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L'HYDRODYNAMIQUE DU FLUIDE VISQUEUX. 67 

Quelques solutions exactes des équations de Γhydrodynamique 
du fluide visqueux dans le cas d'un tube cylindrique; 

PAR PIOTR SZYMANSKI 
( Varsovie). 

INTRODUCTION. 

Nous nous occuperons dans cette note de l'écoulement du fluide 
visqueux, incompressible, par un tube cylindrique de section circu-
laire. Nous admettrons de plus que l'écoulement est symétrique par 
rapport à l'axe du tube. 

Nous adopterons dans la suite le système des coordonnées cylin-
driques, comme le système qui convient le plus au cas envisagé. 

Soient donc (/*, 2r, 2) les coordonnées cylindriques d'un point quel-
conque de l'espace; vn «>, <*- les composantes de la vitesse d'une 
particule du fluide qui, à l'instant t, se trouve à ce point; X

n
 X^, X

z 

les composantes du champ de forces rapportées à l'unité de masse: 
ρ la pression du fluide au point envisagé; 7 la densité du fluide, que 
nous admettons constante; p., le coefficient de la viscosité. 

Soient, enfin, / la longueur du tube et ρ le rayon de sa section 
droite. 

Nous disposons l'axe OZ des coordonnées suivant l'axe du tube, de 
manière que les extrémités de cet axe se trouvent respectivement aux 
points ζ = ο et s — l(flg. 1 ). 

Conformément aux hypothèses faites, X$ et sont nuls, ainsi que 
toutes les dérivées de ρ, X

n
 X

s
, ç

r9
 v

z
, etc., par rapport à rz. 

Les équations de Navier-Stokes peuvent donc s'écrire sous la 
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forme (') 

(I,) X, ρ ·+· - Δ*ν — ί- _L
 =

 __1 ç __1 _|_ ρ , 

(l
2
) -f-Λ-^-^ν. — + Vr^T + f

5
-p> 

(13) (I,) X, ρ ·+· - Δ*ν — ί- _L = __1 ç __1 _|_ ρ , 

Fig 1 

La notation Δ est employée ici pour désigner le laplacien, c'est-à-
dire l'expression 

d/·2 + r^r + ds2 r2 d£2 ' 

En supposant le champ de forces nul, l'écoulement permanent et 
s'effectuant le long des droites parallèles à l'axe du tube, on obtient, 
comme solution exacte de ces équations, l'écoulement bien connu de 
Poiseuille 
(a,) <V=u, 

<2=> ''=£0îV-'->. 

(2
3

) Ρ —p, — t ζ. 

où p
0
 et pi désignent respectivement les pressions aux extrémités ζ = ο 

et s = / du tube. La formule (2
3
) montre que la pression est con-

stante dans toute la section droite du tube. 

(*) Voir par exemple il. LORENZ, Technische Hydromechanik (Miinchen und 
Berlin, 1910), p. l\i\. 
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Nous nous proposons ici cTobtenir les solutions dépendant du temps, 

mais conservant le même caractère que l'écoulement de Poiseuille. 
Nous admettons donc aussi 
(3) <v=o. 

L'équation de continuité nous donne alors 

(3') àvz._ 

En supposant que les forces X
r
 et X$ dérivent d'un potentiel E, et en 

désignant 

(4) ? = 

( ο) ν = -, 

on parvient aux équations 

(·.) 3F=°-

( 6- ) — ν -γ- = -y-

(Pour simplifier l'écriture nous avons introduit la notation ν au 
lieu de v-.) 

Selon (3') le premier membre de (6
2
) ne peut dépendre que de r et 

de t, tandis que le deuxième ne dépend pas de r en vertu de (6, ). 
Il en résulte que les deux membres de (6,) ne dépendent que de t, 

d'où 

£=/«>· 

'7») lv~'J7t =/(')· 

En intégrant l'équation (7, ), on obtient, à l'aide de (6, ), 
(8) <jr=s/(i)-v-o(i). 

C'est une équation tout à fait analogue à (23); elle exprime le fait 
que la valeur de q esj^constante dans toute la section droite du tube, et 
varie linéairement d'une section à une autre le long de l'axe. 
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En introduisant les fonctions q
9
(t) = q(o, t) et qt(t) = q(l, t) on a 

(9i) f/(z> t) = 9o{t)~ ( ηι{"1) *» 

(9.) A
y
-vg = ̂ <>7^(,). 

L'équation (92) nous montre que la vitesse ν ne dépend pas des 
deux fonctions q

0
(t) et qt(t) mais seulement de leur différence. Dans 

le cas où le champ de forces est nul, cette conclusion est évidente 
a priori, puisque dans ce cas q est proportionnel à la pression />. 

En supposant connues les valeurs de </
(>
 (f) et qi (t) à tout instant t, 

on connaît aussi la fonction 

(.0) AO=*
,(
"7*

(0
. 

qui détermine l'écoulement, à l'aide de l'équation (72)011 (92). 
Ainsi, le problème se ramène à la résolution de cette dernière équa-

tion, en supposant la fonction/(t) donnée. 
Plus précisément, en tenant compte des conditions initiales et des 

conditions aux parois, on peut énoncer le problème comme suit : 

Trouver la solution ν de Γ équation 

(T-v \ di> dv 

régulière pour t>o et o<r<o et s* annulant pour 

(ûC) r—O fl 
(β) t =0 et o<r< p. 

Nous appelons ici régulière toute fonction déterminée et continue et 
ayant ses dérivées Jè'di continues. La symétrie du mouvement par 

rapport à l'axe OZ exige évidemment que ̂  soit nulle pour r = o. 
En effet, dans le cas contraire la courbe de distribution des vitesses 
aurait le point anguleux sur l'axe du tube. Nous avons mis à part 
cette condition puisqu'elle n'appartient pas, à proprement parler, 
aux conditions aux limites. Nous appellerons cette condition (γ). 
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Il est évident, que la solution régulière de (ι ι) ne peut exister que 
dans le cas où la fonction /(/) est continue. C'est cette condition, 
d'ailleurs, qui résulte de l'interprétation physique de la fonction f(t). 

Le raisonnement suivant met en évidence encore une condition â 
imposer. 

En effet, on a, en vertu de la condition (α) : 

i' =r O, 'f)r~ ° ^ °f pour / = o, 

d'où l'équation (ι i) se réduit à 

*· /· Ν 

donc, τΜ est une constante. 

Mais si l'on pose /*=o, on obtient, selon (Jl), 

* :=r 

d'où la valeur de cette constante est zéro, par conséquent : 
(12) /<<>) — o. 

Si cette condition n'est pas satisfaite, l'équation (II ) n'admet pas 
de solutions régulières. 

Néanmoins, on peut trouver dans ce cas des solutions continues 
susceptibles d'une interprétation physique. Nous en rencontrerons un 
exemple dans ce qui va suivre. 

Passons maintenant au problème général, celui de la résolution de 
l'équation (ι i) sous les conditions indiquées. 

Dans tous les cas que nous allons traiter, nous nous servirons de la 
même méthode de résolution. 

Sous déterminerons (Cabord une solution quelconque <*e de Véquation 
(n) satisfaisant à la condition (oc). Pour satisfaire ensuite à la condi-
tion (3), nous ajouterons à la solution ainsi trouvée une solution tr con-
venablement choisie de Γ équation sans second membre : 

( I , _ H J V -γ- — O. 
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La première partie du problème, dépendant essentiellement de la 
fonction /(*), sera résolue de manières différentes conformément aux 
différents modes de représentation, dont la fonction /(;) est suscep-
tible. 

