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Sur les espaces de Riemann admettant un groupe i.cométrique
Y / N 1 .
an(n—1)/2 paramétres ;

Par vassé POTRON,

Professcur i Plustitut catholique de Paris.

INTRODUCTION.

Les espaces de Riemann & n dimensions et & courbure riemannienne
constante [localement euclidiens, elliptiques ou hyperboliques ()],
caractérisés par une métrique euclidienne ou cayleyenne, admettent
des groupes de transformations isométriques a n(n —+ 1)/2 paramétres.
Par un choix convenable des variables, les 1 o' (transformations
infinitésimales) génératrices de ces groupes sont pour le groupe eucli-
dien les p;—=20fdx’ et les ry,= a"dfox* — x*dfox", pour les groupes
cayleyens les p;—++ za’Xa'p,etlesry (e =210, 0, b I=1, ..., n).

Les groupes cayleyens sont les groupes projectifs conservant
I’ « absolu », c'est-a-dire la (n— 1)-sphére d’équation

I(xyPes=0 (3.

Je me propose de montrer que si, dans un espace de Riemann i
n dimensions, les trans formations isométriques forment un groupe G @

(') Cf. Cartan, Lecons sur la Géométrie des Lspaces de Riemann . p. 59-Sg
el 133-177.

(?) Voir Buaxcuai, Teoria dei Gruppi, p. 532-537, ou Lie-Exerr, Transforma-
tionsgruppen, t. 111, p. 334,
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n(n 1) 2 paramétres, ce groupe G est nécessairement semblable a Pun
des trois groupes cuclidien ou cayleyens ().

Je montrerai d’abord que ce groupe G a nécessairement, en un
point ordinaire, n 1”* o' indépendantes d’ordre zéro, et n(n—1)f2
d’ordre 1, dont les termes de moindre degré sont complétement déter-
minés. J'établirai ensuite que le groupe G’ des transformations
conformes contient une certaine L™ o™ U, d’ordre 1, permutable &
toutes celles de méme ordre de G, puis que G’ est un groupe &
(n—+1)(n 4+ 2)f{2 paramétres, obtenu en adjoignant, aux o' de (5,
d’abord U, puis n t** o' d’ordre 2, dont les termes de moindre degré
sont complétement déterminés. En utilisant un théoréme général de
Lie (*), ce résultat permet de conclure immédiatement que G’ est
semblable au groupe G, des transformations conformes de I’espace
euclidien. Je montrerai enfin que tout diviseur G, de G, semblable
a G, est semblable & I'un des trois groupes euclidien oun cayleyens.

PREMIERE PARTIE.

1. Soit un espace de Riemann (*) défini par

LS

0

() s ———2 S dud duk, =1 eul
ik

et
) . 0
V=2

une 1 «o'* de G. Les coefficients de X sont définis par les équations de

(') Ces résultats ont fait I'objet de deux Notes a I'Académie des Sciences
(C. R. Acad. Sc., t. 195, 1932, p. 747 et 850). Ils sont voisins, mais cependant
distincts, des résullals obtenus par Lie ( 7ransformationsgruppen, t. 111,
p- 481-507). '

(®) Lwe-Exgrr, Transformationsgruppen, t. 1, p. 618,

(*) Les fonctions gy de «', .... u" sont supposées analytiques. En un point
dit erdinaire, toules ces fonclions sont réguliéres ainsi que toutes les fonclions
définissant éventuellement des changements de variables; el le discriminant ¢

est == o.
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Killing ().

Jz* o) duir .
9 Gy e Oy S b 2 ) Lh=1, ..., n)
(2) 2 (L ey + 2 PV ,)"i‘) o (1 y 1)

Les premiéres conséquences différentielles de ces équations sont réso-
lubles par rapport & toutes les dérivées secondes. Les termes contenant

.. . g i J2Er "
es dérivées s sont 2 %) = o ) S
les dérivées secondes sont en effet ( g ot S T o
2

'on forme deux expressions analogues en permutant circulaire-
ment les indices ¢, A, £, et si 'on retranche la troisiéme de la somme
P 308

fm' Si alors g-l‘.\' désig[]e en

des deux premiéres, on obtient ".2 L
o

général (1/2¥Wgfdg.,. on aura

o gk a2l
g = =

2 TS Qe dut T e duk

[

Il en résulte immédiatement qque le groupe G, en un point ordinaire,
n’a pas de t* o' d’ordre > 1 (*).

