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ON THE INFINITESIMAL DEFORMATIONS. ItI

On the infinitesimal deformations of tensor submanifolds ;

By P. DIENES anvo E. T. DAVIES.

General conventions. — 1. The summation symbol X is suppressed
if it applies to terms with identical suffixes.

II. The first letters of Latin and Greek alphabets as suffixes vary
from 1 to n, the middle letters ¢, j, £, ..., from 1 tom(<n), and the
end letters p, ¢, ... fromm 41 to n.

Part I. — Definitions, General Properties.

A. THE DEFORMATION OF A TENSOR MANIFOLD. — A general n-dimensional
linearly connected tensor manifold or space A, is determined by two
independent sets of functions :

(1) the metric parameters a,3; which assign a measure ds to the dis-
tance between the neighbouring points P(x)and Q(« + dz) by the
formula

(1) ds* = a,g dx* daf.

(ii) the connexion parameters I'}, which define parallelism (equi-
pollence) between vectors and tensors at neighbouring points by the
formulae

(2) ¢*(Q[P)=v*(Q) + T, vB dav, 03(Q[P) =vg(Q) — Igyva da.

The substitution of ¢*(Qf|P) at P for ¢*(Q) at Q is called the
« parallel transport » of ¢*(Q) from Q to P.
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Special spaces are defined by special sets of metric and connexion
parameters, or else by relations between these twosets. For example,
a Riemann space V, is specified by the two conditions

(3) T4, =T,
(4) Viaag=dyasp — I asg - T, az=o,

in which case the functions I', reduce to the three-index symbols | 3. |
of Christoffel ().

A space in which (4) is satisfied will be called a meric space (?),
(or a Riemann space with torsion), since in such a case length of a
vector and angle hetween two vectors are unchanged by parallel
transport. In the classification of spaces given by Schouten (1924,
p- 75)such a space would be of the type 11l Ay.

In order Lo define the deformation of A, we remark that a change
of variables

(5) /.z'“zf"(z', ....x")z/“(z")zf“(x),

admits two different geometrical interpretations. It can be regarded
either (i) as a mapping of the x-space upon the 'z-space, i. e. as a
straightforward transformation of the z-space into the 'z-space, or
(ii) as a mapping of the z-space upon itself, in which case the point of
coordinates ‘z* is regarded as the point of coordinates 'z in the
z-space. In this second interpretation the same change of variables
will be called a displacement, and to indicate the fact that the new
points are also in the z-space we shall replace the Latin suffix a by a
Greek one (*).
A change of variables of the particular form

(6) ‘=2t €g(x),
where ¢ is a small constant, is called an infinitesimal transformation,

or an infinitesimal displacement of the x-space according to the inter-
pretation chosen. '

(*) Eisenhart and Veblen (1922, p. 20).

(?) In the terminology of Cartan (1923) and Lagrange (1926) this would be an
« espace a connexion euclidienne ».

(3) For the distinction between Latin and Greek suffixes see Dienes (1932).
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For an infinitesimal transformation, we have

(7) o= dot + € dgte. dut = A2 du (da: %),'
where

(8) A2 =088 + € 0450

The reciprocals A} are defined as usual by

(9) ABAS=3d3 or ASAL=4],

giving |

(ro) - A§:6g — € 0yEh (db: d_’?z_">

Hence, to first order quantities in ¢, vectors and tensors are trans-
formed by the rules

(o) pe—p*Ag, vb:ng%,
(12) Tyin(@) ="Tgr (=) A “PA,?: g
= Tg i (&) + GZT”"“*"‘ g - EET“..;,..b 94,21,

Metric and connexion parameters are transformed by the usual for-
mulae

(13) — ozalpA“3

ab?

(14) Iy =I5 Ag AR + A7 d. Aj.

The tensor space so constructed will be referred to as the transform
‘A, of A,. Likeevery transformit represents, to first approximation,
the same geometry A, in new variables, since corresponding vectors
have the same lengths, and since parallelism is preserved in the trans-
formation.
In the second interpretation of the change of variables the point =
is displaced ¢n the original space A, to ‘. Thus in the displaced A,
vectors and tensors at ‘x are just the vectors and tensors of A, at 'z,
and the metric and connexion parameters are a,s('z) and I'} .{(’w)
This displaced space will also be referred to as the deform of A,,.
Journ. de Math., tome XVI. — Fasc. 1I, 193. 15
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If we introduce the notations 'a.3('x) and T%,('z) for the metric
and connexion parameters of the transformed A, at 'z, since the ‘A,
is the same geometry as the A, (except that it is attached to different
points), we can consider ‘a,s('z) and T§,('x) as the representatives
of A, at the point'z.

A measure for the deformation of A, is therefore obtained by com-
paring the metric and connexion parameters of the new Geometry
(the deform of A,) at 'x, with the representatives of A, at 'x.

And since in this way we are going to consider the transform of A,
as being at the points of X,,, we shall replace the Latin suffixes of ‘A,
by Greek ones in order to avoid a formal clash of suffixes. Thus
we shall denote AZ and A2 by Af and Aj respectively, and similarly
%, V4, etc., will be replaced by '¢* and ‘v, etc.

Thus the deformation of metric and connexion parameters will be
measured by

(15)  daap=aup('x) —'ap('x) = € [EY Oy aap + axy I EY -+ ay o Y],
which can be thrown into the tensor form
(16)  3aap= € [ Vy aup+ oy VpET+ ayp Va b1+ 2S5, app 7+ 254" aaa £2].
Similarly
(17)  8F%, =T§, (') — T, (@) \
= ¢ [0y dpE* + T3, 98+ Iy; 6,5 Ty 0552+ 2205 T, |,
or, in tensor form
(18) ory, =¢ [VyVee=+ R%.; £ 4 2VY(S{;,§“'E,5)].
In the sequel we shall frequently meet with a special kind of cova-

riant derivation, in which the lower suffixes of the connexion para-
meters have been interchanged. We can call it the conjugate

covariant derivation, and denote it by V, where for an arbitrary
contravariant vector ¢*, we have

(19) V,or=dy ve + I'g 0B,

Expressed in terms of ordinary covariant derivation, we evidently
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have
(20) Vo=V 024 285" o8,
so that when the connexion parameters are symmetrical, the two
operators coincide.

In consequence of (1g), we can write (16) and (18) in the shorter
forms

(21) da.8= € [E,Y Vy @aB+ oy VB ET - ayg Vs EY],
(22) T, = ¢ [Vy Vgix+ R, 2].

For a Reimann space V,, these reduce to

(238) dasp= € [Vauip+ V8 2al,

(24) %y} =€[Vy Vagr -+ R3¢0,

It is easily proved that the 2I'j, in the case of a V,, is equal to the dif-
ference of the three-index symbols of Christoffel for the metric para-

meters Zapz a3+ da,s, and for the original ones. Moreover, in this
case, since the whole Geometry is determined by the metric para-
meters, the deformation of a structure (') tensor of V, can be
determined by merely calculating the tensor using the new metric

parameters a3 (and consequently the new connexion parameters T'§,),
and subtracting the old tensor from the result. That the deformed
space is also Reimannian is therefore immediately evident. By a
definition of parallelism given in Dienes [1933, (iii)] however, it is
seen that the deformed space shall always be of the same nature as
the original space, so that any special properties possessed by the
space will be preserved in deformation.

2. The definition of the deformation of individual vectors and
tensors implies a comparison of vectors and tensors of the deform
of A, with those of ‘A, both at ‘x. Since however we usually attri-
bute the deformation to the vectors and tensors of A, at x, this
implies a comparison between the pencils of tensors of A, attached
to z and ‘x respectively. The simplest kind of correspondence is by

(') A structure tensor is one involving the connexion parameters of the space.
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parallelism, by which we mean that in the displacement of het
point x to 'z, the vectors and tensors at x are carried along to 'z by
parallel transport.

