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APERÇU SUR LA THÉORIE DE LA BICYCLETTE. IJ7 

Aperçu sur la théorie de la bicyclette; 

PAR M. J. BOUS S IN ESQ. 

§ I. — Principales données approchées du problème mécanique 
de la bicyclette. 

1. Dans la bicyclette, le point le plus bas Κ de la roue motrice ( 011 

roue de derrière) a pour lieu de ses positions successives sur le sol, que 
nous supposerons horizontal ('), une courbe SKT, tangente au plan 
médian K.GA de cette roue. Cette courbe, en y joignant la vitesse V 
avec laquelle elle est décrite, définit ce qu'on peut appeler le mouve-
ment de progression de la bicyclette sur le sol. 

Le point le plus bas A de la roue directrice (ou roue de devant) est 
d'ailleurs, à des écarts près négligeables, contenu dans le môme plan 
et situé à une distance sensiblement invariable ΚΑ = a du bas Κ de 
la roue motrice. De plus, le poids mg de tout le système, constitué en 
majeure partie par le cavalier, peut être censé se trouver encore dans 
le même plan médian, en G, un peu au-dessus du milieu de la selle, à 
une distance sensiblement constante G13 = h delà base KA delà bicy-
clette, et à une petite distance horizontale, également donnée, KB = /y, 
en avant du point inférieur Κ de la roue motrice. Quant à la niasse m 
du système, elle se trouve distribuée, tout autour de ce centre de gra-

(*) Voir la figure à la page suivante. 
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vilé Ci, à peu près symétriquement de part et d'autre du plan KG A, 
dont ses éléments dm, en M par exemple, sont distants de quantités 
MP = /, autant positives (d'un côté) que négatives (de l'autre), les 
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pieds Ρ de ces perpendiculaires l sur KG A étant aussi à des distances 
PH = y, autant positives que négatives, de l'horizontale GH du plan 
et, suivant celle-ci, à des distances GH = i, encore positives autant 
que négatives, en avant de G. Cette masse m, réductible sensiblement 
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ail corps du cavalier, au cadre de la machine et au moyeu des roues, 
sera de forme à peu près invariable ; en sorte que les trois coordon-
nées 2, y, /, définissant la situation de ses éléments dm par rapport au 
triangle KG A, pourront être regardées comme indépendantes du 
temps t. 

Cette supposition n'est évidemment qu'approximative, surtout en 
ce qui concerne les jambes du cavalier, dont le mouvement par rapport 
au cadre produit celui des pédales, et l'accompagne avec une vitesse 
très comparable à la vitesse de rotation des roues même à leur circon-
férence (environ le [ ou le j de celle-ci pour les pieds, dans une ma-
chine ordinaire). Comme on aurait, sans doute, beaucoup de peine à 
tenir compte de ces mouvements propres des jambes du cavalier, et 
qu'il faut, dès lors, se borner à une approximation restreinte, il serait 
peu utile, sinon illusoire, quand on les néglige, de mettre en ligne de 
compte les inerties rotatives, plus faciles à évaluer, des doux roues, 
inerties tout au plus aussi influentes que celles des jambes; car la 
masse de celles-ci excède la masse de la jante et du pneu des roues 
dans un rapport paraissant devoir être pour le moins aussi grand que 
le sont les accélérations propres de ces derniers organes comparative-
ment à celles des pieds et même des jambes. 

Si l'on calculait, dans l'équation des moments (que nous aurons à 
employer), les petits termes correspondant à ces diverses inerties, il 
faudrait aussi, sans doute : i° tenir compte des défauts de symétrie 
qu'offrent, de part et d'autre du plan médian du cadre, le bas du 
corps du cavalier et les deux pédales, toujours à 18o° l'une de l'autre ; 
les organes de transmission placés sur un seul coté ( pignons et chaîne) ; 
enfin, même le guidon et la roue directrice, quand celle-ci est inclinée 
sur le plan médian; 2° ne plus regarder comme constante, ni en lon-
gueur, ni en direction par rapport au plan médian du cadre, la droite 
Κ.Λ de jonction des points les plus bas des deux roues. 

Un degré d'approximation supérieur à celui que pourra donner le 
présent aperçu exigerait donc, dans les formules, une complication 
beaucoup plus grande; et il y a lieu de s'en tenir à cet aperçu, au 
moins dans une première étude. 

Enfin, et pour achever de définir les éléments de la question, 
l'angle 0 de BG avec une verticale, comme G'Z, compté positivement 
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ou négativement suivant que la projection BG' de BG sur le sol est, ou 
non, dirigée vers la concavité de la courbe ST, mesure Vinclinaison 
prise par la bicyclette, inclinaison qu'il faut, pour la stabilité, main-
tenir sans cesse entre d'assez étroites limites de part et d'autre de zéro. 

