P!— P! —P: —P:=—o.

2

Mais le méme calcul appliqué au second groupe des équations du photon
A — @3\ 0 Ay— B3y d (A — @By 9 R A, — By —
(5522 + (552)2 - (452)2 (255

(%) C. R. Acad. Sc., 208, 1939, p. 883.
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Notk. — Je suis heureux de pouvoir remercier M. le professeur De Donder
pour les remarques que l'illustre géométre de Bruxelles a bien voulu nous
adresser dans une lettre récenle.

M. De Donder me fait remarquer que si I’on pose

S=rklogW,
- I'application du principe variationnel

r V=g «’J(%]

- \/__é; o
ou
. MW o oW e
S0 =k g I oW S [%mw,‘—mgc?]we:o,

a

ne donne pas exactement l'équation (29); cela tient & ce que le terme
e v . R . cpe .
2/:2 d’“'&}?ﬁ’ disparait au cours du calcul. Ceci montre la différence qui oppose
la méthode de M. De Donder 4 la méthode de M. Schrodinger.
" Le théoréme énoncé est exact, car si 'on part de I’équation (30); en posant

j‘l’dta

\F—.PAL [Iw

et si I'on remarque que

ow 1e Be ;Hf‘l’ 1111 1 -fq) dre QW

9k (-:q)l oz’
et que
) - o ‘ ,_q
O = e | v Ren e/ |
1 Py dxa o
+v_ "d_ﬁ.[\/ gg“@el f ().’171] '

aprés un calcul assez long, I'on en déduit que

. 2e ov, 1 s s 1e 1 d‘I)av——g .
DQIP'—"ZZ,(DJ"(TTZ—FI{__[ (D“(l) —ﬂl C ]ll C‘ _—g —a?l——q
=0T EIQ mictW = o;

or la formule

donne