Au contraire, la seconde partie du problème, celle qui consiste à 
résoudre l'équation (i3), ne dépend pas de la forme particulière de f (t). 
Nous nous en occuperons en premier lieu. 

Avant d'aborder la solution de tous ces problèmes nous introduirons 
les coordonnées abstraites indépendantes du choix particulier des 
unités de mesure. Les solutions ainsi obtenues seront exprimées d'une 
manière indépendante des dimensions du tube et de la valeur particu-
lière du coefficient v. 

Posons à cet effet 

(»4l) x=-, 

(142) (»4l) x=-, 

(•4.) C=7> 

(»4l) x=-, 

Ci·- '/ = £· 

L'équation (6
2
) s'écrit maintenant 

dx- χ dx dy όζ 

En posant encore 

(i3) Qo(j) = Q(o. y), 
(*6) Qi(j) =Q(*-,r)' 
( >7) Qitr)— QoO') = F0'ii 

on peut donc énoncer le problème qui nous intéresse de la façon 
suivante : 

PROBLÈME. — Étant donnée la fonction F {y) déterminée et continue 
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pour toute valeur y> ο, trouver la solution u de Γ équation 

(I) h(u)m^ + -·^-djr = ¥ (y), 

régulièrepoury>o et o<x< ι et telle que 
(«) M=O pour χ — Ι et γ'ίο f 

(β) u — ο pour y — ο et 

( y ) j-=zo pour χ = ο e* y Ζ ο. 

1. PROBLÈME I (auxiliaire). — Étant donnée la fonction Φ (Λ?) t/éter-
minéedans Γ intervalle (ο, ι ), trouver la solution w de Γ équation 

(II) l
W

s
5?

 +
 ï£-S7=« 

régulière pour y > ο et o<x< ι ei satisfaisant aux conditions 
ι° «> = ο pour χ — ι e/ 
cî" ιν = φ(.2τ) pour y —ο 

On obtient aisément les intégrales simples de l'équation (II), de la 
forme 

3(ax) 

où J (ξ) désigne la fonction de Bessel de première espèce et d'ordre o, 
c'est-à-dire la fonction 

(,8) = + 

En cherchant à satisfaire la condition (i) du problème, on n'admet 
pour a que les valeurs des racines de l'équation 

3(d) — o. 

On sait que ces racines sont en nombre infini. En les rangeant selon 
leur grandeur on obtient la suite 

Φ Φ Φ · ^/lf 9 9 9 9 Λ|. Φ Φ Φ m flftn φ Φ rn · 

Puisque ΰ{—αχ) = J (αχ) il suffit de se borner seulement aux 
racines positives 

Journ. de Math., tome XI. — Fasc. I, ι*βι. 
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[1 est clair, maintenant, que toute série de la forme 

(IÇ)) ^crl3(anx)e-a^ 

satisfait formellement à l'équation (II) en s'annulant pour a? = 1 con-
formément à la condition i°. 

La condition 20 peut être satisfaite aussi si Ton suppose la fonc-
tion 9 (a?) développable dans l'intervalle (ο, 1) en une série de la 
forme 

lao) ^cn3(anx). 

Ën partant de l'équation différentielle des fonctions 3(a
rt
x) on 

vérifie immédiatement que les fonctions y[x& (a,&) forment une suite 
orthogonale, c'est-à-dire que 

(?-!,) I χΰ(αηχ) 3(amx) dx = ο (w?£n) 

et 

lais.» / Λ·[ J(oaJ?)p dx=ze„> o. 

Ceci nous permet d'obtenir, par le procédé bien connu, l'expression 
formelle des coefficients c„ du développement (20) : 

ias) L I t.q{x) 3(anx) dx. 

Le développement (20) rentre donc dans une classe générale de 
développements procédant suivant les fonctions d'un système quel-
conque de fonctions orthogonales. 

En particulier, celui qui nous occupe est bien connu sous le nom de 
développement de Fourier-Bessel. 

Nous citerons ici quelques théorèmes, dont nous ferons usage dans 
la suite et qui expriment les conditions suffisantes pour que la fonc-
tion 9(4?) soit développable en une série de Fourier-Bessel. 

THÉORÈME A. — Toute fonction continue avec ses deux premières déri-
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vées dans V intervalle (ο, 1 ) et s'annulant pour a? = 1 est développable en 
une série uniformément et absolument convergente de la forme (2o)(f). 

THÉORÈME 13. — Si la fonction \xç(x) en intégrableif) dans Γ inter-
valle (ο, 1 ) la série (20) où les c„ ont les valeurs (22) converge vers la 
valeur 

r — ο) χ-*- ο)] 

pour tout point intérieur χ de Γ intervalle (ο, 1) au voisinage duquel la 
fonction 9 (x) est à variation bornée. 

Si, enoutre, /Λ fonction ο (x) est continue dans un intervalle (a, b) con-
tenu lui-même ά Γ intérieur iT un autre intervalle (α, β) ο///a fonction est 
à variation bornée, xmr converge uniformément vers φ (a?) dans ΐin-
tervalle (/, 6)(3). 

THÉORÈME C. — .Si /a jrme (20) uniformément convergente dans 
V intervalle (ο, 1 ) la somme 9 (ar) i/e cette série est une fonction qui seule 
satisfait aux relations ( 22)( *). 

On peut tirer du théorème Β le corollaire suivant : 

COROLLAIRE. — Si pour tous les points (Tun voisinage du point x = o, 
les conditions du théorème Β sont remplies, et si, en outre, la fonction 
9 (x) est continue au point χ=0 et la série (20) est uniformément con-
vergente au voisinage de ce point, celte série converge au point χ = ο vers 
la valeur 9(0). 

Le problème auxiliaire que nous nous sommes proposé au début de 
ce chapitre se trouve ainsi résolu pour beaucoup de cas. 11 en résulte 
que le problème général sera résolu toutes les fois qu'étant donnée la 

(') D. IIILBERT, .Xachr. Ges. Gôtt., 190I. math.-phys.. p. ι. Voir s us*i 
D. IIILBERT, Grundzuge einer allgemeiner Théorie der linear en Integral g!ei-
rhungen (Leipzig, 192^), p. 5f, 

( - ) Λα Bens de M. Lebesgne, 
(') E. W. IIOMOR, Representation of a function by series of Bessels func-

tions ( Proc. of the London Math. Soc. 2* série, vol. V II. 1909, p. 38- ». 

if) W. II. YOUNG, On series of Bessel functions (Proc. of the London Math. 
Soc.y 2* série, vol 18, 1920, ρ, ι84). 
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fonction F(j) on saura trouver une s dution de l'équation (f) s'annu-
lant pour a?=s ι eiy>o. Avant d'aborder ce dernier problème dans le 
cas général, nous commencerons par l'étude d'un cas particulier, celui 
où la fonction F(/)se réduit à une constante. Cette étude fera le sujet 
du paragraphe 3 et des suivants. Le paragraphe 2 sera consacré à 
quelques préliminaires. 

2. Nous citerons dans ce paragraphe quelques formules (') et nous 
établirons quelques lemmes dont nous ferons usage dans la suite. 

Rappelons, en premier lieu, l'équation différentielle qui détermine 
la fonction 3(x) : 
(23) x3"(x )■+■ ΰ'(χ)->r :r 3(x )■=.<*. 

Puis l'expression de ΰ(χ) par la série entière déjà citée : 

ίι8) 3(x) = i 3
 Γ

 -· -1-— TTÔT»-^ 

et par l'intégrale définie 

(9.\) 3 (χ) = ~ I cos f .r sin '»> > ΦΑ. 