Posons maintenant

et considérons les formes linéaires & n? variables, qui figurent dans (2),

FM:Z (i P gy ) (r=u1....,n; k=1i,...,n)
X

Leur nombre est N=n(n -+-1)/2. Elles sont indépendantes. En effet,
par le changement de variables

pl= E &n pM,
2

Fi. devient p; 4 p). Il est clair que ces N formes sont indépendantes,
chaque variable p! (£ 2>¢) ne figurant que dans I'une d’elles. Ainsi les

Yy Buancur, Teoria..., p. 495.

() B
(?) Buwemt, Teoria..., p. t42-145.
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N équations (2) peuvent étre résolues par rapport a N des n* dérivées
premiéres. On en conclut (') que le nombre des parameitres est
Sn+4n*—N=n(n-+1)f2 et que si ce maximum est aiteint (ce qui est
le cas du groupe G), il y a, en un point ordinaire, n 1" %™ indépen-
dantes d'ordre zéro, et n(n —1)f2 d’ordre 1.

2. Soit A un point ordinaire, oii je supposerai n'=...=u"=o.
J'effectuerai (*), sur les &' (et par suite sur les du’), une substitation
linéaire & coefficients constants telle que I'on ait, au point A,

sl — Sialn’ )2,
Les cosinus directeurs o d'une direction issue de -\ vérifient en ce cas
(3) :.(‘9:")'121.
On sait (*) qu’alors le stabilisateur G, du point A dans G est engendré
par les n{n — 1)/2 1 o'

. J Jd
(h Ruy=ra—+.... Pae= "t —=—— — pt

p s (o= ....0).

les termes non écrits étant de degré 22enu', ..., u", ct que, sur les
points 1. (a', ..., 2") de la (7 —1)-sphére (X) représentée par (3),
G, a méme action que le groupe I’ engendré par les

J
I k
Opp— " —s xn .
e P Aot

Le groupe G a en outre 2 1" =™ indépendantes d’ordre zéro. On
peut toujours prendre

= I) ‘ J— () y ———
(d) P L I ‘“’“U’Ta—’ (F==r, ..., 0.
les termes non écrits étant de degré>renu', ..., u" (*).

On voit donc que, st le croupe G des trans formations isométriques o
’ S , !
n(n—1)[2 paramétres, il a, en un potnt ordinaire, n 1*" =" indépen-

(') Biaxcem. Teoria..., p. 113.

(2) Cf. Lie-Excer, Transformationsgruppen, . 11, p. 31,
) Thid., p. 316.
y Lig-Eneen. Fransformationsgruppen, 1. 11, p. 317,

’
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dantes d’ordre zéro, et n(n—1)f2 d’ordre 1, dont les termes de movndre
degré sont compléiement déterminés ().

3. A toute direction («) issue de A, il existe une géodésique tan-
gente. L’arc AM = ' de cette géodésique et les n cosinus directeurs o,
liés par (3), déterminent le point M. Inversement tout point M, voisin
de A, détermine une géodésique AM, la direction () de sa tangente
en A, et I'arc AM =.r'. Je puisconsidérera’, ..., «" comme coordcn-
nées cartésiennes rectangulaires d’un point . de la (n — 1)-sphére (X)
représentée par (3), et former une représentation paramétrique
a'=fi(x*, ...,r") de (¥). En supposant qu'a tout point u de (I)
correspond un seul point m (2*, ..., 2"), je puis substituer, aux coor-
donnéesu', ..., u", les coordonnées &', &, ...,2".

Je prendrai, pour a*, ...,.r", les coordonnées cartésiennes rectan-
gulaires de la projection centrale m de u sur le (n—1)-plan (P)
d’équation ' = 1. On a alors la représentation paramétrique

"

&= (e ()

{0 !
(== ....¢).

