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L’HYDRODYNAMIQUE DU FLUIDE VISQUEUX. 67

Quelques solutions exactes des équations de Ulydrodynamique
du fluide wisqueux dans le cas d’un tube cylindrique ;

Par Piotrn SZYMANSKI

(Varsovie).

INTRODUCTION.

Nous nous occuperons dans cette note de I'écoulement du fluide
visqueux, incompressible, par un tube cylindrique de section circu-
laire. Nous admettrons de plus que I’écoulement est symétrique par
rapport a I'axe du tube.

Nous adopterons dans la suite le systéme des coordonnées cylin-
driques, comme le systéme qui convient le plus au cas envisagé.

Soient donc (r, 3, 3) les coordonnées cylindriques d’un point quel-
conque de l'espace; ¢, v, . les composantes de la vitesse d’une
particule du fluide qui, a I'instant ¢, se trouve a ce point; &, L;, L.
les composantes du champ de forces rapportées a 'unité de masse;
p la pression du fluide au point envisagé; 5 la densité du fluide, que
nous admettons constante; ., le coefficient de la viscosité.

Soient, enfin, /la longueur du tube et ¢ le rayon de sa section
droite,

Nous disposons I’axe OZ des coordonnées suivant I'axe du tube, de
maniére que les extrémités de cet axe se trouvent respectivement aux
points z=o et s =[(fig. 1).

Conformément aux hypothéses faites, & et ¢5 sont nuls, ainsi que
toutes les dérivées de p, &,, X, ¢,, v, etc., par rapporta =.

Les équations de Navier-Stokes peuvent donc s’écrire sous la
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forme (')
T A L At A
(1) m-§¥,5M; =%+w%+,?
(15) 0({;’:» - ()(;'::) —

| Fig. 1.

A

———gee
. A

La notation A est employée ici pour désigner le laplacien, c’est-a-

dire I'expression
0’+1 ()+()‘3+1 o2
ort  ror dz*  rro>

En supposant le champ de forces nul, I’écoulement permanent et
s'effectuant le long des droites paralléles a ’axe du tube, on obtient,
comme solution exacte de ces équations, I'écoulement bien connu de
Poiseuille

(2,) $r=0,

). —Po—Pl s .
(2:‘!) Vs .”J.l (P ) ’ )1
(2,) p=p.— L7,

ou p, et p, désignent respectivement les pressions aux extrémités z — o
et 3=1[ du tube. La formule (2;) montre que la pression est con-
stante dans toute la section droite du tube.

(*) Voir par/exemple 1. LoreNz, Technische Hydromechanik (Minchen und
Berlin, 1910), p. 421.
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Nous nous proposons ici d’obtenir les solutions dépendant du temps,
mais conservant le méme caractére que I'écoulement de Poiseuille.
Nous admettons donc aussi

(3) ¢p=o0.

L’équation de continuité nous donne alors

—_—— 0,

(3) Y=

En supposant que les forces &, et 4 dérivent d'un potentiel E, et en
désignant

oE
(4 q=§ -
(3) *J_g,
on parvient aux équations
(6,) ' Av-—-v%‘tiziz-.

(Pour simplifier ’écriture nous avons introduit la notation v au
lieu de ¢..)
Selon (3') le premier membre de (6,) ne peut dépendre que de et
de ¢, tandis que le deuxiéme ne dépend pas de r en vertu de (6,).
Il en résulte que les deux membres de (6,) ne dépendent que de ¢,
d’ou
9

(74} _d_‘-':f(”

. dv
(7,) Av—u-’ﬁ =f(2).

En intégrant I'équation (7, ), on obtient, & I'aide de (6,),
(8) q==zf(t)+9(¢).

C’est une équation tout 4 fait analogue 4 (2,); elle exprime le fait
que la valeur de g esf constante dans toute la section droite du tube, et
varie linéairement d’une section i une autre le long de 1’axe.
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En introduisant les fonctions g,(2) =g (o, t) et q,(t)=¢g(l,t)ona

(91) (/(z’ [):qo(t) o qo(t)_['f//(l)z,
) —_
(9:) A‘,_“,;)%:fl/(t) ’qo(t).

L’équation (9,) nous montre que la vitesse ¢ ne dépend pas des
deux fonctions ¢,(z) et g,(¢) mais seulement de leur différence. Dans
le cas ot le champ de forces est nul, cette conclusion est évidente
a priori, puisque dans ce cas g est proportionnel 4 la pression p.

En supposant connues les valeurs de ¢, (7) et ¢, (¢) a tout instant ¢,
on connait aussi la fonction

(10) fuy= WL 9,
qui détermine I'écoulement, a I'aide del'équation (7,)ou (g,).

Ainsi, le probléme se raméne a la résolution de cette derniére équa-
tion, en supposant la fonction f(z) donnée.

Plus précisément, en tenant compte des conditions initiales et des
conditions aux parois, on peut énoncer le probléme comme suit :

Trouver la solution v de I'équation

v oy dv .
(ll) ;);‘T—F-II;'(—’;—’JETZJ‘(L).

réguliére pourtZo et oSr<s et s'annulant pour

3 r et l

(B) ]

Nous appelons ici réguliére toute fonction déterminée et continue et

!

2
o et osrsp.

ayvant ses dérivées r 9 gcont'nu s. Lasymétried t
y g ar inues. ymé u mouvement par

rapport a I'axe OZ exige évidemment que (‘% soit nulle pour r=o.

En effet, dans le cas contraire la courbe de distribution des vitesses
aurait le point anguleux sur I'axe du tube. Nous avons mis & part
cette condition puisqu’elle n’appartient pas, a proprement parler,
aux conditions aux limites. Nous appellerons cette condition(y).
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Il est évident, que la solution réguliére de (11) ne peut exister que
dans le cas ou la fonction f(2) est continue. C’est cette condition,
d'ailleurs, qui résulte de I'interprétation physique de la fonction f(¢).

Le raisonnement suivant met en évidence encore une condition 4
imposer. ,

En effet, on a, en vertu de la condition (o) :

=0, = =0 et — =0, pour { =o,

d’oii I'équation (11) se réduit 4

o

_‘,.—.

U}

0 .
donc, 0—:’ est une constante.

it=0

Mais si 'on pose r=¢, on obtient, selon (3),

Jv ]

1=y =0,

r=1

o
d’ou la valeur de cette conslante est zéro, parconséquent :

(12) SJtoy=non.

Si cette condition n’est pas satisfaite, I'équation (11) n’admet pas
de solutions réguliéres.

Néanmoins, on peut trouver dans ce cas des solutions continues
susceplibles d’une interprétation physique. Nous en rencontrerons un
exemple dans ce qui va suivre,

Passons maintenant au probléme général, celui de la résolution de
I’équation (11) sous les conditions indiquées.

Dans tous les cas que nous allons traiter, nous nous servirons de la
méme méthode de résolution.

Nous déterminerons { abord une solution quelconque ¢, de I'équation
(11) satisfaisant @ la condition (). Pour satisfaire ensuite & la condi-
tion (3), nous ajouterons & la solution ainsi trousvée une solution w con-
venablement choisie de ['équation sans second membre :

Pe 1 dv Jdv

Y =— =0,

3 e - —
L) art 1 oor ot
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La premiére partie du probléme, dépendant essentiellement de la
fonction f(¢), sera résolue de maniéres différentes conformément aux
différents modes de représentation, dont la fonction f(¢) est suscep-
tible.

Au contraire, la seconde partie du probléme, celle qui consiste &
résoudre I'équation (13), ne dépend pas de la forme particuliére de £ (¢).
Nous nous en occuperons en premier lieu.

Avant d’aborder la solution de tous ces problémes nousintroduirons
les coordonnées abstraites indépendantes du choix particulier des
unités de mesure. Les solutions ainsi obtenucs seront exprimées d’une
maniére indépendante des dimensions du tube et de la valeur particu-
liére du coefficient v.