Thus, starting with a ¢* say at z, its deformation due to the displa-
cement (6) will be conveniently measured by

(1) Avr = o3 (uw]'w) - )= - € v."(l‘;.‘, T+ dg Ej‘): ] \‘*3 i

and this is called the direct deformation (').
In the case of a vector field v*(x) we may also take v*(‘z) as the
vector corresponding to ¢*(x). This leads to the field deformation

(2) ovr=v2'x) - Wu)=€ (Ydyv* - T ¥ ) =€ [éf Vovx— ot \'7 i"_l,
which, in virtue of (1), can also be written
(3) ovr= €T Vyv*+ Ap2,

If we have an individual veclor ¢* at x, a field can be defined between
x and 'z along x>+ ¢%* by putting E*V,¢*=o0, 1. e. a field can be
created by parallel transport. In this way, from a purely mathema-
tical point of view, the measuring process A appears as a special case
of the & process. We notice, however that the ¢ measure depends
upon the existence of a field but not upon a definition of parallel
transport in the space, whereas A implies parallelism but no field.
The definitions are readily extended to general tensors, so that

(6)  ATEg =Ta el — TR G

(*) This difference A has been used by Hayden (1931) in his study of curves in
a Riemann space.
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and
p

7 .
= Xy ..o Xy X N .., - Qg .. Y. 2y, .
(3) oTy "yr=ce [ZY 0y Ty, o '*ZTB,...-_J.&,, ()ﬁsQY“ZTB,...B., "y E*

S e
]

q P
o SO ] ay...a L %y Y% O v,
=€ [UV?](ﬁ:...ﬁz"‘ZTa: W3 VB,;Y‘—ZT@:..,:% "Vyg
which can also be written

»
) = [m"wr 3 +2T ...... ,, Va‘Y-ZT?‘;"“*”‘“"VYE“':I.

s=1
On comparing (4) and (5) we have
© e e

In particular, the ¢ measure for the deformation of a,s as a tensor

field coincides with (1.16), and in a metric space %,,, we have
(7) Aa,p=da,g=¢ [V"a'gp+ %51].

For structure tensors like Sz and R%,; formed of the metric and
connexion parameters, also Sz*('x) and R%,;('z) might be taken as
the representatives at ‘x [instead of 'Si7 (‘) and 'R%.,;(‘x)]. In this
way we can define the structural de formatz'ons :

and
(9) DR%, = R%;(z]'z) — Rig3("2) = — € 27V R

‘We notice that ’
(10) AT DT =[T(z|'z) — 'T('z)] - [T(z]'z) — T('z)] = oT.

These deformation operators ¢, A, and D satisfy such formal rules of
manipulation as the following

(11) o(T + Ty =T + 0T,
(r2) O(TT") = (dT)T'+ T(3T").
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If we take the product ¢*w; for example, we have
S(r2wg) = 2 ) g L) —- oY g A% ‘\-;
= wg(EP Iy v* — v 95 2%) + o2 (k8 05 wp+ 1w dg 28),
or
S(v*wg) = (dv*) wg + v*(dag).

Similar results hold for A and D.
If we consider the permutability of the operator 2 with covariant
derivation, we have, for a contravariant vector

(13) 8(Va ¢) —va(avﬁ):(arﬁ“)m

and for a covariant vector

(14) 3iVarg) - Vaideg) = - (T,

the extension to general tensors being obvious. The operators ¢ and

covariant derivation will therefore be permutable for all tensors pro-
vided the equation

(15) NG =o,
is satisfied. This is the condition that the transformation (1.6)

should define an isomorphic transformation of the space, as proved by

Slebodzinski (1932, equs. 1).

3. The Geometry A,, on a point submanifold X,, given by
(1) ‘ L= f2(u'y .., u™) (m<n,

is usually determined by « projection » in the following manner.
From dz*=20, f*.du* we put ¢*=¢"d; f* expressing ¢ in the A,
frame. Hence

(2) B =0, /%,
are the first set of projection factors forming, as A varies from 1 to m,
the m contravariant, base vectors for the tangent plane. We com-

plete it into an n-dimensional split frame A} by taking n — m vectors
C(uy...,u™) subject to the only condition

(3) . [AZ)Z o,
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where A7=(B$, G}). The facetdetermined by the pseudo-normals C}
will be called the « span » of the submanifold at the point in question.
The reciprocals are determined in the usual way by putting
A;= (B}, C) and by requiring that '

(4) AZAZ=0f or AZAB=0¢l.
The quantities

=EB =GO
with
(5) g + Cg = g,

have been used extensively by Schouten (1924) instead of the pro-
jection factors B, C;. We remark that B§v8 is the A ,-component of
the projection of ¢«* on A,,. Since

pr—= V@ 6; = ()p(Bg —+ C;)’
the conditions ¢*= B§¢?, or C§¢? = o express the fact that ¢* liesin A,
and ¢*= C%¢? or B§¢®= o that ¢* is pseudo-normal to A, or lies in

the « span » of A,,.
The projected metrics in A, and in its span A/, are given by

(6) bip=a,g Bj‘: and Cpa==ayB C;g.

A system of split frames of the kind just defined leads to a fourfold

connexion with the following projected connexion parameters ('),

) { ) =BV Bh=ma (i) AE=CIV,CH= - mm,
(iii) S{j.c: B. Vs Bf‘m: - Ty, (iv) a’;.;: CaVs C.?p): — Tomo,

where for orthogonal frames the = functions reduce to the corres-

ponding y functions of Ricci [Dienes, 1933 (ii)]. In this paper we

(*) The quantites 7\’9“, have only recently been used as connexion parameters
[see Bortolotti (1931, form. 24) and Dienes (1932, form. 19)]. They have
appeared in literature on the subject for many years however, and they appear
for the Riemannian case as pir, in Ricei (1go2, p. 357); Gy, in Kihne (1g03),
AT? in Bortolotti (1928, form. r19), ¢J? in Schouten (1924, p. 200), and R, in
Lagrange (1926, p. 32),
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shall only deal with projected connexion, in which case Table | in
Dienes (1932, p. 268) simplifies, since D=0, E=o0, H=0, and
I=o. The equations of Gauss, Codazzi, and Kithne have conse-
quently a simplified form, which we shall indicatein the next article.

m

defined the connexion parameters in A,, and in A’ we shall intro-

duce the first and second tensors of Eulerian Curvature Ff,and G}, (')
of A, in A, as follows :

From the definitions of W and 2.7, we have

4. RELATIONS BETWEEN THE FUNDAMENTAL TENSORS OF A, AND A, — Having

BZ; V,Bi=o0 and c3v, C::O.

so that we can write

(1) V,Bi=CiV,B}=F2 ,=C3F,
and
(2) v, C: =BV, C; =G5, =B3Gh,.

We also define corresponding quantities J&, and K&, by the equations

(3) VoBi=CiV, B‘—J" - =CJ5,
and
(4) V5 C2=B3V, Cf = K2, = BIKE,.

The fundamental equations connecting A,, and A, are now the
following

(5) S = =SiT Bl =Su,

(6) R Ay = =R, 37“ B:%ﬁ = Rkkuv () +2 F)q[p.qulv]s
(7) ﬁpu'p.v =R] Bys CﬁEB:{Z - RP (1 " + 2GU[|J.FIle3’
(8) Ry =R%Cl By =2V, Fh ) +2Ff, S5
(9) R, = R%;BLCEBL =12V, G}y, , + 2GSy’

() These quantites correspond to HQ%“ and L.'fY in Schouten’s theory (1924,

p. 159).

Actually Hg?BYY = F%, = C3F{, and L, BE C3=— G¥, =— B} G,



ON THE INFINITESIMAL DEFORMATIONS. 121
Equations (6) and (7) are the generalizations of the equations of
Gauss and Kithne, while (8) and (9) are the generalizations of the
equations of Codazzi.
In the latter part of the paper we shall need the following tensors,
which we can call the conjugate Eulerian Curvature tensors
(i [:‘ﬁv: civ, By =F§, — 25l =F{, where Syf=Say C,‘,"Bﬁl’ M.
oy 1 @ GY,= B4V, C = GE, — 25,.%,
10
( (i) Jhs=CiV,sBl=1J0s — 25,7,
(iv) l‘{g’c = Bﬁ’a B:,): Kg,,-— 2§éo'-p'.
with their corresponding A, components, such as ﬁ“Y= ﬁﬁvC:BE§.
We also give the conjugates of formulae given by Dienes (1932,

p. 270):
- (i) VBi=F2+J%, (i) VgBE=—Gl;— Kl
(i) VgCi=Gla+ K,  (iv) VgChi=— Fgg— Jtq.