2. Nous choisirons, d'une part, sur le sol, un axe Ο a? presque pa-
rallèle à l'arc croissant SK. =5 s, décrit aux environs de l'époque t, et 
un axe normal Oy dirigé, de même, presque suivant les sens des 
rayons de courbure correspondants de ST, comme KC = R, d'autre 
part, un axe Oc vertical, s'élevant au-dessus du sol. Les coordonnées 
x,y du point Κ seront fonctions du temps t par l'intermédiaire de 
Parc s, relativement auquel leurs dérivées successives s'écriront x' 
et y\ x·" et y", x'" cl y"\ .... Quant à la dérivée première de s en /, ce 
sera la vitesse même V du mouvement progressif de la bicyclette; de 
sorte que χ, y, .x', y', etc. se difîérentieront en t par la formule sym-
bolique 

(1) d/dt = V d/ds 

Dans le plan des xy, les cosinus directeurs de la tangente K.BA se-
ront x', y y le premier, peu différent de 1, le second, très petit ; et ceux 
des perpendiculaires BG', Η,Η'Ρ'Μ' suivant lesquelles se projettent 
sur le sol les lignes BG, H, HPM, cosinus dont le second est presque 1 
(quand ces projections sont positives), égaleront, par suite, —y', x'. 
Dès lors, les coordonnées du point H,, situé sur Κ A à la distance b -f- i 
de K, seront 

x+(b-h i)x', y + (b-h i)y' ; 

et, vu les valeurs (h -h j) sinO, fcosO des projections Η,Ρ' et P'M' de 
H, H -l· j et de /, les coordonnées du point M', projection de M sur le 
sol, excéderont les précédentes, respectivement, de 

— y'\(h -t- j)sinO ■+■ fcosO], a?'[(A-hy)sin6 H- /cos6). 

On aura donc pour les trois coordonnées variables, que j'appellerai 
E,η, ζ, du point M, évidemment situé à la hauteur 

(h 4- /#,)cos6 — /sinO 
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au-dessus du sol, les valeurs 

| ξ = .#· -+- (// +■ i)jc' — y [(Λ -+- j) sinO -t- /cosO], 

(a) ] η --y-h (/> ■+■ i)y'·*-&'[(!* -t-y)sinO -H /cosO], 

( ζ = (Λ -t- /)cosG — /sinO. 

S II. — Relation qui existe, dans la bicyclette roulant sur un sol hori-
zontal, entre le mouvement de progression et le mouvement d'incli-
naison. 

5. Cela posé, afin d'éliminer les réactions extérieures, exercées sur-
tout aux deux points principaux Κ et A de contact de la bicyclette 
avec le sol à l'époque /, appliquons, à cet instant, le principe des mo-
ments à tout le système, par rapport à la droite KA du sol; et ima-
ginons l'axe des χ choisi exactement parallèle à cette tangente parti-
culière KA de la courbe ST. Les deux composantes non parallèles 

à KA, — — -^pdm, de l'inertie de l'élément de niasse, «/m, 

silucen M, auront comme bras de levier (tendant à accroître l'angle Cl), 
M M, - H, M', ou ζ, — (η — y)\ et le poids mg, concentré en <î, 
aura, de même, le bras de levier BG', ou /isinO. La somme des mo-
ments étant nulle, il vient donc, après division par mh, 

/·> ·Α /ΥβΡζτ,— ν d*\ ζ \ dm 

Il reste à différentiel' deux fois en l les valeurs (2) de ζ, η, et à faire 
.*,·' = 1 ,/'= ο dans les résultats, pour substituer ceux-ci dans (.V), 
ainsi que les valeurs (2) de η et ζ simplifiées de même. On trouve 
d'abord, sans difficulté, 

i lit* =-^[(/'+y)sin(l-l-<eos0j— ̂ |(/i+/)c°sl>-/smO|, 

(4) \Τ±ΊΓ = T^V-t-^nr^n® + 5<»s0) = ^sin0-hj5cos0. 

Passant ensuite à la differentiation de η, appliquons-y à :c, y, ou 
Journ. de Math. (5* série), tome V. — Fasc. I. 1899. lO 
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à leurs dérivées en .ν, la règle symbolique (i). Nous aurons, comme 
dérivée première, 

Vy'-μ (b 4- i)Vy" H- Vx*"[(/< -hy)sinO /cosO | 

+ x'7Γι ~*~j) cos^ ~~ 'sm ^ l· 

et, comme dérivée seconde, 

^
/ + Vy+(t + i)(^+V

y) 

-h ^ ̂  ./·" H- V1- x'" J [( h -h /) sin 0 -t- / cos 0 ] H- ·>. V χ" ̂  | ( h j ) cos 0 — / si 110 | 

+, r + J)cos^ ~ ^7>ίπ0 /coso|. 

