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LE PIVOTEMENT ET LE CONTACT DES SURFACES. 169  
Sur le pivotement et le contact des surfaces;

Pn É…..a COTTON.

La partie géométrique des travaux de M. Hadamard sur les mouve—
ments de roulement (') m’avait conduit à étudier dans un travail
antérieur (2) le pivotement sans roulement ni glissement (mais avec
déplacement du point de contact) de deux surfaces S, S'.

Loin de présenter dans le cas général le même degré d’indétermi—
nation que pour deux plans superposés, il dépend de constantes
arbitraires; les lignes de pivotement analogues aux roulettes ne
peuvent plus être choisies à volonté.

Après avoir brièvement rappelé ici (1) les résultats essentiels de
ce travail, je les complète, soit en ce qui concerne les équations

différentiellesdu problème (2), soit par des exemples (5).
Je montre ensuite (4) que l’équation donnant l’orientation spéciale

des surfaces S, S’ lors du pivotement, se présente aussi quand on
étudie la possibilité de réalisationdirecte du contact des deux surfaces
avec orientation donnée : en entendant par là que les deux surfaces S,
S’ ne doivent pas se traverser au voisinage du point de contact.

[. Rappelons d’abord la représentation paramétrique du contact
de deux surfaces donnée par M. Hadamard. Soient u, v les paramètres

(') Sur les mouvements de roulement (Mémoires de la Société des Sciences
physiques et naturelles de Bordeaux, 4° série, t. V, 1895). Cet article est réim-
primé dans le livre d’APPELL : Les mouvements de roulement en Dynamique.

(2) Remarques géométriques sur les mouvements de roulement (Annales
de l’Université de Grenoble, t. XX, 1908, p. 1). Cet article est désigné par la
lettre A.
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caractérisant un point M de la surface S, u', 9’ ceux qui donnent un
point M’ de S’, on fait correspondre à 5 un trièdre Mxyz dont
l’axe Mz est normal à S; un trièdre analogue M’æ’y’z’ est attaché
en M’ à S’. On suppose qu’il y & coïncidence de M et de 1 ’et aussi/\
de Mz et M’z’; soit cp l’angle Mac, Mæ’.

Des variations infiniment petites du, dv des paramètres u, v
entraînent un déplacement infiniment petit PP., par rapport à S,
pour tout point P lié à Mæyz. Ce petit vecteur est le moment par
rapport à P d’un torseur infiniment petit dont les coordonnées plucké-
riennes rapportées à Mxyz sont des expressions de Pfafî

pd=pdu+pidv, qd=qdu+q1dv, r,;=rdu+r,dv.
gd=£du+gldv, nd=ndu+mdv, Çd=o.

(1)

Elles satisfont à certaines conditions d’intégrabilité dont nous
n’aurons pas à faire usage.

Soient

Pit =p’ du’ +p'1 dv’, 9il : q’ du’ + q', dv’, r}, : r’du’ + r'‘ dv’,
au =a' du' + &; dv', n:t = n’ du' + n'. dv’

les expressions analogues relatives à M’æ’y’z’. En composant les trois
torseurscorrespondantaux déplacementsde S’ par rapport à M’æ’y’zf,
de M’æ’y’z’ par rapport à Mæyz, de Mæyz par rapport à S, on a le
torseur correspondant au déplacement de S’ par rapport à 5; ses
coordonnées pluckériennes, rapportées à Mæyz, sont :

Pd =p,; —p'd coscp + q'd sin cp, Qd: qd —p'd sin cp — q'd cos<p,

(2) Rd=rd—rçl+dcp, '

_
Ed=£d—EÇ,coscp+nçtsincp, Hd=m—Ëdsincp—nhcoscp, Zd=0.

Supposons maintenant qu’il n’y ait ni glissement ni roulement
de S’ sur S, nous avons quatre équations que doivent vérifier les
paramètres u, 0, u’, v’, o

(3) Ed=0’ Hd=0) P(I=O, Qd:0.
Le déplacement par pivotement ne comporte donc en général qu’un
degré de liberté; mais divers cas sont à distinguer :
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1° Si le déterminant A des coefficients des différentielles du, dv,

du’, dv’est différent de zéro, ces différentielles sont nulles et chacune
des surfaces tourne par rapport à l’autre autour de la normale
commune qui reste fixe par rapport aux deux surfaces; nous écartons
désormais ce cas simple.

