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MOUVEMENT DES ENSEMBLES MATERIELS. fot

Considérations sur le mouvement des ensembles matériels
et la théorie de la gravitation;

Par J. Le ROUX.

I. — Le solide de référence principal pour un ensemble donné.

1. La forme newtonienne des lois de la gravitation n’est valable
que pour les systémes de référence auxquels ]Ja mécanique classique
attache la notion de mouvement absolu, et pour un choix spécial du
temps que, dans le méme ordre d'idées, on appelle le temps absolu.

Cet absolu n’est qu'un relatif; mais, comme il correspond a une
forme particuli¢rement simple des lois de la gravitation, on peut le
rattacher a la considération générale des formes canoniques.

De méme qu'il existe en géométrie des formes canoniques pour
'élude de certaines courbes, de méme il existe aussi en mécanique des
formes canoniques pour l'étude de certains mouvements. Tel est en
particulier [e cas pour les lois de la gravitation.

Il est naturel de rechercher s'il est possible de rattacher ces consi-
dérations a certaines propriétés générales des mouvements des
ensembles matériels. ‘

M. Appell a déja obtenu sur ce sujet des résultats importants dans
une Note sur « la notion d’axes fixes et de mouvement absolu » (*).
MM. Levi-Civita et Amaldi ont rattaché les résultats de M. Appell a
la considération du minimum de force vive relative (*). Lec développe-
ment des mémes idées m’a conduit & des conséquences qui m’ont paru
intéressantes pour la mécanique des ensembles el pour la critique des
principes fondamentaux de la Mécanique.

(1) Comptes rendus, 1. 166, 1918, p. 518.
(*) Lezioni di Meccanica Razionale, vol. 11, 1ve Partie, p. 307-30qg,
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2. Les axes de référence canoniques employés en mécanicque clas-
sique pour I'étude des phénoménes de la gravitation sont orientés
d’une maniére invariable par rapport au ciel éloilé, La propriéié qui
les caraclérise n'est donc pas complétement définie par la simple con-
sidération du systéme solaire : il faut faire intervenir a cel eflet
'ensemble des astres de I'Univers observable.

Or, pour cet ensemble, 'orientation spéciale des axes canoniques
semble correspondre & un minimum de la force vive relative.

En effet, pour tout autre systéme d’axes en rolation appréciable par
rapport au ciel étoilé, les astres éloignés auraient une force vive rela-
tive trés grande, a cause de I'immensité des distances ct de I’énormité
des masses probables des astres.

3. Nous sommes ainsi amenés & un probléme général que nous étu-
dierons d’abord pour un ensemble mobile quelconque.

Trouver les systémes de ré [érence tels que le mouverment de I'cnsemble
par rapport & ces systemes donne liew auw minimum de force viee
relative. ‘

Je suppose les masses connues ct le mouvement de P'ensemble défini
par rapport a un triédre trirectangle de référence S. Soit S, un second
tricdre trirectangle en mouvement par rapport au premier; il faut cal-
culer la force vive de 'enscmble mobile dans son mouvement relatif
par rapport 4 S,, et définir ensuite le mouvement de ce second triedre
par la condition que la force vive relative considérée soit minima a
tout instant.

Le mouvement d’entrainement de S par rapport & S, est défini a
chaque instant par une translation et une rotation, dont je désigne les
composantes, suivant les axes du triédre S respectivement par &, v, {,
Py 7

Les composantes de la vitesse relative, par rapport a S, d’un point
M(z, y, ), sont données par les formules bien connues

/\, —% 4 gs L dx
w=¢ +qgs — r) +—[-[—t’
. dy
(1 év3-‘——-'n+/‘x—l;s+ ?l%’
ds
V.=C +py—qgr+—»

‘ dt
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LLa force vive relative dont nous avons & chercher le minimum est
donc représentée par une expression de la forme snivante :

" I v o 2 oy
(2) | :;Z/n(\/‘;,—é- Vi Vi),

m désignant la masse et la sommation étant étendue i tout 'ensemble
mobile.

n annulant les dérivées par rapport aux paramélres ui définissent
le mouvement d’entrainement, nous obtenons six équations linéaires
par rapport & ces paramétres. Elles se raménent aux deux Lypes sui-
vants :

Al

(3) )‘ XmV,=o,
/ JT iV —
(1) o =3Im(yV.—:iV,)=n0.