[.’élément linéaire devient alors

! deet
{(7) rf;s"-':Z fops edr” els, ll,»,»“—z Sk o =

et drt
ik

Je dis que 'on a
q
=1, fti=o ({=~,....¢n)

Eun effet, quand ' varie seul, le point décrit une géodésique, sur
laquelle ds=d.x'; d’o0 1=Ah,,; et, par suite, en introduisant les
svinboles de Christoffel (*),

oy,
ol

(8) 0== ==y =, (f==1.....n)

(*y £f. Lie-Exger, ébid., p. 323-333. Lie démontre, par des calculs assez
pénibles, que la stracture de G est alors nécessairement celle du groupe eucli-
dien ou de P'un des deux groupes caylevens.

{2) Buxewi, Geometria differensiale, seconde édition, . 1L, p. 63, ou CarTaN,
Lerons..., p. 335.

Journ. de Math., tome XIII. — Fase. TI, 193]. 26
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D’autre part, les géodésiques sont définies par les équalions différen-
tielles (*)

o et dak
4 . r,u,'_,v_.——- —_— T ()
Z s
NS

els? s
Ces équations doivent éire vérifices pour 2’ =s,dav*=. .. =dx"=0;
il faut donc
| WU} (=1, ....n),
d’on
(9) Ty :ZA'TI"fl‘Iil:” (f==1,...,m).
On a done
oy . . .
,)_Lqu:l*:"l—;’li’u:“ (=1, ..., m),

et les i, ; ne dépendent pas de x'. Mais les
dui dut
I’l!—z LU s o)
ik

sont tous nuls en A. En effet, comme #* s’annule avec ', (uels que
solent x?, ..,,x", du*[ou’ s’annule aussi avce x', et pour a'=o,
Ju'fox' seréduit & o’

Ainsi 'élément linéaire a la forme (*)

(10) st = (') - oo, rla'lzz R T NN
ik
les indices ¢ et & parcourant seulement 2, . . ., 7, maisles ;. dépendant
2 b b PRl
de 2', 22, ..., 2"

4. Tout point M a pour coordonnées, soit x', x*, ..., x", soit &',
a'y ..., a% les of liés par (3), et exprimés, par (5), en fonction de
x*, ..., x". Le stabilisateur G,< G du point A, qui transforme tout
arc de géodésique en un arc de géodésique égal, laisse inaltérée la

(') Lev1-Crvita, Absoluie Differentialkallkiil, p. 61; Cartan, Lecons..., p. 41
et o8.

(%) Cf.Biancal, Geometria, seconde édition, t. 1L, p. 336; Carran, Legons...,
p- 109.



SUR LES ESPACES DE RIEMANN. 203

variable z'. Il conserve donc toute variété V,, § n— 1 dimensions,
représentée par @' = const., ainsi que 1'élément linéaire do de cette
variété. Les coordonnées variables d’un point quelconque de V, sont,
ou bien les 2’ liés par (3) [coordonnées d’un point . de ()], ou bien
a?, ...,2" [coordonnées de la projection cenirale m de p sur le
(n —1)-plan (P) d’équation «'=1]. I.’action de G, sur les points p.
est (n* 2) celle du groupe I' engendré par les ¢,.. L’action de G, sur
les points m sera donc la méme que celle H, de I". Or on sait (') que,
si denx 1™ o' correspondantes de I" el H, sont :

J - _—
A :Zﬂiﬁ;’ .\:2 Ly i

les £ sont déterminés par les équations

o . dat .
(11) n;:\a’zzgkﬁ%} (i=1, ...,n)._
£

Si
A=pu {({=2, ..., n),

on trouve, d'apres (6),
. J a d
— e = X —fm M ——
\y—= Y - X (J; s +.. ().;c")’
et, si
/\:i’J]“;. (]l, ,.':‘.",,...T H),
on trouve

d
Npp=—= at — — pf ——.
ik Ak AE

Le groupe H, est donc le groupe projectif conservant la(n — 2)-sphére
d’équation
(2P —+.. .+ (") 410 (2).

Il conserve un élément linéaire do,, qui est (*), & un facteur prés

(') Buwxcny, Teorfa..., p. 161.

(*) Biancus, Teoria,... p. 532.

(*) Lag-Enger, Transformationsgruppen, 1. H1, p. 354 ; Cantan, Lecons...,
p- 141.
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dépendant de ' seul, donné par

kY2 (% ek k)2
dot= (13 &) X(dzr) (Zx* dxt) .

(12) (14 &)*

L’élément linéaire do de V, conservé par (v, on a donc la forme
R(x')da,; et (10) devient

(13) dst—= (dr' )+ R (") doi.

