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Le dualisme « ()ndes—corpuscules » et la démonstration de l’identité

entre le principe de Fermat et le principe de .Maupertuis;

PAR Gnoncns BIBEN.

I. —— Introduction.

La théorie du champ massique et électromagnétique, malgré sa perfection
et sa cohérence, n’est qu’une approximation. Adoptant le point de vue _de
M. Louis de Broglie, cette théorie doit être considérée comme étant l’approxi—
mation de l’optique géométrique par rapport à l’optique ondulatoire.

En nous plaçant dans le cadre de la mécanique ondulatoire des particules
sans spin, nous verrons que les trajectoires du champ massique et électro—
magnétique sont aux ondes, ce que sont les lignes bicaractéristiques aux variétés
caractéristiquesd’une équation linéaire aux dérivées partielles du second ordre
que nous appellerons équation d’0ndes.

Nous écrirons « l’équation d‘ondes » sous la forme invariante donnée
par MM. Cotton et Levi-Civita

du
()E1 +Cu=o. (I) J(u)=Ü,u—æ—B°‘

D2u est le second paramètre différentiel de Beltrami-Lamé
[ d ——

13 du

\/__—9 d.r°‘ (‘ _ ‘Ji\ ‘

dœ3>
  

(nous n’avons pas écrit les signes sommatoires pour simplifier l’écriture)
relatif à un espace de Riemann défini par la métrique

dsï=Alrjdæïdxiï (oc,fi=1,2,….,n).

? est le discriminant de la forme quadratique du (ls-2, de plus nous ferons l’hypo—
thèse essentielle que le ds2 a le caractère hyperbolique normal, c’est-à—dire
qu’il comprend un carré positif et (n—1) carrés négatifs. Nous avons
pris J—p parce que dans nos applications le nombre n sera pair.

Les ondes Q(æ', a:‘—’, . . ., x”), compatibles avec l’équation (1), sont, comme
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ou le sait, données par la forme quadratique du second degré
09 09

().?!°C .ôîî : 0.

La surface définie par l’équation (z) est un conoïde qui devient un cône
lorsque les coefficients A“? sont constants. On sait qu’à l’intérieur de ce conoïde
le problème de Cauchy est correctement posé, c’est-à—dire qu’il n’admet qu’une
solution. Sur la surface, l’équation (i), en général, n’a pas de solution, ou au
contraire elle en admet plusieurs. Les caractéristiquessont en fait des « Ondes »
si l’on admet les conceptions d’Hugoniot, c’est-à—dire comme étant la surface
de contact entre deux solutions.

Les lignes bicaractéristiques de M. Hadamard s’écrivent, en posant
09

Pa Æ‘î,
rlæ°‘ _ dPa _(3)

_1_dÀ__ _…£ ()__\ _d0.
.; ôPau ‘> 0—15‘

En posant A, : âA, on écrit (3) sous la forme hamiltonienne

([, E’2î _ e\_. ”& … aA.)
. d‘) _ av.’ «10

— _ ;)”fi'
En posant

dæ* _ ,_1 dP. _ . aA. aA._c3 ——()1W“““ ’ Î(T_”°” daè“_"“' dp.“ \  
et, en opérant la transformation de Legendre,

AL=€21ÆI+Q“I)1— A..

Après un calcul élémentaire (‘), les équations (4) s’écrivent sous la forme
lagrangienne -

(5 dL_d àL __ ôL d Æ)_Û)
@@ Æîfi>—°’ W“äê ap.. —'

Ce sont les équations de la dynamique des points libres. En général, la
forme A étant indépendante des Pa, l’on a Q“=o et l’on obtient avec
M. De Donder

ôL d àL dæ°‘ .I _ __ 
De l’équation (3), on tire

dx“ 1 dA
d—e— & «$;—“ppt 

.… C.«R. Acad. Sc.—"208, p- 1975.
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en multipliant par Aug, on trouve

 
d :!

