JOURNAL

ATHEMATIQUES

PURES ET APPLIQUEES

FONDE EN 1836 ET PUBLIE JUSQU'EN 1874

Par Joserns LIOUVILLE

P. DUHEM
Sur la stabilité de I’équilibre relatif

Journal de mathématiques pures et appliquées 5¢ série, tome 8 (1902), p. 215-227.
<http://www.numdam.org/item?id=JMPA_1902_5_8 215_0>

gallica NUuMDAM

Article numérisé dans le cadre du programme
Gallica de la Bibliotheque nationale de France
http:// gallica.bnf.fr/

et catalogué par Mathdoc
dans le cadre du pole associé BnF/Mathdoc
http:// www.numdam.org/journals/ JMPA


http://www.numdam.org/item?id=JMPA_1902_5_8__215_0
http://gallica.bnf.fr/
http://www.numdam.org/
http://gallica.bnf.fr/
http://www.bnf.fr/
http://gallica.bnf.fr/
http://www.mathdoc.fr/
http://www.numdam.org/journals/JMPA
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Sur la stabilité de U'équilibre relatif;

Par M. P. DUHEM.

1. — Examen de divers criteria de stabilité pour une masse animée
d'un mouvement de rotation uniforme. Equivalence du criterium
énoncé par M. H. Poincaré avec celui que nous avons énoncé.

Considérons un systéme rapporté a des axes mobiles et susceptible
de prendre, par rapport 4 ces axes mobiles, un mouvement isother-
mique. Soit # son potentiel interne, qui est le méme soit que 1'on
rapporte le systéme aux axes fixes, soit qu'on le rapporte aux axes
mobiles, :

Soient, pendant le temps dt, dz, le travail effectué par les forces
extéricures dans le déplacement par rapport aux axes mobiles et d¢, le
travail des forces centrifuges dans le méme déplacement; le travail des
forces centrifuges composées est identiquement nul; soit 40 le travail
de viscosité, qui garde méme valeur, que le déplacement soit rapporté
aux axes fixes ou aux axes mobiles.

Soit enfin  la force vive rapportée aux axes mobiles.

Nous pourrons écrire

(1) de,+ de,+ d) — di = d€.

Supposons que les forces extérieures admettent, par rapport aux
axes mobhiles, un potentiel Q, ct que les forces centrifuges admettent,
par rapport aux mémes axes, un potentiel V,. L'égalité précédente
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216 P. DUHEM.
pourra s’écrire

(2) d(3+Q,+V,+ &) =dj.

A cetle égalité on peut appliquer la démonstration de Lejeune-
Dirichlet, modifi¢e au besoin comme nous I'avons indiqué (*), si le
systéme dépend d’un nombre illimité de paramétres. On sera conduit
ainsi 4 la proposition suivante :

Un systéme est assurément en équilibre relatif stable dens un
état ot la somme

(3) ».=5+0+V,

@ une valeur minimum parmi toules celles que peuvent lui faire
prendre les déplacements isothermiques virtuels du sysiéme.

Supposons, en particulier, que le systéme des axes fixes ct le sys-
téme des axes mobiles aient méme origine et méme axe des z et que le
systéme des axes mobiles tourne uniformément autour de I'axe des s
avec une vitesse angulaire w,. La force centrifuge appliquéc a une
masse ¢lémentaire dm, de coordonnées z', y’, z' par rapport aux

axes mobiles, a pour composantes :
X, =wjd'dm, Y,=w,y'dmn, L,=o,

c

en sorte que I'on aura

V=% f (2 +y*) dm.

ou hien
(4) V,=— %fﬁ dm,

7 ¢tant la distance de la masse dm 4 I’axe de rotation.

() Recherches sur I’Hydrodynamique, 17 Partie, Chap. II, § 3 (Annales
de la Faculté des Sciences de Toulouse, 2¢ série, t. Ill, 1901, p. 362). — Sur
la stabilité, pour des perturbations quelconques, d’un systéme animé d’un
mouvement de rotation uniforme (Journal de Mathématiques pures et appli-
quées, 5* série, t. VIII, 1902, p. 5).
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Un déplacement virtuel quelconque par rapport aux axes mobiles
est aussi un déplacement virtuel quelconque par rapport aux axes
fixes; le potentiel ©, des actions extéricures par rapport aux axes mo-
biles ne différe pas du potentiel Q des mémes actions par rapport aux
axes fixes; Pégalité (3) devient donc

(5) O,=5+0Q+V,
ct nous pouvons énoncer la proposition suivante :

Un systéme est en équilibre relalif stable dans un élat oiv il
tourne d’un mouvement uniforme de vitesse angulaire w, autour
d’un axe Oz et otk la grandeur ®,, définie par U'égalité (5), a une
valeur minimum parmi toutes celles que peuvent lui donner les
déplacemenis isothermiques virtuels du systéme.

