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MOUVEMENT DES ENSEMBLES MATÉRIELS. 4ot 

Considérations sur le mouvement des ensembles matériels 
et la théorie de la gravitation ; 

PAR J. LE ROUX. 

I. — Le solide de référence principal pour un ensemble donné. 

1. La forme newtonienne des lois de la gravitation n'est valable 
que pour les systèmes de référence auxquels la mécanique classique 
attache la notion de mouvement absolu, et pour un choix spécial du 
temps que, dans le même ordre d'idées, on appelle le ternes absolu. 

Cet absolu n'est qu'un relatif; mais, comme il correspond à une 
forme particulièrement simple des lois de la gravitation, on peut le 
rattacher à la considération générale des formes canoniques. 

De même qu'il existe en géométrie des formes canoniques pour 
l'élude de certaines courbes, de même il existe aussi en mécanique des 
formes canoniques pour l'étude de certains mouvements. Tel est en 
particulier le cas pour les lois de la gravitation. 

Il est naturel de rechercher s'il est possible de rattacher ces consi-
dérations à certaines propriétés générales des mouvements des 
ensembles matériels. 

M. Appell a déjà obtenu sur ce sujet des résultats importants dans 
une Note sur « la notion d'axes fixes et de mouvement absolu » (1). 
MM. Levi-Civita et Amaldi ont rattaché les résultats de M. Appell à 
la considération du minimum de force vive relative (2). Le développe-
ment des mêmes idées m'a conduit à des conséquences qui m'ont paru 
intéressantes pour la mécanique des ensembles et pour la critique des 
principes fondamentaux de la Mécanique. 

(*) Comptes rendus, t. 166, 1918, p. 5i8. 
(-) Lezioni di Meccanica Razionale, vol. 11, ire Partie, p. 307-309, 
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2. Les axes de référence canoniques employés en mécanique clas-
sique pour l'étude des phénomènes de la gravitation sont orientés 
d'une manière invariable par rapport au ciel étoile. La propriété qui 
les caractérise n'est donc pas complètement définie par la simple con-
sidération du système solaire : il faut faire intervenir à cet effet 
l'ensemble des astres de l'Univers observable. 

Or, pour cel ensemble, l'orientation spéciale des axes canoniques 
semble correspondre à un minimum de la force vive relative. 

En effet, pour tout autre syslème d'axes en rotation appréciable par 
rapport au ciel é toi lé, les asLrcs éloignés auraient une force vive rela-
tive très grande, à cause de l'immensité des dislances et de l'énormilé 
des masses probables des astres. 

5. Nous·sommes ainsi amenés à un problème général que nous étu-
dierons d'abord pour un ensemble mobile quelconque. 

Trouver les systèmes de référence tels que le mouvement de V ensemble 
pur rapport à ces systèmes donne lieu au minimum de force vive 
relative. 

Je suppose les masses connues et le mouvement de l'ensemble défini 
par rapport à un trièdre trirectangle de référence S. Soit S„ un second 
trièdre trirectangle en mouvement par rapport au premier; il faut cal-
culer la force vive de l'ensemble mobile dans son mouvement relatif 
par rapport à S„, et définir ensuite le mouvement de ce second trièdre 
par la condition que la force vive relative considérée soit minima à 
tout instant. 

Le mouvement d'entraînement de S par rapport à S
0
 est défini à 

chaque instant par une translation et une rotation, dont je désigne les 
composantes, suivant les axes du trièdre S respectivement par ξ, η, ζ, 
Pi fh ''· 

Les composantes de la vitesse relative, par rapport à S
0
 d'un point 

M (a?, y, z\ sont données par les formules bien connues 

^ \./;—ξ + qz — ry -+-

(i) j V
v

= -η + rx - pz -h ̂ , 

\\;—ζ+ργ-φ
Χ
-μ^, 
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La force vive relative dont nous avons à chercher le minimum est 

donc représentée par une expression de la forme suivante : 

( a ) Τ = ̂ lm( V'j. 4- V'f- H- V : ), 

m désignant la masse et la sommation étant étendue à tout l'ensemble 
mobile. 