Celle-ci se simplifie beaucoup, à raison des formules données par 
deux differentiations en .? de l'identité x'2 + y'1 — τ, qui définit la va-
riable .v, cl par une differentiation en / del'expression connue.v"· -h y"· 

dn carré de la courbure. Ces formules, 

x' x''-h y y" == o, 

x'x'" -t- y'y"' -t- x'"1 -h y'"1 — o, 

V (x'' x'' + y'' y''' Λ +y >' iwr ' 

se réduisent, attendu que x' — τ et y' = o en K, à 

χ- = ο, x" = - y, vyy = f, ; 

d'où il résulte, ainsi que de l'expression ci-dessus du carré de la cour-
bure, vu d'ailleurs le signe évidemment positif dey'' (cary croît de S 
à T, d'après le choix fait de l'axe des y), 

y = r' yy = nr 
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Donc 1« valeur, changée de signe, de la dérivée seconde de η, à sub-
stituer dans (3), sera simplement 

(:,) S -^=-Tr(
,
-^

si
n°-^

c
°sO)-(6 + Orfr 

I f(A+ y)cosO —/sinO] + H-y)sinO h- IcosO]; 

et, d'autre part, celle de ^ qui la multiplie dans (3) est, d'après (2), 

((>) jjj = cosO — | sinO. 

Grace à (4), (3) et (6), l'équation (3) devient explicite en V, H, 
0 ou leurs dérivées. En outre, de nombreux termes de son développe-
ment disparaissent, par suite de ce que, les coordonnées relativesi, 
j, I se trouvant comptées à partir du centre de gravité G du système 

et le plan KGA des ij étant un plan de symétrie de la masse j dm. 
on a les cinq égalités 

j ('JJM'" = <b f (hj)ldm = o. 

Aussi l'équation (3) des moments, où nous poserons, pour abréger, 

«:) A'=*-hî/(/-^>£· <>■='>-ïf<r^ 

prend-elle la forme, très réduite, 

i ,,
sin0 - £ - £(1 +/^Γ- v)

 sin0

]
 cos0 

(8) j -b'-^cosO-lf 

4. Telle est la relation simple annoncée entre le mouvement pro-



I 24 4. BOUSSINESQ. 

gressif do la bicyclette, défini dans son état actuel par V quanta la 
vitesse, par 11 quant à la trajectoire, et son mouvement d'inclinaison, 
défini par l'angle 0 du plan médian de la roue motrice avec la verti-
cale. Cet angle devant rester très petit, on peut le substituer à son 
sinus et réduire cosO à l'unité. De plus, à raison tant de la petitesse 

de 0 que do celle du rapport le second terme de (8) ne sera altéré 

que dans une proportion insignifiante, si Ton y réduit aussi à l'unité 
le facteur complexe entre crochets. Et la formule (8) sera simple-
ment, après division par — h' et transposition de deux tonnes, 

(9) dï· + //' dt " V h' H ' 

On remarquera que, d'après (7), la constante //', plus grande que 
BG ou A, est la longueur du pendule composé constitué par le sys-
tème matériel dans sa rotation autour dé sa base KA, et que la con-
stante b' diffère assez peu de la droite K13, ou b, exprimant de combien 
le centre G de gravité du système se trouve en avant du point le plus 

bas K. de la roue motrice. En effet, l'intégrale J*ij valeur moyenne 

du produit /y, 11e peut être considérable, le système ayant, dans cha-
cun de ses plans normaux à KA ou définis par une valeur de î, presque 
autant de points au-dessous du centre G, ou de II, et où j est négatif, 
que de points au-dessus, où j est positif. Toutefois, dans la position, 
assez fréquente,, où le cavalier tient la tète en avant, il est visible que 
i el j ont même signe, positif dans le haut du corps, négatif dans le 
bas, en plus d'endroits cju'ils n'ont signe contraire : donc le dernier 
terme de (7) est alors positif. Or le terme b augmente, lui aussi, dans 
celle position où le cavalier se porte en avant; car ses pieds, fixés 
aux pédales de la machine, ne reculent pas pour cela, et le centre de 
gravité G ne peut qu'avancer. 

Ainsi, le petit coefficient b' tout entier doit augmenter, dans un 
rapport sensible, quand le cavalier se penche en avant. 
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§ III. — Équilibre du cavalier. 

<5. Les dérivées premières, en /, des deux variables V, R caracté-
ristiques du mouvement progressif, dépendent immédiatement de la 
volonté du cavalier et constituent, entre certaines limites, deux fonc-
tions arbitraires du temps, laissées à sa disposition non seulement 
pour se diriger et avancer, mais aussi pour éviter toute exagération 

dangereuse de 0. En effet, l'accélération, du mouvement de rota-
tion de la roue motrice à sa circonférence, est en rapport direct avec 
l'action des pieds du cavalier sur les pédales; et, d'autre part, le 
changement survenu, d'un instant à l'autre, dans le rayon R de cour-
bure, traduit d'une manière tout aussi directe l'action de ses mains, 
qui règlent, grace au guidon, le petit angle α fait, sur le sol, par le plan 
de la roue directrice, avec la trace ΚΛ du plan de la roue motrice. Car 
il faut remarquer que, l'extrémité A de la tangente KA à ST se mou-
vant langentiellcment à la trace du premier de ces plans, la normale 
AC à sa trajectoire va couper sous le même angle α la normale KC à 
la tra jectoire de l'extrémité K. Or l'on reconnaît que l'intersection C 
de ces deux normales, centre instantané de rotation de Κ A, se con-
fond avec le centre de la courbure, en K, de ST. 