8. La fonction R(x") est le produst, par ', d’'une séric entiére en
(x')?, se réduisant a 1 pour x'= o. Considérons en effet deux géodé-
siques issues de A, correspondant aux deux points my (a3, ..., })
(k=1,2) du (n—1)-plan (P) (n° 3). Sur toute variéié V,, ces
géodésiques déterminent deux points B,. On peut représenter un
arc B, B,, situé sur une V, quelconque, par

x5 = 34(t) (a<t<r), o(0) — &, (1) =24 (h=2...., n).
L’élément linéaire de cet arc est, d’aprés (12) et (13), R(x")U(2) dt,
et sa longueur a pour mesure

1
(l;’|) [L=3¢, .’H(’Jﬁl). = f 'I'(‘f)‘r[ﬁ'.
L)

Introduisons alors les coordonnées normales de Hiemann relatives au
point A ("), c’est-a-dire les y'=a'o’ (=1, ..., »); 'élément linéaire
prend la forme

(15) d.c'l:Z (rdry2 4—2 Fg elr? drt,
i ok

les K., analytiques comme les g;;, élant des scries entiéresen y',..., y",
commencant par des termes du second degré. On a d’ailleurs

Elehvir={de" V4 ()2 E{dai)?;

el, d’aprés la définition de la métrique cayleyenne elliptique (*),
comme on peut du reste le vérifier directement sur (6) et (12), on a

X (dai 2= rlg3.

(1) Cantan, Lecons..., p. 224.
(2) Ibid.. p. 133 et 140.



SUR LES ESPACES DE RIEMANN, 205
L.a comparaison de (13) et (15) donne donc
[R2 () — (@' )] da} = Fradp™ dy*.
hy &k
Si, &' restanl fixe, on change «' en — &/, donc ' en — ' et dy' en
— dy', cette formule montre que I7,, ne change pas, donc que tous
ses termes sont de degré pairen y', ..., ¥". On a donc, en remplacant

les y' par &' &/,
Fre= ttnp ()2 4= @pip (£ ) =00 o,

les ., étant fonctions de ', . . ., a". L'élément linéaire d’une variété
V, (dz' = o) est donc donné, d’aprés (15), par

Azt = (&' )? do? +2 [ Daka (1) 4 bigg () . . ] (1) dot dank,
h &
Sur 'arc B, B, on a

doy=L(1) dt, 2 by da? dok =T} otz

&
on en déduit, pour ds, un développement
dg == V(0 [t 4+ Ty(w! )24 T, (') . ...

D’oti, pour la longueur de I'are B, B,

al
(16) L = ! [ By B (2) . . .], ‘E,:f U(2)T, dt.
1]

La comparaison de (14) et (16) donne bien, pour R(2"), le développe-
ment annoncé.

6. Simaintenant a’' désigne une fonction f(x') vérifiant

dat de ou et R{L™)
Neh)  R(why U0 dE TR

(17)

sl

Ol aura
ds' == (dx'1)2 -+ R2 () dot = o2 (dae' )2 +- R2 (') do?] = p* ds?.

[.a formule &' = f(x') définit donc une transformation conforme.
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Or, si F est une primitive de 1/R, I'intégration de (17) donne
F(z')=F(s')y+t.

Cetle équation définit une fonction ' = f(x', ), qu vérifie, en
méme lemps que (17),

A f{ gl s (__1_‘;’_' — ! — plt

«l= f(x', v) el = =),
Les transformations considérécs forment donc (') le groupe {X|
engendré parlat® w* X =R (') d/dx'. Les variables étant différentes,
chaque transformation de { X} est évidemment permutable a toutes
celles de H,, (n® 3).

Cherchons les expressions Y et U de X par les coordonnées nor-

males y', . ..,¥", puis par les coordonnées primitives «', .. ., 1#". On
aura (%)
, J - ‘ . RieY) |
X :2 T a;ts = XN)i= R{e")ya'= ‘(LJIL ))";

comme R (x")/x' est (n° 4) une série enliéreen (') =(y")*~+ ...+ ()")*
commencant par 1, v;est une série eniiére en y', y", ..., com-
mencant par ¥’. On aura ensuite

L~ _v, 9
U _Z YUt U‘I—E K dyt

Or, si () est la direction de la tangente en A & une géodésique,
et ' l'arc de cette géodésique, les coordonnées de M sont (*)

NASER WS
W= — '(_‘,l‘ 2‘ (Vile)gotha® ...
Tk
ou, avec les coordonnées normales,

I ;
wl=yl— 2 (Thx)orrt 4. . .,
Mt

') Biaxcm, Teoria..., p. G2,

)
y Tbid., p. 68.
)

*) Cartan, Lecgns..., p. 230.