Posons 4 cet effet

. r
('41) -ﬂ:Z’
1
(14,) ,)’2;2—’/,
(14 'C=:;’
; u
(14,) ‘:E’

L’équation (6,) s'écrit maintenant

Fu 1 0u  Ju__0Q
= Tz dr Oy T o’

En posant encore

(13) Qu(3)=Q(0, 7),
(16) Qi () =Q(1, ).
(17) Qi) — Qo)) =F(y).

on peut donc énoncer le probléme qui nous intéresse de la facon
suivante :

ProsLiMe. — Etant donnée la fonction F (y) déterminée et continue
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<)
w

pour toute valeur y 2 o, trouver la solution u de I équation

. Pu 1 Ju  Jdu
(I) L(“)—"-"'a}—z"*'}"o—m"'()y—l“(y)y

réguliére pour y 2o et oSx <1 et telle que

() u=o pour xz=1 et y2o,

(B) u=o pour y=o et oixril,
du

- —— T —_ > .

(7) an =9 pour x=o et y20

1. Prosiese I (auxiliaire). — Etant donnée la fonction ¢ (x) déter-
minée dans Uintervalle (o, 1), trouver la solution w de I'équation

(1) )=+ L5 -2 =

réguliére pour y 2o et oS x <1 et satisfaisant auzx conditions

1 w=o0 pour r=1 et y2o;
2 w=12(x) pour y=o et oSxrsir.

On obtient aisément les intégrales simples de I’équation (II), dela

forme
I(ax) ey,

ou J (%) désigne lafonction de Bessel de premiére espéce et d’ordre o,
c’est-a-dire la fonction

<2 Zh z
(18) SE)=1— e e

2%, 1.2 94,212 2f,3!2

En cherchant & satisfaire la condition (1) du probléme, on n’admet
pour a que les valeurs des racines de I'équation

Jla)=o.

On sait que ces racines sont en nombre infini. En les rangeant selon
leur grandeur on obtient la suite

—lpy ... — @y dyy fse ... fp,

Puisque J (— ax)= I (ax) il suffit de se borner seulement aux:
racines positives

Journ. de Math., tome XI. — Fasc, I, 1932. 10
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I est clair, maintenant, que toute série de la forme
n==v

(19) ZC,lJ(a,,w)e““ZJ'

n=i

satisfait formellement & I'équation (11) en s’annulant pourz = 1 con-
formément a la condition 1°.
I.a condition 2° peut étre satisfaite aussi si 1'on suppose la fonc-

tion 3 () développable dans l'intervalle (o, 1) en une série de la
forme

”%

(20) Zr,,a(a,,ac).
n=j
En partant de I'équation différentielle des fonctions J(4,.xr) on

vérifie immédiatement que les fonctions yz J (a,x) forment une suite
orthogonale, c’est-a-dire que

1
(21, f xd(a,x)I(anx)ydr=n (mF#n)
et
1
(21, f r(I(@,x)Pde=¢e,>o0.
(1]

Ceci nous permet d’'obtenir, par le procédé bien connu, I'expression
formelle des coefficients ¢, du développement ( 20) :

1
(22) (= '-f zo(x)I(a,z)dr.

Le développement (20) rentre donc dans une classe générale de
développements procédant suivant les fonctions d’un systéme quel-
conque de fonctions orthogonales.

En particulier, celui qui nous occupe est hien connu sous le nom de
développement de Fourier-Bessel.

Nous citerons ici quelques théorémes, dont nous ferons usage dans
la suite et qui expriment les conditions suffisantes pour que la fonc-
tion 3 () soit développable en une série de Fourier-Bessel.

Tutorime A. — Toute fonction continue avec ses deuz premiéres déri-
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vées dans Uintervalle (o, 1) et s’annulant pour & = 1 est développable en
une série uniformément et absolument convergente de la _forme (20)(*).

Tutonese B. — Si la _fonction yx 3 (x) est intégrable (*) dans Linter-
valle (o, 1) la série (20) oit les r,, ont les valeurs (22) converge vers la
valeur

-,’;[ql.z'—-o)-f-?("f""o)]

pour tout point intérieur x de Uintervalle (o0, 1) au voisinage duquel la
Sfonction g (x) est & variation bornée.

Si, enoutre, la fonction 3 (x) est continue dans un intervalle (a, b) con-
tenu lui-méme & Uintérieur d'un autre intervalle (2, 3) oitla fonction est
a4 variation bornée, la série converge uniformément vers 7 (x) dans l'in-
tervalle (a, b)(*).

Tueorknr. C. — Si la série (20) est uniformément convergente dans
Fintercalle (o, 1) la somme 3 (&) de cette série est une fonction qui seule
satisfait aux relations (22)(*).

On peut tirer du théoréme B le corollaire suivant :

ConoLLAIRE. — St pour tous les points d’un voisinage du point x = o,
les conditions du théoréme B sont remplies, et si, en outre, la fonction
2 (x) est continue au point x =o et la série (20) est uniformément con-
vergente au voisinage de ce point, cetle série converge aupoint x = o vers
la valeur 7 (o).

Le probléme auxiliaire que nous nous sommes proposé au début de
ce chapitre se trouve ainsi résolu pour beaucoup de cas. Il en résulte
que le probléme général sera résolu toutes les fois qu'étant donnée la

(") D. Hinear, Nachr. Ges. Gott., 190, math.-phys.. p. 231-241. Voiraussi
D. Hisen, (frundz&ge einer allgemeiner Theorie der linearen Integral glei-
chungen (Leipzig, 1924), p. 53.

(%) Au sens de M. Lebesgue.

(*) E. W. Hossos, Representation of a function by series of Bessels func-
tions ( Proc. of the London Math. Soc. »* série, vol. Vi1, 190g, p. 387i.

(*Y W. H. Yotse, On series of Bessel functions ( Proc. of the London Math.
Soc., 2* série, vol 18, 1920, p, 18%).
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fonction F (y) on saura tronver une s)lution de I’équation (I) s’annu-
lant pour =1 et y 20. Avant d’aborder ce dernier probléme dans le
cas général, nous commencerons par I’étude d’un cas particalier, celui
ot lafonction F(y)se réduit 2 une conslante. Cette étude fera lesujet
du paragraphe 3 et des suivants. Le paragraphe 2 sera consacré a
quelques préliminaires.

2. Nous citerons dans ce paragraphe quelques formules (*) et nous
établirons quelques lemmes dont nous ferons usage dans la suite.

Rappelons, en premier lieu, I'équation différentielle qui détermine
la fonction J(x) :

(23) 2I(2y+ I (2Y 4+ rIir)y=0n.

Puis I'expression de J () par la série entiére déja citée :

. . z @ ok
(18) B =h= T Fm T e
et par intégrale définie
(2%) Jix)= -Ef cosir <30 ) da,
‘o

Cette derniére expression montre qur: la fonction ¥ () ainsi que la
fonction J’(x) sont bornées pour tout .r réel.
On a notamment

(23,9 I(x). z
et
(23, Jr(ry Zs

pour toute valeur réelle de ’'argument.
Enfin la formule asymptotique bien connue :

(26) ‘/’? J(x) =P(zx)cosd~ Qlx)sin,

-

(*) On trouvera toutes c s formules dans n’importe quel traité sur Jes fonctions
de Bessel. On peut auss: eonsulter VEncyrlopédie (loc. cit.) ou Jahnke und
FEmde. Funktionen tafeln mit Formeln und Kurcen ()eipzig. 1928).
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’.:;::J'——- ]

L

tandis que P (r') et Q () sont les séries semi-convergentes suivantes :

12,32 12,.32.5%. 7%
Vo= s ey
D an3nE 4232502 g
()= - — - = i _ .,
W)= g3 — 3Ry~ BT (Ba)

On en tire la formule ci-aprés qui sera d’'usage constant dans ce

paragraphe (') :

. T.C sin< 9 9 z)
t 26 “ZHlx)=rcosy = T . —J _lecosd lad?
Pa 2 ) =cosy 8. 282 | % L K

ou §(r) désigne une fonction bornée.