L’invariabilité de la température est, ici, la seule restriction ap-
portée aux perturbations que subit le systeme. Dans le caleul de la
variation qu'un déplacement virtucl du systéme impose 4 la quan-
tité V,, donnée par I’égalité (4), on ne doit pas oublier que la valeur
de w, n’est pas affectée par un tel déplacement virtuel.

Le criterium que nous venons d’énoncer a été employé par Thomson
et Tait, puis par divers auteurs tels que M. H. Poincaré et M. J. Ha-
damard.

Au cours de son grand Mémoire Sur ['équilibre d’une masse
Sluide animée d’un mouvement de rotation ('), M. H. Poincaré a
proposé un autre criterium de stabilité pour une telle masse fluide.
Le point de départ de sa trés bréve analyse est une sorte d’esquisse de
la démonstration développée dans notre premier écrit sur ce méme
sujet (*); mais I'emploi d’une remarquable inégalité fournit une pro-
position d’autre forme que celle que nous avons énoncée.

(*) Voir Stabilité des ellipsoides, § XIV (Acta mathematica, t. V11, 1885,
p- 365).

(%) Sur la stabilité de Uéquilibre d’une masse fluide animée d’un mouve-
ment de rotation (Journal de Mathématiques, 5° série, t. VII, 1go1, p. 311).
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Nous allons prouver que le criterium énoncé par M. H. Poincaré est
exactement équivalent & celui que nous avons formulé. Pour obtenir
ce résultat, il nous suffira, pour ainsi dire, de reprendre I'analyse de
M. Poincaré en précisant quelques points.

Commengons par démontrer 'inégalité dont M. Poincaré fait usage.

Soient dm une masse élémentaire du systéme et @, & deux quantités
prenant, en chaque point du systéme, une valeur délerminée; la
quantité a est supposée esseaticllement positive. Considérons la
forme, quadratiqueen X et Y,

(6) F= X’fadm +2XY [abdm +Y’fab’ dm.
On peut écrire

F=[a(X?+ 20XY + 5Y?)dm —_—fa(x +bY)2dm.

Si b a la méme valeur en tous les points du systéme, la quantité F
peut étre égale a zéro sans que X et Y le soient; il suffit pour cela que

.. X . . . e
U'on ait T=— b; si, au contraire, ) varie d'un point a I'autre du sys-

teme et si 'on n’a pas X = 0, Y = o, F est positif, en sorte que, dans
ce cas, la forme (6) est définie positive. Nous pouvons donc énoncer
la proposition que voici :

St a représente une quantité positive en tous les points du sys-
téme et si b n’a pas la méme valeur en tous ces points,onal’inégalité

( ,

.
N

fadm ab®*dm —(fabdm>2>o.

Le criterium que nous avons énoncé nous enseigne qu'un systéme
animeé, autour de l'axe des z, d’'un mouvement de rolation uniforme
dont v, est la vitesse angulaire est assurément en équilibre relatif
stable pour toutes les perturbations qui n’altérent pas le moment de
la quantité de mouvement par rapport 4 I'axe des z, dans un état ol
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la quantité

(8) (I)=:F+SZ+% rtw?dm

a unc valeur minimum parmi celles que peuvent lui faire prendre
toutes les variations virtuelles accomplies sans changement de¢ tem-
pérature et sans changement du moment de la quantité de mouvement
par rapport & I'axe des z.

Soit I, lemoment d’inertie du systéme, par rapport & I'axe des z, en
'état d’¢quilibre relatif initial; la valeur initiale du moment de la
uantité de mouvement est I,»,. L’égalité qui exprime la conservation -
du moment de la quantité de mouvement est

(9) fl‘”wdm=lowo.