Cette dernière expression montre que la fonction (x) ainsi que la 
fonction 3'(x) sont bornées pour tout χ réel. 

On a notamment 
(9.5,) 3(X)]^i 

et 
(9.5*) 3"(.r> 

pour toute valeur réelle de l'argument. 
Enfin la formule asymptotique bien connue : 

(26) &(x) = P(^) «οβψ.-*- Q(x) «ίηψ. 

(' ) On trouvera toutes c s formules dans n'importe quel traité sur les fonctions 
de Bessel. On peut aussi consulter XEncyclopédie {loc. cit.) ou Jahnke und 
Emde. Funktionen tafein mit Formeln und Kurcen (Leipzig. 1928). 
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où 
v = *-5' 

tandis que Ρ (.r) et Q(<r) sont les séries semi-convergentes suivantes : 

l(.r)— ι ϋ·(8^)2~ 4! (S#)' 

~Λ'' Hj; 5!(8#)s 

On en tire la formule ci-après qui sera d'usage constant dans ce 
paragraphe (') : 

'9/i"' - fi - ̂  [cosψ + , 

où θ (or) désigne une fonction bornée. 
On obtient aisément à l'aide de la formule (26) l'expression sui-

vante des zéros a
n
 de la fonction 3 (.r) : 

I an — nr. — T 

et la formule (-') : 

(*)
 Λ

,
(β

„
)=

_1.[
Ι +

 ο(ΐ)]. 

Nous utiliserons la formule (27) pour démontrer le lemme suivant : 

LEMXE I. — Pour tout nombre ol intérieur à Vintervalle (Ο, 1 ) il existe 
un nombre A tel que lu valeur absolue de la somme 

E/i (*^j —— ^ ( I )'" \UrnX) 

ne dépasse pas A quel que soit η pourvu que χ soit compris dans l'inter-
valle (— α, a). 

Pour démontrer ce lemme, exprimons K
n
(x) par l'intégrale définie. 

(') Voir par exemple A. GRAY et G. B. MATBEWS. A treatise on Bessel Func-
tions. London, 1895, p. 70. 

(2) Voir E. W. HOBSOH. loc. cit. 
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Nous avons en vertu de (24) : 

Κ* ( *) = - / L«( r »in <#> ) cl·», 
où Ton a posé : 

M*) = 2 (— 0m cosi^s). 

Tout revient donc à démontrer le lemme analogue pour les sommes 
L„(s). 

En effet, s'il existe un nombre A tel que |L„(s)|<A pour tout η 
naturel et tout |s | < a, on a : (supposant \œ\<^« et o<(o<z) 

χ sin '#♦-<« sin ω < α. 
donc 

; La
ij?sinw) < \ 

et 

\Kn(x) <- ( j L„(x sinoj) 1 Φ»^ - S..t. — A. 

Remarquons maintenant que selon la formule (27) est de la 
forme 

anz — a-r-bn -1 1 » 

ou les nombres d
n
 forment une suite bornée. Or, nous allons démon-

trer d'une façon générale l'inégalité suivante : 

Σ( — ι )m cos (a -+- bm -t- — -1- —M < ^, > 

dont le lemme en question résulte immédiatement. 
Nous avons d'abord 

C«=2 ,)m cos(a bm) — : ^ s —, 

2 

S«=2 ,)m sin(a bm) — : ^ s —, 
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d'où 

• "'= h ' °!= b 

[1 en résulte tout de suite l'inégalité analogue pour la somme 

Tn= 2 (~ 1 Yn co*(a ~+~ !>m ■+■ ™ ) * 

On a, en effet, 

Tn— 2 (— ι f cos ~ cos<// -t~ bm \ — ^ ( ~ 1 )'" h'n ^ s'n 1 fi '>m '· 

En appliquant à chacune des sommes la transformation d'Abel et 
en remarquant ensuite qu'à partir d'un certain m les nombres cos ̂  et 

sin ^ forment deux suites monotones, on obtient bien l'inégalité de la 
forme 

'lri = ΤΓ' 

La même inégalité subsiste pour la somme 

Vf* = 2 i— 1 Y" co* ( a ■+■ hm "+■ ^ si J rf,n | £ d. 

On a, en effet, 
COS ~r=l r» 

OÙ 

\κ\<£ 

et 

sin —r < —: , 
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puis 

M„= Τ»-Σ H COS(°+ HM + ^) 

- ^ (— ι f" s'n (a bm -i- ^ ^ ' 

Les deux dernières sommes sont évidemment bornées. On a donc, 
en désignant par M' un nombre positif suffisamment grand : 

'M.iSiV-i-M', 
d'où 

M„ : < ·. — —I-7 C. Q. F. I». I ■ ). 

LEMME II. — suite j | (//„) | } est croissante. 
En effet, considérons l'intégrale 

I„ = af, f χ C/2 (' </ΛΛ; ; dr. 

En posant α
η
χ = ξ on obtient 

Jr»an 

et 

f ξ//2( ; ) > O. 

D'autre part (2 ) 

/* χΰ*(αηχ)άχ — -Jri(an), 

d'où 
/* χΰ*(αηχ)άχ — -Jri(an), 

donc, à l'aide de l'inégalité démontrée, 
^ " ( ^η-!-ι ) & " ( ûî/j) — 2 ( ΙΛίΛ ) > o, 

(') Je dois à M. Zygmund la simplification de ce raisonnement. 
(s) Foir par exemple Encyclopédie, toc. cit., p. 227, formule (110a). 
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ce qui prouve notre assertion. Ces remarques faites, nous pouvons 
nous occuper de notre problème. 

5. PROBLÈME IL — « Trouver la solution u de l'équation 

(111) L(«) -r-5- H j T-^li 

déterminée .dans la région R du plan, où ο y χ < ι et o, et s* annulant 
pour : 

ι" .ν = ι ,>'<"· 
·>." )■ —:o et 

h étant une constante donnée. » 

Conformément aux indications données dans l'introduction, il s'agit, 
d'abord, à déterminer une solution quelconque u

0
 (œ,y) de l'équa-

tion (III) s'annulant pour χ = ι et ensuite chercher la solution wÇr,y) 
du problème 1 se réduisant, pour y — ο à ^(.ζ·)= — u

0
 (x

f
 o). 

La somme 
u(x, y) = tf0(.r. y) «·(.*·. y ) 

sera la solution du problème proposé. 
Or, nous avons déjà la solution u

0
. C'est celle de Poiseuille qui ne 

dépend pas, d'ailleurs, de y : 

<'.<<>) I). 

Passons donc à la détermination de «'(#, y). Comme on l'a signalé, 
u (z-,y) sera de la forme (19) en se réduisant, pour y = o eto<a;< 1, 
à la fonction 

— ttC— r U — Λ )· 

On doit donc avoir 

(30) V cnΰ(αηχ)= τ(ι — a·2) pour 

Or, selon (22), 

rM= — / œ{\— x°-) J(anx) dx, 

Journ. de Math., tome XI. — Fasc. I, ig3a. I 1 
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OÙ 

ε„= Ι ,c ΰ-(αη.ν) d.v. 

Mais (') 

( 3 I ) Ζ/, — ·- «/ " ( ft/ι ), 

et, en vertu de l'équation (23), 

I .·/; ( I — «.1 ( fin./· ) lie — — ; 

donc 

10 i ) 2h r n -

D'après le théorème A (§1), la série 

2 r" 

est uniformément et absolument convergente et représente bien la 

fonction y(i — .r- ) dans l'intervalle ο <x< ι. 