On obtient aisément a I'aide de la formule (26) 'expression sui-
vante des zéros a, de la fonction J(r):

= i 1
(27 A, =np — 5 + — + 0 =
/. n [ ,‘ 81’.’” (ﬂ“')

et la formule (%) :
2o

Nous utiliscrons la formule (27) pour démontrer le lemme suivant :

(28) I a,Hy=

Lewse L. — Pour tout nombre o intérieur a Uintervalle (o, 1) il existe
un nombre A tel que la valeur absolue de la somme

m=—=n

Kpiz)= 2 (—1y I(anx)

m=1

ne dépasse pas A quel que soit n pourvu que x soit compris dans Uinter-
"alk ("‘-" 1, 1).

Pour démontrer ce lemme, exprimons K, (x) parl'intégrale définie.

(*) Voir par exemple A. Gray et G. B. Marsews. 4 treatise on Bessel Func-
tions. London, 1893, p. 5o.
(*) Voir E. W. Hosson. /loc. cit.
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Nous avons en vertu de (24):

K,,(;c):%f- L.(.rsin o) dm,
[}

ot I'on a posé :

m=n

L,(s)= 2 (=1 cos(ayz).

m=1

Tout revient donc 4 démontrer le lemme analogue pour les sommes
L. (3).
En effet, s’il existe un nombre A tel que |L,(2)|<A pour tout n
naturel et tout || < «, on a : (supposant [z |<z et 0Xmw<7)
rsinm < asinm’a,

donc
La(zsinm) -2\

et
‘K ot " inm)idns 2 A.r=
Ka(z) 2 ’[ iLa(zsinm) dn ".\.,,__A.

Remarquons maintenant que selon la formule (27) a,z est de la
forme
rdy,
apz=a-+bn + - + —,
n n
oi1 les nombres d, forment une suite bornée. Or, nous allons démon-
trer d’une facon générale I'inégalité suivante :

m==n
“~ n "
Z(—!)MCOS(G-Pbm-f-";—“‘:—;—_)g lb ’
| m=1 cos ;,
dont le lemme en question résulte immédiatement.
Nous avons d’abord
m=n (—1)? COS((I - -’; -+ Im) - COS(/I + g)
C,,:Z(—l)"’cos(a+bm)= - B . ’
m=—1t 2 COS;
m=n (—1)" sin(a+§+bn)—-sin(a+g)
S,,:.-Z(—-ny"sin(a+bm)= - 3 - =

m=1 2005-;
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4 I

Z

’ Sa 1%

o
. (/,‘ | D
COS ~ CO§ —

2 2%

[l en résulte tout de suite I'inégalité analogue pour la somme

m=n

o . (54
f.= z (—1ym cos(a ~+ b —- - )
m=1 ) ‘

On a, en effet,

m=un m=un
. ¢ Lo
T,= Z (— 1y” cos ’—'-tcosu/ + bmy — 2 (- 1y s3n LIRS bm.

m=1 m=1

En appliquant 4 chacune des sommes la transformation d’Abel et

. . . (4
en remarquant ensuite qu’a partir d’un certain m les nombres cos —et

. . R . . . .,
sin — forment deux suites monotones, on obtient hien I'inégalité de la

forme
e T
i T, < —

COS —
2

ILa méme inégalité subsiste pour la somme

m=n
. / e d, .
"n=2(~[,lll(’05((l+//m+,’7'i—*",‘;l-z') si {dg|2d.

m=1

On a, en effet,

COS%{%— _ 0—":’
ol
' jonisZ
el
sin 2nl< 2
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puis

m=n 6

. ¢

M,— l‘,,--'Z(———l)’" #cos(a—p—bm—f— ;r—z)
m=1 ’ A
m=n d .
- 2 (— 1y sin— sin (a - bm - -f'—) .
m: m

m=1

Les deux derniéres sommes sont évidemment bornées. On a donc,
en désignant par M’ un nombre positif suffisamment grand :

My 2T, < W,
d’ou

b
cos —
2

T+ M

< T+ W
RN =

. C.Q.F.D, 1)),

COS —
2

< eos -
= 2

Lewwe I, — La suite {a,| ' (a,)|} est croissante.
En effet, considérons I'intégrale

1
l,=da? f I,z ),
[

En posant a,x = £ on obtient

Un
1,,=f L anz)ds
0

An 43
I,.,— [,,:f cIUd >0,
"y

et

ANY

D’autre part (*)
f,xdz(anx) dr = %J”(a,,;.
d’ots - .
=220 (an);
donc, 4 l'aide de I'inégalité démontrée,

@iy I ap ) —af I (@) =21, — 1) > o0,

(") Je dois a M. Zygmund la simplification de ce raisonnement.
(*) Voir par exemple Encyclopédie, loc. cit., p. 227, formule (110a).
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ce qui prouve notre assertion. Ccs remarques faites, nous pouvons
nous occuper de notre probléme.

a. Prosiive IL. — « Trouver lu solution u de U'équation

e 1w du

(1) L(uw)
détermince dlans la région R du plan, ot oSx <y et y>o, et sSannulant
pour :

" T=1  «#el yZo.,
o" )y ==0 el TR

I étant une constunte donnée. »

Conformément aux indications données dans l'introduction, il s’agit,
d’abord, 4 déterminer une solution quelconque u, (z,y) de I'équa-
tion (III) s’annulant pour = 1 et ensuite chercher la solution w(.r,y)
du probleme I se réduisant, pour y =o0 4 2(z)= —u, (z, o).

La somme

iz, yy=u,(r, y)+wir, y)
sera la solution du probléme proposé.

Or, nous avons déja la solution «,. C’est celle de Poiseuille qui ne
dépend pas, d’ailleurs, de y :

L
{2 Hy== & (4*—1).
+

Passons donc a la détermination de o', ¥ ). Comme on ['a signalé,

w(a,y) sera de la forme (19) en se réduisant, pour y —=o eto<z <1,
a la fonction

]
— U= 7 (1 — x?).
» . 4
On doit donc avoir
Nz
. h . .
(30) Zcu(l(a,,x)=7(1—:r~) pour oSz <1,
A =
n=t

Or, sclon (22), ‘
(3
= ™ z(1 — 22) J(ax) da,
AEnJy

Journ. de Math., tome XI. — Fasc, I, 1932, IR
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. 1
e,‘._—_-j 29 (ae) de.
0
Mais (')
D ' s/
(";l) 3//:’; '}/'(.”n\’a

et, en vertu de I'équation (23),

o 1 VYT
I (u
] (11— 2) I {dyrr ) do == — l——(—’—ﬁ

“ )
1 y

donc

(3n) 2/
D9 () 7= = e
" al I a,)

D’aprés le théoréme A (§1), la série

z

2 Co Ity

n==1

est uniformément et absolument convergente et représente bhien la
. /) . . .
fonction 7 (1 — ) dans l'intervalle o << 1,
.4 - -
I.a convergence uniforme ct absolue de la série

”

21‘,, Trety,.r)

n—=1

dans l'intervalle (o, 1) ainsi que celle de la séric

%

E  Crn I ) e

n=1

dans la région R sont des conséquences immédiates de la formule (28).