8. Tue DerorMATION OF TENSOR suBMANIFOLDS. — Consider now a
neighbouring submanifold X,, given by
(1) ‘Zr= (e, Lo, u™)y +eEr(ut, L., u™m)

and repeat the construction given in Art. 3 in order to obtain the
geometry 'A,,.

From
'dr*r— (B + € 0,£*) du)‘,
we have
(2) 'BE = B% + € 0y £%.

The simplest way of assigning a span to 'X,, is to complete (1) into

(3) ‘e*=F%(ut, ..., u") +eZ*(u!, ..., ur)
where
(4) Fa(ul, ..., w" 0, ....0)=f(u', ..., u™)

(*) The significance of the bar for the other cases will be sufficiently obvious
from this example.

Journ. de Math., tome XVI. — Fase. 11, 1937. 16
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and :

: E(uly o, w0, ..., 0)=E%(ul, ..., u™)
and by putting
(%) ! g= Cg’+€dp£“,

where, for convenience, we write
(6) 0p 8= (0p B%) e =o.
The reciprocal system is
(7) ‘Bi=B; — €Bjo,tB,  'C&=Cf - ¢Cha,EP.
where
0aE*= B:dkg,ﬁ + C30,88.
We also have
IRA Y A v
® 'B§ = 'Bi'By= B} + ¢ Bl d, £* — ¢ By,
'Ch="'C3'CE=Cf + € Cj 9,2 — € C3optY.

We notice that the projection factors ‘Bg, ‘C?, ‘B, 'CE, ‘Bf, 'C§ are the
formal transforms of the corresponding factors treated as vectors and
tensors of A,, i. e. submanifold and span suffixes being ignored.

The displaced manifold 'A,, i. e. the deform of A, will now be
constructed by the following metric and connexion parameters

(9) () ‘byu=aep(2)Bif, (i) ‘Ca=aap('x)CL,
(i) ‘B, ='B[9,/BE + I%,('z)'B}],

o (i) Njy="'C3[0y'C5+ Ty ('z)'CE BY)].
(ili) She="BL[0s'B} + [y (=) 'BE'CY],
) 'ofe=CE[04'C]+ Ty (') CE].

To obtain an image or representative of A,, at the points of ‘A,
we notice that the point correspondence 'z — x is established by iden-
tical values ', ..., u™in (8.1) and (3.1). Therefore the simplest
representative of A, in ‘A, is obtained by taking vectors and tensors
with identical components in the u-frames at « and '@ respectively
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as corresponding to each other, and by attaching the same
metric (') and connexion parameters to the u — frames at  and ‘.
This is possiblesince from the point of view of the variables u*, . . . up,
x and 'z are identical.

This method leads to

() s (1) Obyp="brp— by = €|E03a8 + a03IpE® + azg 0, EY] B;‘g: ;‘g 8a,g,

? (i) acp,_c 6aag,
o @) of,='ly,—b,=BWISTE.,  (iv) 8],=CiB] I,
(i) 08} ,== BMs G} oT%,, (iv) aap,,_cggg oTg,.
6. THE DEFORMATION OF VECTORS AND TENSORS OF A,. — To study the

deformation of tensors of A,,, we remark that the deformation of A,
is due to a displacement of A,, so that to measure the deformation we
have to express the tensors in their A,components and then apply
the methods of the preceding articles.

For example, if we denote by a bar the A ,-component of a tensor

of A,, then a vector ¢ at x will appear as the vector ¢*=¢*Bf of A,
and the displacement will carry it to 'z by parallel transport. On
the other hand, the representative of ¢ at the point 'z expressed in A,

components is '* = ¢*'B*. Thus the deformation of ¢ is
() v (z|'e) — vr=—c¢ (rlyv"-Bﬁgu PrHEY) =— ¢ v"nB‘ﬁB Fr== A2,

For A,, however, only the projection on A,, is significant, so that we

also have to introduce the deform ¢*(x||'z)'B% of ¢ in A, with the
corresponding measure

(2) - Avr=0%(z|z) Bl v*="B; Av*= B}, Ave.,

In the case of a vector field v* defined in X, or at least in an n-dimen-
sional neighbourhood (X,,), of X,,, we can also take ¢*(‘z)'Bj; as the

(') Taking &y, as the representative of byy at ‘x is further justified by the
fact that the simple transform of aag B)EJL 1s aap’B“_ a,8BS B_ by
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displaced vector al 'z, so that subtracting the representative of ¢* at 'z
(i. e. ¢* itself), we have

(3) ot = v"(’.z‘)’B; - vh=BLdv=,

Both processes readily extend to covariant vectors and general ten-
sors, leading to formulae like

4) (i) Avu=BjAv,,  (ii) dvy=Bdvy;
| () Aef, = vhy(a]|'z) ‘CE/BEI — of, = CEBEY AVS,,
(i) ovfl, = ;g.{('.r) ’Cg’BgY vf,=C§ B‘jy ov 3«,,

x p.‘l

(5)

and, in general

(6) 30k, = Avf, + ¢ (& Vavd,) C, BLI.

& Tuy
We can write (3) in the form
(7) 3(BLvr) =Blov=,
i. e. with respect to the operator 2, the projection factors behave as

constants. This is due to the fact that the change resulting from

replacing B by ‘B has been accounted for in the construction of ¢¢*.

Applying the & process to b,, and c,, we obtain (8.11). In a
Riemann space V,, ¢b,, as given by (8.11) reduces to dg;, of
Schouten (1928, form. 1). In order to obtain the ¢g'; of Schouten,
we notice that,ina V,,

(8)  aap('2) 'BYCY — anp BICE = B2CE dasp= € BICE (Vg + Vaka)

which is Schouten’s 3g/;
For mixed tensors of the type ¢}, the measure for direct deforma-
tion is given by
Avy=vg(z||'z) ’Bg— vﬁAg
= [(vg—eTh "3564' € T5;0580) (B + € 0,88) — (35 + € 95%%) o]
=€ [Vpdp_aﬁ — da E*+ I‘ﬁsva Bﬂga ]‘f,;vg Bg&a]
—¢ [v; prp};ﬁ — VE,,Vp g“]

(9)
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so that

S,
(10) A(‘:.: BP‘AI’;
and similarly
(t1) dvi=B)ov}.

The rules of manipulation for sums and products readily extend to
the deformation of a submanifold and its span. For example

A(vPwy) = CgBﬁA(;“ ;3),
and from Av?= C%A¢* and Aw, = BEAws, we have
wy Avk + 0P Aw, = CEBY (wpg Av® + 02 Awg ) = CEBEA (Vvaiwy ),
by the rules for sums and products in the general space. Hence
(12) A(vPwy) =vPAw, + w;Av".