2° L’équation A: 0 permet en général de calculer <p en fonction
de u, v, u’, v’; une telle valeur de q: détermine ce que nous appellerons
une orientation spéciale des surfaces en contact. Dans les mêmes
conditions, le système (3) se réduit en général à trois équations diffé-
rentielles du premier ordre déterminantu, 0, u’, v’ en fonctionde l’une
de ces variables. On peut donc grouper les positions de S’ tangentes
à 5 avec orientation spéciale, de telle façon que les surfaces S’ d’une
même famille se déduisent de l’une d’elles par un déplacement à un
paramètre où il y a toujours rotation tangente autour de la normale
commune. Les deux surfaces E, E’, lieux de cet axe instantanédans ses
déplacementspar rapport à S et à S’, sont, comme on sait, applicables
l’une sur l’autre avec correspondance des génératrices rectilignes
d’une part et d’autre part des intersections de S et de Z, de S' et
de E’. Ces intersections (lieux du point de contact sur S et sur S')
seront appelées lignes de pivotement.

Si l’on substitue à S et S’ des surfaces S,, S'‘ qui leur soient respec—
tivement parallèles (en prenant dans des sens correspondantsla même
longueur sur les normales à S et à S’), le pivotement de S’ sur 8
entraîne celui de S; sur 8. et il y a correspondance des lignes de
pivotement.

Quand on prend en chaque point des surfaces S, S’ les tangentes
aux lignes de courbure pour axes des trièdres correspondants, les
formules de Codazzi données dans la Théorie des surfaces de Darboux
(t. II, Livre V, Chap. Il, Tableau V) donnent pour l’angle :p caracté—
risant l’orientation spéciale

R1 — Riu _R2 _ Rlt __(4) tang-’cp=— lî—_R"ÏÏÎÊ__— (R1R2RII ["—.»),

R., R._,, R', , R'__, étant les rayons de courbure principaux (A. n°11).
La méthode indiquée plus haut donne facilement les lignes de

pivotement dans le cas où S’ est un cylindre de révolution; celles
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de S correspondent aux lignes asymptotiques de la surface parallèle
à S, à laquelle l’axe de S’ reste tangent (A. n° 12).

2. Les équations différentielles du problème s’obtiennent en élimi-
nant <p entre les équations (3) sans qu’il soit nécessaire d’utiliser
l’équation A = 0; on a ainsi
(5) Eñ+nä=ëî}"+nîïf p«zm—q«z&z=1)}mh—qhî'./, Pl‘i+9ïz=llîï+9iÏ-
Ces équations expriment que les surfaces réglées Z, Z’ sontapplicables
comme il a été dit; on s’en assure de la façon suivante: u, v, n’, 0’ étant
considérés comme fonctions d’une même variable (représentant le
temps), il faut que, quelle que soit la fonction h de cette même
variable, les vitesses absolues des points de même cote h pris sur les
axes Mz, Ms' des deux trièdres soient égales; on a l’identité suivante
par rapport à le et dh

@ + WW + (“d — Pd’l>’ + dh“! = (E:: + q’dh)‘-’ + (nl; — pit/z)? + dh=.

Elle donne bien les équations (5).
On peut aussi bien trouver les deux surfaces E, E’, lieux des

normales applicables l’une sur l’autre (comme plus haut) quand S
et S’ sont données par les représentations paramétriques des coor—
données X, Y, Z de M en fonction de u, v et de celles X’Y’Z’ de M’ en
fonction de u’, v'. De ces représentationson déduit les cosinus direc—

_
teurs (a, b, c et a’, b’, c’) des normales à S et S' et l’égalité des arcs
correspondants donne l’identité

[d(X + ah)]= + [d(Y+ ble)]= + [d(Z + ch)]=: [d(X’ + ah)]’ [d(Y' + bit)]= + |d(Z’ + ch)]3,

qui conduit à trois équationsseulement
/ dx= + dY2 + dZ?: dX’2 + dY’? + d’ '=,

(6) dX da+dde+dZdc=dX'da'+dY'dbÏ—l—d2'dc',
da“-‘ + db2 + de2: da” + db" = de“.