En effet, on a pour # suffisamment grand
I

I dy) 2 — s
T,

() Voir par exemple Encyclopédie. loc. rit., p. 224, formule (110a).
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d'ol
. oy =
‘."//.E"“:-\"""
u;

el, comme |JI(x)|<1, le terme général d’une quelconque de deux
séries est plus petit en valenr absoluc que celui de la série

54/1\17.72'-'?

ne=l 0/'/

qui est manifestement convergente.
Ainsi la fonction

e I NN A .
(3% ey yvy==u ey gewtrs yy=- .ot 1 N 2 n iy
’ ] ”n < (”I/

est bien déterminée et conlinue dans la région R, elle satisfait, en

outre, aux conditions 1°cl 2°. Il faut démontrer encore qu’elle satisfait
4 I'équation (IIT). Nous allons étudier dans ce but les dérivées par-
lielles de cette fonction.

Or, il est facile & reconnaitre par un raisonnement tout a fait ana-
logue au précédent, (ue la dérivée formelle de la série (33) par
rapport a4 o est uniformément (et absolument) convergente dans le

domaine R. Elle représente donc bien la denvee dans tout ce

domaine, et I'on a le droit d'écrire
. r)// : RTINS .
‘-"' ) hpsing [,, - ' " ¢ MR
D Ty Z ai o,

. . du . .
Remarquons encore (u’ainsi 7. est continue dans l¢ domaine R.

Il n’en est plus de méme des dérivécs —‘j—i' et '))”
Nous avons, en effel, en désignant par D? et D, les dérivées for-
melles correspondantes de la série (33) :

| )yo—=2 /¢2 _‘Z(_q/ﬁil’_)_ e“”?-."
’ I’ (ay)
n—=1
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et

|)},’:=£—f 1—42

ou, en vertu de (23),

ol 4
N2Z=—-1] 14 2
2% ‘r
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%

I apx)
a, J'(a,)

n=1

I (apx)

“3 J,(a'u)

e——ﬂ"‘\‘ 4 /‘2

n—1

5

n=i

S x)

a, J,(“u )

e~ Ay

.
a3
.

Puisque la premiére série en crochets est uniformément conver-
gente, il suffit d’étudier la seconde qui intervient aussi dans I'expres-

sion de D,.

Nous prouverons que la série en question

n-= s

S y)= 2

n=—1

Jia,)
Wn I3ty

P

n

estuniformément consergende dans loule région fermée contenue dans R
et ne renfermant pas le point P (1,0). 11 en résultera la continuité de

S (z, y ) ainsi que 'identité des séries D’ et D, avec les dérivées

Fig. 2.

Oy

QELLELLA
KRS
,v::‘é.',go‘o‘o
0
QR
Q

)

<o

QIR XX XHAKKN

07670767 % % 9:0.070%
900 02000 00 el e
QXX

)

O
O
3

Nu )
aat ©

CXOONC 52

oS 00958

R RRS

K _Mo‘“’o’o’" B (1)
\ \
NN \ .
0 P, (2,00 CAT))

g—; partout dans la région R sauf au point P (1, 0). Quant au point P,

nous nous en occuperons spécialement.
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Pour démontrer notre assertion, il suffit évidemment de considérer
les régions particuliéres par exemple telles que représente la figure 2.

On forme une telle région R, (0 <2 < 1) en enlevant de R le carré
dont les sommets sont les points

P(ry 0), Py(e, 0), Pyic, t—x) et P.1,1—a).

On peut aussi former R, par la superposition de deux régions Q, et
S, (indiquées par les hachures), QQ, étant composée des points de R
dont I'ordonnée surpasse 1 — z et — S, des points satisfaisant 4 I'iné-
galité oS,

Posons maintenant ’

¢ MRy

by =7 ——r——s
an' I (),

I.a suite | b, est décroissante et tend vers zéro uniformément par
rapporta y. Cela résulte du lemme 11 (§2), et de ce que la suite {< |
est elle-méme décroissante.

En remarquant encore que

I =~y 3 a)’,
on peul écrire

St v —:2 (=0 b, T a,x),
n.o=i

‘nvisageons le reste partiel de cette série :

m =i

S"‘»/’:; E e /’m J (_”/u"")
"en
et supposons

o,

HEAN

<n appliquant a cette somme la transformation d’Abel et en tenant
compte des propriétés de la suite | b,! on parvient a 'aide du lemme I
(§2) ala conclusion :

« La somme S, , devient aussi petite que Uon veut, pourvu que n soit
asses grand, et cela quels que soient Uenticr positif p et le point (x, y)
de la région S,. »

D’autre part si I'on assujettit le point (,y) a rester dans la région
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., ladite somme

mesn e p

< — 2 Jidyx) o
wr Wy ' (11,)

m==n

sera plus petitc en valeur absolue que la somme

m=n-+-p

P Pl ek
E —_——

rt
m=—n \

en vertu des formules (25,) et (28).
Mais cette somme, cn tant que rest partiel d'une série conver-

. . . ' 14 , . .
gent.e, est infiniment petite avec - - Cette conclusion s’applique « fur-
tiors 4 la somme S, ..

On voit donc que 1a somme S, , est infiniment petite avec ,l, et cela

uniformément dans la région (), de méme que dans la région S, elle
I’est donc aussi dans la région R,. Ceci prouve (ue la série S (x, y) est

uniformément convergente dans R,: par conséquent, les développe-

2 . . de . Pu
ments formels D, et D? y représentent hien les dérivées % & o

La méme conclusion s’applique a toute la région R (sauf au point P)
puisque tout point de R (sauf le point P) devient le point d’un I,
pourvu que « soit assez proche de 1.

Ainsi les formules

n=—=

e du S, .
{3 —ah E Lyl

1% ity it

’ ”ooy
et

Itz 7 -

3 /7 ot . ., .
(36 o _ b 2 AL P T 2 S®) oy
it " o aza'a,) @, 'y
n= n=—t

sont valables partout dans I, sauf au point P. De plus, les dérivées
du , Nu

— et =— y sont conlinues.
dy =" Or?
Il nous reste donc a examiner la validité de ces formules pour le point

exceptionnel
xr=1, y=no.
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: (e, Ou
Occupons-nous d’abord de la dérivée —- -

0
Or, nous avons, pour =1 et y =0, D, =0, mais puisque u=o,
pour x =1 et tout y ~o, la valeur de D, au point envisagé est bien

e
cellede P

La formule (35) est donc valable dans wute lu région R.

2
Il en est autrement pour :-))-7—’-: En effet [en profitant de la formule

(34)], on obtient, pour r=r1et y =o,

' 2=/,
tandis que

Jtu
—_—=0 tvu=o0 pour v=o et o<.r<1).
or P : ==

Donc, la formule (36) cesse d étre valable au point P .

Supposons maintenant le point (x, y) différent de P. Les formules
(34), (35) et (36) sont toutes valables, et I’on obtient | en portant dans
la formule (36) les valeurs des séries

%

%
o/ e * 3
Z Ja,r) R T 2 I (at,.x) e i
a2 (a,) a, i,

tirées des formules (35) et (36)]:

u t du du
= - = = e —
Ar? > dr " dy

I.’équation ( lIT) se trouve donc satisfuite dans toute la région R en

dehors du point P. Au contraire, cette équation n’ua pas lien au point P,

ot les dérivées Q—',‘, -‘1—‘-‘ et du sont toutes nulles.
dr” dz? " dy

A . ;e dPu 0
Evidemment, I'une au moins des denx dérivées — et 7§ n'est pas
continue au point P.
Pour mettre en évidence la discontinuité signalée, considérons les

valeurs des dérivées de u le long de la droite z=11.
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Nous avons
du " Jdu

;)T)' =0 H ().L‘
quand y étant toujours positif tend vers zéro.
On obtient donc 4 I'aide de 1’équation (TII):

. Qu
lim 5z =W pourx =t eLy o0

).r

. Pu . . 1x . c e,
Mais ~— s’annule au point I’, ce qui démontre la discontinuité de

cette dérivée.
11 en est de méme pour la dérivée g;—t, égalea 2hS(x, y).