Auf} —îg— __ P_3,

d’où l’on déduit le théorème de M. De Donder
d “ d 3(2!) Aa$PŒP3=A13 (% % =(),

c’est-à-dire que les bicaractéristiquessont des lignes de longueur nulle (de“= o).
Les deux formes (2) et (2’) sont équivalentes, mais l’une est écrite en

coordonnées tangentielles tandis que l’autre est écrite en coordonnées
ponctuelles.

adx , . .Posons % : «)“, et nous ecr1rons (2’) sous la forme

ä€(æ°‘, xp, ou“, m5) :
â—A13w3‘œ5:

ôäC
ôw°‘

degré 2 par rapport aux variables w“, d’après le théorème d’Euler
 Remarquons que =Aa3œfi= PB° La forme % étant homogène et de

Pan)“: 2ä€.

Par un calcul élémentaire, les équations (4) prennent la forme
d

(05€
021€

d_0 aîî _Ü_
En efl'ectuant la transformation de Legendre H : Paw°‘— %, il vient

(4’) dæ’— "H d_P°‘__Ë.
ÎlÔ—

_ fil)—z, d‘) _
âæ°‘

Il. — Démonstration de l’identité entre le principe de Fermat
et celui de Maupertuis.

_

Supposons que nous sachions intégrer les équations (4’), alors on en
tirerait ac“, Pa en fonction de 6 et de 2n constantes a‘rbitraires; c’est—à-d1re

H(æ°‘, Pa) : H(0, B… . . .).

En difi‘érentiant par rapport à l’une des constantes, B. par exemple, on aurait
«… _ (…

«1æ_*+ 35 95
â_Bf— 55,3 081 ara dB,

et, en tenant compte des équations (4’),
au_ dPaôx“ d£“ü__i< ôæ°‘

+_a_<P @)EE .—_ Te ÎBÎ + ÎlÎ dB, _
de “ an, «9131

“ d0
Journ. de Math., tome XXI. — Fasc. 1, 1943. _
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or nous savons que Pam“: 256, donc
ô(H—2£JC)_ d P 037“

dB, _ _d0 MB,)“
          256 — H : 56, il vient en intégrant

5 SdO_
'

d0 "æa'0( )
ô—B,fo Tiafoo

"C
—[P“âB—.J.’

en prenant pour limite d’intégration. deux points A et B situés sur une ligne
bicaractéristique, il vient

 
a “ a “ dac ôæ°‘ "

' — f = —— :: —— _ .(ô) dB.f,.
Sd) ml 5ch [W en,].

- .. 0L’on peut poser sans amb1gu1té fia“
_—o et nous obtenons

B B '

dac “( = ’ = “(7)
6fA

Sd) 3[ {ltd6 [a… a:
_\

 
 

B

L’intégrale] SdG n’est pas autre chose que l’action « maupertuisienne »
A

B

quant à l’intégrale Bf 216 (l‘O; elle exprime, selon M. De Donder, le théorème
A

de Fermat généralisé.
En effet, en vertu de la relation

3—æî_—-
Pa=——03et du fait que ä€= 0, il vient

(8) a[sao:_a[acd0= : a[dg=o.
En conclusion : parmi tous les chemins possibles pour aller du point A au

point B, les rayons de l’onde 0, aussi bien que les trajectoires du corpuscule
suivent les lignes extrémales définies par les équations lagrangiennes

021€ d 0216(9)
.

a; _
(70 w) ““

, Réciproqnement on peut démontrer que si les trajectoires du corpuscule
satisfont aux équations (9), il y aura identité entre le principe de Maupertuis
et le principe de Fermat. Dans le dualisme Ondes—corpuscules le caractère ondu—
latoire est représenté par la surface caractéristique, tandis que le caractère
corpusculaire en est donné par les lignes bicaractéristiques.