Les équations de même rang se correspondent dans les deux
groupes (5) et (6) : les premiers expriment l’égalité des arcs corres-
pondants ds, ds’ des deux intersections S, E et S’, X’; les troisièmes
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celles des arcs de, de' de leurs représentations sphériques et les
secondes celles des produits scalaires des vecteurs infiniment

—> —> -—> _»
petits (13.110 et ds'.da’. Les deux premières équations (6) s’écrivent
immédiatement avec les formes quadratiques de différentielles uti-
lisées dans la théorie classique des lignes de courbure et des lignes
asymptotiques.

5. On peut évidemment ramener de trois à deux le nombre des
équations différentielles du problème lorsque l’une des surfaces est
soit un cylindre, soit une surface de révolution, soit une surface
helicoïde. Supposons par exemple 8 surface de révolution, et
prenonsMa: tangentau parallèledeM, My tangentau méridien, u étant
l’angle du méridiende M et d’un méridien fixe, v l’angle de la normale
et de l’axe; on a '  pd: dv, qd: sin v du, rd: cos v du,

d.\ ( v)”,=Avd. (=— =Cv dv;: ( ) u, m cow
( ) ,

les premiers membres des équations (5) sont :

A‘2 du” + C2 dv‘-’, A sin v du" — C dvi, sin? v du! + dv",

l’élimination de du entre les équations différentielles donne deux
équations différentielles entre v, u’, c".

Admettons que S’ soit aussi de révolution, employons pour cette
_

surface des notations analogues, éliminons du2 et du”, nous obtenons
l’équation

Aî(v) A"—’(v’) C2 (v) dv2 — C”(v') a'v'2
(7) A(v)sinv A’(v’)sinv’ —C(v)dvï+C’(v’)dv'î =O.

sin?v sin2v’ dv"— dv’2

u, u’ se calculent par quadraturesune fois cette équation intégrée.
Des solutions particulières apparaissent immédiatement. On peut

prendre v et v’ constants pourvu que % = %;les lignes de

pivotement sont ici des parallèles auxquels correspondent des
normales égales.

Prenons deux surfaces de révolution égales, mais avec des normales
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orientées de façon différente, A(v) + A’(v) = o, C(v) + C’(v : 0, on
a une solution particulière en prenant v’ = 9; une quadrature achève
de déterminer ces lignes de pivotement. C’est ainsi que deux tores
égaux disposés comme deux anneaux d’une chaîne peuvent pivoter
l’un sur l’autre, les points de contact étant de plus astreints à arriver
simultanément sur les cercles de gorge : dans ce cas, A: —a—|—b_sin9,
b étant le rayon des cercles méridiens,a celui du lieu de leurs centres.
Les lignes de pivotement, pour lesquelles v: v’ sont données par les
formules suivantes, où 0, , 02 désignent deux constantes

V_ , _. dv __u_u —c,_c,+ ———_T____, a_.,“ vsmv(a—smv) °“lù

Dans le cas de deuæ surfaces développables le système (5) est inté-
grable par quadratures. Pour le voir, prenons pour paramètres
relatifs à S l’abscisse curviligne u du point de contact m d’une géné-
ratrice rectiligne avec l'arête de rebroussement et la mesure algé-
brique 0 du vecteur mM de la génératrice. (Les éléments analogues
relatifs à S’ et M’ seront u’ et O'.) Prenons la génératricepour axe Mæ.
Les expressions de pd, qd, rd sont les mêmes pour le trièdre Mæyz et
pour le trièdre many, 5. ayant ses axes parallèles à ceux du premier;
son axe mx. est la tangente à l’arête de rebroussement,le plan a:, my,
en est le plan osculateur. Désignant par p(u) et r(u)la torsion changée
de signe et la courbure de l’arête de rebroussement au point m, on a,
pour le trièdre Mæyz,
pd=p(u)du, qd=o, rd=r(u)du, Ed=du+dv, nd=vr(u)du,

et des expressions analogues pour le trièdre M’a:'y’z’ .