Considérons a cet effet les valeurs de la série S(x, y) (dont il est
(juestion), le long du segment (o, 1) de I'axe O
Il est facile de reconnaitre que la série S(x, 0)estle développement

formel de la constante — % en une série de FFourier-Bessel.
D’apreés le théoréme B et son corollaire (§ 1) le développement en
question représente bicn la constante — = dans intervalle oS < 1.

Ainsi, la discontinnité devient évidente, puisque S(ar, 0)=o0 pour
r=I.

Il est facile de se rendre compte de la signification physique de la
discontinuité signalée.

‘n effet, la dérivée 3—;—‘ représenle l'accélération du liquide. Au

début du mouvement, c’est-a-dire pour y = o, les forces de la viscosité
sont encore nulles et 'accélération est entiérement due & la différence
des pressions aux extrémités du tube. Cette derniére étant constante
et non nulle dans toute la section du tube, I'accélération I'est aussi a
I'intérieur du tube tandis qu’aux parois, elle est nécessairement nulle.

La discontinuité n’existe plus pour y > o en disparaissant, ainsi, au
cours du mouvement (*).

(') On peut citer quelques autres problemes ou les discontinuités analogues
ont été rencontrées. ( Foir par exemple BoussingsQ, C. R. Ar. Sc., 29 mars
1880; H. Lius, The Journat of London Math. Soc.. n® 6, 1923. Cf. aussi
M. Brivtouix, Lecons sur la viscosité, Paris, 1907, § 42.)
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Pour se rendre compte de I'aspect du mouvement nous avons
effectué les calculs numériques. La figure 3 montre les courbes de la
:

Fig. 3.
X
1]
N
|
4] \
0‘ 28 s
Yoo
VAN
\ a5
1 3‘-"
";J_ S / ..11
g « 2845
| /" pe e
' yans
1A

¥

distribution des vitesses le long du rayon du tube pour quelques
valeurs particulicres de y. La table I contient les données numériques
correspondantes.

I1 ne présente aucune difficulté de réaliser le mouvement théorique
étudié. Tl suffit pour cela d'imposer les conditions analogues a celles
des expériences de Poiseuille. A ce point de vue la solution, que nous
venons de trouver, nous instruit sur la maniére dont le régime de
Poiseuille s’établit a partir du repos.

On voit, en eflet, que pour y infini le mouvement se rapproche
indéfiniment de celui de Poiseuille.

On a, notamment,

n:zz

\ . i
w(x, y)' Se z ———"
ay I a

n-=y
d’ou, pour
J o0,

Journ. de Math., tome XI. — Fasc. 1, 1g32. 12
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u(x, y) tend vers u,(x) et cela uniformément par rapport ax. On

. Ju .
démontre de la méme mamére que ;- tend uniformément vers oty

dz

. , 2
pour y —» %. Pour obtenir le résultat analogue concernant g—é,f et g—';,

il faut faire recours a la transformation d’Abel (déja appliquée
page 19) de la série (35), et s’appuyer ensuite sur les lemmes I et II.
Remarquons, enfin, que la solution u(z, y) satisfait 4 la condi-

. _du . . . .
tion >~ = 0, pour & = 0, reconnue nécessaire au point de vue de I'in-

terprétation physique (voir I'Introduction page 70 de cet article).
On le démontre en remplacant J' (a,x), dans (34), par sa valeur
tirée de 'équation (23) et en tenant compte de (25,) et (25,).

TasLe [.

N o5 |00 [0.15 {020 {030 oo foso oz 1w | =
b

N

0.0 | 0,200 | 0,385 | 0.536 | 0.652 | 0.805 | 0.890 0,939 | 0.985 | 0.997 1 1.000

0.1 ] 0,200 | 0.384 0.333 | 0,647 | 0,797 | 0.882 | 0.929 0,976 | 0.987 | 0.990

0,2 ] 0.199 | 0.379 | 0,522 0,631 | 0,556 | 0,857 | 0,902 | ©.946 0,957 | 0.960

0.3 ]| 0.198 | 0.370 | 0,504 | 0,606 0,539 | 0.811 | 0,856 | 0.897 | 0,907 | 0.910

0.4 0.194 | 0.355 | 0.476 0.568 | 0.687 | 0,754 | 0,792 | 0,829 | 0,837 | 0,840
. :19% : 2 ¥ : -097 ¥ 37 1929 3997 ;04

0.5 | 0.189 | 0.333 | 0§38 | 0.017 0.619 | 0,677 | 0,509 | 0,740 | 0,748 | 0,750

0.6 | 0,158 | 0,300 | 0,386 | 0,451 | 0,536 | 0.580 0,607 | 0,632 | 0,638 | 0,640

0.7 | 0,160 | 0,254 | 0,320 0,368 | 0,430 | 0.465 | 0.485 | 0.50% 0,509 | 0,510

0.8 | 0,127 | 0.191 | 0,235 | 0,267 0,308 | 0,331 | 0,344 | 0,356 0,359 | 0,360

0,9 | 0,056 | 0,108 | 0.129 0,145 | 0,165 | 0,176 | 0,182 0,188 | 0,190 | 0,190

1,0 | 0,000 | 0,000 | 0,000 | 0.000 | 0.000 | 0,000 | 0.000 | 0,000 0,000 | 0,000
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4. Dans le probléme général que nous avons énoncé a la fin de
I"Introduction il s’agit de trouver la solntion de I’équation

P 1 due  du I
ol l;(”).::z;?**;%-—})—":-—l(“)

réguliére dans la région R(o<x <1,y 20) et s’annulant pour y =o
ainsi (ue pour x =1.

Nous nous occuperons dans ce paragraphe des deux cas particuliers
de ce probléme, correspondant aux deux hypothéses

Fiyvi==coshy —1 el Fivi—= --sinky.
Ainsi nous anrons a résoudre les deux équations suivantes :

LA 10 IA

AW LNy = 7 il i 7 =cosky -1
et
A L(B).—-L)-z—':*iﬁ—ﬁ— -sinky

T 0z 0 or I -

sous les conditions aux limites déja énoncées.
Pour abrégerles calculs nous traiterons les deux équations ensemble
en introduisant des imaginaires.

Ainsi, en posant :
M=\ /B,

nous aurons au lieu des deux équations (1V,) et (1V,) une seule équa-
tion :
M 1t JM M

i riir e

A LoV o kY
avec les mémes conditions aux limites.

En suivant la méthode indiquée dans I'Introduction nous cherche-
rons d’abord une solution quelconque M, s’annulant pour =1 en
ajoutant ensuite 3 M, une série de la forme (19), convenabhlement
choisie.

On peut poser évidemment :

]
7
]

My(r, v)= 1 —.2?) = N(p)e /s,
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oit N(x) satisfait a 'équation
NV(z) =+ -:jx’(x) +~ ik N(r)y=1.

en s’annulant, pour z =1.
On voit immédiatement (que la fonction

(3<) N, =G = iH(r = —l— l————‘j('r\;,l_l“)
Al Tk)

est bien la solution cherchée de la derniére équation.
Déterminons maintenant la série

n=ow
(38) Lir vy= 2 S T, rye 95

I7hded |
se réduisant pour y =0 a — M, (x, o).
Cette condition s’écrit :

n_—_z

) ! . .
z:,,"'la,,./f;:-n— =) - N,
|

n—=1
d’oi1 [worr les formules (22), (31) et (32)]

] )
Sy — LI (dgx) [7 (1 — o) — N y] s
nJ, ot
1
2 1 . .
= - — / xN(eVI(a,.ryde.
“; N a,) inJ, :
Posons
1
Pu== f NI (arvids
<y
L]
i [ 2 J(apx)rda
vy
et

1
r,— f NI a,rrvdr.