III. — Sur les différentes formes du principe de moindre action.

Considérons avec M. Hadamitrd une forme quadratique quelconque
G(æ‘, ...,‘d”,dæ‘, ...,dæ"):2A«gdæ“dæfi (G=2£IC),
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f\/G(:I:‘, ...,.L‘",d.L", .. .,.rlz")=f\/G<(ZT—_”---e
dd——e—>dÔ

représente la longueur d’un arc de courbe. Les lignes géodésiques sont
définies par

afv G<—d_0,….,d9",)do

dont l’équation différentielle est

a__Æ d
<a_@>

:…_ _”
ôœ°‘().!r" d‘)

l’intégrale 
Nous avons vu que les équations lagrangiennes des lignes bicaractéristiques

étaient (au facteur à près)

ao d ac __
. 0î3 _

216 %
Comme le remarque M. Hadamard « ces deux formes (qui correspondent

à deux formes du principe de moindre action} ne sont pas exactement équi—
valentes, mais le deviennent moyennant une condition ». En effet

m/ë d<()\/ä>_l ao d(1 _ag>_fl():L'“ _
ÜÔ dœ°‘ \/îî ()î _ (ÏÔ 2\/ë ôœ°‘

Comme ces équations sont inchangéespar le changement de 0 en <p(0), si l’on
suppose que 0 soit choisi de manière à ce que G: const, alors dans ces condi- tions le dénominateur peut sortir du signe de difl‘érentiation et l’on obtient

‘dG ci âG __
0.171

_
ÏlÔ <i)cî‘ _

_

I
2 \/Ê

ô_‘_\/C_
ô_Ç/G>=

1

071 —â—JÔ 'ôû)l 2T_/G_

Dans ces conditions on peut écrire
B |: l:

(…) af Sd0=ôf Æd0=âf d£2=o.
. A A A

Dans le cas particulier des systèmes stationnaires, c’est-à—dire si nous sup-
posons que la forme JC ne dépend pas explicitement de la variable a:”, les
équations de Lagrange donnent

(! 021€ —0as (w) — ,
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d’où l’on conclut que—Lest un invariant le long de la ligne qui jointle point A
au point B, c ’est-à-direœque ((MC) : (È) .do.)"

A
dû)"

|;

Sinouslaissonslesextrémitésfixes,3x'=...=3æ" '—oet puisque
Il ll Il

(…) af sae=af acd6=ôf {152
A

à:}c da’ , _ \ “_(Îd">n
(3.1' )n— <—Ù%>_\(o.r"u=(0.1'"…— (em-"M:

ô£ dmn_

La variable x" étant la variable temporelle, on obtient la formule classique

(12) af“.sdu=a[".\

 
);‘JC

11—17)

|;

rit.

Si l’on pose G = 2.(T — U) (T étant l’énergie cinétique et U l’énergie poten—
tielle), on peut écrire B B

(13) 8] \/È(T—U)\/A,—,,dæ’dæ"=ôf
(Il (i,/r:1,...,n—1).

A .\

IV. — Les diverses formes de l’équation de Jacobi.

Notre fonction S n’est autre que la fonction de Jacobi, qui, à notre point
de vue, coïncide avec la fonction Q. Fn écrivant l’intégrale d’action sous la
forme classique
….) S=f[P…L 561dO=fP,dæî-fäfdû,
d’où l’on tire -

()S , ()S
Pl.—- ô?’ J£ ___-— %.

De sorte que l’équation de la variété caractéristique est équivalente à
l’équation

. 65 ôS““ -"’Æ aæ.8
=“,

car il faut tenir com te du fait ue äC——_ —— @ = 0P q 09 '

La fbrme sous laquelle nous écrivons l’équation de Jacobi peut choquer
à priori, mais nous allons montrer que notre point de vue est très naturel et
très légitime, si l’on tient compte du caractère spécial que jouent nos formes
quadratiques (A), (H) et (96) qui sont identiquement nulles.