On en déduit immédialement les propriétés suivantes :

L. Le centre de gravité est fixe dans le systéme S,.
. Le moment résultant des quantités de mouvement de I’ensemble
mobile est nul dans le mouvement relatif par rapport i S,.

L.a premiére propriété était évidente « priord, d’aprés le théoreme
de Konig.

I2n ce qui concerne la seconde, comme la vitesse du centre de gra-
vilé est nulle, il suffit que le moment cinéLique résultant soit nul pour
une certaine origine, pour qu'il soit égalemenl nul pour toute autre
origine.

Les propriétés I ct II ont été données par MM, Levi-Civita et
Amaldi. M. Appell, dans la Note déja citée, avait aussi considéré les
systémes de référence satisfaisant a ces conditions.

4. Avant d’éludier les importantes conséquences de ces proposi-
tions, nous allons discuter les diverses déterminalions possibles du
triédre.

Les équations linéaires (3) et (4) déterminent en général sans ambi-
guité les six paramétres du mouvement d'entrainement. Pour les
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résoudre, on peut d’abord éliminer les paramétres de la translation
par une combinaison linéaire qui équivaut & I'emploi d’un tricdre
auxiliaire $’ dont les axes scraient paralléles & ceux de S, mais dont
l'origine se trouverait au centre de gravilé.

Désignons par 2/, y', 5' les coordonnées rapportées au Lriédre S’ et
posons, comme dans la théorie des moments d’inerlie,

A= 2./11(1 + 3), B=Xm (54 C=Xm: ,zz_i_",,,)’
D=3Zmy's, ,__2,,,5'. =X ma

Les composantes p, ¢, » de la rotation instantanée sont définics par
les équations suivantes :

Ap — I’r/-—lir—l—Zm(i s _ ’//‘/)
(5) —l/)-i-li«/——l)/+2/n< —~.,’(/ )_:

__L/’_D{/ 4—(4/-1—2/;1(1, — (f;,>—_—

Le déterminant du systéme se réduit au discriminant

A —F =k
A=|—F B D
—E —-D C

I est différent de zéro pourvu que I'ellipsoide d'inertie relatif au
centre de gravité soit un véritable ellipsoide. Dans ces conditions, les
valeurs de p, ¢, r sont déterminées d’'une maniére univoque en fonc-
tion du temps. Une fois les rotations calculées, les équations (3) déter-
minent les Lranslations.

Soient «, {3, v les cosinus des angles que forme I'un quelconque
des axes de S, avec ceux du triédre S. Les rotations étant connues,
~ ces cosinus devront satisfaire aux éqnations différentielles

(”+//~/B_.o.
db

(6) J ([7 +rod—py=o,
dy

m——i—[m—~qﬁ:o.
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Les systémes d'équations différentielles de cette forme ont été
étudiés en détail par M. Darboux ('), qui en a ramené la résolution &
'étude d'une équation de Riccati.

[Les propriétés analytiques du systéme (6) correspondent aux pro-
priétés cinématiques suivantes : -

A toule solution réelle, non nulle, du systéme (6) correspond une
dirvection.

Deux dirveclions différentes dont les pdramutres vérifient les mémes
équations font entre elles un angle constant. Toutc autre direction
formant des angles constants avec les deux précédentes donne une
solution du systéme (6).

[l est facile, d’aprés cela, d’envisager I'ensemble des solutions pos-
sibles pour le triédre cherché S,.

On en obtient une, que nous appellerons T, en prenant comme
origine le centre de gravilé avec trois directions d'axes reclangu]awes
vérifiant les équations (6).