La convergence uniforme et absolue de la série 

!?<"// fi„.r ! 

dans l'intervalle (ο, ι ) ainsi que celle de la série· 

!?<"// fi„.r ! 

dans la région R sont des conséquences immédiates de la formule (28). 
En effet, on a pour η suffisamment grand 

«' -u/« ) ^ > 

(*) Voir par exemple Encyclopédie, lor. cit.* p. '224, formule (110a). 
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d'où 

I 1H ι = :·, » 

el, comme | «^(-ί*) I =1 > lerme général d'une quelconque de deux 
séries est plus petit en valeur absolue que celui de la série 

« Λ V T. 2 » 

qui est manifestement convergente. 
Ainsi la fonction 

ι .>/> ι //I./', r ) — u, ,< ./·' ) i- »ri ./·. ι* ) — > -ι - <S > ,— (' "y 

est bien déterminée et continue dans la région K, elle satisfait, en 
outre, aux conditions i"cl 2°. Il faut démontrer encore qu'elle satisfait 
à l'équation (III). Nous allons étudier dans ce but les dérivées par-
tielles de cette fonction. 

Or, il est facile à reconnaître par un raisonnement tout à fait ana-
logue au précédent, que la dérivée formelle de la série (33) par 
rapport à œ est uniformément (et absolument) convergente dans le 

domaine II. Elle représente donc bien la dérivée 'j" dans tout ce 

domaine, et l'on a le droit d'écrire 

O.r ·>. I dj, «' ι a„ ) 

llemarquons encore qu'ainsi est continue dans le domaine 11. 

Il n'en est plus de même des dérivées et ^· 

Nous avons, en effet, en désignant par DJ et D, les dérivées for-
melles correspondantes de la série (33) : 

{{fi tJ ( dn ) 
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et 

9' Ι ~α^'{αΗ) J 

ou, en vertu de (20), 

L «=l n~\ J 

Puisque la première série en crochets est uniformément conver-
gente, il suffit d'étudier la seconde qui intervient aussi dans l'expres-
sion de Dj . 

Nous prouverons que la série en question 

Si./·, >')= 7 —; f "'<> 

est uniformément converge nie (bins lotilc région fermée contenue dans Κ 
et ne renfermant pas le point Ρ (1,0). Il en résultera la continuité de 
S (Λ?,/) ainsi que l'identité des séries DJ et D

r
 avec les dérivées^^ et 

Fig. 2 

partout dans la région R sauf au point P( 1, o). Quant au point P, 

nous nous en occuperons spécialement. 
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Pour démontrer notre assertion, il suffit évidemment de considérer 
les régions particulières par exemple telles que représente la figure 2. 

On forme une telle région Κ
α
 (ο α 1) en enlevant de R le carré 

dont les sommets sont les points 

Ρ( 1, ο), Pt(«, ο), Ps('«, ι —α) et ι — α). 

On peut aussi former R* par la superposition de deux régions Q* et 
S* (indiquées par les hachures), Q

a
 étant composée des points de R 

dont l'ordonnée surpasse 1 — α et — S, des points satisfaisant à l'iné-
galité o<#<a. 

Posons maintenant 

h" ~ «''V/,/) ; ' 

La suite j b„ j est décroissante et tend vers zéro uniformément par 
rapporta y. Cela résulte du lemmell i§2),etdece q

ue
 j

a suite \e a',r\ 
est elle-même décroissante. 

En remarquant encore que 

ι ™ ι — \ J'f an) \ 

on peut écrire 

S ί ./·. y ') — 2 ι — 1 j" bn J( an:r). 

Envisageons le reste partiel de cette série : 

**«·/' — 2 1 ""1 hJ ■n"'r ^ 

et supposons 
ο Ο· 1 v.. 

En appliquant à cette somme la transformation d'Abel et en tenant 
compte des propriétés de la suite j b

n
 ; on parvient à l'aide du lemme I 

(§ 2) à la conclusion : 
« La somme S

n>p
 devient aussi petite que l'on veut, poiuvu que η soit 

assez grand, et cela quels que soient l'entier positif ρ et le point (x, y) 
de la région S

a
. » 

D'autre part si l'on assujettit le point (<x,y) à rester dans la région 
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Q», ladite somme 

S _ V „:.y 

sera plus petite en valeur absolue que la somme 

\'"/// 

en vertu des formules (a5, ) et (28). 
Mais cette somme, en tant que reste partiel d'une série conver-

gente, est infiniment petite avec - · Cette conclusion s'applique a for-
tiori à la somme 

On voit donc que la somme S,,,,, est infiniment petite avec ~ et cela 

uniformément dans la région Q
a
 de même que dans la région S

a
, elle 

l'est donc aussi dans la région R
a

. Ceci prouve que la série S (#,/) est 
uniformément convergente dans R

a
: par conséquent, les développe-

ments formels D
v
 et D* y représentent bien les dérivées etf—» 

La même conclusion s'applique à toute la région R (sauf au pointP) 
puisque tout point de R (sauf le point P) devient le point d'un \\

x 

pourvu que α soit assez proche de 1. 
Ainsi les formules 

< .liM — — >.h 7 r "»> 

et 

i :i(i, 'Hl = ί \ I - J y ·''<"»■'■> ,. ,φ .. >. V ·''(",.·*> I 

sont valables partout dans R, sauf au point P. De plus, les dérivées 

-r- et -p-r y sont continues. 

Il nous reste donc à examiner la validité de ces formules pour le point 
exceptionnel 

x = 1, y = 0 
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Occupons-nous d'abord de la dérivée ̂ · 

Or, nous avons, pour χ = ι et y = o, D, = o, mais puisque 1/ = o, 
pour χ = 1 et tout y >0, la valeur de D, au point envisagé est bien 

celle de ̂  · 

La formule (35) est donc valable dans toute la région R. 

Il en est autrement pour^· En effet [en profitant de la formule 

(34)1? on obtient, pour χ = ι et y = o, 

l > .?.=r //. 
tandis que 

= o ( h — o pour y rr o cl o s .r s ι ). 

Donc, la formule (36) cesse d'être valable au point Ρ. 
Supposons maintenant le point (χ, y) différent de P. Les formules 

(34)? (35) et (36) sont toutes valables, et l'on obtient [en portant dans 
la formule (36) les valeurs des séries 

ΰ'( an ) an OU an \ 

tirées des formules (35) et (36 ) | : 

()- U f <)lt ()u 

l/équation ( 111) se trouve donc satisfaite dans toute la région R en 
dehors du point P. Au contraire, cette équation η a pas lieu au point P, 

oû lés dérivées et ̂  sont toutes nulles. 

Évidemment, l'une au moins des deux dérivées ̂  et ̂  n'est pas 

continue au point P. 
Pour mettre en évidence la discontinuité signalée, considérons les 

valeurs des dérivées de u le long de la droite x—i. 
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\ous avons 

— — Ο cl — r O 

quand y étant toujours positif tend vers zéro. 
On obtient donc à l'aide de l'équation (III) : 

' Th? ~ pour .χ = ι et ν o. 

Mais ̂  s'annule au point P, ce qui démontre la discontinuité de 

cette dérivée. 
Il en est de même pour la dérivée ~ égale à 2//S(a?, y). 

Considérons à cet effet les valeurs de la série S(ar. y) (dont il est 
question), le long du segment (ο, i) de l'axe 0.v. 