En écrivant les équations qui déterminent les fonctions J(a,x)
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et N(x) sous la forme
[2d (ane))=— apxJ(a,x),
[£N(z)) — x=—xik N(&),

on obtient immédiatement

"k])n: Gn— Ay,

AaPn=—"n
el

Uplfn=— I a,),
d’ou

, — I'(ay)
P = alai— ik’

donc
(39) = I a2k ak k—uii

T @i I ayy h+aii = I (a,) P+ ap
, .o r .. (., JL &L  JZL
Il en résulte que la série Z(x, y) ainsi que ses dérivées Iz’ g ¢t b
sont uniformément et absolument convergentes dans la région R. Il en
est donc de méme de la fonction
(jo) M(x, y)=My(x. ) + ZL(x, y)
n—a=x
I SN e N \ oy
== ;(l — %) -+ N(w)e ik -;—E::,, J\ayc)e R

n=t

qui représente, par conséquent, la solution du probléme proposé.

On peut faire disparaitre de la formule (40) la fonction N(x), en
exprimant de cette facon la solution du probléeme, au moyen de la
fonction Z(x, y) seule.

Eu effet, M(x, y)s’annulant pour y = o, la fonction N (&) est repré-
sentée dansl'intervalle o S <1 par

N(x):%(xﬁ—:)—zu, o).

Il faut ajouter que cette égalité peut étre différentiée une ou deux
fois par rapport a z, les deux premiéres dérivées formelles de Z(z, o)
étant uniformément convergentes.

Posons encore, pour abréger,

(41) uy(2) = 7 (£ —1).
3
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La formule (40) s’écrit maintenant
Mic. vy=u eyt — 1y —Le, 0ye B 1Lz, y).
En séparant les parties réelle et imaginaire, posons :

.r
- —_ )
n=2np + {op,

ou
2 At
/ —
2) o, — — ; ,
) " ap I Cagy (k2= apy)
ke
(43 [ — v
v i Uy I YR )
et
Lo, yy==alr, vy {500 y),
ol
n._.z
(/",' ) a\.r, ")‘ ) :z 2, J (d,.r)e II;-;.V’
nocd
nolL
i S v :2 Bn Ity e "y,
no=

Les solutions A(x, y) et B(x, y) des équations (I1V,) et (1V,)
prennent maintenant la forme

(16) Moy y)y==  nuytryieoshy 0 = Ny v,

(7 Bor, ¥yyz== - wu,r sinky i By, ),

oit

1.3 oty Yoz, vy - avar, onecoshy - Sor orsinky.
L49) By, vi=750r, vi—50r, oreoshky -—— zia. oysinky,

Les fonctions u,, A, el B, satisfont, respectivement, aux équations

(50) Lewg)y=1.
(51) LN =- kuy sinky,
(52) LiBy) == — ku, coshy.

5. Deux cas particuliers, (ue nous venons de développer, nous
serviront a construire la solution du probléme général.
Nous allons entreprendre dans ce but T'étude plus détaillée des
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fonctions A(x, y) et B(x, y) et surtout a4 maniére dont ces fonctions
dépendent du paramétre k.

[ Nous écrirons dés lors A(xz, y, k), B(x, y, k), 2(x, y, k),
3(x, y, k), etc. pour meltre en évidence ce paramétre.] Nous nous
occuperons d’abord des fonctions z(x, y, k) ct 3(x, y, k). 11 résulte

de la formule (28) qu’il existe un nombre N, tel que
I p \'

Var! I (an 2’

donc, a l'aide des formules (25,), (25,), (42) et (43), on obtient | le
point (z, y) appartenant a la région R]

7

s
cace, vo by ZNA2 —
' - - ga,’,\‘a,,(/.'z-kam’

da. <\/‘~9 1
adx ;‘-a,,\a,.(k‘—f-an)

<NA? __.‘____
§ Vit ah)

| |
Vg + at)

Fa|

ozt

|Bis,y . ﬂ"i;-\ﬂz

n=

V4
§.\/ ZI.z—t-a,‘,’

n~=1

(i e

=9

dx

dx-

L’évaluation plus sommaire nous suffit, notamment :

"=

. 1
LD
n—1

pour z(x, y, k) avec ses dérivées, et

Z “
2 ="u}

pour 3..r, v, k) avec ses dérivées.
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La premiére série est d’ordre O(4?) et la deuxiéme d'ordre O (%)
pour & - o.

Il en est de méme des fonctions a(x, y, k) el 3(.x, y, k), qui, avec
leurs deua premicres dérivées par rapport i x, sont respectivement d’ordre
O(k*) et O(k) pour k - o.

Nous allons démontrer maintenant un lemme qui nous sera utile
dans I'étude de ces fonctions pour # infini.

L.emwe 1II. — Soient {u,} et |a,| deux suites des nombres positifs,
la deuxiéme étant croissante. Soit f(3z) la fonction, toujours positive,
définie pour 32a, et telle que f(u,)=u,. Nous supposerons cette
fonction bornée et intégrable dans chacun des intervalles (a,, a,.,).
Soient. m, et M, les bornes de la fonction f(z) dans I'intervalle
(@ny Gn-y).

Si les nombres

Uy .y 1, M.y
[y= T resp.  Ly== 2t Cryp,
i, "y,

ont une horne inférieure /£ o (resp. une borne supérieurc L), on a,
pour tout n naturel,

mz=—n

2 1ms -;-f Sis)ds

m=t
m=z=n

My
resp. f Jisrds L E U,

e m o

'_4[.1;):f Jisds.
ay

(D’aprés les hypothéses faites cetle intégrale existe.) On a

Posons, en eflect,

Mgy
9 (lpiy) — 0(@n) = J(3) ds,
L]
d’our
(ans+) — an)mng@(ané-l) — ‘?(an)§ (ap— ap)M,
ou encore

1,055 ?(”n 1) — Q) Lu, L
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- Conformément a ’hypothése [, /=2 o (resp. 1,2 L), d’oi
al Zovay,. ) i)

[resp.  wlay. 1~ 2taZhn,).

PPosons successivement n =1, 2, 3, ..., n,, et ajoulons, membre a
membre, les inégalités oblenues. Puisque ¢(n,)=0, on a

1" "y
. ~
'g(/,r.,,,,,)‘é/zm,
neool
n=n,

<
resp. i, 7L 2 ",

[/

ce qui démontre le lemme.
Remargue. — 11 est évident que si les deux nombres [ et L existent,
les denx inégalités ont lien, c’est-a-dire

sy

“ I 4
[ G R\ !
i / 1z 2 ", /—/ f12)4dz.
‘e 3
moci

& a“y

pa

P . . , e Y
Il en résulle, en particulier, (que la convergence de la série 2‘ Uy

n-=\

implique Pexistence de I'intégrale f J(3)dz et inversement.
“y

\ppliquons lc lemme démontré aux séries

¥ Kd "

5 a?
— el —_—
b - - u

’
"
14 =t

Puisque daus ces cas les nombres 1., et [, do lemme ont des limites
égales pour n -~ x et indépendantes de £, les hornes / ¢t L. existent et
sont indépendantes de 4. On obtient, done :

" ' - I
Z/.”-—//,’j —/"M',/” A? e St
/38 4

el

Journ. de Math., tome XI. — Fasc. 1. 1a32. 13
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o les fonclions 7.,(£) et A,(#) admettent des bornes supéricures et
inférieures, ces derniéres étant positives.:

On n’a pas besoin de calculer lesintégrales en question pour évaluer
lear ordre pour £ > oo. 11 suffit de remarquer qu’elles sont toutes les
deux de la forme

Or, en effectuant la substitution s = ¢/, on raméne cetle intégrale
a la forme

N

el o /w{/ T et ot
L..'_—. b / - f
R Y Y 4»/'

[

=l

‘

oit la derniére intégrale est convergente, puisiue o7 s< 2. Done

l,.:n(/.v;?E )

< ) [

n ozt

y K - (‘)( I; .
"T" /[” \ /‘

.

et

Tout ce qui a é1¢ démontré ci-dessus peul se résumer de la maniére
siivante.,

. y ; .oy - A " 7] g “rfe » 0 1o TG (),, » _’)i
Les fonctions a(x, y, k) et 3z, y, k) avec lears dérwées N

N . . . . T 7.

admettent pour k2o une fonction majoranie de la forme Myk oi M
ne dépend ni de x ni de y (dans lu région R).