En annulant les dérivées par rapport aux paramètres qui définissent 
le mouvement d'entraînement, nous obtenons six équations linéaires 
par rapport à ces paramètres. Elles se ramènent aux deux types sui-
vants : 

(3) =Z,n\,= o, 

Cl) |i=s<«(rV
5
-jV,.)=o. 

On en déduit immédiatement les propriétés suivantes : 

I. Le centre de gravité est fixe dans le système S„. 
II. Le moment résultant des quantités de mouvement de Γ ensemble 

mobile est nul dans le mouvement relatif par rapport à S
0

. 

La première propriété était évidente a priori, d'après le théorème 
de Kocnig. 

En ce qui concerne la seconde, comme la vitesse du centre de gra-
vité est nulle, il suffit que le moment cinétique résultant soit nul pour 
une certaine origine, pour qu'il soit également nul pour toute autre 
origine. 

Les propriétés I et II ont été données par MM. Levi-Civita et 
Amaldi. M. Appell, dans la Note déjà citée, avait aussi considéré les 
systèmes de référence satisfaisant à ces conditions. 

4. Avant d'étudier les importantes conséquences de ces proposi-
tions, nous allons discuter les diverses déterminations possibles du 
trièdre. 

Les équations linéaires (3) et (4) déterminent en général sans ambi-
guïté les six paramètres du mouvement d'entraînement. Pour les 
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résoudre, on peut d'abord éliminer les paramètres de la translation 
par une combinaison linéaire qui équivaut à l'emploi d'un tricdre 
auxiliaire S' dont les axes seraient parallèles à ceux de S, mais dont 
l'origine se trouverait au centre de gravité. 

Désignons par a?', γ', ζ' les coordonnées rapportées au trièdre S' et 
posons, comme dans la théorie des moments d'inertie, 

Λ —Σιη( γ'- -+- ζ'-), Β —Σ//ι (ζ'! μ- C —Σηι(,ι;'- -ί- r'2), 
F =Σ ///..< r'. 

Les composantes />, q, r de la rotation instantanée sont définies par 
les équations suivantes : 

1
 A

''- -·%)="· 
(5) .■ — Ι·> + B</ — + (;'~3Γ ~ x '~ïïï) 

- EIJ - D,f + Cr H- S (x> - >■'(-7ïï) = o. 

Le déterminant du système se réduit au discriminant 

Λ — F - I ·; 
Δ= —F Β — D . 

- ι·: - d c 

Il est diiïérent de zéro pourvu que l'ellipsoïde d'inertie relatif au 
centre de gravité soit un véritable ellipsoïde. Dans ces conditions, les 
valeurs de />, <7, r sont déterminées d'une manière univoque en fonc-
tion du temps. Une fois les rotations calculées, les équations (3) déter-
minent les translations. 

o. Soient α, β, γ les cosinus des angles que forme l'un quelconque 
des axes de S

0
 avec ceux du trièdre S. Les rotations étant connues, 

ces cosinus devront satisfaire aux équations différentielles 

dy. 

(6) >'+ roi — py = o, 

( 21 -F/·"* —<7β = ο. 
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Les systèmes d'équations clitlcrentielles de cette forme ont été 
étudiés en détail par KL Darboux ('), qui en a ramené la résolution à 
l'étude d'une équation de Riccati. 

Les propriétés analytiques du système (6) correspondent aux pro-
priétés cinématiques suivantes : 

A toute solution réelle, non nulle, du sysLème (G) correspond une 
direction. 

Deux directions différentes dont les paramètres vérifient les mêmes 
équations font entre elles un angle constant. Toute autre direction 
formant des angles constants avec les deux précédentes donne une 
solution du système (6). 

Il est facile, d'après cela, d'envisager l'ensemble des solutions pos-
sibles pour le trièdre cherché S

0
. 

On en obtient une, que nous appellerons T0, en prenant comme 
origine le centre de gravité avec trois directions d'axes rectangulaires 
vérifiant les équations (6). 