Il est facile de reconnaître que la série S(<r, o) est le développement 
formel de la constante — - en une série de Fourier-Bessel. 

D'après le théorème Β et son corollaire (§1) le développement en 

question représente bien la constante — γ dans l'intervalle o<x < ι. 

Ainsi, la discontinuité devient évidente, puisque S(a*, o) = o pour 
JC= i. 

11 est facile de se rendre compte de la signification physique de la 
discontinuité signalée. 

En effet, la dérivée ^ représente l'accélération du liquide. Au 

début du mouvement, c'est-à-dire pour y = o, les forces de la viscosité 
sont encore nulles et l'accélération est entièrement due à la différence 
des pressions aux extrémités du tube. Cette dernière étant constante 
et non nulle dans toute la section du tube, l'accélération l'est aussi à 
l'intérieur du tube tandis qu'aux parois, elle est nécessairement nulle. 

La discontinuité n'existe plus pour y>o en disparaissant, ainsi, au 
cours du mouvement ('). 

<1 ; On peut citer quelques autres problèmes où les discontinuités analogues 
ont été rencontrées. < l oir par exemple BOUSSMESQ, C. R. AC. Sc., 29 mars 
1880; H. LAMB, The Journat of London Math. Soc.. n° 6, 1927. Cf. aussi 
M. BRILLOUIX, Leçons sur la viscosité, Paris, 1907, § \i. ) 
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Pour se rendre compte de l'aspect du mouvement nous avons 
effectué les calculs numériques. La ligure 3 montre les courbes de la 

«■· 

Fig. 3 

distribution des vitesses le long du rayon du tube pour quelques 
valeurs particulières de y. La table I contient les données numériques 
correspondantes. 

Il ne présente aucune difficulté de réaliser le mouvement théorique 
étudié. Il suffit pour cela d'imposer les conditions analogues à celles 
des expériences de Poiseuille. A ce point de vue la solution, que nous 
venons de trouver, nous instruit sur la manière dont le régime de 
Poiseuille s'établit à partir du repos. 

On voit, en effet, que pour y infini le mouvement se rapproche 
indéfiniment de celui de Poiseuille. 

On a, notamment, 

1 x. y ) ' % e~«ly y , '—-τ » 

d'où, pour 
y --> 

Journ. de Math., tome XI. — Faso. I, 1932, 12 
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u(x, y) lend vers u
n
(x) et cela uniformément par rapport à x. On 

démontre de la même manière que tend uniformément vers -

pour y -> oo. Pour obtenir le résultat analogue concernant et 

il faut faire recours à la transformation d'Abel (déjà appliquée 
page 19) de la série (35), et s'appuyer ensuite sur les lemmes I et IL 

Remarquons, enfin, que la solution u(x, y) satisfait à la condi-

tion ~ = o, pour χ = o, reconnue nécessaire au point de vue de l'in-

terprétation physique (voir l'Introduction page 70 de cet article). 
On le démontre en remplaçant ô' (a„x)

9
 dans (34), par sa valeur 

tirée de l'équation (23) et en tenant compte de (25,) et (2.3.,). 

TABLE I. 

Ν/ 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.75 1.00 « 

0.0 0.200 O,385 <».336 Ι Ο.65·2 O,8O5 I 0.890 I 0.939 I 0.985 0.997 1.000 I 

0.1 0,200 0.384 0.333 0.647 °-797 0.882 0,929 0,976 0.987 0.990 

0.2 0.199 0,379 Ο, 5*22 O.63I 0,77E 0,857 0,902 0.946 0.9-37 0,960 

0,3 0.198 O,3;O O,5O{ 0,606 0,739 0.81', «,856 0,897 0,907 0.910 

0.4 0.194 0.355 0,176 0.568 O,G87 0.754 0,792 0,829 °;^7 0,840 

0.5 0.189 O,333 O,438 0,517 0.619 O
;
G77 °}7

Λ
9 °R74° °?748 0,750 

0.6 0,178 O,3OO O,386 I O,45I O,536 O,58O 0,607 O,63'2 O,638 0.640 I 

0.7 0,160 0,254 0,320 O,368 O,43O 0-465 0,485 O,5OF 0,009 O,5IO 

0.8 0,127 O,191 O,235 0.267 O,3O8 O,33I O,344 O,356 0,359 O,36O 

0,9 0,076 0,108 0,129 0,145 O,I65 0,176 0,182 0,188 0,190 0,190 

1,0 0,000 I 0,000 0,000 0.000 0,000 0,000 0,000 0,000 0,000 Ο,ΟΟΟ 
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4. Dans le problème général que nous avons énoncé à la fin de 
l'Introduction il s'agit de trouver la solution de l'équation 

(Il I. ( // ) Ξ -Γ-7 - - =]' ί r t 

régulière dans la région R(o<a?<i,y>o) et s'annulant pour y=-ο 
ainsi que pour Î? = I. 

Nous nous occuperons dans ce paragraphe des deux cas particuliers 
de ce problème, correspondant aux deux hypothèses 

FI ν ι = COS/.· γ — Ι EL FI y » = - SIN/R R. 

Ainsi nous aurons à résoudre les deux équations suivantes : 

ι I \ , ι M A ) "-I -7—7 ; Γ— = cos/, ν — 1 

et 

ι I \ , ι M A ) "-I -7—7 ; Γ— = cos/, ν — 1 

sous les conditions aux limites déjà énoncées. 
Pour abréger les calculs nous traiterons les deux équations ensemble 

en introduisant des imaginaires. 
Ainsi, en posant : 

M = V - B 

nous aurons au lieu des deux équations (ΊΥ ,) el (IV
a
) une seule équa-

tion : 

1 IN » Li M » : —ζ—-- - p- — — 'h· — 1. 

avec les mêmes conditions aux limites. 
En suivant la méthode indiquée dans l'Introduction nous cherche-

rons d'abord une solution quelconque M
0
 s'annulant pour J=I en 

ajoutant ensuite à M
0
 une série de la forme (19), convenablement 

choisie. 
On peut poser évidemment : 

M„ ( jc. Y)—\W — ) — A ( ,R> E~,K?. 
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011 N(a?) satisfait à l'équation 

V(.-r ) -h ~ \'(x) -h //·' Ν(.*") = ι. 

en s'annulant, pour a? == ι. 
On voit immédiatement que la fonction 

(·'.-) \i.r) = G<./-)-/H(.rï = 1 Γι- J(;rVj;01 

est bien la solution cherchée de la dernière équation. 
Déterminons maintenant la série 

< 38 ) 7. ( ./·. γ ) — ^ -λ ^ ' "« ·'' > '' "iy, 

se réduisant pour ̂  = oà — M o). 
Cette condition s'écrit : 

2 -« < <*«·'■' » = — !<l" ) N' ' )· 

d'où [tw/r les formules (22 ), (3i) et (3M) | 

5
Λ

 - - - Γ" JT ·'*
 X

 ' |^7
 1 1

 " ' "" ^
 (

 ·'' .] Ί
R 

= „ ■ Ι χ \ ( ./* ) 3 (a„x ) //./*. 

Posons 

/»Λ = / .r M jr ) 3 ( an ./· » d.r : 

= f 3 (r/n.v ) d.r 

et 

r„— f ./· V(x) 3' ( a,, .r \ d.r. 