La  meme conclusion s'applique aux  [onctions \,(x, y, k) et

s 0 ) .
B,(x, y, k) et leurs déricées - et — en vertu des formules (48) et(49).

e dr?
dz . d3 Dz
Remarquons, encore, que non seulement .~ et *~ mais aussi —
’ Ja ) x
1 d5 . .
et ~ ()'; admettent la fonction de la forme My /4, comme m;njomnte,

dans toute la région R (méine pour les valeurs de .x -> o).
Pour le démontrer il suffit de remplacer J'(a,x ), dans P'expression
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de %‘ g; ou dans celle de i 3@

5= par sa valeur
x

— [ I (a,x) + I(a,x))

tirée de U'équation (23). En se basant ensuite sur (25,) et (25,) et en
raisonnant comme précédemment on parvient bien au résultat
demandé.

Il en résulte, grice aux expressions (48) et (49), que les fonctions
LA o L 9B bar consé t aussi, les fonctio
sgrels g P nséquent aussi, les fonctions

i*A, 12\, ) 2*B, 1 f)_lig

— —_— —_—
drt x de Jdx? £ o

possédent la méme fonction majorante M y/.
Ceci nous montre, en outre, que les fonctions A(z, y, k) et
B(z, y, k) satisfont 4 la condition (), c’est-a-dire
oA _
dr

(¢ el —_— omr .r=o.
’ dz " pow

6. Reprenons I'équation générale

QPu 1 du Ju

=F(,

ott la fonction F(y) est supposée donnée.

Nous n’examinerons que les deux cas suivants : le cas de la fonc-
tion F(y) périodique et celui de la fonction F(y) ayant une limite
déterminée pour y infini. Ce sont, en effet, lcs cas les plus importants
au point de vue de l'interprétation physique.

Nous supposerons, naturellement, la fonction F(y) continue et
s’annulant pour y=o, pour les raisons exposées a I'Introduction.
Quant aux autres conditions, nous les introduirons plus loin puis-
qu’elles sont différentes pour chacun des deux cas envisagés.

Occupons-nous d’abord du premier de ces cas. Soit w la période de
la fonction F(y). Supposons que lafonction F(y)admette une dérivée
premiére F'(y) et que les deux fonctions F(y) et F'(y) sont & varia-
tion bornée dans l'intervalle (o0, w) (*).

(1) 1l est 4 remarquer qu'en vertu de ces hypothéses la fonction F{3) ne peut
admettre que des points de discontinuité de premiére cspéce.

Journ. de Math., tome XI. — Fasc. 1, 193a. 15.
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Il résulte de ces deux hypothéses que la fonction F(y) peut étre
développée en une série de Fourier, uniformément convergente (*)

. - ann . AT
F(y)= c,,-t-z [(',, COS —— ¥ + §, $IN —— y]
(3] s)
n=1
que I’on peut écrire aussi, grice 4 la condition F(o)=o,
. < 21/ . 2T
(53) F (_)')—_—.2 [c‘,,(cos —T-Z—i)'—l) = 8, 51N —n-‘-)'].
N Y (9) (1)
n=1

. , . 1 . qe
Les coefficients de cette série sont d’ordre — ¢’est-a-dire
n-

(5’/‘1) ’n—-()(”‘)

et

(5%,) .s‘,,:f)(—l,-,)-
_."’

On le démontre en appliquant & la fonction F'(y) le théoréme
connu de M. Lebesgue (*).
L’équation (I) peut s’écrire maintenant

(L) l‘(")=(;7lf+';z—l:—i)—lf_2[/,,(cos 1—:).1.5,,510?%@,J

On satisfait formellement a cette équation ainsi (qu’aux conditions
aux limites, en posant :

n=wz

.u- aTn . arn\
(33) "= 2 [rr,, A (.1‘. v, —'——) —s. B (./:, v, ——)J .
o ) “ Ty

n=\

Ceci résulte des équations (IV,) et (IV,).
Il nous reste a examiner la convergence de la solution obtenue et
de ses dérivées formelles.

(%) Voir par exemple C. pe ta VaLeee Poussin, Cours d’Analyse, vol. 1
p- 100 (Paris, 1928) ou E. Warrraker and S. Warsox, Modern Analysis (Camn-
bridge. § 9, 4%).

(2) Cf. par exemple Modern Analysis, loc. cit., § 9, 3 (11).
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Pour cela mettons notre série sous la forme

(35“) U= ”o('”) lr(.}’) +E [('Il f\()(c'v, ,’}" qnn) - S", ]3“ (,L’, ):’ 2 T':”’)AI

[AY o)
¢

n=1{

en se reportant aux formules (46), (47) et (53).

La convergence uniforme et absolue dela série (55,) et de ses déri-
vées formelles, par rapport 4 z, est une simple conséquence des for-
mules (54,) et (54.) et de I'évaluation des fonctions A, et B, (et de
lenrs dérivées correspondantes) effectuée au paragraphe précédent.

Il n'y a qu’a se reporter aux résultats acquis 4 la fin du méme para-
graphe, pour s’assurer de la convergence uniforme de la série

Fu N 1 du
Jx? x Jx

[ [l faut prendre « sous la forme (55,). ]
I1 cn résulte immédiatement la convergence uniforme de la dérivée

formelle 2.
Jdy
En effet, « satisfaisant formellement a I'équation (I,), la dérivée

du , . .
formelle 7y ©st la somme de deux séries uniformément convergentes

Nu . 1 due
dx? r Jr

et —F(y).

3'7' est représentée par son développement formel.

Nous ‘avons démontré ainsi, que la fonction « est réguliére dans la
région R, y satisfait partout & 'équation (l,) et répond aux condi-
tions aux limites [y compris la condition (Y)], ces conditions étant
remplies séparément par chaque terme de la série (55).

La fonction « est donc bien la solution cherchée.

I.e mouvement représenté par la fonction « n’est pas périodique,
bien que la pression F(y) varie périodiquement.

Mais on peut démontrer que ce mouvement devient périodique a la
limite, pour un temps y infini. On entend par la que la partie de la

vitesse « qui n’est pas périodique tend vers zéro quand y augmente

Donc
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indéfiniment. Cette partie est représentée, en effet, par la série

”z
N\ ann P AT
¢ :Z Cpd\ )y, —— | —Sno|x, ), .
0) )

n=i

Il est facile & démontrer I'inégalité

”»

el Me N i s T

n=1
., ., dv ey .
et ICS lnegalltes analogues pOll[' — — 't — en raisonnant comme au
de du* 7 dy

paragraphe précédent.
Ceci prouve a I’aide de (54,) et (54,) que ¢ ainsi que ses dérivées

dv e de . . . : '
—3 5— et — tendent uniformément vers zéro pour y -» .
de” dzt " dy

g

GC. Q. F. D,

7. Passons au second cas général de notre probléeme. Nous faisons
‘maintenant les hypothéses suivantes surla fonction I'( y) définie, pour
tout y2o0:

1° F(o)=o0:

2° F(y) admet une limite déterminée l, poury - » =z;

3 Uintégrale f [F(y)—1|dy cxiste;

4° F(y) est ”cr)/ztinue et @ vartation bornée dans 'intercalle
Infini (0, 2);

5° F(y) admet la déricée premiere ¥'( v qui est a variation bornée
dans ['intervalle (o, = ).