Considérons, avec M. Mieghem, l’expression
'

' L2(æ, dx)=ds=‘=A13dæadæfi,
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1

\ ' d£d’ou l’on tire, en posant u“= dç
, 

lÊt.1ï, (l.L‘) : .—\1:;ltllt3= u1ua= A“? au u3= ];
en posant ua= Pa et u°‘= ce“, on trouve

S=fP;dx“—fädds, JC=A13w“œl‘=l;
on trouire alors

05 _ 08=—: JC=——=13‘
Ô.Z‘°‘ ()s ;

et l’équation de Jacobi prend la forme
05 ()S

A 13 _î().v“ 0.19
 :]

Seulement l’équation de Jacobi, écrite sous cette forme présente, le grave
défaut de ne pas être homogène. C’est pour remédier à ce défaut que
M. De Donder introduit au lieu de la fonction 5 la fonction

S=S—.r0

et il obtient la forme identique à la nôtre '
05 as ’

aS ?
ÿ

. aë _dËÎ)Ë_ Ü :” P…sque Ü——1.8

Pour obtenir l’équation d’onde, appliquons le procédé de M. De Donder
en Posant

J(u) ———J.\lfi_ô_u
()U

dæ°‘ÎæÎ=o’ 
lôl\/V:ÂI(U)]

\/— 9 du
M. Louis de Broglie m’a fait remarquer que pour pouvoir assimiler les

bicaractéristiques aux trajectoires, il faut ramener l’équation d’onde à la
forme D 2u = o. ‘

M. De Denderappelle fonction d’onde absolue, toute fonction Q(æ‘ ,æ2, . . .,æ”)
qui satisfait identiquement à l’équation d’ondes; l’équation Q=o définira
une onde absolue. Par contre toute fonction Q(æ', a:", . . ., x”), qui satisfait
à l’équation d’ondes en vertu de Q = o, définira une onde relative.

Supposons maintenant que l’équation J(u) ne soit pas linéaire, dans ce cas
il faudrait écrire, à la place de l’équation (z), l’équation

.\(.L‘“, 52, Pa): 0,

grâce à ce principe variationne = 0, nous obtiendrons El 2u = o.

et les lignes bicaractéristiques de M. Hadamard s’écriraient
dx“ dPa dQ
ÔA, : ()A| : " dA1
ap. —ô—xî 21ÊP“

: d0. (3*)  
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Dans le cas ou 1 equation J(u) est lmemre % = 0, donc (l.r°‘ (lP1_(I£2_ ___—___ , — l()A. __ ():\1 — «)
—d)’

Pda
_ ()!“

d’où l’on t1re
(152

( 16)
d—O‘

.: ().

De (3) et de(1ô) l'on déduit les deux théorèmes suivants dus à M. De Donder :

a. Si Q est une fonction d’onde absolue, cette fonction est invariante le long
de tout rayon.

1). Si 0 est une fonction d’onde relative, cette fonction est un invariant relatif
le long de tout rayon.

Soit Q(æ°‘, 0) E 0 une fonction d’onde. On aura, en vertu de (16),

_ asz_osz an (m _ an P _09 ,…) Æ‘Œ+ËÎIÎ—Œ+ '--;—o+‘““”
L’équation(17) a été appelée par M. Mieghem la formejacobiennede l’équa—

tion d’onde; en faitelle est identique à notre équation (15) puisque le fait
que 56 soit identiquement nulle entraîne aussi 75 = 0.

V. —— Les différentes théories de la mécanique ondulatoîre.

Nous avons dit que, pour—pouvoir assimiler les bicaractéristiquesaux trajec-
toires, il faut ramener l’équation d’ondes à la forme D u=o. Pour cela
considérons l’éequation fondamentale de la mécanique ondulatoire pseudo-
euclidienne, en l’absence de champ

la_î_t
(()—lq}

aw asc):—fimäl__ __ _ =.‘2 ‘-’.—z,b .=___(’8)
,--z :? «).vï «);! «):? /' ‘“ “”““ (" h )’

l’équation correspondantede la variété caractéristique sera

(19) '

(—2<î—Î>l—Z <Z—Î)Ë=o.
av,f. z

Cette équation représente les surfaces d’ondes d’une propagation avec la
vitesse c, et les lignes bicaractéristiques représentent des mouvements avec la
vitesse 0. Mais ces trajectoires ne sont pas celles dont la masse propre m0# 0,
car l‘équation de cette particule est

;“): mä é”,(20)
, Ë2<â£_tîl>_2(3.