En écrivant les équations qui déterminent les fonctions ΰ(α
η
χ) 
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et N(a?) sous la forme 

[χ ΰ'{α
η
χ)Ύ~— a

n
.x3(a

n
x), 

[x"S' (x)]'— xz=z — xik ^ 

on obtient immédiatement 

ikp
n

— qn-ï- (inr ru 

dnPn—— r
n 

et 
(■hi ({η ^ ( ((η ) r 

d 011 

_ ù\an) m 
donc 

} _ J 2 /.· Y /. k — a 'i i 

Il en résulte que la série Z(x,y) ainsi que ses dérivées ijj^> et 

sont uniformément et absolument convergentes dans la région R. Il en 
est donc de même de la fonction 

( ÎO) M(>. y) — \ί0(ΛΓ. y) -t- Z(x, y) 

= 7(1 ~x-)-~ Ν (or) e~lk?-~- 2 s* J yanX) e~a*y 

qui représente, par conséquent, la solution du problème proposé. 
On peut faire disparaître de la formule (4o) la fonction N(x), en 

exprimant de cette façon la solution du problème, au moyen de la 
fonction Z(a;, y) seule. 

En effet, M(a?, y) s'annulant pour y = o, la fonction Ν (χ) est repré-
sentée dans l'intervalle o<a?<i par 

\ ( χ) — 7 (χ-— i) — Z(x. ο). 

Il faut ajouter que cette égalité peut être différentiée une ou deux 
fois par rapport à x, les deux premières dérivées formelles de Ζ (α?, ο) 
étant uniformément convergentes. 

Posons encore, pour abréger, 

(4l) U0(x) = 7(.X'2 — i). 
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La formule (4o) s'écrit maintenant 

M( ./·. ;}') = //,,( ./· ) ( e~iky — ι ) — Ζ (./,·. ο j e iky-t- Ζ(
t

y ). 

En séparant les parties réelle et imaginaire, posons : 

•*n— ^/< "j* 
OÙ 

(, ) - <) 

(, ) - <) 

et 
7A.V. γ) —C/A.t. r) -î- /£(./·, y), 

où 

( 44 ) a <.#·, j· _ι = ^ J ( an./; » * "*··". 

( ί5 ι "j ( ./*. .r » — ^ ,5,, J( ο,,.ν » c "iy. 

Les solutions A(#, y) et B(#, y) des équations (IV,) et (IV.,) 
prennent maintenant la forme 

(46) Al·/', jj~ //„< ιn»s/,-y ii \
0
ι./, n. 

(\η ) Hi ·/', V) — - ft„( ■>' ι >ίιι/. r
 5

 ~B
0
i./\ vi, 

OÙ 

(48 ) \,,( .4J, γ ) — y.l j;. r ) —■ Cil ./*, <1 I rOs/.' Γ
 (

5l .ν*. ο I nill I» Y. 
( 49 ! B„(>, ν ) = £(./·% ν ι — ,3< ·/', <» ) cos/, ν -- α».//. ο ι siu/. v. 

Les fonctions //0, A„ et Bu satisfont, respectivement, aux équations 

(5o) L(Î/
0
)~I. 

( 51 ) L( A0 ) = - - kuti »in /. r. 
( ι L ( B0 ) —_ — hti

0
 cosÂ;r. 

o. Deux cas particuliers, que nous venons de développer, nous 
serviront à construire la solution du problème général. 

Nous allons entreprendre dans ce but l'étude plus détaillée des 
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\P 
fonctions A (or. y) et Β (χ, y) et surtout la manière dont ces fonctions 
dépendent du paramètre k. 

[Nous écrirons dés lors A(ar, y, k), B(jj, f), *(χ, y, k), 
k)

1
 etc. pour mettre en évidence ce paramétre.] Nous nous 

occuperons d'abord des fonctions a(a?, y, k) et β(.τ, y, À*).' Il résulte 
de la formule (28) qu'il existe un nombre N, tel que 

\an\ 9'ian\ j = 2 ' 

donc, à l'aide des formules (20,), ( 25,), (/§2) et (43), on obtient [le 
point (χ, v) appartenant à la région R] 

7Λ Y. /. I 1 Λ /.-- î 

f s^y—" , 

<\/,=Y 1 , 

<\/,=Y 1 , 

<\/ y t'°' , 

= 2iP+aï' 

L'évaluation plus sommaire nous suffit, notamment : 

ν/2Σζτ—< 

pour α(ατ, /, À*) avec ses dérivées, et 

ν/2Σζτ—< 

pour β(-τ, r, avec ses dérivées. 
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La première série est d'ordre 0(X:3) et la deuxième d'ordre O(k) 
pour k-> o. 

Il en est de même des fonctions σ.(χ, y1 k) et, k), qui, avec 
leurs deux premières dérivées par rapport à x, sont respectivement d'ordre 
Q(k*) et Ο (k) pour k o. 

Nous allons démontrer maintenant un lernme qui nous sera utile 
dans l'étude de ces fonctions pour k infini. 

LEMME III. — Soient {//„} et ja
n

\ deux suites des nombres positifs, 
la deuxième étant croissante. Soit/(s) la fonction, toujours positive, 
définie pour z>a, et telle que f(a

n
)=u

n
. Nous supposerons cette 

fonction bornée et intégrable dans chacun des intervalles (a
n

, a
n
,,). 

Soient m
n
 et M„ les bornes de la fonction f(z) dans l'intervalle 

( tifi, Λ
Λ
_,). 

Si les nombres 

/ — m ι resp. Lt" 

ont une borne inférieure l^o (resp. une borne supérieure L), on a, 
pour tout η naturel, 

2 "'"=7/ Az>',z 

[ tn — // -| 

Posons, en effet, 

[./;)—! J'\ ζ ) ftz. 

(D'après les hypothèses faites cette intégrale existe.) On a 

φ(.tfn-M) — φ(αη) =- j f(z) dz, 

d'où 
(an+, — an)mnio{a

n
.-x) ~ — a

n
)Μ

Λ 

ou encore 
Il niη -1 ) "Λ ' = "" 
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( Conformément à l'hypothèse l„y lj£ ο ( resp. IL ), d'où 

Η
η
ίζ'^ι a,t.

 y
) ■ yu/«> 

| r«*p. γ I an., ) - &( *Λ ι < 

l'osons successivement τι = ι, 2, 3, n,,et ajoutons, membre à 
membre, les inégalités obtenues. Puisque <p(V/

f
)= o, on a 

ο ( ., ) ï ! //„ 

OÎ^, . ""J* 

ce qui démontre le lemme. 
Remarque. — Il esl évident que si les deux nombres / el L existent, 

les deux inégalités ont lieu, c'est-à-dire 

y f fi ζ ι riz 2 Jr / Λ - » '/-< 

Il en résulte, cri particulier, que la convergence de la série ^ 

implique l'existence de l'intégrale / f(z)dz et inversement. 
' Appliquons le lemme démontré aux séries 

1 k* é\ / ri H ri r. l 

Puisque dans ces cas les nombres L„ et l„ du lemme ont des limites 
égales pour /τ oc et indépendantes de k, les bornes / et L existent et 
sont indépendantes de k. On obtient, donc : 

1 k* é\ / ri H ri r. l 

et 

1 k* é\ / ri H ri r. l 

Journ. de Math., tome XI. — Fasc. I. tçte. I 3 
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où les fondions λ,(ά) et λ2(//) admettent des bornes supérieures et 
inférieures, ces dernières étant positives. 