The same rules apply to contracted products. For example, if
uf = viwt, then

Aup=ClAnr= - ¢ Cim‘VgZ“: - G(LZH"VO- £z,
and from .
o ATy DO . -2 . -y
Avh=CEBEAVE = ¢ CEBE(P23¥pzr - V),
and
At — - ¢ BY i Vg2
we have

* . 'B_Y LI — * .
AV L. v Aab=¢ [CaBi,_v.(wE*VB Y — Cng_vlngV,‘- & — ngﬁ vﬁVg Q“J

where the first and last terms in the bracket cancel one another, and
thus

Avﬁ. wh ".‘i. Awt— - ¢ CL CY vﬁ wik V‘Y r=—eCLus vV, &,
so that
(13) AuP= A(vﬁ wu) = Avﬁ' w4 Vf;, Aat

and in the case of vector fields which can be defined in a small nelgh-
bourhood (X,,). of X,,, the same result holds for .
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Let us now consider a contravariant vector field ¢* of the general
space A,. Since at every point of the submanifold the projection
factors are defined, the field * will have components ¢* = B%¢= tangent
to A,.. Hence treating ¢* as a vector of the submanifold and remem-
bering the property of the & operation of leaving the projection
factors unaltered, we have for the deformation

(14) dok—=BE 3o or Avt— BE Ap=,

with corresponding results for the submanifold and span components
of any tensor field of A,, so that for instance

(15) dvf,=CEBEI(3vg,) and  AVf,=CEBEI(As,).

o uv
Particular cases of this result are [8.11, (i) and (ii)]. Since the
torsion tensors corresponding to the various connexion parameters,
such as Sy}=1I},, or S,7= df,, are all obtained from the torsion
Sgy = I.‘ﬁ;.n by projectior'l, we can apply the deformation operators to
them directly, and obtain either

(16) IS =BTaSe*  or  AS=BEY Ay,

awy
with corresponding results for the other torsion tensors.
The various projections of the R%.;, such as T{‘_‘-m\, or ﬁﬁm do not
coincide with the corresponding intrinsic tensors R%,,, and R%,,,. It
is still true, however, that

(17) oRY,,=BBoR%,;, and  R%,,=CESBY 6R%;.

Part II. - Deformation of the fundamental tensors
of the Submanifold.

7. DEFORMATION OF THE EULEKIAN CURVATURE TENSsoks. — Let us now
apply the preceding results to the first tensor of Eulerian curva-
ture F5,. Expressing this in A,-components, we have (on omitting
the bar) F§, = F§,C;BS;.  The F§, is now a tensor field defined only
at the points of A,,, so that the ¢ operation is not applicable. We
can however form the difference

(1) AF§, =F§ (2| =) — Fg,,
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1R'®

where 'F§,=F{,'C3'BY; is the representative of Ff, at the new
point 'z-expressed in A,-components. This difference gives

(2) AFS, = ¢ [FE, Vg8 o ¥, ¥y 57— F V3o .

We might, however, proceed otherwise in the case of a structure
tensor like F%,. Since the ‘A,, is a submanifold of A, it will have.a
first tensor of Eulerian curvature in A,, which we shall denote
by 'F%.,, where

wy
(3) 'FE, ='C&[d, 'BE + T, (2) 'BT].

‘On expansion

FE,=Ff,+ € C{[d, 0, 2 + %, Bl o, zv + T§, BId, B -
- T4, BEY 0,22+ BEY 0; T, 28— 0, B}, 052%),
so that from .
0,0, 5*=9, B, 05£*+ BYY 0, dp &%,
we obtain
'Ff,=F, -+ € C& B[ 0y dp£*+ TF, 9 2%+ T3; 0, 5% — TG, 05 2> + £ 05 TR, ],
i. e.
(4) ,Fs.vz F&v"' (&4 BE\}, 61“57-

Now this 'F%, can be taken as the representative, at the point ‘z, of
the original F{, at . So that, expressed in A,-components, we take
'Ff,'C5'BEy instead of F§,'C§'Bgy as the term of comparison, and thus
obtain what we call the total structural de formation

(5) DF§, = F§,(z|'z) - 'F§,'C:'BY; = AF§, — Cf BE(ar%).

We shall now prove that this expression for DF§, is equal to what
Schouten (1928, p. 211, form. 1II) calls SH5? provided we assume (i)
that A, is a Riemann space V,, and (ii) that in A,, (i. e. V,,) the
pseudo-normals (or span base-vectors), are all perpendicular to the
tangential base vectors.

It follows from (i) that, on replacing R%_; for the V, by K%,;,

61‘;‘,’ oy VY Vﬁ EO(. -+ K?BYa EB
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and from (ii) that B} Cja,;= o, so that the ¢ operation applied to this
gives .

(6) B (JT, daag= 0.

Schouten’s formula, with the indices changed in accordance with the
conventions here adopted, is

Sllg = € [ CF Wy ip+ W C5 ¥, 5 — 5P BV, 55
— Mg 028 V55 — By CERY o 25+ CR(BE, Va 1) + G B V, V.28

and this can be reduced, by re-arranging terms, to

Mg * = CI B (817, ) — € (1% Vg H 2 ¥z — 10V, 22)
+ CLO% it Qe+ C5 6% 1% dagy — Hyt' 0% dayy.
The last three terms can easily be proved to vanish in virtue of (6),
so that, since Hy, = F3,, the cHy; = DF3,.

As we have already pointed out the ¢ operation is not applicable to
tensors of the submanifold, since when the new point "z is no longer
in the submanifold, there is no value defined for the displaced tensor
T(z). Whendealing with astructure tensor, however, we can define
the displaced tensor T('x) as being the reconstructed tensor at ‘z.
For the F%, for example, this would amount to taking 'Ff, as being
F%,('z) and since the representative (i. e. the tensor with identical
components in the u-frame) of F§, at 'x is F{, itself, we can writle

(7) oFf, = 'Ff,— F§,=CE BEY(oT3,)

and similarly

(8) 3G}, = 'G, - Gi,= Bl G2 BY(oT§,).

We remark that the ¢ here differs in one fundamental respect from
the corresponding symbol for tensors of the general space. Whereas
for the general space ¢ only requires a tensor field for its definition,
here the connexion of the space is involved. This extension of the
operator 8 will, however, be found of use later.

The corresponding A and D deformations are measured by the dif-
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ference between (1) the projection of the displaced tensor and its
representative at ‘x; and (ii) the projection of the displaced tensor
and the corresponding structure tensor of A, at ‘. Thus

(9) AFS, =¥, (2| '2) 'CE /B — F§,= Cf B} AFY,,

(10)  DFf, =Fg, (z]|'z) — 'Ff,=AFE, — C¢ BT oT%, = Cf BEY DF,.
Taking now the mixed tensor F}, = F§,C;=09,Bi+ FgTB{iJ, we form
the corresponding expression for ‘A,

(11) ¥y, = 0y 'Bf + %, ('2) BY = F%, + B3 oT§, + € Fi, 95 5.

The difference 'I'j, — F},, which coincides with Schouten’s expression
for dH; (1928, p. 211), is evidently not a tensor. If, however, we
take the representative of Fy, at 'z, namely F{,'C? and form the diffe-
rence 'K, — F{,'CS, we get a tensor

(12) 'Fy, — Ff, 'C; =B} oT%,,

which we call 3F,.
We can also define the deformations :

(13) AF;,=Fy, (2| 'z) - F§, C*= — ¢ F}, Vs £*
(where FY}, is transported as a simple contravariant vector of A,), and
(14) DFg, =F2 (2]'x) — F&,=— ¢ Fi, VyE*— BRI oIS, = AF%, — BEY oTg,.

To extend the & operator to the tensor F,, which coincides with
Hyy (= B}V, B%) app'ee'u'ing 'in th(? works ?f Schouten, we remark
that we can deal explicitly with this tensor in the form

) 5= ¥4 G B = G B (0 B} + T2, B)).
Its representative at 'x will be its simple transform, which is
(1) 'G5 BE(0% B) - T B)=F -+ € [P, 055 — P, 20— 0, 2],

which coincides with Ff,'C}'Bg;.
Its structural representative, however, the F§, reconstructed for ‘A,

Journ. de Math., tome XVI. — Fasc. II, 1431. 17



130 P. DIENES AND E. T. DAVIES.
at 'z, is .
! i 6 ]

(17)  'C%'B}[ 0y 'Bj + () B .
— F% 2 BN = : 8 2 24
=Ff,+ (M%) CEBE + ¢ [F, 053 FE 0355 ¥Fi 0,5

which coincides with 'Fg,'C3’BY;.