Effectivement, les coordonnées variables de A sont 

•ί -f- €t>v , y -h ay ; 

et leurs dérivées par rapport à s, entre elles comme les cosinus direc-
teurs de la trajectoire du point A, sont 

vt-'-h ax", y'-h ay". 

Les deux normales K.C, AC aux trajectoires ont, dès lors, comme 
équations respectives, 

(X-x)x'+(Y-y)/ = o, 

( (X - .v — a.v')(x' -h αχ") h- (Y — y — ay') {y'-l· ay") = o, 
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X, Y désignant lours coordonnées courantes et, en particulier, celles 
de leur point commun C. On peut remplacer la seconde de ces équa-
tions par le résultat do sa soustraction d'avec la première, et alors leur 
syslèmc devient, cil tenant compte des identités précédemment uti-
lisées entre .r', y',et y", 

( x - .c) #'■+■ (Y —y) y = ( X - ·*) *° -+- ( V - y ) y" >, 

c'est-à-dire les deux formules qui déterminent le centre C(X, Y ) de la 
courbure, en K, de l'arc ST, intersection des deux normales à ST 
menées en ( c, y) et en (jc x'ds, y -(-y ds). 

Par suite, le triangle rectangle CRA donne 

Κ A == a = Ulanga, 

ou, à raison de la petitesse de a, 

a — Ita, It = -. 

Alors l'équation (y), où il est préférable de faire figurer, au lieu 
de U, l'angle α qui exprime d'une manière presque immédiate l'action 
des mains du cavalier, devient 

(10) dJ/_ U.\ a _ ,y, V*a 
Ut1 ah' Ut h' ah' 

β. Sur route unie, à une allure réglée, V s'écarte peu d'une 
moyenne V

/w
, et les deux petits produits Va, V2a ne diffèrent pas 

sensiblement de V,„a, V;
M
a. L'équation (10), résolue par rapport à la 

dérivée seconde de 0, prend donc, en y effaçant d'ailleurs l'indice 
(désormais inutile) de V

;
„, la forme linéaire 

(11)dt* ~~ ah' Ut h'\ga* J* 

L'art du cavalier consiste à régler à chaque instant, grâce au gui-

don, la dérivée ̂  > de manière à maintenir très petite l'inclinaison 0. 
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Celle-ci ne peut grandir, ou plutôt s'écarter de sa valeur normale 
^ donnée par (9) sur une voie d un rayon R de courbure assi-

gné (4 ), que si sa dérivée première rendue, par une circonstance 
accidentelle quelconque, un peu sensible, et égale à une petite quan-
tité donnée ε au moment où débute la perturbation qui en résulte, 
conserve une valeur appréciable pendant un certain temps. La circon-
stance en question peut être, par exemple, la rencontre d'un caillou 
sur la roule, ou un coup de vent soufflant de côté, ou un mouvement 
spontané du bieyeliste, etc. Le cavalier devra donc alors faire acqué-
rir à la dérivée seconde ̂ 5 des valeurs de signe contraire au signe 
même de ε et capables de réduire assez rapidement jusqu'à zéro la 
dérivée première^· Il le pourra, puisqu'il dispose immédiatement, 

dans (c 1), de la vitesse angulaire que j'appellerai o>, du guidon. 
On voit (ju'il devra donner à cette vitesse angulaire le signe de ε, 

c'est-à-dire incliner le guidon vers le côté où il se sent jeté, et aussi 
que les variations naissantes de α et 0 viendront, les premières, con-
courir à son action, les secondes, la contrarier. L'effet utile des pre-
mières l'emportera sur l'effet nuisible des secondes, si la vitesse ω de 
rotation du guidon excède la fraction ̂  de la vitesse initiale ε d'in-
clinaison, fraction d'autant plus faible que l'allure est plus rapide, et 
déjà petite (pour a = Γ" par exemple) quand la vitesse V approche 
d'une dizaine de mètres par seconde. 