Tous les autres trièdres du sysLème S
0

, qu'ils aient ou non la même 
origine, correspondent au même système de rolation et, pour chacun 
d'eux, la vitesse relative du centre de gravité doit être nulle. Leurs 
axes formeront donc des angles invariables avec ceux de T„ et l'origine 
aura des coordonnées constantes par rapport à T„. Réciproquement, 
tout trièdre vérifiant ces conditions donnera une solution du problème. 

En résumé, les différentes solutions possibles sont constituées par 
un ensemble de trièdres de référence invariablement liés les uns aux 
autres. 

A un ensemble ainsi constitué, nous donnerons le nom de solide de 
référence. Nous avons ainsi la proposition suivante : 

A tout ensemble mobile on peut toujours faire correspondre un solide 
de référence Σ bien déterminé, tel que la force vive du mouvement relatif 
de Vensemble par rapport ci Σ soit moindre que pour tout autre système de 
référence. 

Nous dirons que Σ est le solide principal de l'ensemble considéré. 

(') Leçons sur la théorie générale cles surfaces, 1887, i'e Partie, Chap. II. Voir 
également la Cinématique de M. Kœnigs où cette question est complètement traitée. 

Joum. de Math., tome VIII. — Fasc. IV, 1929. 02 
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II. — Mouvement relatif d'un ensemble par rapport 
à son solide principal. 

6. Le mouvement relatif d'un ensemble, par rapport à son solide 
principal, jouit de propriétés intéressantes. 

Les propositions l et II du n,J 5 expriment que les quantités de mou-
vement satisfont à des conditions semblables à celles d'un système de 
forces qui se font équilibre sur un corps solide. Suivant l'expression 
de M. Appell, elles forment un système de vecteurs glissants équi-
valent à zéro. 

On peut donc leur appliquer la proposition suivante de la statique : 

Étant donnes un ensemble de η points et un système de forces appli-
quées en ces points, telles que la résultante de translation soit nulle ainsi 
que le moment résultant par rapport à une certaine origine, il est en 
général possible de décomposer chacune des forces en composantes 
dirigées suivant les droites de jonction des points donnés, et telles que 
Vensemble total des composantes ainsi obtenues soit constitué par des 
forces deux à deux égales et directement opposées. 

La décomposition est toujours possible si tous les points ne sont pas 
dans la même place. Il y a toutefois des cas singuliers, si l'ensemble 
est constitué par plus de deux points tous en ligne droite, ou par plus 
de trois points tous dans le même plan. Lorsque la configuration de 
l'ensemble tendrait vers ces configurations singulières, les compo-
santes obtenues pourraient devenir infinies, à moins que les forces 
données ne fussent elles-mêmes orientées suivant la droite ou dans le 
plan de la figure. 

La décomposition que nous avons indiquée est possible, en général, 
d'une infinité de manières quand le nombre des points est supérieur 
à quatre. 

7. Expression du minimum de force vive relative. — Supposons 
qu'on ait effectué sur les quantités de mouvement de l'ensemble une 
des décompositions possibles, analogues à celles que nous avons consi-
dérées pour les forces. 
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Soient M,
:
 et M/,. deux points de l'ensemble; suivant la droite de 

jonction M/M/,· se trouvent appliquées deux composantes égales et 
opposées, l'une en M*, l'autre en M/f. Je désigne par P//

f
 == P/fl- la valeur 

commune de ces composantes regardée comme positive si les compo-
santes sont dirigées en dehors du segment M/M/,., et comme négative 
dans le cas contraire. 

L'action élémentaire Σmvds relative a un déplacement de l'ensemble 
mobile peut être regardée comme la somme des travaux des quantités 
de mouvement dans ce déplacement. La somme des travaux des deux 
composantes opposées P

/7(
. et P/,, a une expression très simple : elle est 

égale à Prt·άη,
;
, en désignant par /·,·/,. la distance des deux points. 

On a donc pour l'action élémentaire, dans le mouvement relatif par 
rapport au solide principal, 

Σ mv fis = Σ Ρ//!· dru;. 

D'où l'on tire immédiatement 

(7 - Σηιν-— Σ V,
k
 -77. 

L'énergie cinétique minima est donc uniquement due aux variations 
des distances mutuelles des éléments de l'ensemble mobile. C'est une 
énergie cinétique de déformation. 