The obvious extension of the operator & is therefore given by
(18) dFg,='FL, Gy 'BY, - 10, 'C2/BY = (aI7) G B,

In a similar manner we can give the corresponding results for the
other tensors, such as G},, J¢, and K},. We have for instance

d)  AGL, =BiCEBIAGE,
(19) ai AL, = CEBECE AJS,.
(i) AK = B5 G} AKS..
In this paper we assume throughout that in A, the connexion has
been obtained by projection, so that

(20) D:;.,..—_o, E:t=0, H:;p_—.o and lgs =o.
A straighforward calculation shows however that
(21) 'Dj, =By V,'Bf = Djy + Bl 3Ty, = Dy -+ o/

so that in general ‘D, is different from zero. This happens becausse
the connexion parametersf}, for’A,, have not been obtained by projec-
tion. It follows that AD},= o, but D.D}, = — B{ 8T'§, is in general
not zero. The same remark applies to the tensors EZ;, H;‘L,, and I3, with
corresponding formulae.

8. If we define b,, = b,, + 3b,,, where ob,, = (Ca,s)B; and the

corresponding three index symbols 7z, =1{ %, |, then
T - - L= Bl a3y = 83,

so that, in order to study the s operator as applied to tensors occurring
in the theory of a V. in a V,, we could, from the point of view of the
Sformal results, disregard the point transformation altogether, and
consider the V,, (consisting of the same points as V,, but with the
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metric parameters 5,,) as immersed in the corresponding V,. We
could then introduce the operator V, where the V would indicate
covariant derivation using the barred connexion parameters I',, l-?‘w,
7\,‘;“, etc., so that for instance

Vool =V, 0k -+ (3T5,) vh BY — (3lh) oY,
Vooh = Vyoh + (885) vp — (3hgy)vs.

This artifice, of considering a new space with a different set of metric

coefficients a,3, has been used by Bortolotti (1928) in his study of
minimal submanifolds. It is a particular case of the theory of a point
manifold to which has been assigned different metrics, and it has been
developed systematically by Levi-Civita (1927, Ch. VIII) and
Weitzenbock (1923, p. 352).

These remarks can be extended to general linearly connected
spaces, in which the point manifolds are assigned two different sets
of connexion parameters instead of two sets of metric parameters. If
we calculate the projected connexion parameters and the various
structure tensors for an A,, in an A,, the differences between the
quantities thus obtained and the original ones are equal to what we
have already defined as the & deformation of the quantities in
question.

We have for example

Ty — Uy = B V, Bl — BLV, By = BT 605y = o0,
and
Fi, - FS, = CL ¥, B, - C&V, By, = CE B} (T3, ) = oF%,.

This is also true for the extensions of § to mixed tensors like F}, and
F3,, so that _

Fov — Fi =V, B, — V,BR, = Bi! (oT'§,),

B, - 5, = CIBE (%),

9. Derormation or Riemannian Corvature Tensors. — To study struc-
ture tensors like RY,,, or R%,, wecan proceed in the following manner.
Since they are expressible in terms of R%,;and of the first and second
tensors of Eulerian Curvature I, and G¥, by means of the Gauss and
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the Kihne equations, we can reconstruct these tensors at the points
of 'A,, and then use the same artifice as we did in the case of F%,,,
namely of defining the reconstructed tensor 'R%,,, as being the dis-
placedtensor RY,,,(‘@). Therepresentative of R* At the pointsof A,,
will be the tensor with identical components in the u-coordinates,
t.e.R5,,. Hence we have

(1) oRSu, = RE,, - R ’,p,
»( N ey LT 3G~k kN
= (5R%y3) BAZXY — 7,60k, — Gy 0FF, + FY, Gl + Gl 6FD,.

Let us now consider the curvature tensor R*,, (where we introduce

the double bar to distinguish it from R%,,, = R%,; B&12), of A,,in A,.
By definition we have

(2) ﬂAk'/.pv == ()v?'fy. — ’)p.ifv -+ 751 7:[1. - [;p.[;u,
which, on replacing ¥, by its value and on putting cl}, =< L%,

8l§, = ¢\, can be written
(3) R =R, + ¢ [V, LS — VLY, + 2800 ).
On observing that L{, = A3, B} and that S;; = S;7 BEY, we have
(%) R =Ry, + ¢ [BEL (Vsa5, — ViAds 2S5 ARBS)]

+ € AS[BXV.BE — BEYV, BE + BV, BY

— BV, B] + BELV, BY — BV, B,

and since by Dienes (1932, p. 269)
() V.Bi= - Gi=— CLGf,
the right hand side of (4) can be reduced to the form

6) Ry — Rb =(3R%y5) BEXE _F7,3GE, — GE, F5, +F7, 5Gh, + Ghy oF7,.

so that the right hand side coincides exactly with that of (1), and is

therefore gRY,,,.
The same procedure applied to the tensor R?,,, would give us

7)  oR%,, = (3R%,;) CEF B*" F? 60,’;\,~a—(?n,,c>l‘p — F?, 3Gh, — Gb, 3F.
(/) [ -Bys I.[L

The results given in equations (1) and (7) of this article show that for
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structure tensors of A,, which are connected with the corresponding
tensors of the general space by means of the Gauss and Kithne equa-
tions, all we have to do is to apply the ¢ operation to the whole equa-
tion, as if it were an ordinary symbol of derivalion except that the
projection factors are to be regarded as constants with respect to ¢.
The extension of the operator ¢ to Eulerian Curvature tensors as
introduced in Article 7 therefore proves a convenient one.
If we apply the direct deformation method, we have

3 - k3v4 3
(8) AR.'Ap.v = Ra’iva ('7”1 )IBalp.\l - RJP-"
Ir
a)ﬁ\g:(AR GYO

and it can be written explicitly in terms of R%,, itself in the form
(9 AR, = ¢ [ BL(RA,, ¥,2% + RY V28 1 R, V,22) — BERY,, V,22].
Similarly

(10) AR%,, = C&3 B, ARy,

which can be written explicitly as

(rn) AR.po'p.v =€ [B'a(R.Pcp.; ‘V,,?_r;“ + R.pmp.ep.?,z) -+ C:R?xp.v 'Va':z —C§ B?:a'y.v v'erO‘]

10. Let us consider the first of the Codazzi equations in the form
(1) V,Ff, — V, Ff, = R%,, CEBL — 2 Sy FY,.

In view of our extensions of the operator &, its application to the right
hand side of this equation would give us

(2) (3R%ys) C5BoLS — a(Sps OFf, + FE, 3S;0).

In order to prove that the & applied to the left hand side will lead to
the same result, let us remark first that

3) | V,Ff, = 5B Vs F,,

a fact which can easily be verified. Consequenly, remembering that
the & operator leaves the projection factors unaltered, we have

(&) 3(V, Ff) = CE B 5 (vaFiy).
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Further, on applying the formula (2,13) for the interchangeability
of & and covariant dérivation, we have

() 3(VaF&y) — Va(3F3y) = (T7s) Fiy — (31:) Fry - (3TYs) F.

Finally, on putting 8T, = ¢ A§, and dF§, = ¢ (A%)C{BE we get on

simplification

(6) S(VuFE,) = ¢ CABEV;AS, + CEBECY(3TS,) Fy, + 605,.F], + 825,.FS,
— 8l Fhy -~ 8B, FP — 80, FE,.

On interchanging p and v and subtracting the result from (6), we get

(7) A[V.Ffy — ¥, F] =€ CLBEL [VaAd, — VyAgs)

a hpv

. N Far
— aFf Sy +2(3T3,) G5B CIR,T,

which, in view of the fact that sR%; = ¢ [V;A§, — V. A5, 428705
can be written

(8)  [V.Ff, - VuF%]=(3R%,s) CABLL — a(FE, 3Sis +- Sy oFF),

the right hand side of which coincides with (2).

We have therefore proved that we can apply the & operator to both
sides of the Codazzi equations just as we have done for the Gauss and
the Kiithne equations.

It can easily be verified that the expression (2) is equal

to2V, Ffm,, where, Lo first order

(9) - VS, =V, (Ff, + F5,) =V, K, + V(aFf),
and
(10) VV F‘f‘,, =V, F‘Ap. -+ (6)\5":) ng- - (61;&) F?p. - (61:») Fg.:'

11. Let us now :cohsider the curvature tensor RY,,, for a Riemann
space. In this case, since Bf = 6" a,3 B! we have

VuBi: =05 a,8V, B = b0, F,
and since V, B} = — GJ,, we can write

(1) Gly=— b™aggF.fh.
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Further, on recalling that a term of the form F§,G¥, occurring in the
Gauss equation can be written as F,G%,, and therefore, in virtue
of (1) as — b*a,sF%, F}, we can write the Gauss equation in the form

(2) Rf}.pv =R By Ba# 0 -+ ['lﬁvazk‘(F%y F?; - F%v F:}L)'

arpy
On contracting this with b,,, and changing indices, we get
(3) Reun = Ragys By + aag(F5uFh, — F3 FR).