lîn effet, dans le second membre de (11), le binôme - α — 0, nul à 

l'instant initial t = 0 de la perturbation où 0 = — α et où la dérivée 

décroissante — vaut ε, prendra le signe de ~ ou de ε, ~ α y variant, 

(') Le rayon R de courbure de la trajectoire effective ne figurant plus expli-
citement dans les équations (10) ou (ri) du mouvement, je désignerai désormais 
par R le rayon de courbure de la route (ou du sentier) que veut suivre le bicv-
cliste. 
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par hypothèse, plus vite que ne fait le produit ε/, tandis que 0, au 
contraire, varie moins que tl. Le second membre aura donc son der-
nier terme, en α et 0, de même signe que le premier, en ^· 

7. Supposons, pour simplifier, ε assez petit, ou ω assez grand, pour 
(juc ~ s'annule avant que 0 ait eu le temps de varier d'une manière 
notable. Alors le dernier terme binôme de (II), d'abord nul, aura 
valu sensiblement 

- V-fal di ~ " à7pj
u

w dl. 

Kt l'équation (M), multipliée par dt, puis intégrée durant tout le 

petit temps ζ nécessaire pour annuler la vitesse ~ d'inclinaison, qui 
était d'abord ε, donnera, en changeant les signes, 

(,2) ε=^ΧωΛ+^/<//Χ'ω'/Λ 

Désignons par ζ l'angle total I udt dont le guidon aura tourné. 

La vitesse angulaire moyenne du guidon aura donc été et l'on ob-

tiendra une valeur approchée du dernier terme de (12) en y rempla-
çant ω par cette moyenne. La formule (Ί 2) devient alors la relation, 
entre ε, ζ et τ. 

(13) E = V/a (b'/h' + V/2h') E 

La rotation ζ du guidon est d'autant moindre, qu'elle a eu un temps τ 
plus long pour s'effectuer cl produire son effet d'annulation sur la 

vitesse ^ de renversement. La valeur correspondant à l'hypothèse 

(z — o) d'une action instantanée serait ε; de sorte qu'on aura 

00C < ah'/ b' V E, 
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Voyons maintenant ce qui arrivera une fois la vitesse ^ de ren-
versement annihilée. 

Raisonnons toujours dans l'hypothèse qu'elle l'ait été assez vite pour 
qu'on puisse négliger la variation totale subie par 0 durant le petit 
temps écoulé τ, variation dont la rapidité a décrû de ε à zéro, et qui 

est comparable, par conséquent, à Alors le cavalier, s'il veut éviter 

d'avoir bientôt à neutraliser une perturbation de sens contraire, pourra 
cesser d'influer sur 0, et annihiler cependant, à son tour, le petit écart 
total ζ éprouvé par l'angle α des traces des deux roues sur le sol, afin 
de retrouver le rayon primitif R de courbure de sa trajectoire, qui lui 
est imposé par la configuration du chemin à suivre. R devra, pour cela, 
faire vérifier désormais par α l'équation (11) débarrassée de son pre-
mier terme, c'est-à-dire, s'il compte les temps à partir du moment 
où 0 a eu sa dérivée annulée, adopter pour la partie variable Δα, de-
venue ζ, de l'angle a, la formule 

(ι;>) Δα = ζϋ Λ', 

qui réduit très sensiblement l'équation (11) à ̂  = o. 

On voit qu'alors celte partie variable Δα de α sera devenue une frac-
tion insensible de ζ et que, par suite, le rayon de courbure, de la 

trajectoire retrouvera sa valeur normale R, dès que le parcours V/ 
aura atteint trois ou quatre longueurs h'. 

8. Le changement d'orientation de la bicyclette sur la route, causé 
par la perturbation, aura été insignifiant pendant que s'effectuait la 
première rotation ζ du guidon par rapport au cadre, puisque l'instant τ 
de sa durée est supposé négligeable. Pendant que le guidon revient 
ensuite à sa première position relative, ce changement d'orientation sur 
le sol (ou par rapport à l'axe de la route) égale évidemment, par unité 
du chemin parcouru fds ou J'y dl, le changement même ^ de la 
courbure; et il est en tout, très sensiblement, 

(
l6

) r£v*=x? re-Vdi=« 

Journ. de Malh. (5* série), tome V. — Fasc. I, 1899. *7 
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quantité inférieure, d'après (ι'ι), à la limite très petite ~ t. Elle serait 

encore moindre, si le cavalier se penchait en avant pendant le premier 
temps, τ, de la manoeuvre, pour y rendre b' le plus grand possible, et, 
d'après (i3), réduire ζ; puis, s'il se redressait et se portait, au con-
traire, un peu en arrière durant la seconde phase, afin de diminuer 

alors b' et aussi, dans (16), le rapport — (' ). 

D'ailleurs, les déviations absolues qu'aura éprouvées en mémo temps 
la bicyclette sur le sol, par rapport à sa trajectoire directe ou non 
troublée, sont évidemment insignifiantes. 

En résumé, les petits chocs transversaux tendant au renversement de 
la machine pourront, à une allure V suffisamment rapide, être corrigés 
sans dérangement appréciable, grâce à la manœuvre du guidon, qui 
finira par devenir instinctive chez le cavalier. 