Elle est nulle quand l'ensemble considéré forme une configuration 
invariable. 

La forme du second membre de l'équation (7) peut varier avec le 
mode de décomposition adopté, mais les divers résultats restent équi-
valents. 

La possibilité de formes multiples résulte du fait que les distances 
mutuelles ne sont pas toutes indépendantes. 

La configuration de l'ensemble de η points, en eiïet, indépendam-
ment de sa position, dépend de 3η — 6 paramétres. Le nombre des 

distances mutuelles est égal à n^ n -

La différence 

- (3« - 6) = (»-3) («-4) 
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représente le nombre des relations nécessaires existant entre les dis-
lances. 

8. Énergie cinétique de déformation et énergie cinétique r/'entraîne-
ment. — Il y a lieu de comparer l'énergie cinétique minima à l'énergie 
cinétique du même ensemble, rapporté à un autre système de réfé-
rence S qui n'appartienne pas au solide principal. 

Reportons-nous aux équations (i), (2), (1) du n" 3. Désignons par 
"loj Ci., ]h, <7o, f'u les paramètres du mouvement d'entraînement du 

solide principal, et par ζ, η, ζ, ρ, </, r ceux du nouveau solide de 
référence. 

Posons 
i — ξι·-H ίι.· ···< ···· 

Les accroissements ξ,, . . p
(

, ... définissent le mouvement d'en-
traînement du solide principal par rapport au solide (S). 

Si l'on développe l'expression de l'énergie cinétique Τ par la for-
mule de Taylor suivant les accroissements ζ,, η,, . . ., les termes du 
premier degré disparaissent, en vertu des équations (3) et (4). Comme 
l'expression est du second degré, le développement se réduira donc à 
deux groupes de termes : l'un indépendant des accroissements consi-
dérés, l'autre homogène et du second degré par rapport à ces accrois-
sements. 

Nous posons 

(8) T = T„H-T
S

. 

Le premier terme 
•î n — 1 (Ço? 'Ioî -su· Po· q«· ' » ) 

représente l'énergie cinétique du mouvement relatif de l'ensemble par 
rapport à son solide principal. C'est l'énergie cinétique de défor-
mation. 

Le second terme T2
 est indépendant des vitesses relatives des élé-

ments par rapport au solide principal. Sa valeur, à un instant donné, 
est la même que si l'ensemble se trouvait solidifié dans la configura-
tion qu'il occupe, et entraîné avec le solide principal dans son mouve-
ment par rapport à (S). 
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Nous rappellerons, pour celte raison, Γ énergie cinétique </'entraîne-
ment de l'ensemble. 

L'équation (8) exprime donc la proposition suivante : 

La force vive d\m ensemble dans son mouvement relatif, par rapport à 
un solide de référence quelconque (S), est égale à la force vive du mou-
vement relatif par rapport au solide principal (énergie cinétique de 
déformation) augmentée de la force vive due au mouvement î/'entraîne-
ment du solide principal par rapport à S (énergie cinétique d'entraî-
nement). 

Cette proposition complète et généralise le théorème de Kœnig. 
On peut y ramener un important théorème donné par Poincaré, 

au sujet du solide équivalent, dans ses Leçons sur les Figures d'équi-
libre d'une masse fluide ('). 

La force vive d'entraînement pourrait évidemment se décomposer, 
à son tour, en force vive de translation et force vive de rotation autour 
du centre de gravité. 

9. Quantités de mouvement et moments. — Considérons toujours le 
mouvement de l'ensemble par rapport à un solide quelconque (S) qui 
ne soit pas invariablement lié au trièdre de coordonnées. Le calcul 
effectué au n° 3 donne les projections et les moments résultant des 
quantités de mouvement de l'ensemble mobile 

f =2"'V" 

Dans ces formules, les projections et les moments sont rapportés 
aux axes du trièdre de coordonnées, mais les vitesses sont relatives au 
mouvement de l'ensemble par rapport au solide S. 