La seconde des équations (3) est ici
sincpp’(u’)du’=o.

_
.

Nous écartons le cas où l’on aurait du’ = 0, car alors on aurait aussi,
d’après les autres équations du = dv =dv’= 0, M et M’ seraient fixes.
Prenons donc sincp = o, et pour fixer les idées <p=o, les équations (3)
donnent
p(u)du=p’(u’)du’, d(u+v)=d(u’+v’), vr(u)du=v’r'(u’)du’.
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Elles sont compatibles si   _

r(u) _ ,"'(u')(8’
- “p…—° p<u')’

et alors
(9) u+v=u’+v’+c,,
(ro) [p(u)du=fp’(u’)du’+02.
On a ici deux constantes arbitraires seulement au lieu de trois dans le
cas où S et S’ sont quelconques.

L’interprétation géométrique est immédiate.
Les représentations sphériques des deux surfaces développables S

et S’ sont des courbes I‘, l". La relation (to) établit entre les
points P, P’ de ces courbes une correspondance telle que les arcs
décrits par P et P’ soient égaux entre eux. Au cours du pivotement
les surfaces développables viennent se raccorder suivant les généra-
trices de contact de plans tangents correspondant aux points homo-
logues P et P’. En rapprochant (8) de la formule (10) du Tableaul
de l’Ouvrage de Darboux, on voit que les rayons de courbure princi—
paux des développables doivent être égaux aux points correspondants.

On peut d’ailleurs, en un certain sens, considérer les génératrices
des développables S, S’ comme des lignes de pivotement, les sur—

faces E, E’ , des normales à S et S’ le long des génératricesrectilignes
sont ici des plans, et sont non seulement applicables mais superposées
l’une à l’autre (avec correspondances des normales et des inter-
sections S, E; S’, X’).

Plus généralement,si deux surfaces S, S’ convenablement placées
l’une par rapport à l’autre se raccordent tout le long d’une courbe C,
cette courbe C constitue pour les deux surfaces une ligne de pivo—
tement de nature analogue, puisque les surfaces E, E’ sont encore
superposées.

4. Nous dirons que le contact de deuxsurfaces S, S’ est directement
réalisable dans les conditions précisées plus haut (n‘ 1) si le point
commun est un point double isolé de l’intersection de S et de S’. Dans
ces conditions, en effet, on peut imaginer deux régions a, c' sur S
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et S’ auxquelles M et M’ seraient respectivement intérieurs, et qui
constitueraient des parties des frontières de deux solides ne se
pénétrant pas mutuellement. Pour étudier la possibilité de cette
réalisation directe du contact prenons les axes Mac, My, Mæ’, My’ tan-
gents aux lignes de courbure de S et de S’, soient

:. : aæ‘-’+ b)”+f($,)'), 5'= CŒI2+ d)"2+ é’(æla)");

les équations des deux surfaces supposées analytiques; a, b, c, d sont
des constantes, les séries entières f et gs’annulent, ainsi que leurs
dérivées premières et secondes lorsque ce =y= x' =y’: o.

Le point de contact des deux surfaces tangentes est en général un
point double dont les tangentes rapportées aux axes Mæ, My ont
pour équation
aæ*+ by‘l— c(æcosq9—ysincp)‘*—d(œsincp+_ycosq>)2=o (cp=Mâæ’),
ou, en posant tango = t,

[a — c + (a — d)t?]æ2+ 2(c— d)tæy + [b —— (l+(b — c)F]=o.
Le contact est directementréalisable si

[a— C+ (a— d)F][l) — d+ (b —c)t‘-’] —— (c— d)‘-‘t2
=(t'2 +1)[(a—d)(b — (:)F—l— (ca—c)(b — d)] > 0.

Soient A, B, C, D les points de Mz, z’ de cotes a, b, c, d (ils se
déduisent, par une même inversion de pôle M, des centres de courbure
des sections principales des deux surfaces); on obtient facilement les
résultats suivants :

Si les deux segments AB, CD sont extérieurs l’un à l’autre, la
réalisationdirecte est possible, quels que soient t et ça (Exemple : deux
surfaces convexes à concavités opposées).