To find the 3Ry, we have only to apply the operator ¢ to the whole
equation (3) as it stands, taking account of the extension of 3 to F?,.
This gives

23v5

(1) ORawy=(3Ragy) BE, + aap (FS iy — Fiy Fiy)
-+ azﬁ“‘nk th -+ FA Yy ’)F;u — F‘:E/ aF?p. - FE{L al“%‘)’
which is equivalent to the expression obtained by Schouten (1928).

We could also have obtained the same result by applymg the
operator § to the equation Ry, = RY,,, b, giving

(5) 6Rklp.v =by, ahf"qm -+- B':).p.v 0b,

where oRY, Y and ob,, are to have values already given for them.
Since the 5 operator can be applied to products and contracted

products, we can use it directly to obtain the contractions of the

R%,.., tensor. Let us take first the so-called Ricci tensor (*) given by

(6) Ry = Rpu b4 = RS .

AT

From this we have

(7) BR,V et R/clu.v O[l‘u' -+ 1)“"‘ BRk/p.v,

so that, on putting in the value of éR,;,, from (4), and putting ob*" in
the form

(8) Sbuk = — put pvA 2R da,g,

(") In view of the difference in notation, since Bk,uv is Ri;‘f) in Schouten’s
notation, the corresponding Ricci tensor would appear as R,;, with the mdlces
interchanged.
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we have
(9) Ry, = b**(dRagy3) BZf,ff + b dayg (Ff, 0%, — FE, Fy)

L NS Y. BN 2 ~ 24 33 -3
+ brays[F3, oFF, + F2, 815, — FE, o1, — I, oF%]
w3 3
— Ry 0¥ 65 By days,

to which Schouten’s expression for the corresponding tensor can be
reduced.

If on the other hand we take the cR%,, as given in (9,1) and con-
tract it with respect to the indices £ and p. we obtain

(10) 8R%yu = (3R%ys) BIBIY — F,3GE, — G&, 6F7, + K, 3G, -+ G¥, oF,
which appears to differ materially from the right hand side of (g). If
however, we make systematic use of equation (1) of this article, of
the Gauss equation, and of

L,
0Ra3y; = dtar, 0Ryys + Ry; dagy,

it is not difficult to prove that the right hand side of (10) does in
effect coincide with that of (9). Hence we can write ¢R;, for R, and
(10) gives the ¢ deformation of the Ricci tensor independently of any
use of the metric parameters.

If finally we wish to determine the deformation of the invariant R
of the submanifold for the infinitesimal deformation, we have only to

apply the operator ¢ to the equation

(x1) RZB."vb‘m,
giving
(12) R = b™ 3R;y + Ry, 00V

=b" 8Ryy — b BB daap.Riy,

where we imagine ¢R;, replaced by its value from (9).

12. GeobESIC AND MININAL SUBMANIFOLDS. — A submanifold is geodesic
when the first tensor of Eulerian Curvature vanishes, i.e. when
F{, =o.

The condition that, as a result of the infinitesimal deformation,
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the resulting submanifold ‘A,, should also be geodesic is therefore
that

( [) 6[“&, =o,
or that
(2) (3r,) G4 BEY =o.

Since F%, = o this can be written at length in the form

3) CLIV,Vu2® + R%,BEES + 2 BL3Y, Sif -+ 2 BES58 V58] =o,
which for a Riemann space becomes

(4) CE[V.Vui® + Koy BN zd] = o,

where K%.; is the expression for R%,; when the space is aV,. This
generalization is already given by Schouten (1928, p. 213) for Levi-
Civita’s equations of geodesic deviation.

Let us consider again the minimal submanifolds immersed in a
metric space in which autoparallels are lines of extremal length, so
that the minimal submanifolds of this space coincide with those of the
Riemann space determined by the metric parameters.

The condition for a minimal submanifold is that

(8) O, = o,
so that the déformed submanifold is also minimal provided
(6) Fi, 36% + b 9Ff, = o,
i. e. provided
(7) b® C4[ V.Vt + R%ys BRE? + 2BV, (SafE?) - 200" BEFS, VaZg =o.
But in this case the relation
Ty=1{gy} + Sgy — a*3(Sgys + Sgay),

between the connexion parameters and the three-index symbols of
Christoffel takes the simple form

&% o .o
(8) Téy={gy} + Siv,
Journ. de Math., tome XVI. — Fase. 11, 1937, 18
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and consequently
(9) Rl = Klaya + VaSiy — VoS + Sy S — S 83

so that using (8) and (9) and replacing covariant derivation with I'g,
as connexion parameters by derivation with { | as parameters, we
get the equation which Bortolotti (1928, p. 176, form. g5) has given
for the Riemann case.

Part III. — Tangential and ‘¢ Span ” Deformations.

43. From this point onwards we shall consider the two special
cases in which the infinitesimal displacement ¢&*(u) undergone by
the points of the submanifold, is either definitely in the tangent
plane to A,, at every point, or else in the pseudo-normal « plane »
(which can in our terminology he described as being « in the span »).
In the case of a tangential deformation, where £* can be written in the
form B5v}, since the new point P’ will now be in the tangent plane
of A, at P, it will also, to first order terms in €, be in the A, itself.
Hence P’ will have coordinates in the u-system, and, from the point
of view of the submanifold, we could regard the infinitesimal displa-
cement as producing an ¢ntrinsic deformation of the A,,, expressed by

(1) "= u* + en*.

The fundamental tensors of A, (considered independently of the
surrounding space A,) will undergo changes due to the transforma-
tion (1), corresponding to the changes undergone by the fundamental
tensors of A, due to an infinitesimal transformation (‘z*= 2*+ £¢*)
of the A,..

When, however, the tensors (or more precisely the tensor fields)
of the submanifold are related to those of A, by laws, such as projec-
tion (in the case of the metric and the torsion tensors) or the Gauss
and Kithne equations (in the case of the curvature tensors), then
there is usually a discrepancy between the results obtained by consi-
dering the tensors of A,, as undergoing an intrinsic deformation deter-
mined by (1), — and those obtained by finding the particular form
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taken by the results of the preceding articles on putting £*= B3

We shall now consider this discrepancy, denoting by &, the symbol
corresponding to the intrinsic deformation which a fundamental
tensor of A,, would undergo in virtue of the transformation (1).

We shall also obtain the results of the preceding sections in the
case where £%is in the span, i. e. where £2= C3(¢*. We cannot in this
case introduce an intrinsic point deformation corresponding to (1),
although certain results have a form suggesting the use of an opera-
tion 3, for the « span » deformation corresponding to 5,for the tangen-
tial deformation.

When dealing with a V,,in a V,, we shall also see that a constant
infinitesimal displacement in a direction normal to V,,, will produce
in the metric tensor of V,, a deformation which is expressible in terms
of the second fundamental form ofa V,,ina V,.

14. TANGENTIAL DEFORMATIONS FOR VECTORS OF A ,, AND OF A”?.. — We have
proved in Art. 6 that when we have a tensor field such as 5, in A,

the deformations of its A,, — and A%, — components are given by
such formulae as
(0 8vh= CLBY (3¢3,).

Now let us consider the particular case where £*= B!+ as applied to
the A,, components of a contravariant vector field of A,. By (1) we
have |

(2) ovk—¢ [EaVa px ?’aea 2’,“] Bé;: € [n‘"V)‘ px __ 8 es( B;T;)‘)] Bé;.
On reduction this becomes
(3) dok=¢ [0, 7k — o2 Vink] — e oo [ Vot — G ].