(
(
(
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d’oir I'on peut évidemment tirer une expression de )’ par une série
enticre
= u"~+—z Calea b+ ...
/N
Il en résulte que 7 el du'{dy’ sont des séries entiéres en «', . . ., u" com-
mengcant respeclivement par «f et g, Donc v, est bien une série entiére
enu', ..., u", commencant par «'.

Ainsi, sile groupe G des trans formations isométriques an(n—+1)2 para-
métres,le stabilisateur G, < G d'un point ordinaire A (u' =. . . =u"=0)
est semblable an groupe des déplacements de Uespace elliptique s ses sys-
temes d’intransitivité sont des variétés ¢ n — 1 dimensions dont chacune
« une courbure riemannienne constante posttive. Le groupe G des trans-
formations conformes contient un groupe | U} engendré par

[ — 9
L_Zu Jd T

dont chaque transformation est permutable a toutes celles de G,.

DEUXIEME PARTIE.

7. Le groupe (' des transformalions conformes contient done cer-
lainement n(n—1)[2-1) 1" ' indépendantes d'ordre 1 : les Ry,
et U. L’action 1", sur les dircctions («) issues de A, du stabilisateur
de A dans (i’ doit conserver I'équation E(a)*=o. 1l ne peut donc (')

b d
PR ﬂ’" - — e 8 bg
2h—petv _Z %G Par

avoir d’autres L°" «'* que les g, = «” o

suite G' ne peut avoir d’autres 1** o' d’ordre 1 que les Ry, et U. Mais

) ) - -

', contenant P;= g Hoeoet U __211 g +. .. contient aussi
) , . .

(P;U)= ;)%,. +...et (P;U)—P;=V,quiest d'ordre 21. Deux cas

sont alors & distinguer.

(') Lie-Enger, Transformationsgruppen, L. 111, p. 316.
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8. Siles V,; sont tous nuls ou d’ordre 1, G est semblable au groupe des
déplacements euclidiens. En effet, on a alors

(l'i U ) — Pi: i U - 3 ﬁ],/..l{/,/;.

Ces relations, jointes & (U R,;)= o, montrent «ue L, les P; et les i,
engendrent un groupe G'. D’aprés un théoréme général sur les groupes
transitifs contenant U ('), (3’ cst semblable &

DL . . .
Gy P oo Pri D yas ooy Py !y

J I . Y . 0
P e——y W= : £ — =t — — gk —y
Pi= 5% 2 ! o dath

dont la strocture est

(1) [ (pip)=o0, Apiw)=p. \piraj=p,  (Pirw)=o,
l (e ry) =—o, (Fa Pty =1, (Fan 1) = v.

Le groupe G est alors semblable & un diviseur G, de G,. Comme un
changement de variables n'altére ni les ordres des t*™ o' (2), ni la
structure, G, doit contenir n1*"w!** indépendantes d’ordre zéro,

s
ﬁj:z i~ .-

k

et n(n—1)f2 d'ordre 1,
Y -
puk— 2 Lika3d Pz~ aitly
(@3

dont aucune n'est permutable i toutes les autres, et dont aucune, par
suite, ne peut étre u. Celte condition exige |2 3 | 72 0, et 'indépen-
dance des w; exige |%;|s£0. On peut donc prendre == pi+. ..,

Ente== T~ oyte. Mais (gp o) — g1=—wy1e; donc
FhIT= U el gl = Vhf-
On peul alors prendre «;= p;=+ o;u. Mais (%;7) — 5,=— %u; done
ay= v el T == -

(') Lig-Exger, Transformationsgruppen, L. 1, p. Gi8.
() Buaxem, Teoria..., p. 130.
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Donc le seul diviseur de G’ qui soit semblable & G est le groupe
Do=={piy .oy Puy "2y - - -3 Ty 0} des déplacements euclidiens.