‘”:3s5
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et les trajectoires orthogonales représentent des mouvements s’effectuantavec
une vitesse inférieure à 0.

Or il est facile de ramener l’équation (18) ‘a la forme DJF= 0; pour cela,
on peut employer soit le procédé de M. de Broglie, soit le procédé '

de M. De Donder.
Dans le procédé de'M. de Broglie, on pose

t.]; : a(æ,y, :) e7—E‘ (E étant une énergie donnée),

ce qui signifie que + est une solution particulièrede l’équation
‘ __ 1 ()3'lbLlJ_ —,— ——

' y_lt‘£ ()!2’

l’équation (18) prend alors la forme  ? 4—

<…) AM%‘—’—ÎP—A+=o wce A”=l<"}ÎÎ»
l’équation de la variété caractéristique de l’équation (21 ) s’écrit

, «in an __ mât—2 1 on 09 L
(22) A pàæa d_æ{3_<l__E'—’ >l_ä<Î> l_2 (55) —0’

-v, _,v', :
 

qui, pour Q = Et — Q,(æ, y, 2), donne l’équation de Jacobi
1 09 ? (39. 2 ,,

_2

(l—2<Ë> —2 <a—â—g—>
=moc .

,-».,_,a

Dans l’équation de propagation (21), il faut tenir compte de la dispersion,
car la vitesse de propagation des ondes au lieu d’être c est égale à

 (} (J
V = —= = _!

./ mâc2 "
v 1— —

. . , , . m"c2 .par analogie avec l’optique geometrxque l’on pose n=(/1— Ê’
, ce qui

signifie que l’indice de réfraction varie avec la fréquence.
M. De Donder considère l’espace à quatre dimensionsplongé dans un espace

_

à cinq dimensions, ce qui conduit à poser

0.2? .) —) :)W __ [(,-moe LP,

et Si l’on pose
9(_.L.l, 333, J)”, xl, a;°): $Z(£Iï’, J.;), .13“, xt) _ ”luc—wo,

on retrouve bien l’équation de Jacobi.
La théorie de M. De Donder permet de former l’équation relativiste des

particules ponctuelles sans spin, en tenant compte du champélectromagnétique
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extérieur; il est donc naturel d’envisager une variété à cinq dimensions, car
l’on sait depuis un Mémoire célèbre de MM. Einstein et Mayer qu’une telle
variété permet de faire la théorie unitaire de la gravitation et de l’électricité.

On peut alors partir de l’expression
Â

ds‘*=2 gag dx“ dæl3 + E‘Da da:al dæ°+ 803 dæl$ dæ°—l— E'-"Da ®3(dæ° )2— (dæ°)‘—’

(“75:192’334)
&

(les 8213 sont les potentiels d’Einstein, et les (I),‘ les potentiels du champ électro—
magnétique).

Si nous supposons
()g‘;g 01111 ()d’3
d_7;"

=(), ;)îä : .d_‘zti)l
: , 

nous avons

P1i5=r225=r335=r455=1‘555=0> Pi5=52®1F2l7 riz.=°2dflFîîy - --i

on retrouve, ainsi que nous l’avons déjà signalé (‘), les équations de
MM. Einstein-Mayer

(Br/l— âg,,[l‘> — <I:kq_â rf]pFklF/d> =(),

‘ 'k _;l /_ l)‘ Ik _FI ’k— \/__g dæ‘ <y OF, )_0'

M. De Dender écrit alors l’équation fondamentale de la mécanique ondu-
latoire sous la forme

(Pu .