But the expression ¢ [T,)‘V*,‘ o — E"AV;,n“] gives the deformation which a
vector field of A,, of components ¢, would undergo under an infinite-
simal transformation (1, 1), and therefore by definition

(4) 6;;"’: € [nlv;(—)" — ;16-,.*{,‘('],



140 P. DIENES AND E. T. DAVIES.

Hence we can write (3) in the form
(5) Ovk==g,vk -~ ¢ oo (V,v," - Gré*,;n.’-).

If the field v* of A, happens to be tangential to A, at the points of A,
then by definition ¢" = o0, and we have

(6) drk== g, vf,

For a covariant vector field ¢, of A,, the deformation of its A,, com-
ponents will be

7) Ovi= € [E,”Vav, + vV, ] B,

and this can be reduced to the form .
(8) o= € [vf"V;_ i+ Vaea{‘;a] B%,

so that

(9) Ok = 0, ¢%.

Weremark that in this case there is no discrepancy between the defor-

mation of ¢, treated as a covariant vector field of A,, under the trans-
formation (1.1), and the corresponding deformation obtained by
taking £* = Bjv" in the general result. We notice that this is true
whether ¢, is tangential to A,, or not, since ¢, does not enter into
the result.

Treating the span components in the same way, we have

(10) 80P ¢ [EBVson — dWpi2 | CE= € [V, 0F — P 03V, G + BE42e3¥;CE ],

and applying the formula

(11) V3 Co=— Fg,—Jg,,
we get
(12) dvT=c¢ [n.‘Vu—’P—'ﬁ""T"jfa.]‘

so that no tangential components of ¢* appear.
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For the covariant components, however, we have the result
(13) Bop= e[ W Vo0, + 05538, 4 b (Vomb — G;,“m*)], '
which, when v,= o, reduces to
(14) TR A v A () §

an expression similar to (12) obtained for contravariant components.

15. SpAN DEFORMATIONS FOR VECTORS OF A, AxD ofF A/,. — We quote
the corresponding results for the case in which - C;Cr. We have
(1 N I A A |
(2) drp—= € [gﬂv,,k3k+ < l-‘*‘(J‘l‘;"._I + € (:p[ngp - Jgp;?J,

which, when ¢,= o, reduces to

(2) dox= €[ £Vaout 170 Gy |,

(4) dve= e[V, 00 —voVze| — ¢ vr| Fure —Jg,ee],

which when, ¢ = o, reduces to

(4" dop=c| oV, ep— vV, e ],

(5) Srp= e[gav,,;_,,_a,,\%pgc].

On considering (4') and (5) we notice that the forms of the right

hand sides correspond exactly to those of 3,¢* and ,¢, for tangential
deformations. We can therefore conveniently introduce the notation

(6) 3uvp= € [£7Var, — 3V, 17 ]
so that (4) and (5) can be written

(7) Btjp: 6;1‘7(,— € ;*"(Vp.cp_ Jﬁch);
and

(8) 6;‘,: 6,&79.

16. APPLICATION TO THE COMPONENTS OF ANY TENSOR FIELD OF A,. —
Having dealt with every kind of index that can occur, we can write
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down, on the basis of the above results, the expressions for the defor-
mation of any mixed components of a general tensor field of X,. In
fact we might use the Aronhold-Clebsch symbols for any components
such as

n 1 {

(v Adrdmen g'—A« A'.»Ap Am AR LA,

Pu Py m

and use the symbolical relationship

m

t

HIAES Mo AAN, L\ m ; 1 .“ A

(2) OALT VA F AL A +ZA' 6/\ A,
ti

so that we can treat each index as corresponding to an «ideal factor ».
We can accordingly write down immediatly, for tangential defor-
mations

(3) 0by, = 06, by.,
( 4) 6Spv). =d, Sp.vh
(5 ) . 6 R kg = 6,: Rk)\p.v

Further, in the case of the metric tensor 4*, we have

6y dbwv=28,0w — e[ (Vort - Ginn) - b7 (Vompb— Ghinr) ],

But if in this case the span vectors C,, have been determined as being
orthogonal to the Bf,), we have b* = A*¥B4Ci = o so that we have
(6') Ob¥Y = g, b+,

This result for contravariant indices is however a special property of

the metric tensor only. In general, mixed tensor components have
forms as follow

7 8Sis" = 8,Su" - € Si” ( Vor Gam‘)
(8) aﬁkluvz g Rkkpw — € ﬁ‘.’)\pv(va"lk" Ggnt )’
(9) OR%u=¢ [n*VA RPgu + R va n + E"am‘ém“
AR T, PRI R (Vo — G-

And for Span deformations, we have

(10) b= €| 17 Vb 4 15 (b1 Gl 6 G ).



ON THE INFINITESIMAL DEFORMATIONS, 143
But V,b,,= Vo(aapB;‘,‘ﬁ), and if we are dealing with a metric space,
this gives
(11) Vo by = aap( BEIY, -+ BSIE,),

But J§,= CEJ¢, and hence we have V,b,,= o, giving

(10") 86y = €[ £9(bey G+ b, G )]
If we are dealing with a Riemann Geometry, this reduces to
(1)) 0byy== € £° (b Gy + b Giy),

so that, on expressing {° in A, components, and using the rela-
tion (11.1) we get

Oby,——2¢€ E“aagFﬁv: -2 € cPaapCSF{iv.

Now (2b,,)du* du”='ds* — ds* and if we take (? to be cbntant, and
call ¢{*= h® say, then we can write (') '

dst — ds*
= = —F° v
— 7 =Fj, du*du>.

Returning now to the general case, we have the following results fox
other tensors .
(17) sbw = ¢ zo[ Vober — (breGy, + 6 Gl )],
(13) 0Suf =€ [CGVG Siv + g"(S;v‘"é}u + S@i"é?,\, — S,;;,“(‘}{;)\)
+ S M(Vuge —ag,00) + St (Vuge — 13,8)],
(1) RS = ¢ [ Vo + 2R Gl - R G+ R Gl — B G,
- R (Ve — Jg,t0)
+ R Vot — 35,06) + Blo (Pt —35,20) ]

(*) This equation appears in Bompiani (1921, p. 1132) in the form

ds? — ds .
— = o dur dus
and the quadratic form appearing on the right hand side is called by him « th
second fundamental form of the submanifold V,, relative to the normal §,».
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and
(15) ORPgu=¢ [cﬂv,‘ﬁ?m + i{?m\"'.,;ﬂ — ﬁ’f,m.,e“gp
-+ g"(ﬁ?a’nv G}rp. -+ E?qp.)‘ G%v) + R,Pcmv (\"P:“ - Jg-.c‘:)
Baa R?cpﬂ(vvv‘ - I%r )— R:"mv(\"ztf’ — Jf;t’)]-

417. DEFORMATION OF THE CONNEXION IN A TANGENTIAL DEFORMATION. — In
order to obtain the particular forms taken by aZ},, 228, cF%,, ¢G}, for
tangential deformations, we must first of all consider the form taken
by oT's, when £*=B{r‘. Considering first of all the term V,V4i=

occurring in the expression for cI's, we have

%;}:%(B?n‘ = n‘ep B} + Bf‘égn‘: a( Fg +jff3)+ B* Vg,
Forming the ordinary covariant derivation of this, we have
(1) VyVgre=(F3 +j;ap) Vyn'+0t Vr(}"f,a + j?}i) + (Ff‘y + J?‘r) Ven'-+ B2V, Vg,

Now
() 30, = BM(ars, ) = BRI (v, Vaee + Ro%yt?),

Qv
so treating the two terms separately, we have from (1),

B}‘ﬁl(v,vpga) =nBEV,(F%+ Jfﬁ) + BRIV, Vgn
where
BV Fy=BLV, Fo= — F4V,Bi= + FiuGL,
and .
B:ngJf‘Bz 0.
Using again the relation
Bg‘vaan)‘ = vvvp.'f))‘ — ngvpnx

and applying the Gauss equation to the term involving R%,; we have
finally
(2) 3= ¢ (V,Vun* + RAnt)— € FE, (Vond — GAont).