9. Des perturbations que l'on aurait négligé de neutraliser au début, 

et où l'écart 0 de l'inclinaison 0 serait devenu sensible, donne-

raient lieu à des formules plus compliquées, parce que les quatre 
termes de l'équation (ι i) y interviendraient à la fois par des valeurs 
notablement variables. Je ne m'occuperai pas en détail de ce cas. 
J'observerai seulement que 0 pourra y devenir telle petite fonction 
de / (ju'on voudra, à partir des valeurs initiales, supposées données, 
tant de cette fonction que de sa dérivée première. Car il suffira que 
le cavalier choisisse pour α l'intégrale même, formée à partir de 
l'angle α existant au début, de l'équation différentielle du premier 
ordre en α que devient la relation (ι i), quand on y substitue à 0 la 
fonction arbitraire voulue et à ™ sa dérivée seconde. 

La condition, à laquelle est astreinte l'inclinaison 0, de ne pas s'éloi-
gner beaucoup de zéro, n'implique donc nullement, pour l'angle α du 
guidon, une série de valeurs étroitement définie, ou ayant quelque 
chose de singulier et de peu réalisable. En d'autres termes, une ma-

(') Toutefois, ces changementsd'attitude devraient peut-être se faire trop vile 
pour ne pas mettre en défaut nos formules, dont la démonstration suppose que 
le cavalier se comporte comme un corps rigide fixé au cadre. 
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nœuvrc du guidon suffisante pour éviter les chutes, sur une voie d'une 
certaine largeur, ne suppose pas, chez le cavalier, une très grande 
précision des mouvements ou une habileté exceptionnelle; et Ton 
«''explique aisément que presque tout le monde puisse, avec quelque 
persévérance, y réussir et s'y habituer, comme à la marche, à la 
course, au saut, au lancement d'une balle vers un but, etc., bref, aux 
exercices physiques qui ne sont pas du domaine spécial de l'acrobate. 

Les valeurs de α devront, toutefois, ne pas excéder les angles pos-
sibles que comporte la bicyclette. Et la trajectoire devra aussi s'orien-
ter vers la direction où l'on veut aller; sans quoi le cavalier n'aurait 
qu'à s'arrêter, pour repartir dans le sens voulu. 

Il évitera, autant que possible, cet inconvénient, si, en faisant 
acquérir (après passage par zéro), un signe convenable à la dérivée 

première^» il amène assez vite l'inclinaison 0 à sa valeur de ré-

gime et si, au moment d'v réussir, il amortit durant un court 

instant τ la vitesse angulaire ̂  par une manœuvre rapide du guidon. 

Alors, il est vrai, l'angle α des traces des deux roues présentera géné-
ralement un certain écart Δα = ζ d'avec sa valeur normale ou de 

régime Mais le cavalier pourra faire évanouir graduellement cet 

écart de la manière qui supprime son influence sur 0, c'est-à-dire qui 

annule, dans (ι i), la dérivée seconde ~· Il tâchera donc de donner 

désormais à la partie variable Δα de α la valeur décroissante ζ<;b', 
qui l'annihile au bout d'un parcours insignifiant, comme on a vu. 
Ap rès quoi, 0 et α auront ainsi repris leurs valeurs normales. 

10. J ai supposé la perturbation de ~ causée par un choc, c'est-

à-dire par une action (étrangère ou intérieure) assez forte pour créer 
presque instantanément des vitesses. Si cette action, beaucoup moins 
vive, n'avait engendré que des accélérations modérées, et si d'ailleurs 
le cavalier, qui en est averti par les petites déformations et les réactions 
concomitantes produites dans son corps, s'était trouvé attentif à les 
neutraliser, l'action du guidon aurait pu, évidemment, être beaucoup 
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plus douce et plus brève, de manière à altérer bien moins encore la 
trajectoire. 

A quoi il faut ajouter que les réactions du sol ont été censées, pour 
plus de simplicité, appliquées exclusivement aux points les plus bas 
K. et A des plans médians des deux roues. Or il y a, en réalité, deux 
petites régions de contact des roues avec le sol, régions comprenant, 
plus ou moins près de leurs centres, les points respectifs Κ cl A, mais 
ne s'y réduisant pas. Et l'on sait que les réactions y sont plus éner-
giques du coté 011 va la roue, c'est-à-dire du coté où la région commune 
à la roue et au sol est en train de s'étendre, que du coté opposé ou la 
roue et le sol s'éloignent. Elles prédominent donc en avant du centre 
de la région commune, ainsi que sur le côté (droit ou gauche) vers 

lequel est dirigée la vitesse d'inclinaison ^ du plan médian de la roue. 