)

Posons
Fiormy=Fi»y —/ pour vzo,

o,

Fiioyy=F(—»»1--1/ pour v

grace aux conditions 2°, 3° et 4°, la fonction F,(y) peut étre repré-
sentée par l'intégrale de Fourier (') :

Fi) :f ’/,'( kycoshky dl,
0

(') Voir par exemple Modern analysis, loc. cit., § 9, 7.
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ou
(56) c(/s‘):q—;f‘F,(-n)cosl:'nl,[‘r,z;—if [F(n)—{]coskndn.

- ‘e

Donc, pour y Z o,
Fly)= l—i—-/ (k) coshky dk,
n

et, en vertu de I'hypothése 1°,
(57) o) :f ’c(/.') (coshky —1)dhk.

L’équation du probl¢me s’écrit maintenant

Pu 1 Ju du *
s p e D (hyeoshy —u) dk.
(ol L(#) = 5 ar T dy [ c{ly(coshy —1)a

On voit aisément qu’on satisfait formellement a cette équation,
ainsi qu’aux conditions aux limites, en posant

(58) wix, y) :f‘r;(/f) Az, v, k)dh.
[}

Pour démontrer que cetlc intégrale est bien la solution cherchée,
nous ferons a peu prés le méme raisonnement qu’au paragraphe pré-
cédent. En effet, pour qu'une intégrale de la forme (58) soit continue,
il suffit qu’elle soit uniformément convergente, la fonction & intégrer
étant continue.

De méme si I'intégrale obtenue par la différentiation formelle est
uniforimément convergente et la fonction a intégrer reste continue, la
dérivée de l'intégrale coincide avec son expression formelle (elle est,
en outre, continue, d’aprés ce qui précéde).

Il nous suffit donc de démontrer la convergence uniforme de I'inté-

(e . ) & )
grale (58) et de ses dérivées formelles —, -— et - .
du’” du 7 dy . )
Comme au paragraphe précédent la démonstration scra faite si
nous trouvons pour ¢(£) une fonction majorante convenable. Dans ce

but, nous prouverons les propositions suivantes :
(a). La fonction (k) est continue pour k2o.

CoRroLLAIRE. — c(k) = O(1) pour k -» o,
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(b). L(/i?)—-O( )pour/; — .

En se reportant a I'expression (56) on démontre la proposition (a) en
remarquant que la fonction

[F(y)—{]cosky

admet une majorante intégrable (hypothése 3°) et indépendante de F,
ce qui entraine la convergence uniforme (') de (56) et, par consé-
quent, la continuité de c (k).

Quant a la proposition (), la démonstration est fondée sur le théo-
réeme de M. Lebesgue déja mentionné (*). En effet, d’aprés 'hypo-
thése 5°, on peut mettre la fonction F'(y) sous la forme

FO)=£0)—1:0),
ou f,(y) et f.(y)sont deux fonctions non décroissantes. On peut
méme supposer ces deux fonctions bornées et positives.
Si fi(y)SMet f,(y)EM, on a, d’aprés le théoréme de M. Lebesgue,

, , 4M
SIVAC IR A ) FRoH

v
’f F'(y)sinky dy
0

quel que soit Y, donc aussi

Il F'(y)sink.yd.r\g%;

or, en intégrant par parties l'intégrale (56), on obtient
c(hy=— ;f ' F'(oysinky dy,

ce qui démontre notre proposition.

Les deux propositions (a) et (b) étant démontrées, la vérification dela
convergence et de la régularité de la solution (58) se fait comme au
paragraphe précédent.

Ainsi, le probléme proposé se trouve résolu.

Signalons encore, avant de terminer cette note, une propriété
importante de la solution trouvée.

(') Voir par exemple Modern aralysis, § &, k31.
(*) Loc. cit., § 9, 41 (II).
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Il s’agit de la propriété dont nous avons déja parlé a 'occasion de
I’écoulement particulier du paragraphe 3. Nous avons démontré alors
que cet écoulement devient a la limite (pour un teraps infini) I’écou-
lement de Poiseuille. Or, I’écoulement général (58) jouit de la méme
propriété. Nous allons démontrer, notamment, que eapression (58 )
tend uni formément ( par rapport & x ) vers

lu, ()= {(»ﬂ—-;

a st . ’ ‘) ’):
quand y — =. Il en est de méme des derivées correspondantes I T

J .
el - (/(’S (/('llx (’.r[)l'('&'&'l/)ﬂ."-
dy

Pour la démonstration, transformons (58 ) a I'aide de (46) et (57):

(59) (e, y)y=u,()F(y) +f c(FYAglz, yo kydh.

I.e premier terme de cette somme devient, & la limite, lu, (), nous
prouverons cue le deuxiéme terme tend uniformément vers zéro.
Désignons celte intégrale par z, nous aurons, en vertu de (48),

= ‘r'c byale. v, kydk ——f '/:(/.") (. 0, k)ecosky di

[

— f kY B, o, kY sinky dl.
)

Occupons-nous successivement de ces trois intégrales. D'aprés les
formules (44) et (42) et la proposition (b), la série c(k)x(x, y, k) est
uniformément convergente ( par rapport 4 £). En 'intégrant terme a
terine, on met la premiére intégrale sous la forme

2 Tty ry ey [ oAy by dlk.

"
=1

La proposition (b) et la formule (42) nous donnent

ATE
[z 2],
- ol SM T odk [
U; (R 2 R) k| 1.-2.;.(,,*,—"( , _),

o aiy a,
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d’onc la premiére partic de : admet la majorante de la forme

>z

]
\l'g—"’)z-”_..._ .
b Nty

Cette premiére partie tend donc uniformément vers zéro pour y - - .

La seconde et la troisiéme intégrale dans I'expression de z ayant
toutes deux la méme forme, il suffit d’en étudier une seule.

Soit donc

6= f e(Ryaln, o, kyeosky dh.

Décomposons cette intégrale en denx parties :

T £
g :[ ~—+—f c(hyatr, oo kycoshy dk,
e n T

T étant un nombre positif arbitraire.
D’aprés un théoréme de M. Lebesgue ('), la premiére partic tend
vers zéro (quand y -> = 4 la condition que l'intégrale

T

j Lk oy o, oyl
0

existe. Mais cela résulte des propositions(a) et (b) et du fait que la fonc-

tion a(z, 0, k) admet la majorante de la forme A yF.

Il n’y a qu’a reprendre la démonstration du théoréme citée de
M. Lebesgue, avec les hypothéses actuelles, pour s’assurer que ladite
intégrale tend vers zéro uniformément.

Quant a la seconde partie de 'intégrale z,, sa valeur absolue est

inférieure a
KAM
\\If /.”I.d/._.—'-, ,

En fixant maintenant T suffisamment grand, on rend cette seconde
partie de I'intégrale 2, aussi petite que I'on veut. Il en sera de méme
de la premiére partie de cette intégrale si, T laissant fixe, on donne

(') Voir par exemple C. pr 1o VaLrLee Poussin, Cours d Analyse, L. W, p. 97
(Paris, 1928).
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a y la valeur suffisamment grande. La limite de I'intégrale z, pour
y - = est donc bien zéro.

De plus, le choix de T et de y étant indépendant de .z, z, tend
vers zéro, uni formément ().

“n résumant, nous avons démontré que notre solution « tend uni-

formément vers lu, pour y - =. l.e méme raisonnement nous prouve

(. . du Pu  du . . . .

«que les dérivées ., -, —— et - ont respectiverent pour limites /i, (x),
Do ez T Jy LA

lu,(.r) et o, et cela uniformément par rapport a .r.

(") Je dois a M. Zyzmund la simplification de ce raisonnement. Cette simpli-
fication im’a permis en méme temps de rejeter quelques hypothéses non essen-
ticlles concernant la fonction F(y).