Tous les aatres triédres du systéme S,, qu'ils aient ou non la méme
origine, correspondent au méme systéme de rotation et, pour chacun
d'eux, la vitessc relative du centre de gravité doit étre nulle. Leurs
axes formeront donc des angles invariables avec ceux de T, et l'origine
aura des coordonnées constantes par rapport a T,. Réciproquement,
lout triédre vérifiant ces conditions donnera une solution du probléme.

‘n résumé, les différentes solutions possibles sont comstituées par
un ensemble de triédres de référence invariablement liés les uns aux
autres.

A un ensemble ainsi constitué, nous donnerons le nom de solide de
référence. Nous avons ainsi la proposition suivante :

A tout ensemble mobile on peut toujours faire correspondre un solide
de référence T bien déterminé, tel que la force vive du mouvement relatif
de U'ensemble par rapport a X soit moindre que pour tout autre systéme de
référence.

Nous dirons que X est le solide principal de I'ensemble considéré.

(') Lecons sur la théorie générale des surfaces, 1887, 1 Partie, Chap. Il. Voir
également la Cinématique de M. Keenigs ol cette question est complétement traitée.

Journ. de Math., tome VIIL. — Fasc. IV, 1929. 52
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II. — Mouvement relatif d’un ensemble par rapport
4 son solide principal.

6. Le mouvement relatif d'un ensemble, par rapport & son solide
principal, jouit de propriétés intéressantes.

Les propositions [ et I du n* 3 expriment que les quantités de mon-
vement salisfont & des conditions semblables 4 celles d’un systéme de
forces qui se font équilibre sur un corps solide. Suivant 'expression
de M. Appell, elles forment un systéme de vecteurs glissants équi-
valent a zéro. '

On peut donc leur appliquer la proposition suivante de la statique :

Etant donnés un ensemble de n points et un systéeme de [orces appli-
qudes en ces points, telles que la résullante de translation sott nulle arns
que_ le moment résultant par rapport @ unc certaine origine, il est en
geénéral  possible de  décomposer chacune des [forces en composantes
dirigées suivant les droites de jonction des points donnés, et telles que
Pensemble total des composantes ainisi obtenues soit constitué par des
Jorces deux a deux égales ct directement opposées.

La décomposition esl toujours possible si tous les points ne sonl pas
dans la méme place. Il y a toutefois des cas singuliers, si 'ensemble
est constitué par plus de denx points tous en ligne droite, ou par plus
de trois points lous dans le méme plan. Lorsque la configuration de
'ensemble tendrait vers ces configurations singuliéres, les compo-
sanles obtenues pourraient devenir infinies, 4 moins que les forces
données ne fussent elles-mémes orientées suivant la droite ou dans le
plan de la figure.

La décomposition que nous avons indiquée est possible, en général,
d'une infinité de maniéres quand le nombre des points est supérieur
a quatre. '

7. Expression du minimum de [orce vive relative. — Supposons
qu’on ait effectué sur les quantités de mouvement de 'ensemble une
des décompositions possibles, analogues a celles que nous avons consi-
dérées pour les forces.
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Soient M, et M, deux points de I’ensemble; suivant la droite de
jonction M;M, se trouvent appliquées deux composantes égales et
opposées, I'une en M;, I'autre en M,. Je désigne par P;.= P, la valeur
communc de ces composantes regardée comme posilive si les compo-
santes sont dirigécs en dehors du segment M;M,, el comme négative
dans le cas conlraire. o

L’action élémentaire Xmye ds velative & un déplacement de 'ensemble
mobile peut étre regardée comme la somme des Lravaux des quantilés
de mouvement dans ce déplacement. La somme des travaux des deux
composantes opposées P, el I’;; a une expression trés siinple : elle est
égale a Py dry, en désignant par ry, la distance des deux points.

On a donc pour Paction ¢lémentaire, dans le mouvement relatif par
rapport an solide principal,

Smeds =3P dr.
1)’oti 'on tire immédialement

- 1
(7) ‘ ;‘nw’-’:?-.m———o

I.’énergie cinétique minima est donc uniquement due aux variations
des distances mutuelles des éléments de 'ensemble mobile. C'est une
énergie cinélique de déformation.