Si l’un des segments est entièrement intérieur à l’autre, la réalisa—
tion directe est impossible quels que soient : et <? (Exemple : deux
surfaces minima).

Si les deux segments empiètent l’un sur l’autre, la réalisation
directe est possible pour certaines valeurs de cp, impossible pour
d‘autres. Le changement se fait pour les valeurs de <p telles que

( a -— 0)( b — d ) _(Il) tang9o=t2=—(a__—d)—(b—:ËS_
— (R, R.,R', Hi,),
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R., R2, R',, R'2 sont les rayons de courbures principaux de S et S’ ;
ces valeurs de passage sont précisément celles de_ l’orientation spéciale
considérée plus haut. Elles correspondent au cas où les tangentes au
point double de l’intersection étant confondues, il y a en général
rebroussement, les surfaces sont osculatrices (‘ ).

La différence z —z’ est une série entière en a:, y en groupant les
termes de même degré, on écrit

: —z’=F,(æ,y)+l7;,(æ,y)+.. ..

Pour une valeur g), de tp vérifiant l’équation (1 I), F, est un carré
parfait; en général F 3 ne s’annule pas lorsque le point P de coor-
données a:, y décrit la tangente au point de rebroussement,et 3=z—z’
prend alors des valeurs 3. , 82 de signes contrairespour des points P4 ,

P2 situés sur cette tangente de part et d’autre de l’origine. Pour cette
orientation spéciale les surfaces se traversent mutuellementau voisi-
nage de l’origine; des considérationsde continuité montrent que 8, 32
est encore négatif si cp est suffisamment voisin de <p, . En définitive, la
réalisation directe de l’orientation spéciale est en général impossible,
et pour réaliser directement des orientations voisines de celle-là, il 

(’) Les tangentes au point double de l’intersection situé au point de contact M
se trouvent de la façon suivante, quand on utilise la représentation de
M. Hadamard: on détermine de deux façons différentes les projections sur Mæ,
My d’un arc infinimentpetit MM1 de l’intersection
(a) '£_,;: E_',, coscp — n',, sin cp, … = E_’,, Sin“? + 112, coscp.

On écrit ensuite que la courbure normale (en M) d’une branche de l’inter—
section est la même quelle que soit celle des surfaces S, S’ à laquelleon applique
les formules de Codazzi [Darboux, Surfaces, t. 11, tableau II, formule (3)], ce
qui conduit facilement à

( b) Pd‘0d — qd£d=PiflÉ! _ qllEil-

Pour chaque valeur de (9, les équations (a) et (b) déterminent les rapports
mutuels de du, (IV, du’, dv’ et la discussion directe de la réalité de ces rapports
renseigne sur la possibilité de réalisation directe du contact avec cette orien—
tation.

Une méthode analogue permet de trouver les équations différentielles des
intersections de deux surfaces S, S’ données par des trièdres mobiles.
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faut prendre les frontières des éléments de surface a, c' de plus en plus
voisines de M et M’.

On doit encore examiner à part le cas des surfaces S, S’ dévelop-
pables; les deux surfaces se raccordant le long d’une génératrice
quand le point double de leur intersection correspondant au contact
n’est pas à tangentes distinctes. La génératrice de contact étant prise
pour axe Oy, le plan 2 =0 étant le plan tangent commun, les équations
des surfaces (analytiques) sont de la forme
; =Ï2[a+ 91(ær.7) + 6!(Œ9Ï)+' ' °]! 5'=)’2[b+%(Œ;Ï)+“P2(æ’y)+"°l

(G; et ‘l‘i sont des polynomes homogènes de degré i).
Onaici

z—z'=y2[a—b+9,—$1+92—%+.…].
Cette différence est nulle ou de signe constant au voisinage de

l’origine, sauf lorsque a étant égal à b, les rayons de courbure prin—
cipaux finis seraient égaux. Dans ce cas il arrive en général que 04 — 'la
est différent de zéro. Alors il peut prendre des signes différents, le
contact cesse encore d’être directement réalisable.