9. Supposons maintenant (P;L)—DP; d’ordre g22. Si g> 2,
G’ contient (I’, V;) d’ordre g — 1; en formant les alternées successives,
on arrivera a une t* = W d’ordre 2. On sait (') que W a nécessaire-
ment la forme

W :2 CLVi-t.. .. Ve 2 uc"z .L"’p;—Z () pss
!

i

(que ' contient alors les a1 o« indépendantes d’ordre 2
T, =¢,-+..., et n’en conlient aucune d'ordre > 2.
Ce groupe (', transitif et conlenant U, est (*) semblable 4

M . [ B . g o
Gums e oo os Pt W5 P iae oo P Ve e By

dont la structure est donnée par (1) et
(%) , (paviy=ru. (prve) =114, (#r0h) =y
” :
(Fmvr) =vh, (rus vy =uo. (g er)=u.
Ce groupe (' est (*) le groupe des transformations conformes dc
espace euclidien, groupe total (*) de X(dx")*.
Comme au n° 8, G est semblable & un diviseur (5, de G engendré

pﬂl‘

ﬁf‘ .
I A e L A¢—> it 1 (r=1..... n).
/
1 " ]
OnE== == Tt 2 Ot V't (h=r....,nibh=h+1..... n)
i

A . ~ ~
En convenant que v, Vi=rtw+ =0, donc g+ g=wo,
on peut supprimer la restriction £ > h.

(') Lig-ExgeL, Transformationsgruppen, U111, p. 318.
(?) Lae-Exger, ébid. . 1, p. 618,

(%) Lag-Eneew, ibid., t. 111, p. 347,

(*) Le groupe propre de F conserve l'expression F;le groupe total conserve
sewlement I'équation ¥ =un. Cf. vk Stguier, Groupes ¢ invariant bilinéaire ou
quadratique (Journ. de Math., 7 série, . 11, 1616, p. 283).

Journ. de Math., tome XU1. — Fasc. 1I, 1934, 27
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Le groupe G, n’ayant aucure t** o d'ordre > 1, les (¢i g10) — gur
et (¢cafr), qui n'ont que des termes de degré 2, doivent étre nulles.
Ces conditions donnent

-

Y=o, Ogm=o ( trois indices diflérents). Onte=="0ui.  Ous== 0.

Si donc on pose
6”1 == 6;.
on a, quel que soit /, . o
O = — ="

et

(3 DhET= P o Op 8y — Ot

9 : b - ~ \
De méme, les (%,2m) — =— 2% 8w b (T gu) — 22 20— 29, 2u,
qui n’ont que des termes de degré =, doivent étre nulles. Ces condi-
tions donnent

|3,1,,'— 4 (Ii I ). 5],/,: :‘;”_ 2= 20

S1 donc on pose

I

W
o

on a

4 = 00 = Gy

La structure de (3, que I'on vérifie directement, est donnée par

i N N b
(5) | (7 ") = 2apmn— 0+ | S04
I . R ~
bl o) = T 4 28500, (T Bt ) == 204 %nr— 20D
(6) ( Da Ba Y == 3. (Gin ) =o.

I . . Y -
10. Mais, si I'on remplace =; par =;=xw,— 2 3y iy OD VOIL (Jue

les relations (5) sont remplacées par

— L
, { (a7 =deom. c=75— Xdj,
() Vo v T
" [ ?/,l) = ;. {7, G )= 0.,

Si e=o0, (i, a la structure du groupe D, des déplacements eucli-
diens. Si ¢ =£ 0, posons

)

h2—

=, e >0 et =k

I

[

-

(&



SUR LES ESPACES DE RIEMANN, 211
Les relatious (7) sont remplacées par

(8) (% T ) = 20k (75 o) — 71, {7 pit) — 0.

Or la structure (6)-(8) est celle du groupe

D.=!®,.....6 Fa. - .. Pr—yu !
ol

W= [+

7.

=

Les groupes ¢x,, D,, D, sunt transitifs. Dans I'isomorphisme de G,
A Dy, ou a D, les stabilisateurs de ’origine se correspondent. Si donc
c=o0, GG, et (s sont semblables (') 4 D,. Le ds* conservé par G est
¢quivalent & X(dx')?, conservé par D,. Si ¢£0, G, et G sont sem-
blables a4 D.. Le ds*= Xg.du'du*, conservé par G, est équivalent au
ds* = Zh;.dx'dx*, conservé par D., que je vais déterminer.