(') Poincaré définit ainsi le solide équivalent : c'est un solide où, à l'instant consi-
déré, les molécules ont la même position que dans le système fluide. I.a vitesse de son 
centre de gravité est la même que pour le fluide. Les trois moments de rotation 
autour des axes principaux d'inertie sont les mêmes que pour la masse fluide. 
(Figures (Véquilibre d'une masse fluide, p. 3ι-3·2.) 
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Supposons maintenant que le trièdre de coordonnées considéré 
appartienne au solide principal,' et que Ton ait décomposé la force 
vive Τ d'après l'égalité (8) 

I — 1 » 4- I ». 

Le premier groupe T
0
 ne contient pas les paramètres du mouvement 

d'entraînement. On a donc 

(9) V V/ f)T* it ni V.l.. — —¡p > «to' 

Ces quantités dépendent uniquement du mouvement d'entraîne-
ment de l'ensemble, elles sont indépendantes des vitesses du mouve-
ment relatif par rapport au solide principal. 

Les équations (3) et (4) devaient d'ailleurs conduire, a priori, à ce 
résultat. 

La résultante de translation et le moment résultant des quantités de 
mouvement à un instant donné ne dépendent que du mouvement 
d'entraînement du solide principal. 

En partant des équations (9), on peut mettre sous une forme inté-
ressante l'expression du théorème des moments des quantités de mou-
vement rapporté au centre de gravité. 

Prenons un trièdre de coordonnées Τ invariablement lié au solide 
principal et ayant pour origine le centre de gravité, et supposons que 
le solide de référence S contienne également comme point fixe le 
centre de gravité. Dans ce cas, la LranslaLion d'entraînement est nulle 
et la force vive d'entraînement T

2
 prend la forme suivante, où les 

coefficients ont les valeurs définies au n° 4 : 

(10) T
2
= ^ ( AP

2
-T- Βqz-\- Cr-— iDqr — ίΕγρ — iVpq). 

Soient, d'autre part, P, Q, R les moments résultant, par rapport 
aux axes du trièdre T, des forces réelles ou apparentes qui corres-
pondent au mouvement de l'ensemble par rapport au solide S. 

Un raisonnement classique de la dynamique du corps solide peut 
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s'appliquer ici, et donne les équations suivantes : 

1 dl V <)[> J
 7

 \ <)r ) ' <h/ ' ' 

(,,) \*\Wrr ~ÏÏ "''^7 

I di\-J7J"]~/) W -''aï 

La forme de ces équations est la même que celle des équations 
d'Euler pour le mouvement d'un corps solide autour d'un point fixe. 
Elles en diffèrent cependant par le fait que les coefficients de la 
forme T

u
 sont en général des quantités variables. 

II existe d'ailleurs des équations de la même forme pour les com-
posantes de la translation, quand on laisse au système de référence S· 
LouLe sa généralité. 

Ces résultais ramènent au théorème des forces vives les théorèmes 
généraux relatifs aux quantités de mouvement des systèmes. 

10. Les forces apparentes dans le mouvement rapporté au solide prin-
cipal. — La résultante de translation et le moment résultant des quan-
tités de mouvement étant nuls dans le mouvement relatif de l'ensemble 
par rapport au solide principal, on en déduit que les forces apparentes 
qui correspondent au mouvement considéré satisfont à des conditions 
semblables : la résultante de translation et le moment résultant de ces 
forces sont également nuls. 

Donc : 

Les forces susceptibles de produire le mouvement de Vensemble mobile, 
tel quil a lieu par rapport au solide principal, sont assimilables à des 
résultantes d'actions mutuelles, deux à deux égales et directement 
opposées. 

Nous rencontrons ici une des propriétés fondamentales qu'on 
attribue à la matière dans la mécanique newtonienne. 

Ce résultat est d'autant plus inattendu que nous n'avons fait aucune 
hypothèse sur la composition de l'ensemble mobile, ou sur les mouve-
ments de ses divers éléments. 
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D'ailleurs dans ce problème très général nous envisageons seule-
ment une possibilité de représentation, sans qu'il puisse être question 
de définir avec précision chacune des actions mutuelles, ni a fortiori 
de déterminer une loi de gravitation. Nous en définissons seulement 
les conditions d'existence. 