Elle est nulle (uand I'ensemble considéré forme une configuration
invariable. )

La forme du second membre de P'équation (7) peut varier avec le
mode de décomposition adopté, mais les divers résultats restent équi-
valents.

La possibilité de formes multiples résulte du fait que les distances
mutuelles ne sont pas toutes indépendantes.

La configuration de I'ensemble de n points, en eflet, indépendam-

ment de sa position, dépend de 3n— 6 paramétres. Le nombre des
distances mutuelles est égal a aln—1),

La différence

n(n——x)_(3n_6):(n—3)(/l—~4)
2 2
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représente le nombre des relations nécessaires existant entre les dis-
lances.

8. Energic cinétique de déformation et énergie cinétique d’entraine-
ment. — Il y a lieu de comparer I'énergie cinétique minima { 'énergie
cinétique du méme ensemble, rapporté 4 un autre systéme de réfé-
rence S qui n’appartienne pas au solide principal.

Reportons-nous aux équations (1), (2), (3) du n® 3. Désignons par
503 oy Cuy Pos oy 1 les paramétres du mouvement d'entrainement du
solide principal, et par £, 4, {, p, ¢, 7 ceux du nouveau solide de
référence.

Posons

Pty e P petpry s

Les accroissements &,, ..., p,, ... définissent le mouvement d’en-
trainement du solide principal par rapport au solide (S).

Si Uon développe I'expression de I'énergie cinétique T par la for-
mule de Taylor suivant les accroissements &,, 7,, ..., les tlermes du
premier degré disparaissent, en vertu des équations (3) et (4). Comme ’
I'expression est du second degré, le développement se réduira donc &
deux groupes de termes : 'un indépendant des accroissements consi-
dérés, I'autre homogéne et du second degré par rapport it ces accrois-
sements.

Nous posons

(8) T="T,+T.,.

Le premier terme

rge __‘fi r . .
lh—— 1 (C,o, Nos S Po 7o ’l»)

représente I'énergie cinétique du mouvement relatif de U'ensemble par
rapport & son solide principal. C’est I’énergie cinélique de défor-
mation. ‘

Le second terme T, est indépendant des vitesses relatives des élé-
ments par rapport au solide principal. Sa valeur, & un instant donné,
est la méme que si I'ensemble se trouvait solidifié dans la configura-
tion qu'il occupe, et entrainé avec le solide principal dans son mouve-
ment par rapport a (S).
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Nous I'appellerons, pour cette raison, 'énergie cinétique d’entraine-
ment de 'ensemble. '
’équation (8) exprime donc la proposition suivante :

La force vive d’un ensemble dans son mouvement relatif, parrapport a
un solide de référence quelconque (S), est égale a lu force vive du mou-
vement relatif par rapport au solide principal (énergie cinétique de
déformation).augmentée de la [orce vive due au mouvement d’entraine-
ment du solide principal par rapport ¢ S (énergie cinétique d’entrai-
nement).

Cette proposition compléte et généralise le théoréme de Kceenig.

On peut y ramener un important théoréme donné par Poincaré,
au sujet du solide équivalent, dans ses Lecons sur les Figures d’équi-
libre d’une masse fluide (').

La force vive d’entrainement pourrait évidemment se décomposer,
4 son Lour, e¢n force vive de translation et force vive de rotation autour
du centre de gravilé.

9. Quantités de mouvement et moments. — Considérons toujours le
mouvement de ’ensemble par rapport & un solide quelconque (S) qui
ne soit pas invariablement lié au triédre de coordonnées. Le calcul
effectué au n° 3 donne les projections et les moments résultant des
quantités de mouvement de 'ensemble mobile

ar o ar o
—()—E-_ZI)LV,L., -d-;_am() V.—3sV,).

Dans ces formules, les projections et les moments sont rapportés
aux axes du triédre de coordonnées, mais les vitesses sont relatives au
mouvement de I'ensemble par rapport au solide S.