Ces réactions équivalent par suite, pour chaque rone : i° à des réac-
tions fictives, égales et de mêmes sens, appliquées au point Κ ou A; 
2" au couple composé de forces précisément égales et contraires à 
celles-là et des réactions cflcclivcs. Ce couple, qui constitue la rési-
stance appelée d'une manière assez impropre frottement de roule-
ment, agira quelque peu sur la roue, malgré son petit bras de levier, 
et, évidemment, en sens contraire de la vitesse angulaire d'inclinaison, 
surtout quand cette vitesse sera dans le sens même de l'inclinaison 0 et 
que, par suite, le bras de levier du couple aura ses moins petites valeurs 
(K ou A étant, relativement au centre de la petite région de contact, à 
l'opposé du coté où se produiront les plus fortes réactions). Le couple 

tendra donc à annuler la dérivée ou à maintenir la bicyclette dans 

sa position d'équilibre relatif. 
Au reste, comme l'a expliqué judicieusement M. Bourlet dans son 

Nouveau traite des bicycles et bicyclettes (équilibre et direction) 
(Paris, Gaulliier-Villars, p. 95 et 89), des dispositions, concernant la 
direction et la place de l'axe autour duquel tourne le plan de la roue 
directrice, sont prises, dans les machines actuelles : i° pour que celte 
roue s'incline, par l'cllct tant de son poids que de la pression du sol sur 
elle, du coté où la bicyclette viendrait à pencher, de manière à remé-
dier automatiquement, en marche rectiligne, à cette inclinaison de la 
machine; et aussi, 20 pour que, une fois la situation verticale du cadre 
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rétablie, le frottement du sol sur la roue directrice, en tirant vers 
l'arrière le bas de cette roue, la ramène dans le plan du cadre ('). 

(') fie marques complémentaires; essai sur l'explication du virage. 

Mon but n'était pas, comme on voit, d'étudier ce frottement des roues, ni 
de déterminer les limites de l'inclinaison 0 au delà desquelles il devient insuffi-
sant pour empêcher la bicyclette de glisser sur le sol. Je renverrai le lecteur, 
jiour cette question, ainsi que pour le travail et les résistances en jeu dans le 
mouvement, au Traité de M. Bourlet. L'étude des actions intérieures et des 
réactions du sol ou de l'atmosphère exigerait évidemment l'emploi d'équations 
du mouvement autres que l'unique relation des moments dont j'ai fait usage. 
Celle-ci n'a suffi, dans les limites de l'approximation obtenue, que grâce aux 
deux hypothèses : i° d'un sol assez rugueux pour s'opposer au glissement des 
roues tout en permettant leur roulement; a0 d'un cavalier en état de produire à 
sa volonté les deux mouvements des pédales et du guidon, sans changer notable-
ment ni de forme, ni de position par rapport au cadre de la bicyclette. Les 
mouvements étendus, plus ou moins vifs, qu'il peut s'imprimer pour modifier la. 
configuration et les inerties actuelles du système, échapperaient donc à notre 
théorie, ou aux formules (9), (10), (11), qui la résument. 

Je n'ai, d'ailleurs, fait intervenir pour le maintien de l'équilibre que la ma-
nœuvre du guidon, réduisant l'action des pieds du cavalier à entretenir la vi-
tesse V. Il faudrait sans doute une fonction arbitraire de plus, c'est-à-dire aussi 
la libre disposition de variations successives à imprimer à la vitesse V, pour 
pouvoir en même temps modifier à volonté l'orientation de la trajectoire; et 
encore cela ne suffirait-il pas toujours, comme on verra, ci-après, par l'exemple 
de l'entrée dans un tournant, où le bicycliste devra directement faire naître, par 
de passagères mais sensibles déformations de soi* corps, l'inclinaison positive 0 
alors indispensable. En tout cas, un cavalier qui serait assez habile dans Je jeu 
des pédales, combiné avec celui du frein, pour produire des changements con-
venables de vitesse d'un point à l'autre du trajet, tandis que ses mains donnent à 

l'angle a du guidon les valeurs ^ produisant une suite de courbures voulues1/R, 

tirerait évidemment un grand parti de celte double manœuvre. 
Supposé animé, par exemple, d'une certaine vitesse V0 à son passage par un 

point où H aurait une valeur Ηφ et où s'annuleraient à la fois l'inclinaison 0 et 

la vitesse d'inclinaison il pourrait maintenir vertical le plan KGA de la bicy-

clette, et suivre cependant une trajectoire assignée, ou dont on donnerait, en 

fonction de l'arc s parcouru, la suite des courbures ^ : il est vrai que ce serait 
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en enrayant très vite le mouvement, sauf toutefois dans le cas important (l'une 
trajectoire à courbures successives évanouissantes, comme est celle qu'on suit à 
l'issue des tournants, où le cliemin devient rectiligne. Il n'aurait, en effet, qu'à 
régler désormais le rapport des vitesses V aux rayons de courbure H par la 
formule 

(17) — eb — const., ou ^ = — es/b' 

qui rend égaux les second et quatrième termes de l'équation (9). Celle-ci se 
trouve donc réduite à une équation linéaire de second ordre en 0; et son inté-
grale, vu les conditions initiales supposées, est bien 0 = o. 