On n'a pas besoin de calculer les intégrales en question pour évaluer 
leur ordre pour k >00. Il suffit de remarquer qu'elles sont toutes les 
deux de la forme 

I,— / -7 r, 1 ·ν : " )· 

Or, en efîectuant la substitution ζ = t y//*, on ramène cetle intégrale 
à la forme 

UfTrrt,t4rrt 

où la dernière intégrale est convergenle, puisque ο s< 2. Donc 

i.<= (>((■ ) 

et 

iwhx-'i-à)· 

>"7^-, '-V 

Tout ce qui a été démontré ci-dessus peut se résumer de la manière 
suivante. 

Les fonctions a(.r, y, le) et 3( x, y, le) oc ce leurs dé rie ces ^ et —, 

admettent pour le > ο une Jonction majorante de la forme M \k où M 
ne dépend ni de χ ni de y ( dans la région R ). 

La même conclusion s'applique aux fonctions Λ „ ( χ, y, /.· ) et 

tt„(x, y, /") et leurs dérivées et en vertu des formules(i\S) ct(J\çj). 

Remarquons, encore, que non seulement 'j* et ^ mais aussi ^ 

et - f admettent la fonction de la forme \I y /»·, comme majorante, 

dans toute la région R (même pour les valeurs de χ -> ο). 
Pour le démontrer il suffit de remplacer dans l'expression 
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de - ~ ou dans celle de - par sa valeur 

— α
Μ
χ [ ΰ"( a„x ) + J( an

x) ] 

tirée de l'équation (a'l). En se basant ensuite sur (25,) et (252) et en 
raisonnant comme précédemment on parvient bien au résultat 
demandé. 

Il en résulte, grace aux expressions (48) et (49)» cIue les fonctions 

χ· ΊΓν el ~c ~Jx' Par cons^quent aussi, les fonctions 

à* A0 ^ ι dAn ^ d2 B0 + ι dB0 

possèdent la même fonction majorante M s]k. 
Ceci nous montre, en outre, que les fonctions A (α?, y, k) et 

Β (χ, y, k) satisfont à la condition (γ), c'est-à-dire 

OX ÔX r 

(>. Keprenons l'équation générale 

il) L (//)--—h -Γ=1·(ν), 

où la fonction F(y) est supposée donnée. 
Nous n'examinerons que les deux cas suivants : le cas de la fonc-

tion F (y) périodique et celui de la fonction F(y) ayant une limite 
déterminée pour y infini. Ce sont, en effet, les cas les plus importants 
au point de vue de l'interprétation physique. 

Nous supposerons, naturellement, la fonction F(y) continue et 
s'annulant pour y = o, pour les raisons exposées à l'Introduction. 
Quant aux autres conditions, nous les introduirons plus loin puis-
qu'elles sont différentes pour chacun des deux cas envisagés. 

Occupons-nous d'abord du premier de ces cas. Soit ω la période de 
la fonction F(y). Supposons que la fonction F(y) admette une dérivée 
première F'(y) et que les deux fonctions F(y) et F'(y) sont à varia-
tion bornée dans l'intervalle (ο, ω) ('). 

(l) 1J est à remarquer qu'en vertu de ces hypothèses la fonction F(r) ne peut 
admettre que des points de discontinuité de première espèce. 

Journ. de Math., tome XI. — Fasc. I, i$3a. *3. 
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II résulte de ces deux hypothèses que la fonction F(j) peut être 
développée en une série de Fourier, uniformément convergente (4 ) 

(y) = t'o+2d \Cn cos ~ÔT r + *"s,n ~ y 

que l'on peut écrire aussi, grace à la condition F(o)= o, 

(53 ) F(y) =2 [r« (cos — ') "+■ ç" sin * 

Les coefficients de cette série sont d'ordre -V c'est-à-dire 

(54.) '»=°(^) 
et 

î5'
Î4

) *
Λ
=θ(^· 

On le démontre en appliquant à la fonction F '(γ) le tliéorème 
connu de M. Lebesgue (2). 

L'équation (I) peut s'écrire maintenant 

( I, ) U u) m y- - _. ^■ _ y.=2, [<;. (cos — >—«) + ». »'» — '· J· 

On satisfait formellement à cette équation ainsi qu'aux conditions 
aux limites, en posant : 

( 55 ) » = 2 [' " A (*' -ν· Τ?) - ·' · J ' 

Ceci résulte des équations (IV,) et (IV.,). 
Il nous reste à examiner la convergence de la solution obtenue et 

de ses dérivées formelles. 

(*) Voir par exemple C. DE LA \ALLÉE POUSSIN, Cours cl'Analyse, vol. Il, 
p. IOO (Paris, 1928) ou E. WBITTAKER and S. WATSOS, Morte r η Analysis (Cam-
bridge, § 9, VV). 

(z) Cf. par exemple Modem Analysis, loc. cit.. § 9, VI (II). 
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Pour cela mettons notre série sous la forme 

(55«) u = u0(x) F(j) 4-^ |V'„ Ae^.r, y, — s,ι B0 

en se reportant aux formules (46)» (47) et (53). 
La convergence uniforme et absolue delà série (55«) et de ses déri-

vées formelles, par rapport à χ, est une simple conséquence des for-
mules (541 ) et (54a) et de l'évaluation des fonctions A

e
 et B

0
 (et de 

leurs dérivées correspondantes) effectuée au paragraphe précédent. 
Il n'y a qu'à se reporter aux résultats acquis à la fin du même para-

graphe, pour s'assurer de la convergence uniforme de la série 

<P u 1 du 

[Il faut prendre u sous la forme (55„).] 
Il en résulte immédiatement la convergence uniforme de la dérivée 

formelle — ♦ 

En effet, a satisfaisant formellement à l'équation (I,), la dérivée 

formelle ̂  est la somme de deux séries uniformément convergentes 

fPa I àu _ 

Donc ™ est représentée par son développement formel. 

Nous avons démontré ainsi, que la fonction u est régulière dans la 
région R, y satisfait partout à l'équation (I,) et répond aux condi-
tions aux limites [y compris la condition (γ)], ces conditions étant 
remplies séparément par chaque terme de la série (55). 

La fonction u est donc bien la solution cherchée. 
Le mouvement représenté par la fonction u n'est pas périodique, 

bien que la pression F (y) varie périodiquement. 
Mais on peut démontrer que ce mouvement devient périodique à la 

limite, pour un temps y infini. On entend par là que la partie de la 
vitesse a qui n'est pas périodique tend vers zéro quand γ augmente 



102 PIOTR SZYMANSKI. 

indéfiniment. Cette partie est représentée, en effet, par la série 

ν = £ rn «(.R, V, — ) - S» P l.v. r, — J . 

Il est facile à démontrer l'inégalité 

\ν\ί M e-'ïr^ } i ffi : -f- ; sn : J ν Τι, 

et les inégalités analogues pour ^ et — en raisonnant comme au 
paragraphe précédent. 

Ceci prouve à l'aide de (54«) et (;>4a) que r ainsi que ses dérivées 

dx·' dT' ten^ent uniformément vers zéro pour y x. 
c. o. r. n. 

7. Passons au second cas général de notre problème. Nous faisons 
•maintenant les hypothèses suivantes sur la fonction Y (y) définie, pour 
tout y >ο : 

i° F(o) = o: 
2° F (y) admet une limite déterminée /, poney ^ χ; 

3° l'intégrale f [F(y) —1\dy existe; 

4" Y (y) est continue et à variation bornée dans Γ intern/ lie 
infini (o, x); 

o° F (y) admet la dérivée premiere FYr ) qui est à variation bornée 
dans l ' inter\ aile ( ο, χ ). 