III. — Conditions d'existence de la gravitation. 

11. Systèmes de référencés pour lesquels il peut exister une loi de gra-
vitation. — L'action mutuelle, réelle ou apparente, constitue le carac-
tère fondamental de la gravitation newtonienrie. Pour qu'on puisse se 
formuler une loi physique d'action mutuelle, il faut que cette action 

#
soit mise en évidence par l'observation du mouvement, ce qui suppose 
un choix déterminé du système de référence. 

Or nous venons de parvenir à un résultat important et curieux. 
Quel que soit un ensemble mobile et quels que soient les mouvements 
des éléments qui le composent, il existe toujours un solide de référence 
Lel que le mouvement relatif de l'ensemble par rapport à ce solide 
paraisse dû uniquement à des actions mutuelles satisfaisant au principe 
de l'égalité de l'action et de la réaction. 

L'ensemble paraît avoir ainsi sa gravitation propre. Nous allons 
chercher s'il existe d'autres solides de référence satisfaisant aux mêmes 
conditions. 

Nous les obtiendrons en exprimant que la résultante de translation 
et le moment résultant des forces réelles ou apparentes qui corres-
pondent au mouvement relatif par rapport au solide cherché sont nuls. 

Les équations (ι i) dans lesquelles on fait 

P=Q=R=o 

déterminent celle des solutions qui se déduisent du solide principal 
par une rotation autour du centre de gravité. En associant à chacune 
d'elles une translation rectiligne et uniforme, on obtient toutes les 
autres. 

Le solide principal, cependant, se distingue de ces solutions nou-
velles par une propriété importante : il est indépendant du mode de 
repérage du temps. 
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lui d'autres termes, si l'on remplace le temps t par un autre para-

mètre 0 qui ne soil, pas une. fonction linéaire de o, et qu'on fasse les 
mêmes calculs à l'aide du paramètre Θ, le solide principal se conserve 
tandis que les autres solutions trouvées perdent la propriété qui a servi 
à les définir. 

12. Le principe de Végalité de faction et de la réaction. — Les 
résultats que nous venons d'établir nous conduisent à une conséquence 
curieuse au point de vue de la portée en dynamique du principe de 
l'égalité, de l'action et de la réaction. 

Ce principe exprime une propriété du système de référence et non une 
propriété de la matière. 

Il est évidemment compatible avec la réalité· physique des actions 
mutuelles, mais il s'applique uniquement à certains systèmes de réfé-
rence, indépendamment de toute hypothèse sur la réalité physique ou 
la simple apparence des actions considérées. 

L'application qu'on en fait dans la mécanique classique est néan-
moins correcte, parce qu'on suppose toujours le mouvement rapporté 
à un système particulier de référence, pour lequel il est valable. 

La forme particulière de la loi de gravitation newtonienne précise 
en outre la valeur de chacune des actions mutuelles et achève de définir 
le sens du principe de réaction, dans le mouvement rapporté au sys-
tème de référence canonique de la mécanique céleste. 

15. Les systèmes de référence canoniques de la gravitation newto-
nienne. — Mais on peut en déduire une réciproque. Le fait même que 
les mouvements de l'Univers semblent déterminés par des actions 
mutuelles, au sens de la mécanique classique, suffit pour .montrer que 
le système de référence considéré est, pour l'ensemble de l'Univers 
observable, l'un de ceux qui peuvent se déduire du solide principal 
correspondant par les mouvements définis au n° 11. 

D'autre part, la fixité relative de la direction des astres éloignés 
complète la qualification des systèmes de référence et nous pouvons 
énoncer la proposition suivante : 

Les systèmes de référence canoniques, auxquels la mécanique clas-
Journ. de Math., tome VIII. — Fasc. IV, 1929. 53 
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sique attache la notion du mouvement absolu, sont constitués pur le solide 
principal coirespondant à Vensemble de Γ Univers observable, et par ceux 
qui s'en déduisent par une translation reclilignc et uniforme. 

Ces résultats sont confirmés par le calcul, dans la mesure où il est 
possible de l'appliquer ici aux données de l'observation. 