Nous sommes donc amenés a exprimer que, si ’on prend toutes les
Jormes, voisines de la forme d’équilibre, que le systéme peut pré-
senter, ct gu’on affecte chague masse dm d’une grandeur o telle
que Uégalité (9) soit vérifiee, on aura

(10) §+Q+;- l’”m’dm>3’,,+ﬂo+%l.,m§.

Nous pouvons supposer tout d’abord que I'on donne 4  la méme
valeur en tous les points du systéme; alors, si l'on désigne par

I=fr‘clm

le moment d’inertie du systéme déformé, I'égalité (9) donnera
(11)° I&):Iowo,
tandis que 'inégalité (10) deviendra

F+Q+ 10> 6+ Q+ - L0l
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ou bien, en vertu de I'égalité (11),

(12) FrR+tho S04 e
2 I 0 07 g e

Ainsi, pour que notre criterium soit vérifié, il faut quel'inégalité (12)
soit vérifiée pour toute forme du systéme voisine de la forme d’équi-
libre relatif.

Montrons maintenant que cela suffit.

Considérons une forme quelconque de ce systéme, voisine de la
forme d’¢quilibre relatif; en cette forme, I'inégalité (12) est vérifice.

En cette forme, distribuonsles valeurs de  de telle sorte que I'éga-
lité (9) soit vérifice.

L'inégalité (7), ol nous pouvons faire @ = r*, b = w, nous permet

d’écrire
(fr’(n dm)%fr“ dm | r*e? dm,

le signe = ¢tant de mise exclusivement dans le cas ol w a la méme

valeur en tous les points du systéme.
Selon l'¢galité (9), l'incgalité précédente peut s'écrire

12

sl ST r2twtdm.

On voit alors que I'inégalité (12) entraine I'égalité (10).
Notre criterium peut donc s’énoncer ainsi :

La quantité

(13) W=§+ Q0+

a une valeur moindre dans U’état d’équilibre relatif qu’en tout état
voisin ok la température du systéme est la méme.

Clest précisément le criterium énoncé par M. Poincaré.
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2. — Le criterium précédent n’est pas nécessaire pour la stabilité
de I’équilibre relatif,

Comme I'a remarqué M. H. Poincaré, l'inégalité (12) peut s'écrire
. 2
F+0—g— 0, — (I - L)% 4 U=l ot 5

en sorte que, pour qu’elle ait licu, il est suffisant, mais il n’est pas né-
cessaire, que I'on ait l'inégalité

F+Q— 5’2-3>3’0+Q.,—L,ﬁ;§

ou, selon (4) et (5),
’ (I)r>q)r0°

Donc, toutes les fois que le criterium de Thomson et Tait indi-
quera qu’un sysiéme est en équilibre relatif stable, le criterium de
M. Poincaré (ou le ndire, qui lui est équivalent) indiquera certai-
nement aussi que ce systéme est en équilibre relatif stable; mais la
seconde indication peut éire donnée alors que la premiére ne le
serait pas.

11 en résulte que le criterium de Thomson ¢t Tait ne saurail éire
nécessaire pour la stabilité de Uéquilibre relatif. M. Hadamard (')
I'a d’ailleurs prouvé en appliquant ce crilerium & la rotation des
solides pesants.

Mais le criterium de M. Poincaré ou le nétre, qui lui est équivalent,
ne serait-il pas nécessaire pour la stabilité de I'équibre relatif ? Nous
allons montrer qu'il n'en est rien ct, pour cela, nous allons, selon la
méthode qui a permis 4 M. Hadamard de discuter le criterium de
Thomson et Tait, appliquer notre criterium & la rotation autour de
la verticale d’un solide pesant, suspendu par un point fixe.

(') J. Havawaro, Sur la stabilité des rotations dans le mouvement d’un
corps pesant autour d’un point fixe (Association frangaise pour L’avancement
des Sciences, Congrés de Bordeaux, 1895).
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Soient, avec M. Staude (*) et M. Hadamard,

Az?+By*+ Cy*=1 équation de D'cllipsoide d'inertie au point de
suspension, rapporté & ses axes;

&, 0, § les coordonnées, par rapport aux mémes axcs, du centre de
gravité, multipliées par le poids total du corps;

¥» ¥'» Y" les cosinus directeurs de la verticale descendante.