I1. Silondésigne parZ, (=1, ..., n(n+1)[25i=1, ...,n)les
coefficients des t* o' génératrices de D., les 4, doivent vérifier les
équations de Killing

" ()/l,-,l( l);;(;,‘ l);:_/}_\
(a) 2 (t_h.;m -+ gy, P -+ h-m.‘a;;) = .
IA
On sait (*) que les A, solutions de ce systéme, sont complétement
déterminés par leurs valeurs imtiales /7, (en o), assujetties aux condi-

tions suivantes : la forme quadratique F :2 ' o o doit étre définie

positive, et invariante par chacune des "™ o ¢;; du groupe I (n° 2).
Or la condition

- O N ..
o=ug;F :::a( 2 Bty ot b — E lii"ua'a")
* w

donne
Rhy—=hp;, hfi=—=o (J=1).

On a donc en o, a un facteur constant prés,

sy — Z (e’ 2.

(") Buaxcm, Teoria..., p. 395; Lie-Exeer, Transformationsgruppen, t. 1,
p- 4250
() Bianem, Teoria..., p. 322-hag.
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Par suite, le ds* conservé par D.est, 4 un facteur constant prés, com-
plétement déterminé.
Or, sil'on prend (')
i

1

E (&' )2,

le ds* est évidemment invariant par les g,,. Pour &,, on a

Ll f=hy. TV ,: I Ay — ol ')“'1.
=h). % ; pPAES

Si k21, I'équation (g) se réduit a

» U=+

/l;j: o 1j iy i). h;i:

-

Wl

Zhi=—

S e
drt T g ™
Si4=1. elle devient
amp U — gl =,

Ces relations sonl toujours vérifiées.

Ainsiy le ds® consereé par G oest @ un facteur constant prés, équiva-
lent a

‘ Z {edf)?
(10) ols*— {
. ol .
"+5»'|'> (J.!]'.'I
s

[0
~—

C’est une des formes canoniques de 'élément liné¢aire d'un espace de
Riemann, dont la courbure riemannienne a la valeur constante <.

12. La forme canonique du ds* cayleyen déduit de la définition pro-
jective de la métrique caylevenne est (*)

Xy g X (e’ — (X (/.1:’)‘-"

| 2?4 2)?

(11} eyt — =

Iabsolu étant la (rn—1)-sphére Z(a')*+:=o0. On obtient la
forme (10} en cherchant une représentation conforme de 1'espace
cayleyen sur I'espace enclidien (*).

(') Cf. Buaxom, Geometria.... seconde édition, t. 1.
(*) Lie-lixgeL, Transformationsgruppen, p. 3.
(%) CartaN. Lecons.... p. 156; Buncsl, Geomelria..., p. joz-{19.
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Les constructions géométriques qui conduisent & cette représenta-
tion sont, en apparence, différentes pour I'espace elliptique et pour
Pespace hyperbolique. On peut cependant les réunir dans un éuoncé
commun.

Considérons les points (uxy, ...,a,) de l'espace cayleyen, oi la
métrique est définie en prenant pour absolu la (z — r)-sphére

(12) (&' ) 4. (") 1=,

comme appartenant au n-plan ..., =o de ['espace euclidien a
n 41 dimensions. Faisons une projection conique de ce n-plan surla
n-sphére d’équation

(13) (L) o+ (T P — et =,

le centre € de projection étant tel que le r-cOne, défini par ce point et
la (n— 1)-sphére (12) du n-plan x,.,=o0, soit circonscrit a la
n-sphére (13). On peut prendre pour C le point '=...=z*=o,
't =uzf(142).

A un point (x) du n-plan .z;,_, = o correspondra celui des deux points
(y) de la n-spheére (13) alignés sur () et C pour lequel y*' est > 1
(point sur le n-hémisphére supéricur); et I'on aura

) 3y .
14 = — (E=—0t.....n).
(r4) 3 — (1 g )y )

On fera ensuite correspondre au point (y) son inverse par rapport au
point (o), la puissance d’inversion étant 4. Si

L=(z'p+.. ..+ (3",
on aura

(13) V= — (h=1u..... B4y 3 =)

{16) W A—

On obtient ainsi, dans I'espace a n dimensions, une transformation
étudiée par Darboux dans 'espace & trois dimensions (').