Posons 
F, l v ) —F| r) —/ pour ,v>o. 
F, ( y ) — F(—y) -- / pour rÇ<>. 

grâce aux conditions 2°, 3° et 4% la fonction F, (y) peut être repré-
sentée par l'intégrale de Fourier (1 ) : 

F, ir) = / r ( /." ) cos h} ■ cl h. 

(1 ) Voir par exemple Modern analysis, toc. cit., § 9, 7. 
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OU 

(56) f F, (η) cos/ίη dr, = - f [F(·/)) — /] cosA'YJ dr\. 

Donc, pour y = 0, 

( 07 ) F( r ) = / c(/,·) (cosky — ι ) dk. 

et, en vertu de l'hypothèse Γ, 

( 07 ) F( r ) = / c(/,·) (cosky — ι ) dk. 

L'équation du problème s'écrit maintenant 

(I.,) L « ~ — h r — = / r(k) (cos/.,)' — \)dk. 

On voit aisément qu'on satisfait formellement à cette équation, 
ainsi qu'aux conditions aux limites, en posant 

(58 ) //(///, y) — f c(k) V (.r, r, k)dk. 

Pour démontrer que celte intégrale est bien la solution cherchée, 
nous ferons à peu près le même raisonnement qu'au paragraphe pré-
cédent. Kn effet, pour qu'une intégrale de la forme (58) soit continue, 
il suffît qu'elle soit uniformément convergente, la fonction à intégrer 
étant continue. 

De même si l'intégrale obtenue par la différentiation formelle est 
uniformément convergente et la fonction à intégrer reste continue, la 
dérivée de l'intégrale coïncide avec son expression formèllc (elle est, 
en outre, continue, d'après ce qui précède). 

Il nous suffît donc de démontrer la convergence uniforme de l'inté-
grale (58) et de ses dérivées formelles — , et 

Comme au paragraphe précédent la démonstration sera faite si 
nous trouvons pour c(k) une fonction majorante convenable. Dans ce 
but, nous prouverons les propositions suivantes : 

(a). La fonction c(k) est continue pour k>o. 

COROLLAIRE. — c(k) = O(I)pour k -> o. 
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(b). c(k) = Ο ̂  pour k -> oo. 

En se reportant à l'expression (56) on démontre la proposition (a) en 
remarquant que la fonction 

[FO')— /]C08*J 

admet une majorante intégrable (hypothèse 3°) et indépendante de k, 
ce qui entraîne la convergence uniforme (') de (56) et, par consé-
quent, la continuité de c(k). 

Quant à la proposition (h), la démonstration est fondée sur le théo-
rème de M. Lebesgue déjà mentionné (2). En effet, d'après l'hypo-
thèse 5°, on peut mettre la fonction F'(y) sous la forme 

v'(y)=f\(y)— Mr). 
où f\(y) et fi(y) sont deux fonctions non décroissantes. On peut 
même supposer ces deux fonctions bornées et positives. 

Si /1(7)^ M et /3(j)^ M, on a, d'après le théorème de M. Lebesgue, 

< |[/,( Y) -+-/,( Y)]S 

quel que soit Y, donc aussi 

C Î'{y)ùnkyHy S 

or, en intégrant par parties l'intégrale (56), on obtient 

c(k) F'( v) sinky dy, 

ce qui démontre notre proposition. 
Les deux propositions (a) et (b) étant démontrées, la vérification de la 

convergence et de la régularité de la solution (58) se fait comme au 
paragraphe précédent. 

Ainsi, le problème proposé se trouve résolu. 
Signalons encore, avant de terminer cette note, une propriété 

importante de la solution trouvée. 

(') Voir par exemple Modem analysis, § 4, 431. 
(-) Loc. cit.j § 9, 41 (II). 
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Il s'agit de la propriété dont nous avons déjà parlé à l'occasion de 
l'écoulement particulier du paragraphe 5. Nous avons démontré alors 
que cet écoulement devient à la limite (pour un temps infini) l'écou-
lement de Poiseuille. Or, l'écoulement général (58) jouit de la même 
propriété. Nous allons démontrer, notamment, que L'expression (58) 
lend uniformément {par rapport à x) vers 

/ "A-n— - (•/-*— •) 

(jnand y -> oc. Il en esl de même des dérivées correspondantes ^ 

et j- des deux expressions. 

Pour la démonstration, transformons (58) à l'aide de (46)01(07) : 

<■{!> ) A0(<Z. y. k)dk. 

Le premier terme de cette somme devient, à la limite, lu0(x), nous 
prouverons que le deuxième terme tend uniformément vers zéro. 
Désignons celte intégrale par c, nous aurons, en vertu de (4#)> 

ζ — f !· ) y-(.}'i k) dk — f ci k) «(./'. o, /. ) cosky dk 

— Ι ci k) (5ir. o. /. ) ûfxkydk. 

Occupons-nous successivement de ces trois intégrales. D'après les 
formules (44) et (4a) et la proposition (b), la série c(k)%(x, y, k) est 
uniformément convergente (par rapport à k). En l'intégrant terme à 
terme, on met la première intégrale sous la forme 

2 3 ί an r) c~<y I r( k ) y,ti k ) dk. 

La proposition (^) et la formule (4^) nous donnent 

h>«S]· 
{h ) (Ih < <5 -»I n)\l 
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d'onc la première partie de ζ admet la majorante de la forme 

Μ,^-τ'Γ ' 

Cette première partie tend donc uniformément vers zéro pour y - * x. 
La seconde et la troisième intégrale dans l'expression de ζ avant 

toutes deux la même forme, il suffit d'en étudier une seule. 
Soit donc 

ε, = I <"(/) c/A.r, ο, /. ) cos I. y dl. 

Décomposons cette intégrale en deux parties : 

C,= I -h Ι r(/,)Ci(.r. o. /, ) at*/,y dl, 

Τ étant un nombre positif arbitraire. 
D'après un théorème de M. Lebesgue (' ), la première parti»· tend 

vers zéro quand y -> χ à la condition que l'intégrale 

Ι \e{ /.·) ι | «( r, o. /. ) _ dk 

existe. Mais cela résulte des propositions (a) et (b) et du fait que la fonc-
tion a(;r, ο, k) admet la majorante de la forme A jk. 

Il n'y a qu'à reprendre la démonstration du théorème citée de 
M. Lebesgue, avec les hypothèses actuelles, pour s'assurer que ladite 
intégrale tend vers zéro uniformément. 

Quant à la seconde partie de l'intégrale £,, sa valeur absolue est 
inférieure à 

1^1 / /i V '· — —; » 

En fixant maintenant T suffisamment grand, on rend cette seconde 
partie de l'intégrale z, aussi petite que l'on veut. Il eri sera de même 
de la première partie de cette intégrale si, T laissant fixe, on donne 

(' ) Voir par exemple C. De LA VALLÈS POUSSIN, Cours dAnalyse, t. II, p. 97 
(Paris, 1928). 
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à y la valeur suffisamment grande. La limite de l'intégrale ε, pour 
y - f χ est donc bien zéro. 

De plus, le choix de Τ et de y étant indépendant de .r, ε, tend 
vers zéro, unijormcnwni ( 1 ). 

Kri résumant, nous avons démontré que notre solution u tend uni-
formérnent vers lu

0 pour y * x. Le même raisonnement nous prouve 

que les dérivées et ont respectivement pour limites liï
H
(x), 

lu
H

( .r) et o, et cela uniformément par rapport à .r. 

(' ) Je 'fois à M. Zy^muml la simplification de ce raisonnement. Cette simpli-
fication m'a permis en même temps de rejeter <fuelfjues hypothèses non essen-
tielles concernant la fonction Fi r». 