(') Poincaré définit ainsi le solide équivalent : ¢’est un solide ou, & I'instant consi-
déré, les molécules ont la méme position que dans le systéme fluide. l.a vitesse de son
centre de gravité est la méme que pour le fluide. Les trois moments de rotation
autour des uxes principanx d'inertie sont les mémes que pour la masse fluide.
(Figures d'équilibre d’une masse fluide, p. 31-32.)
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Supposons maintenant que le tritdre de coordonnées considéré
appartienne au solide prineipal, ¢t que I'on ait décornposé la force
vive T d’aprés I'égalité (8)

T=T,+T,.

Le premier groupe T, ne contient pasles paramétres du mouvement
d’entrainement. On a donc

Jr,

— ’
5

y : .~ =V _aﬁ)_l:’
Im(yV.—zV,)= I

(9) ImV,=
Ces quantités dépendent uniquement du mouvement d’entraine-
ment de I'ensemble, clles sont indépendantes des vitesses du mouve-
ment relatif par rapport au solide principal. .
Les équations (3) et (4) devaient d’ailleurs conduire, a priori, a ce
résultat.

La résultante de translation et le moment résultant des quantités de
mouvernent ¢ un instant donné ne dépendent que du mouvement
d'entrainement du solide principal.

En partant des équations (9), on peut meltre sous une forme inté-
ressante I'expression du théoréme des moments des quanlités de mou-
vement rapporté au centre de gravilé.

Prenous un triédre de coordonnées T invariablement lié au solide
principal et ayant pour origine le centre de gravilé, et supposons que
le solide de référence S contienne également comme point fixe le
centre de gravité. Dans ce cas, la (ranslation d’entrainement est nulle
et la force vive d’entrainement T, prend la forme suivante, ou les
coefficients ont les valeurs définies au n° 4 :

(10) T,:E‘(Ap‘l—i— Bg?+ Cr*—2Dgr —2Erp — 2Fpgq).

Soient, d’autre part, P, Q, R les moments résultant, par rapport
aux axes du triédre T, des forces réelles ou apparentes qui corres-
pondent au mouvement de I’ensemble par rapport au solide S.

Un raisonnement classique de la dynamique du corps solide peut
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s'appliquer ici, et donne les équations suivantes :

Cd (JT, tyq JaT, ., Jr, —p,
AL\ op or 0y

(11) —i{(i)—'i> -I—-'I' {E ~/)’-)-£3:().
1 di\ 0y ap or .
( d (01, JTy 4) I, —R
| /—/7( or > = Ay ()/r -

La forme de ces équations est la méme que celle des équations
d’Euler pour le mouvement d’un corps solide autour d’un point fixe.
Elles en différent cependant par le fait que les coefficients de la
forme T, sont en général des quantités variables.

Il existe d’ailleurs des équations de la méme forme pour les com-
posantes de la translation, quand on laisse au systéme de référence S.
loute sa généralité.

Ces résullals raménent au théoréme des forces vives les tlneorcmcs
généraux relatifs aux quantités de mouvement des systémes.

10. Les forces apparentes dans le mouvement rapporté au solide prin-
cipal. — La résultante dc translation et le moment résultant des quan-
Lités de mouvement étant nuls dans le mouvement relatif de 'ensemble
par rapport au solide principal, on en déduit cjue les forces apparentes
qui correspondent au mouvement considéré satisfont a des conditions
semblables : la résultante de Lranslatwn et le moment résultant de ces
forces sonl également nuls.

Done :

Les forces susceptibles de produire le mouvement de 'ensemble mobile,
tel qu’il a lieu par rapport au solide principal, sont assimilables a des
résultantes d’actions mutuelles, deux a deux égales et directement
opposées.

Nous rencontrons ici une des propriétés fondamentales qu’on
attribue a la matiére dans la mécanique newtonienne.

Ce résultat est d’autant plus inattendu que nous n’avons fait aucune
hypothése sur la composition de I'ensemble mobile, ou sur les mouve-
ments de ses divers ¢léments.
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D’ailleurs dans ce probléme trés général nous envisageons seule-
ment une possibilité de représentalion, sans qu'il puisse élre question
de définir avec précision chacune des actions mutuelles, ni a fortiori
de déterminer une loi de gravilation. Nous en définissons sculement
les conditions d’exislence.