(') Damsoux, Lecons sur la théorie des surfaces, . 111, p. 492.
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Si P'on fait ce changement de variables dans (11), que 'on peut
écrire, en posant X = (z')* 4. . .+ (a")?,

(XN +e)S(daf)*— (l,\_
. X
(17) st —z X=F ’
on obtient immédiatement
(s

st —————;

(%)
1+ &+
-1
c’est bien la forme (10)
L’élément linéaire de la n-sphére (13), considérée comme plongéc
dans un espace enclidien a (n + 1) dimensions, est

A5 = (¥ ) b () e (e,

ou il faut tenir compte de (13) et de sa premiére conséquence différen-
tielle
(18) ey - dyrt 4 (O = )y dy =,

Si l'on pose
Y = (') ()

on a, en tenant compte de (13) et (18),

o i gine oY
(19) ”5'—2,(({.‘ ) Iy
D’aprés (13), ona
(1 ____J.n—'—t)z.: 1 — Y
et, comme y"*' est > 1,

[}
i —J""'H JE—— ([ N )‘.‘ .
Si, dans (14) on fait e =1, il vient
e . AN ‘ &

(20) M= Y= ——, yi— _—
(1—Y)? i+ (¢ X)2

Si I'on transforme (19) par (20), on obtient (17) ot e = 1. On vérifie
ainsi que U'élément linéaire du n-plan elliptique est equivalent & celur
d’une n-sphére plongée dans Uespace euclidien 4 n+ 1 dimensions ().

(') Cf. Carran, Lecons..., p. 134-141.
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Si, dans (14), on faitz = — 1, il vient y'= 2'. On a alors, d’aprés (17)
olhe=—1, el (19),
P dz?
Ay

On vérifie ainsi que la construction indiquée réalise une représentation
conforme du n-plan hyperbolique sur la n-sphére plongée dans Uespace
euclidien & n 1 dimensions (').

Ainsi la n-sphére plongée dans I'espace euclidien & 41 dimen-
sions est Loujours une représentation conforme de I'espace cayleyen,
elliptique ou hyperbolique. Une inversion de cette n-phére ayant
pour podle un de ses points devait donc fournir une représentation
conforme de I’espace cayleyen, elliptique ou hyperbolique, sur’espace
euclidien. (Test en effet ce que donne la forme (10) de 1'élément
linéaire.

15. La transformation (17) de Darboux s’obtient d’ailleurs immé-
diatement par I'application du théoréme sur la similitude des groupes
rappelé an n° 9 (*).

Les transformations infinitésimales du groupe G, du ds* (11)
(groupe projectif conservant la n-sphére Za7 + : = 0) sont

)] .
Ni= i+ EV::,-E L p,-:—’ﬁ (f=1.....n),

M= P — Lrfin (ho b=, ... ¢

Celles du groupe G, du ds* (10) sont

Yi=qi+ 7: (\"‘."iE)'i’li_ '/.2‘ y,'-’),
J
b W= Val e — ViR = yTon

Les deux groupes ont la méme structure

(T Ly =L, (4 L) =L (7 L) = o,
(g L) = L {(Lij Ly = o,

') Cf. Cantan, Lecons..., p. 159-152.

(*) Bunxent, Lezioni.... p. 393, ou Lig-ExceL, Transformationsgruppen. t. 1,

r
p- 32

o
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Ils sont transitifs, les nX; et les nY; étant divergentes en o. Les
stabilisateurs de o, respectivement engendrés par les X, et les Y,;, se
correspondent dans I'isomorphisme résultant deI'identité de structure.
On a d’ailleurs immédiatement les relations

{21) Npp==en Np— &1 \js
eX AN ; ]
(22) 11— : Yo=Y — % Y

D’aprés le théoréme rappelé ci-dessus, les deux groupes G, et G,
sont semblables; le changement de variables qui transforme G, en G,
s’obtient en égalant les coefficients des relations (21) et (22), d’ot la
transformation de Parboux,

Y iy e

———e T G e