Pour un corps solide, § est une constante que I'on peut remplacer
par z¢éro :

g =o.

Nous aurons, d'ailleurs,
g @ =—@% +1n +y0),
(4) W= (Ay'+By?+Cy)%,
M= (Ay'+By?+Cy?)o.

Si nous voulons que le corps tourne d’'un mouvement uniforme
autour de la verticale, nous devrons donner 4 v, ¥, y” et 4  des va-
leurs telles que toute variation virtuelle qui annule ¢ M annule égale-
ment 2(W + Q).

Nous avons

(15) M =(Ay?+By?+ Cy") do+ 20(Ay &y + By 2y + Cy"oy"),
avec

(16) 1 +7 v =0,

en vertu de 'identité

(t7) VY=

(1) Staunz, Acta mathematica, t. X1V,
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D’autre part,

8y | @+ Wy =(A0ty =y + (Boty —n) &'+ (Cuty' =02y
+ (Ay*+ By* + Cy*)w do.
Les égalités (15) et (18) montrent que, toutes les fois (que oM = o,
on peul écrire
r)..(Q +W) = — (Awa.( +E)37
(19) _(Bwa.l,/+n)8\",
- (C‘”z'}'”+ C) 3«{"_

Nous devons exprimer que cetle quantité s'annule pour toutes les
valeurs de ¢y, 2/, 8y” qui vérifient I'égalité (16); il faut ct il suftit,
pour cela, qu'il existe une quantité A telle que P'on ait

I

e [ n v e o

0,
quels (ue soient ¢y 3**’, 2v", ou bien telle que I'on ait
i [y 93 1)

(20) é; +(A—=Ny=o, 5;— +(B—2)y =o, —C +(C=Ny"=o.

w?

Les égalités (17) et (20) donnent sans peine

4 4
32 71 72

(21) (A-W+(B—l)“+(C;l)*=w2'

Si I'on sc donne dans le corps la position du point de suspension, %,
1, & A, B, Csont déterminés; si 'on se donne une valeur arbitrairve
de A, 'équation (21) détermincra w; les équations (20) détermineront
alors la direction, dans le corps, d'une droite qui, placée suivant la
verticale descendante, pourra servir au corps d’axe de rotation uni-
forme de vitesse angulaire .

Les résultats ainsi obtenus sont ceux qui ont été¢ indiqués par
M. Staude.

Si 'on prend pour A une valeur infiniment voisine de A, I'équa-

Journ. de Math. (5 série), t. VIII, — Fusc. 111, rgoz. 29
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lion (21) donnera pour o une valeur infiniment grande, tandis que les
tgalités (20) donneront pour ¥’ et v” des valeurs infiniment petites; le
corps tournera donc avec une vitesse infiniment grande autour d'un
axe inliniment voisin de I'axc principal d’inertic pris pour axc des .

Des remarques analogues s’appliquent au cas ou A différe trés peu

de B ou de C.
Nous nous proposons maintenant de rechercher celles des rotations

ainsi définies qui sont stables.
Dans ce but, 'emploi de notre criterium nous améne & exprimer que

I'on a

J“(Q 4= W) >o,

le signe ¢4 se rapportant aux modifications virtuelles qui laissent inva-
riable le moment M de la quantité de mouvement. Or, 'égalité (19)

donne

2a(Q 4+ W)= —2(Aysy + By ¢y + Cy" ) w v
~ [A(Z)* + B(3y')*+ C(3y")* o
—(Aw?y+5)2%y — (Ba?y'+1) ey — (Cu*y"+{) 23"

Si nous tenons comple de la relation que Pon tire de I'égalité (15)
en égalant 2M & o de Videntite

(22) P+ Y)Y+ Gy P +y@y+y 8y +y iy =o
que donne I'égalité (16); enfin, des égalités (20), nous trouvons
(A('z{-k Br 0( +C{”ﬁ n):ma

A+ Byt + Gyt
+[(=A) B+ 0= B) By i+ (= C) Gyt o

| J“(Q‘"W)

(23)

L'¢quilibre sera assurément stable si cette qumtit(. 85(Q + W) vérifie
la condition (22) pour toutes les valeurs de &y, ¢y, 2y* qui vérifient la

relation (16).
Supposons les quantités A, B, C distinctes et rangées par ordre de
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valeurs décroissantes:
(24) A>B>C,

On peut donner & I'égalité (23) la forme

o —_ (A 2+ By &+ C+" 3 Yu?
. OM(Q + W) = Ay + By i+ Cy”
=) +[(A = B)(3)* + (A= C) (3¢')*]w*
\ -+ [(’:'()3 -+ (3-/)2 + (a.{l/)Ql (7‘ - A)O)".