III.. — Conditions d’existence de la gravitation.

A1. Systémes de références pour lesquels il peut exister une loi de gra-
citation. — L’action muluelle, réelle ou apparente, constitue le carac-
tére fondamental de la gravitation newtonienne. Pour qu’on puisse se
formuler une loi physique d’action mutuelle, il faat que cette action

_soit mise en évidence par I'observation du mouvement, ce qui suppose
un choix déterminé du systéme de référence.

Or nous venons de parvenir & un résultal important el curieux.
Quel que soit un ensemble mobile el quels que soient les mouvements
des ¢léments qui le composent, il existe toujours un solide de référence
tel que le mouvement relatif de I'ensemble par rapport 4 ce solide
paraisse dit uniguement & des actions mutuelles satisfaisanl au principe
de ’égalité de P'action et de la réaction.

L’ensemble parait avoir ainsi sa gravitation propre. Nous allons
chercher s’ existe d’autres solides de référence satisfaisant aux mémes
conditions.

Nous les obtiendrons en exprimant que la résultante de translation
et le moment résultant des forces réelles ou apparentes qui corres-
pondent au mouvement relatif par rapport au solide cherché sont nuls.

Les équations (11) dans lesquelles on fait

P=Q=R=o0

déterminent celle des solutions qui se déduisent du solide principal
par une rotation autour du centre de gravité. En associant a chacune
d’elles une translation rectiligne et uniforme, on obtient toutes les
autres. ‘ )

Le solide principal, cependant, se distingue de ces solutions nou-
velles par une propriété importante : il est indépendant du mode de
repérage du temps.
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in d’autres termes, si I'on rempldce le temps ¢ par un autre para-
métee O ui ne soit pas une, fonction linéaire de o, et qu’on fasse les
mémes calculs & 'aide du paramétre 8, le solide principal se conserve
tandis que les autres solutions trouvées perdent la propriété qui aservi
i les définiv.

A2. Le principe de U'égalité de Uaction ¢t de lu réaction. — les
résultals que nous venons d’établir nous conduisent 4 une conséquence
curieuse au point de vue de la portée en dynamique du principe de
Pégalité, de I'action et de la réaction.

Ce principe exprime une propriété du systéme de référence et non une
propriété de la matiére.

Il est évidemment compatible avec la réalité physique des actions
mutuelles, mais il s’applique uniquement & certains systémes de réfé-
rence, indépendamment de toute hypothése sur la réalité physique ou
la simple apparence des aclions considérées.

L’application qu’on en fait dans la mécanique classique est néan-
moins correcte, parce qu'on suppose toujours le mouvement rapporté
a un systéme particulier de référence, pour lequel il est valable.

La forme particuli¢cre de la loi de gravitation newtonienne précise
en outre la valeur de chacune des aclions mutuelles et achéve de définir
le sens du principe de réaction, dans le mouvement rapporté au sys-
téme de référence canonique de la mécanique céleste.

A13. Les systéemes de référence canoniques de la gravitation nesvto-
nienne. — Mais on peut en déduire une réciproque. Le fait méme que
les mouvements de I'Univers semblent déterminés par des actions
mutuelles, au sens de la mécanique classique, suffit pour montrer que
le systéme de référence considéré est, pour I’ensemble de I'Univers
observable, I'un de ceux qui peuvent se déduire du solide principal
correspondant par les mouvements définis au n° 11.

D’autre part, la fixité relative de la direction des astres ¢loignés
compléte la qualification des systémes de référence et nous pouvons
énoncer la proposition suivante :

Les systemes de référence canoniques, auxquels la mécanique clas-
Journ. de Math., tome VII. — Fasc. 1V, 1g29. . 53
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sique attache la notion du mouserient absolu, sont constitués par le solde
principal correspondant i I'ensemble de [’ Univers obsercable, et par ceux
qui s’en déduisent par une translation rectiligne et uniforme.

Ces résultats sont confirmés par le calcul, dans la mesure ot il est
possible de I'appliquer ici aux données de I'observation.