Il ne peut pas être question de calculer numériquement les coeffi-
cients qui figurent dans les équations (5), pour déterminer les rota-
tions du solide principal relatif à l'ensemble de l'Univers observable. 
Mais, en réalité, ce sont des rapports de moments et de produits 
d'inertie qui interviennent dans le calcul. Si l'on considère les élé-
ments matériels renfermés dans des sphères de rayons croissants et 
qu'on admette une distribution quasi uniforme de la matière, les coef-
ficients d'inertie croissent comme les cinquièmes puissances des rayons, 
tandis que les angles, sous lesquels nous observons les déplacements 
apparents des astres plus éloignés, tendent vers zéro. 

Ces simples remarques permettent de se rendre compte des condi-
tions de détermination du solide principal considéré. 

IV. — Définition théorique du temps 
dans la gravitation newtonienne. 

14. Dans les calculs qui précèdent, nous avons en général considéré 
le temps comme défini. On ne peut évidemment parler de mouvement 
uniforme si l'on n'a préalablement déterminé le temps auquel on le 
rapporte. Nous allons examiner les conditions théoriques de cette 
définition dans la gravitation newtonienne. 

Les propriétés qui servent de base à la définition du temps se 
déduisent de la considération de l'ensemble de l'Univers observable, 
ou du moins d'une portion très étendue de l'Univers. 

Nous prendrons comme système de référence le solide principal de 
cet ensemble, qui est indépendant du temps. On peut le caractériser 
par la propriété suivante : 

On considère deux positions infiniment voisines de Γ ensemble mobile; 
soit ds le déplacement relatif d'un élément; le solide principal est cons-
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tilué par Γ ensemble des triêdres de référence pour lesquels la somme 
^iinds1 est minima. 

Nous entendons par là que la somme considérée est moindre pour 
les triêdres appartenant au solide principal que pour tout autre sys-
tème de référence. 

15. Application du principe de la moindre action. — Soit IJ une 
fonction des distances mutuelles des éléments de l'ensemble. Une 
pareille fonction reste inaltérée par une transformation euclidienne du 
système de référence. Le solide principal jouit donc de la même pro-
priété de minimum relativement à l'expression 

U2//i (t.s-. 

Dans l'application du principe de la moindre action aux mouve-
ments de la gravitation nevvtonienne, on est amené à considérer une 
expression de cette forme dans laquelle on poserait 

Γ·=2&ίϋί -ι- h. 

/'et //, désignant des constantes. 
Nous supposerons, seulement, dans la suite, que la fonction se con-

serve par une transformation euclidienne du système de référence. 
Le principe de la moindre action exprime que le mouvement a lieu 

de telle façon que l'intégrale 

I = J\JWlm ds>, 

prise entre deux positions de l'ensemble, soit minima. 
Les conditions de ce minimum ne sont pas les mômes que celles qui 

définissent le solide principal. Dans le principe de la moindre action, 
on considère le mouvement rapporté à un système de référence donné,' 
tandis que dans la définition du solide principal, on suppose le mou-
vement donné et l'on étudie le résultat de la variation du système de 
référence. 

L'intégrale I est indépendante de tout choix du temps; mais, en 
étudiant les conditions de minimum, on démontre que si l'on prend 

Journ, de Math., loine VIII. — Fuse. IV, 19^9. 53. 
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comme variable indépendante un paramètre t défini par la formule 

(1'2) = 

les équations clill'érenlielles du mouvement prennent la forme ordi-
naire des équations de la mécanique classique. 

On doit donc considérer la formule (j2) comme donnant une défi-
nition théorique du temps, que nous appellerons le temps canonique 
de la gravitation. 

16. Pour la validité de nos résultats, il importe de démontrer qu'il 
n'y a pas de contradiction entre les conditions considérées. 

D'une part, nous avons admis que le système de référence appar-
tient au solide principal et, d'autre part, que le mouvement de 
l'ensemble par rapport à ce système a lieu suivant une loi donnée. 