Sous cette forme (25), on voil que, tant que 'on &
2—AZ2o0,

Pinégalité (22) est vérifiée pour toutes les valeurs de 3y, 3¢/, ¢ qui
sont compalibles avee la relation (16); il en est encore ainsi pour les
valeurs de (% — A) qui sont négatives, mais supéricures 4 une cerlaine
limite (» — a).

Donc, toutes les valeurs de % comprises entre + = et une limite
inféricure a, moindre que A, son! indigudes par notre criterium
comme fournissant des rotations assurémeni stables.

La limite inférieure « que ndus venons de définir peut-elle étre égale
ou inféricure 4 B?

Remarquons, tout d'abord, que, selon Pégalité (23), le signe
de 33(Q + W) est le signe de

L=14(Ay 8‘( + By 37'4- Cy f.?‘(")2
(26) + (Ay*+By*+ Cy7)
X [ = A) () + (= B) (3¢ )+ (. = C) (&y')* .
Donnons 4 A une valeur infiniment voisine de Bj vy, y” auront des
valeurs infiniment voisines de zéro; selon 1'égalité (16), ¢y aura unc

valeur infiniment petite par rapport & I'une au moins des quantités Sy,
8y"; L aura sensiblement le signe de

(B —A) (&) +(B—C) (&)
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Comme, selon les inégalités (24), (B— A) et (B—C) sont de
signes contraires, le signe de cctte quantité dépend de la valeur du

sl . ,
rapporl "o—’l, ce ne peut étre constamment le signe +. Il en résulte que

la limite o est supéricure a B.

Un raisonnement semblable & celui que nous venons de développer
nous démontre que, pour les valeurs de A voisines de C, L ct, par con-
séquent, ¢4 (2 — W) ont le signe de

(C—A)(e)+ (C=B)(y).

Al . " . . b
Ce signe est nécessairement le signe — pour toutes les valeurs de o7,
2y, ¢+ qui satisfont & I'égalité (16).

4

Ainsi ni le eriterium que nous avons énoncé, ni partant celui de
M. Poincaré, qui lui est équivalent, n’indiguent comme: stables les
rolations qui se produisent autour d’axes trés voisins du petit axe
dinertic.

Or, il est trés certain qu'un corps solide peut, au moins dans cer-
lains cas, subir un mouvement de rotation uniforme ct stable autour
d’axes infiniment voisins du pelit axe d’inertie.

Tout d'abord, si I'on cherche les conditions de stabilité de 1'équi-
libre relatif par la classique méthode des petits mouvements, on
trouve, avec M. Hadamard, que les valeurs de X comprises entre + %
et a, @ étant compris entre A et B, conduisent & des rotations stables,
ainsi que les valeurs de % comprises entre & et ¢, b étant inféricur & B
et supéricur 4 G, et ¢ étant inférieur 4 C.

On pourrait, il est vrai, prétendre que, dans ce cas, le criterium tiré
de I'étude des petits mouvements est en défaut; il est impossible, en
effet, de démontrer rigoureusement que ce criterium est ou suffisant,
ou nécessaire, pour la stabilité de I'équilibre relatif.

Mais, dans le cas ou le corps solide est suspendu par son centre de
gravilé, I'étude directe de la polhodie prouve que la rotation autour du
petit axe d'inertie est stable ('). On en peut conclure qu'un corps

(') Voir AepeLr, Traité de Mécanique rationnelle, t. 11, 1896, p. 220.
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solide pesant, suspendu par un point voisin de son centre de gravité,
peut étre animé d’une rotation uniforme et stable autour de certains
axes trés voisins du petit axe d'inertie.

Nous pouvons donc énoncer la proposition suivante : N le criterium
donné par M. H. Poincaré, ni celui que nous avons énoncé, et qui
lui est équivalent, ne sont néoessairement vérifics lorsque U équi-
libre relatif est stable.