2 : ()‘3u & d‘D°‘\/—g du
æ0+(€® Œd_l)(âæ°)2+\f—_ér ()æx

d—æ—Û-

(23) Daü+2€‘blm—
, _ € .

<E— moc‘l>’

  
. . . , _

. () /_ ,, a
Si l’on t1ent compte de la relation complementaire de Maxwell -—VÛŒ+Œ

= 0,
il vient

_ 1
()‘-’u

2 a _ _(Ïl _(24) D2U»+26® _dÆzdæo+(sœ (I)°C 1(dæ0)2_0.

Les ondes Q(æ‘ , æ2, a:“, œ" ; w” ) compatibles avec les équations(23), (24) sont

, 09 on an 052 on 2_ _(25) g“p(ôxa +E‘D; @) (()—J}? --l—E‘Dfiæz>— (%;) ...l),

si l’on pose

 
Q(æ‘, x2, æ“, ac"; a:") =ë(æfi æ2, x”, x‘) — mocx", 

(‘) C. R. Acad. Sc., 208, 1939, p. 1975.
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on obtient  —

_ as“z ,, )-.
(26) . é'x5

<d:v°‘
_

imac) <â——,$
——

Ê_‘Dg) _— mäc‘-’,

équation analogue à celle de Jacobi écrite plus haut, à la condition
e remp acer——()æ,, par—de:“

—
Z—

. «.

Si l’on remplace?) par 5, nous aurons ‘
,, 05 \e 05 e ,, _)

_

(27)
â‘““<â;3

— z_®a) (}}—£?
—

c d’,3>
—— nage-:: o.

Posons S : /ulog1{» (I: étant une constante), nous obtenons
.!(28) 815 (A _(;——).jlc— '

c_…114'>Kk()ŒL)"li: ——

:—:‘l'u '!J>
—— I)lâr:"'LPî ii 1).

La forme (28) est équivalente à la forme

J(41): k2gtfi
Ô(.)æHb_—°‘ dô.Ï$

_ 2kec(D1V_(%.—ï + {Ë‘Dï‘l’a—Iîlâf:zJufï= o;

l’éequati0n d’ondes est alors donnée par le principe variationnel

  
  

— . 1 o[y/———JW]: _‘Î.— : U,
.

_
v—g ‘

0

ce qui donne
,,

'

c ou e 1 a(v_J«pa) ’e‘l .,
(29) k'Ûgîll—2këtbï()æ'“ —/f-Ù ñ—Îfg—L—tP—l—lc—2‘Dlml—môc-Jtpzo
ou0w()1]1 1 e 1 (àV——g‘D“,) c'3 _ __(00) D‘: kP—— Î‘C WTŒ1_ÆE\Îg_dæ_—1_IJ +/\—__ [—__;

(D1 @a—m;,c Lil—.

Si 1’on pose [c..—__,_—Tî—, on obtient, avec M. De Donder, l’équation

(31) Ü2LIlJ—é—lî—Tîîllflj—‘++(2——;‘>2 [—Œ“D;
«m,;

002—th

_ _Z_ŒÈ ’ ()([11\/_hrdH=U.
/L ( \/_ 3

():L‘“

THÉORÈME. — L’équation (29)peut s’écrire

(32) El
” ‘ 2 ....T —0 si Œ—c—iË.Ï‘P«‘”"12\l}_7£é"lol Y— |»—
I

En efiet reprenons l’équation ' ()dJ @ ()LfJ (:
2

,) _,

J(+)=gfi(\k o.£-1
_

L"’“‘l’> (là—$3 # Cow) _ nt,,c-ç];-=o.

Journ. de Math., tome XXI. — Fasc. 1, 1943. 9
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J£!) _ —’—k%f«bad.w ,)4, , c

—

BTcî—e [aæz
_

k &"’°‘"J’
d’où

_ a _ -‘-_/ «ly…m
k—dÆdx“ “”'— e
kä—æx

  

et
J<@>=k2üip—+=

grâce au principe variationnel
' !_=ô[v——gJ(q»)l_

on obtient l’équation
(

°

'
. d /_ _ /L

ce qui onne, pour t _ ErÎi’
2i7t(33)

Dz£Î-<—Il—>îmâcîë=o.