But the expression in the first bracket is evidently the intrinsic
deformation which would be undergone by l?,w in an infinitesimal
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transformation (‘u*=u"+¢n*) of the submanifold. Hence we can
write

(3) 8l = 3.l — € FE, (V0" — G‘g‘.,,ﬁ).
For
(i) . 0ME,= CEEBY(aT,)

using (1), we have

et BY( vy Vgz2 )= 38, ¥yt - CEEV, (F% -+ J3) + FY, Vount
where . . o
: CEA V. Fiy= CV, Fiy=— F}, G,
and ) ) )
CEAV, I =CEV, I8 =V,Jf,.

Using again the Kiithne equation for the term involving R%,; we
have finally

(4) 2, =eV,(J%0) + e R, + ¢ ., (Vout — Ghont).

Treating the deformations of the tensors of Eulerian Curvature in
the same way, the

3Ff, = CEBRI(OTE,)

on using (1), gives

OFg= Ff, V-t CEBL,(FE -+ J3) + KL, Vumt 4 Re ot
where
n S plw e ‘:
C¢BV, F3 =BV, Ffy=V,FF,;
and
. * P * «r . * o
CEBIV,I%=BEV, 6= —J7V,Bi= )0 FC,

1o wve

On applying the Codazzi equation to the term R?,,, we have

R.Pp.‘lz =V, Ff;.v -V, F‘P“ + 2 Fﬁ)‘ S:a';)\a

so that on reduction, we have

(5) 3F8, = € [t V. FG, -+ FY, Vynt+ FE Vynt - 0t FE, 32

pvviold:

Journ. de Math., tome XVI. — Fasc. 1I, 1937. 19
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Now if A,, is a totally geodesic subspace of A,, then F%,=o over
the subspace. We can therefore conclude from (5) that for a tangen-
tial deformation, a totally geodesic subspace is deformed into a totally
geodesic subspace.

Finally we have ) .
3Gy, = BLCEBI(8TE,)

which, on using (1) gives

3Gk, = ¢ [nBLCBV, (F% + §%,) 1 CIBIV. Vgnh i Ryt

where
B;',;_Cif V,Fiy—=o:
BaCo ¥, J3 =BV I3 = —J2 ¥, B\ = : J7 G,
and

Cg B.TV-_, .Vp = V.,\.':, A }':,,, V.',, .
Finally, applying the Codazzi equation to the term R’,,, we have

3Gh=¢[Vy(¥n — GLwt) + GLV,me - G Vit + 0V, Gl G Jme].

.

A8. DEFORMATION OF THE CONNEXION IN A SPAN DEFORMATION. — In this
case

Ezf "'7(",
so that
Vprr=C3Vato+ 17V (= 3V o 7 (63 - K3)),
and hence
(l) VY ';p 21: ( (j:.: 4- I\"t]’ ) V.B 7% . (:;e’_" Vﬁ Crx
- (Gg+ Rag ) ¥y0m 4 009, (G Key),
and so

al;l}'V: € I.()’,”eﬂ- cc -i- (.;';[L V'I:'x " :G B;ﬁ\', ((:l:ﬁ - kg.’j) - T{:"pﬂqca’] .
But
BMV,G2=V,G5,  and  BAV,K$s=— Ki,Fj,
giving
(2) py=¢ [v.(Ghuze) + Go ¥uzo — 18, Kipgo + £ R
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Similarly we have
g, e [CEBIV, Varr - rm 0, ( G2y + K2y ) + Reavat],
which can be reduced, in virtue of
Cg B;{ey Vgir= v.,v",, g¢ — G, 6u ge,
CV,Gig=0 and  CEV,KZg=K¥gFE,
to

(3) G, =€ [, 9,00 - GE, V2o 4 gTKE FE, 4 Rep,etn).

We quote the corresponding results for the two tensors of Eulerian
Curvature

(4) oFf, =¢ [ Vﬁuge — Fgﬁa§9+ ¢oFf, Go, -+ W‘WZ"],
(H) BG;},: € [VV(RZQQ CG) —+ G;’:‘v\;p e — t"éZ}gGé‘, == ﬁ:"pvotg]-

19. DerormatioNn or THE RIEMANNIAN CurvaTure Tensors ror Tan-
GENTIAL AND SpAN DEPORMATIONS. — Let us first consider the changes
in the tensors RY,, and R?,,, for the case £&*=B?v'. We have the
general result

(l) 6Rl.l)‘p,y:' 6R{;).p:' - ?‘:p, 6(}fl}v - G";’I al“:’u‘ 1= F:,’_«, 6(;{"‘, - (;é‘ﬁp. 6"‘!/,.'1

where the complete expression for 3‘17{,”)%v for a tangential deformation
is

(2) aﬁ({)pﬂzf [”)‘V;E.k)p:/ -1 ﬁl.;v.p.v e).'f/“*' ﬁ’:)_w V(L n' - _R/.;'/.p.zev n'— ﬁf)\pﬂvz")k]
— € ﬁ?‘f‘pv(va'ﬂk* Grl}‘v.")‘)-
If we insert this value of cRY,, in (1), and apply the Gauss equation

to each term, afterwards inserting the values of §F3, and 8G},, we
have, on putting for brevity

(3) V== Tyt Glnt
that

(4 6R.I‘)\p~/= €ln'y, R{‘)\p.v -+ R I.‘tp.v ant+ Riy, Vot + RI,‘Kp.c Von'— RE).p.v Vz’f)k]
— ¢ R%u Yh+ ¢[F§, v, Y5 — FS,v,YE]
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But the expression inside the first bracket is evidently ¢,R’,,, and
hence, on applying the Codazzi equation to the term involving R?,,,
we have finally

(9) OR% = 8. RE - 2 €|V, (K], YE) — YEFT, St .

This result could also have been obtained by the following method.
We have from

(6) SRy == T, (0 ) — T (8,) + S dl,
and
(7 ) d; R{'A).p.v: Vv( O ,’}lfp.) - vp. ( 0, lf; ) —+ 2 ‘\p‘: as l’f;

so that, on using
=8 by — € ¥, Y

and substituting in (6), we have the result already given in (5).
For the ¢R?,,, we have the general result

(8) 8RPoy, = ORPyy, + FE, 3Gh, + Gl OF%, — Ff, 8Gh, — Giy 0F%,

where 3E?,W is givén in (16.9). On inserting their values for Sﬁ?,,;
oF%,, 6G2, in (8), and applying systematically the Kithne and Codazzi
equations, we obtain

(9) 6R?cp.v= € ['ﬂ‘vc R{lapﬂ + Rfg,y Vunt+ P'.pap.z Vyn'+ W‘R?ﬂpvJ{"q — "I‘R?vxp.v-]fn_l
—2¢[v, (Fh, Y5) — YoSuFL].

The corresponding formulae for the ¢RY,,, and ¢R?,, for the span
deformations can be obtained in the same way, but in this case the
formulae become considerably more complicated than in the case of
tangential deformations, and they are not so interesting.

Added in proof. — Since this paper was presented in 1933, a com-
prehensive treatment of deformation problems has been published by
Schouten and van Kampen, « Beitrage sur Theorie der Deformation »
Prac. Mat. Fiz.,s. XLI, Warsaw, 1933, p. 1-19.

In that paper the deformed projection factors corresponding lo B;
and C? are not the simple transforms as in this paper and conse-
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quently 8B2 and 8C, do not vanish. In fact :
8B} = 2b" BJ CJ Vze,
and .
0C; =— 2 b+ Bf‘p‘_ G Viyes).

A very convenient consequence of this choice of deformed projec-
tion factors is that the connection parameters 72:& on ‘A, will be

obtained from those of A, by projection, with

8fh, = BMT(ary. ) + cg(aB‘g)Fg.,, 315, = CE5 BY (T, ) — C&(3BY)FY,,

oFe, —CEBEY(oT%,),  0GL, =B} C}BI(dTg,) - C2V,(3BL).

4

Some formulae in Part 111 of the present paper will then take a
simpler form, such as (17.3) which becomes
alhy = d,2h,
and (19.5), which becomes
. 6R{E‘;‘p.v: d; RS‘[‘W-
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