L'hypothèse faite sur la fonction U indique que le mouvement, au 
point de vue de la mécanique classique, est analogue à celui qui serait 
produit par des forces intérieures. On en conclut que la résultante de 
translation et le moment résultant des quantités de mouvement sont 
constants. S'ils sont nuls à un instant quelconque du mouvement, ils 
restent nuls pendant toute la durée du mouvement. Il suffira donc que 
le système de référence choisi appartienne au solide principal à un 
instant quelconque du mouvement pour qu'il continue à lui appartenir 
indéfiniment. 

17. Principe de fractionnement. — La définition théorique du 
temps paraît illusoire puisqu'on y fait intervenir les mouvements 
inconnus des éléments les plus éloignés de l'Univers. 

Nous n'observons jamais que des fractions de mouvements dans des 
fractions d'Univers. Il importe d'examiner quelles indications peuvent 
nous fournir ces observations fragmentaires au sujet du temps cano-
nique. 

L'étude de ce problème présente une corrélation intéressante avec 
le problème géométrique des géodésiques des surfaces, dont l'élément 
linéaire est de la forme de Liouville. 

Définissons la position de l'ensemble à l'aide de paramètres quel-
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conques suivant la méthode de Lagrange. La forme quadratique Zmds* 
deviendra une forme quadratique des différentielles des nouvelles 
variables. 

Nous poserons 
i/n dsl~{ 2T). 

L'emploi de la parenthèse, suivant une notation employée par 
Darboux, indique qu'il s'agit d'une forme de différentielles. En rem-
plaçant ces différentielles par les dérivées prises par rapport au temps 
ou à la forme de dérivées 2T, qui se représente par la même notation 
sans parenthèse. 

Admettons maintenant que les variables de position puissent se 
diviser en deux groupes et que la fonction U et la forme 2Ρ se 
décomposent chacune en une somme 

U = U, 4- U2, 
( 2Τ) ~ (2Τ, ) -f (aT,), 

de telle manière que les variables du premier groupe figurent seule-
ment dans U, et (2T, ), et celles du second groupe dans U2

 et (2T
2
). 

Introduisons maintenant le temps canonique relatif au mouvement 
général de l'ensemble et écrivons les équations du mouvement sous la 
forme de Lagrange. Le système entier de ces équations différentielles 
se scinde en deux groupes, chacun relatif à un groupe de variables. 

Le théorème des forces vives s'applique à chacun des groupes et 
donne des résultats de la forme suivante : 

L^i> = ,(u,h-A,), 

— ''.(Uî-t- /is), 

avec la condition hK + lu = o. 
D'où 

" ~2(Ul-+-/l1)'~~ a(U2U ' 

Par suite : 

Le temps canonique correspondant au mouvement général de Vensemble 
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est aussi le temps canonique qui correspond à chacun des mouvements 
fragmentaires. 

Dans la pratique, il est évidemment difficile de trouver des variables 
de position satisfaisant rigoureusement aux conditions que nous avons 
posées. Mais en toutes choses, il faut se contenter d'approximations. 
Quand nous étudions le mouvement d'un pendule, nous négligeons les 
variations de gravitation qui peuvent résulter de l'action du soleil, de 
la lune ou des étoiles, et nous négligeons aussi a fortiori l'influence 
des oscillations de ce mémo pendule sur les mouvements des astres. 

C'est dans ces conditions que les mouvements fragmentaires tels 
que l'oscillation d'un pendule ou la rotation de la Terre peuvent nous 
fournir une representation approximative du temps canonique de la 
gravitation universelle, défini par l'ensemble des mouvements de 
l'Univers observable. 

18. Nous avons ainsi défini les caractères fondamentaux du système 
de référence canonique et ceux du temps canonique de la Mécanique. 

Le problème du solide de référence principal n'introduit que la 
notion très générale de déplacement continu, sans aucune hypothèse 
sur la nature des déplacements des éléments. 

La définition du temps canonique introduit au contraire un élément 
expérimental : la connaissance de la loi physique de la gravitation. 

Cette différence s'explique. La notion de temps en Mécanique com-
porte nécessairement une idée de coordination et de répétition de 
mouvements semblables ou ayant au moins des caractères perma-
nents et communs. Elle se relie par là à la notion générale de loi 
physique. 