La formule (17) pourrait évidemment régir la transition, même à vitesse 
constante, d'un chemin courbe à un chemin droit. Il suffirait (l'y prendre 

V = V0
 et R = R0e^'. 

Quant à l'entrée dans un tournant, la double manœuvre des pédales et du gui-
don ne paraît pas pouvoir y suffire : il y faut de plus un mouvement spontané et 
d'ensemble du bicyclisle sur sa machine. Celui-ci devra s'y porter du côté de 

la concavité du tournant, pour produire les valeurs positives de ̂  et de 0 qui 

motiveront une rotation du guidon vers le môme côté et y dévieront, par suite, 
la trajectoire. En eiiet, si le cavalier restait sensiblement immobile sur la selle et 

que, par suite, l'équation (9) s'appliquât, le quotient d'abord nul, puis po-

sitif, rendrait le second terme de (9) positif lui-même. Mais alors, le quatrième 

terme — 77-^ devenant négatif, tandis que le troisième, en 0, d'abord nul lui 

aussi, serait évidemment négligeable à côté du premier » celui-ci ne pourrait 

qu'être négatif. Donc les valeurs naissantes de ̂  et de 0 seraient négatives; et 

le troisième terme de (9) viendrait bientôt joindre son influence à celles du 
terme qui le précède et de celui qui le suit, pour accentuer encore dans le môme 

sens négatif, d'après (9), les valeurs du premier terme C'est dire que l'in-

clinaison 0 s'exagérerait, jusqu'à rendre imminent le renversement de la bicy-
clette. Ainsi, un mouvement d'ensemble du cavalier est indispensable. 

On sait d'ailleurs, depuis une remarque faite par M. Guyou, qu'un tel mou-
vement pourra amener, môme à vitesse de progression V nulle, une inclinaison 0 
voulue. Car, dans un système déformable, sans vitesse angulaire initiale autour 
d'un axe fixe donné, le principe des aires ne s'oppose pas, comme il le ferait 
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pour un corps rigide, à ce que des actions intérieures, en provoquant des défor-
mations purement temporaires, produisent autour de Taxe un changement effec-
tif ou persistant de l'orientation, dans l'espace, du système, une fois revenu à sa 
première configuration. C'est en cela même que consiste l'importante remarque 
de M. Guyou. Sans doute, ici, le retour du système à sa configuration première 
ne saurait être complet, vu l'existence de produits, brûlés justement par le tra-
vail de la déformation dans les nerfs et les muscles du bicycliste, et emportés 
ailleurs aussitôt après. Mais la faible masse de ces produits, malgré le rôle 
important de leur énergie dépensée, les rend insignifiants au point de vue des 
aires décrites, tout comme le sont déjà les échanges gazeux incessants entre l'or-
ganisme entier et l'atmosphère ambiante, échanges qui altèrent lentement le 
système dans son identité de substance. 

Il suit de là que, pour l'explication des virages, ou changements de direction 
venant à la suite d'un trajet rectiligne, l'équation (9) ou (10) aurait besoin d'être 
complétée par un cinquième terme, nécessairement très complexe, formé eu 
ajoutant aux coordonnées /,y, /, qui définissent la situation des éléments dm de 
la masse du système par rapport au plan médian KGA, des parties t7, y',l', 
fonctions du temps t, et dont la troisième, l' ne serait plus pareille de part et 
d'autre du plan Κ(ίΑ. On voit que ce cinquième terme dépendrait, comme Y et 
Κ ou s, d'une sorte de fonction arbitraire, exprimant les mouvements propres 
plus ou moins étendus du cavalier sur la bicyclette, et mise à sa disposition 
comme le sont déjà les deux dérivées premières de V et de «. Mais il est clair 
que celte troisième fonction arbitraire n'entrerait pas dans l'équation d'une ma-

nière aussi simple que le font les deux premières, et que surtout elle 

ne représenterait pas une manœuvre aussi facile à préciser que celles des pédales 

ou du guidon. Pour mieux dire, les deux fonctions arbitraires expriment 

les deux éléments que nous avons réussi à dégager,dans celte troisième fonction, 
qui comprend encore tout ce qui est resté indistinct et confus dans l'action ou 
les mouvements propres du cavalier. C'est quand cette action ou ces mouvements 
propres se réduisent strictement aux manœuvres des pédales et du guidon, cjue 
notre équation (9) ou (io) s'applique. 

. Un résumé du présent Mémoire a paru dans les Comptes rendus des séances 
de Γ Académie des Sciences (t. CXXV11, p. 8^3 et 895 ; 28 novembre et ù dé-
cembre 1898). 