Ceci n’est d’ailleurs pas sans analogie avec la théorie des espaces tordus de
la mécanique ondulatoire considéréepar M. Roubaud-Valette.

Ce résultat va nous permettre de montrer que, même en tenant compte du
_

champ électromagnétique, l’équation de Jacobi peut s’écrire sous la forme
_, a? "2

EhS _ (gg) =O.

Ë=klogdt et S=klog«.ÿ,

Ë=s —Ëaf‘D dæ=.

Mais, comme nous l’avons déjà dit, pour pouvoir assimiler les bicaractéris—
tiques aux trajectoires, il faut ramener l’équation d’ondes à la forme D 2 u = 0;
si nous posons

d"$__2i1r 2
._, 2—

(0.760) ““ T "’°° ’”
‘ nous aurons
(34 .

_ ô"l' _
> M _ («W —

En effet

par Conséquent

et l’équation de la variété caractéristiqueprendra la forme
'

« _ as' *
-

' I __ _ __(35) D! S
<aæ0>

—— 0)

ou, si nous posons Ë’=Ë(æ‘ , a:“, a:", m‘) — mocæ",
;

(36) ' DÆ=mâc”.
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On peut alors démontrer, avec M. Gehéniau, que les trajectoires des peints

massiques et électromagnétiques sont les lignes transversales à la sur—
face ac°= const.

Remarquons que, dans un système de coordonnées normales, ou isothermes
suivant l’expression de M. Chazy, et grâce à la relation complémentaire
de Maxwell, le procédé 'variationnelest équivalent à la méthode des opérateurs.

Partons de l’équation (26)

g°‘3<£î —— î®,> (gi—î
—

£_——((Dg>-mäc"= o. 
Si nous posons

09 IL & d£2 /: (?

P°‘““'àÏiî—EËË’ P3—m7—77;
' 1 ' °

’

()\/_ 2”®°‘ “ '
et s1l on t1ent compte de la relation de Maxwell ———b—— = o 1 equat10n (31)().L‘°‘ ’

est identique à

à 6 h à e _,

1 _ _ __ _ _ __ _ - .2 _(37) l_gp<2r—Ê d_æ1 ed)°‘><27ridæ.B c(Dl’> m0(,
ill—O’

puisque, dans un tel système, Do_=£lJ g°‘«8 (—,—%-
7 r a 9De même, si l’on associe à la quantité moe loperateur— 72.(,æ—_—T,, et sil on

tientcom te dela relation£(b,=m,ce®, l’é nation 24 est 1dent1 ue'àP c , q q

0 lt 0
? 5 — —(38) [g (2Ttl—ôæ°‘ + (D“

2T:i dac")
h à h d h 2 02

5 _ o=
><(2—'fiz ôÎl" + (D‘_2m 67“) <27ri> dæ°]‘

En particulier, lorsque le ds2 est galiléen, on retrouve l’équation classique
de la mécanique ondulatoire dans le cadre de la relativité restreinte.

Nous avons consacré, à l’intégration de M. De Donder, quatre Notes aux
Comptes rendus de l’Académie des Sciences de Paris, et un Mémoire sur cette
question est en préparation. _

Avant de terminer,nous voudrions faire remarquerque la méthode de Jacob1
permet de définir très simplement la notion d’intégrale première en mécanique
ondulatoire.

Reprenons l’éequation (17)
(_)S_Z

()0 + ‘IlC=O.