Il ne peut pas tre question de calculer numériquement les coeffi-
cients qui figurent dans les équations (5), pour déterminer les rola-
tions du solide principal relatif i I'ensemble de I'Univers observable.
Mais, en réalité, ce sont des rapports de moments et de produits
d’inertie qui interviennent dans le calcul. Si 'on considére les ¢lé-
ments matériels renfermés dans des sphéres de rayons croissants et
qu’on admette une distribulion quasi uniforme de la matiére, les coef-
ficients d’inertie croissent comme les cinquiémes puissances des rayons,
tandis que les angles, sous lesquels nous observons les déplacements
apparents des astres plus éloignés, tendent vers zéro.

Ces simples remarques permettent de se rendre compte des condi-
tions de détermination du solide principal considéré.

IV. — Définition théorique du temps
dans la gravitation newtonienne.

14. Dansles calculs qui précédent, nous avons en général considéré
le temps comme défini. On ne peut évidemment parler de mouvement
uniforme si I'on n’a préalablement déterminé le temps auquel on le
rapporte. Nous allons examiner les conditions théoriques de cette
définition dans la gravitation newtonienne.

Les propriétés qui servent de base a la définition du temps se
déduisent de la considération de I'ensemble de ['Univers observable,
ou du moins d’une portion trés étendue de I'Univers.

Nous prendrons comme systeme de référence le solide principal de
cet ensemble, qui est indépendant du temps. On peut le caractériser
par la propriéLé suivante :

On considére deux positions infiniment voisines de ’ensemble mobile ;
sott ds le déplacement relatif d’un élément; le solide principal est cons-
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tilwé par U'ensemble des iriédres de référence pour lesquels la somme
Lmds* est minima.

Nous entendons par 1a que la somme considérée est moindre pour
les triédres appartenant au solide principal que pour Lout autre sys-
téme de référence.

A5. Application du principe de la moindre action. — Soit U une
fouction des distances mutuelles des éléments de I'ensemble. Une
pareille fouction reste inaltévée par une transformation euclidienne du
systéme de référence. Le solide principal jouil donc de la néne pro-
priété de minimum relativement a Pexpression

UXmds,

Dans l'application du principe de la moindre action aux mouve-
menls de la gravitalion newtonienne, on est amené & considérer une
expression de cetle forme dans laquelle on poserait

" — S,

=X+,

il

/ el Iy désignant des constantes.

Nous supposerons. seulement, dans la suite, que la fonction se con-
serve par une transformation euclidienne du systéme de référence.

Le principe de la moindre action exprime que le mouvement a lieu
de telle facon que l'intégrale

= f VUi ds,

prise entre deux positions de Pensemble, soit minima.

Les conditions de ce minimum ne sont pas les mémes que celles qui
définissent le solide principal. Dans le principe de la moindre action,
on considére le mouvement rapporté a un systéme de référence donné,’
tandis que dans la délinition du solide principal, on suppose le mou-
vement donné et I'on étudie le résullat de la variation du systéme de
référence. )

L’intégrale I est indépendante de Lout choix du temps; mais, en
étudiant les conditions de minimum, on démontre (ue si I'on prend

Journ, de Muth., tome V1. — Fasc. 1V, 1g29. 53.
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comme variable indépendante un paramétre ¢ défini par la formule

(12) Al = \/———W,
Va2U
les équalions diflérentielles du mouvement prennent la forme ordi-
naire des équations de la mécanique classique.
On doit donc considérer la formule (12) comme donnant une défi-
nition théorique du temps, que nous appellerons le Lemps canonique
de la gravitation.

16. Pour la validité de nos résultats, il importe de démontrer qu'il
n'y a pas de conlradiction entre les conditions considérées.

D’une part, nous avons admis que le systéme de référence appar-
tient au solide principal et, d'aulre part, que le mouvemenl de
I'ensemble par rapport a ce systéme a licu suivant une loi donnée.