On sait alors (Gouasn, Leçons sur [’zntéoratzon des équatzons auæ dérwées
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partiellesdupremierordre), que l’intégration de cette équation se ramène à celle de

dæ°‘ _ «mc dPa dac
770”

' "
();—71’ TO ’— —

îÎŒ

et que toute intégrale A de ce système doit vérifier la relation
().\

(39) (… —i— (JC, \) :: «>,

Nous dirons alors que (A) est une intégrale première de la mécanique ondu—
latoire, si elle satisfait à l’équation (39). Cette définition est équivalente à celle
de M. Louis de Broglie, malgré la différence de forme; nous expliquerons ceci
dans un prochain Mémoire consacré à l’intégration des équations
de M. De Donder.

Remarquonsque notre méthode est aussi valable dans le cas de la mécanique
ondulatoire des particules douées de spin. Car l’on passe de la mécanique
ondulatoire des particules sans spin à celles des particules douées en spin en
linéarisant le second paramètre différentiel de Lamé-Beltrami, ce qui donne,
à la place d’une équation du second ordre, un système d’équations du premier
ordre, en sorte que l’équation de la variété caractéristique est

D,S=o.

Ainsi, M. Racal1 a démontré, en s’appuyant sur une méthode indiquée
par M. Levi-Civita, que la surface de la variété caractéristique de l’équation
de Dirac est donnée par l’équation

g.sz= Ï_;Pï_ l’î .* P:;: __ l’î_î :….€.

Nous avons (') établi les équations des caractéristiques des équations du
photon de M; Louis de Broglie. Nous avons alors démontré que la variété
caractéristiquedes équations du premier groupe

1 MD,—;; 611 + (B. () 'c‘tî+ (B.} () fil:; + U?v;;
()

.… = _— __ + ___—_ __ + _. _.
0 dl _

:). ().r <
‘). ()_ i' 9. à:

c‘L,—|— UT»,+ Zl"°"(_—,,_>](Iii/_.

l ..D1Q=—:Pî—PÎ—Pâ—PÎI=O.r:- ' v»

 
est

Mais le même calcul appliqué au second groupe des équations du photon

&; — 631 Ô a2 — ($;) () 'CÏ;; — 033 ()
_

(i,/‘ —-— 63], _
[<.—2—> a—x

+ <—2—>
—

.+ <—…—;——>
+ w<——î—>iw—o

(‘) C. R. Acad. Sc., 208, 1939, p. 883.
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'donne

IV ,\ °.) 1. V … 0

Now.. — Je suis heureux de pouvoir remercier M. le professeurDe Donder
pour les remarques que l’illustre géomètre de Bruxelles a bien voulu nous
adresser dans une lettre récente.

M. De Donder me fait remarquer que si l’on pose
8 = k log‘l",

l’application du principe variationnel
r ô[V—gJ<\F>L

    ” v'__g ô‘F
où

J(‘P)=À‘-’glpgqïgllô_2k_ (ÎÎ++[Êé®°‘Œ«—mâc‘l]lÿî=o,
a

ne donne pas exactement l’équation (29); cela tient à ce que le terme

2k—e-tDa—ê—q—Ë, disparaît au cours du calcul. Ceci montre la différence qui oppose
0 0.7:

la méthode de M. De Donder à la méthode de M. Schrôdinger.
' Le théorème énoncé est exact, car si l’on part de l’équation (30); en posant

    
 

‘F=ekîf (l’aad.raÎ,
et si l’on remarque que

aw _ 1 e — îfîf«b.… îâfd».w« dÎ‘
dar“

_—
7i‘ Ï:Œ1(DP +e ôæ°"

et que
2 __ I () I e a : ’.î «ha,/La

Dw_\/—5W Z-;\/—.Ô(D ‘Fe£f ]
I ‘l’ du (”ly

_V_f)ä%[\/Îgg“läeÎ'f‘lâf
dæ ];

après un calcul assez long, l’on en déduit que

ô‘P 1 e2 0 If I Û‘DaVÎÊ__ _ __ _ _ - ) ____ qrDJP I.25010__æ‘ + k2[02Œ“D1 m.}! l‘!—— I. Î: _—5’-
(ha

: D2Î % mâc“P”_0,

or la formule

donne  