L’hypothése faite sur la fonction U indique que le mouvement, au
point de vue de la mécanique classique, cst analogue & celui qui serait
produit par des forces intérieures. On en conclut que la résultante de
translation el le moment résultant des quantités de mouvement sont
constants. S’ils sont nuls 4 un instant quelconque du mouvement, ils
restent nuls pendant toute la durée du mouvement. Il suffira donc que
le systéme de référence choisi appartienne au solide principal a un
instant quelconque du mouvement pour qu'il continue a lui appartenir
indéfiniment.

A7. Principe de fractionnement. — La définition théorique du
temps parait illusoire puisqu’'on y fait intervenir les mouvements
inconnus des éléments les plus éloignés de I'Univers.

Nous n’observons jamais que des fractions de mouvements dans des
fractions d’Univers. Il importe d’examiner quelles indications peuvent
nous fournir ces observations.fragmentaires au sujet du temps cano-
nique.

L’étude de ce probléme présente une corrélation intéressante avec
le probléme géométrique des géodésiques des surfaces, dont I’élément
linéaire est de la forme de Liouville.

Définissons la position de I'ensemble & I'aide de paramétres quel-
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conques suivant la méthode de Lagrange. La forme quadratique Zm ds*
deviendria une forme quadratique des différentielles des nouvelles
variables.

Nous poserons ,
Smdst=(2T).

L'emploi de la parenthése, suivant une notation employée par
Darboux, indique qu'il s’agit d'une forme de différentielles. En rem-
placant ces différentielles par les dérivées prises par rapport au temps
ou & la forme de dérivées 2T, qui sc représente par la méme nolation
sans parenthése.

Admettons maintenant que les variables de posilion puissent se
diviser en deux groupes et que la fonction U et la forme 2P se
décomposent chacune en une somme ’

U=U,+ U,,
(2T)=(2T,) + (2T,),

de telle maniére ¢ue les variables du premier groupe figurent seule-
ment dans U, et (2T,), et celles du second groupe dans U, et (2T,).

Introduisons maintenant le temps canonique relatif au mouvement
général de 'ensemble et écrivons les équations du mouvement sous la
forme de Lagrange. Le systéme entier de ces équations différentielles
se scinde en deux groupes, chacun relatif 4 un groupe de variables.

L.e théoréme des forces vives s’applique a chacun des groupes et
donne des résultats de la forme suivante :

(2Ty)
de? =2(Ui+Ay),
2T,
= 2 (Uy+ hy),
avec la condition A, + /i, =o0.
D'ou
= (2T)  _ (2Ty) __(2T),
T T e (U hy) T 2(Uy+ hy) T 2U
Par suite :

Le temps canonique correspondant au mouvement geénéralde I'ensemble
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est aussi le temps cunonique qui correspond & chacun des mousements
Jragmentaires. ‘

Dans la pratique, il est évidemment difficile de trouver des variables
cle position satisfaisanl rigoureusement aux conditions (ue nous avons
posées. Mais en toutes choses, il faut se contenter d’approximations.
Quand nous étudions le mouvement d'un pendule, nous négligeons les
variations de gravitalion qui peuvent résulter de I'action du soleil, de
la lune ou des étoiles, et nous négligeons aussi a fortiord 'influence
des oscillations de ce méme pendule sur les monvements des astres.

(’est dans ces conditions que les mouvemenls fragmentaires tels
que Poscillation d'un pendule ou la rotation de la Terre peuvent nous
fournir une représentation approximative du temps canonique de la
gravitation universelle, défini par l'enscmble des mouvements de
I’Univers observable.

18. Nousavons ainsi défini les caractéres fondamentanx dusystime
de référence canonique et ccux du temps canonique de la Mécanique.

Le probléme du solide de référence principal n’introduit que la
notion trés générale de déplacement continu, sans aucune hypothése
sur la nature des déplacements des éléments.

La définition du temps canonique introduit au contraire un élément
expérimental : la connaissance de la loi physique de la gravitation.

Cette différence s’explique. La notion de temps en Mécanique com-
porte nécessairement une idée de coordination et de répétition de
mouvements semblables ou ayant au moins des caracléres perma-
nents et communs. Elle se relie par la a la notion générale de loi

physique.



