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Sur la stabilité d'un navire qui porte du lest liquide; 

PAR M. P. DUHEM. 

Introduction. 

A la surface de séparation S
l2

 de deux fluides quelconques, ι et 2, 
soumis à des forces quelconques, flotte un corps solide 3. Ce corps 
porte du lest liquide qui y peut être contenu de deux manières : 

Tantôt (fig. 1), une cavité entièrement close contient deux fluides. 

Fig. 1. Fig. 2. 

4 et 5, superposés suivant une surface S,
5

, par exemple un liquide et 
de l'air; tantôt {fig. 2) une cavité, librement ouverte dans le fluide 1, 
renferme une certaine quantité du liquide 4· 

Ces deux cas diffèrent à peine au point de vue de la Mécanique, et 
il sera assurément suffisant de traiter l'un d'eux, le second par exem-
ple; les résultats obtenus s'étendront sans peine au premier. 
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L'établissement des conditions d'équilibre d'un flotteur qui porte 
du lest liquide n'offre rien qui soit difficile, ni rien qui soit nouveau. 
Nous pourrons donc regarder cette question comme résolue et la 
passer sous silence. 

Imaginons que le flotteur et le lest liquide qui y est contenu aient 
pris leur état d'équilibre; solidifions le lest liquide; il formera, avec 
le vaisseau qui le porte, un flotteur entièrement solide dont la stabi-
lité pourra être étudiée par les méthodes que nous avons disculées 
ailleurs. Les conditions de stabilité ainsi obtenues ne sont pas celles 
qu'il convient de réaliser pour assurer la stabilité du vaisseau portant 
du lest supposé liquide; le problème qui va nous occuper consiste à 
rechercher.en quoi les secondes conditions diffèrent des premières. 

Cette importante question ne parait pas avoir sollicité les efforts 
des mécaniciens, jusqu'en 1881, époque où M. Guyou publia, d'abord 
dans le cours autographié de l'École Navale, puis dans la Revue ma-
ritime, une étude sur la Théorie de la variation de la stabilité, ou 
de la stabilité différentielle. Cette étude, exposée de nouveau par 
son auteur dans sa Théorie du navire (Paris, 1887), renfermait un 
important théorème qui résout, pour un cas très particulier, il est 
vrai, le problème qui nous occupe. 

Nous nous proposons, dans le présent travail, d'étudier ce pro-
blème d'une manière entièrement générale, en faisant usage des mé-
thodes et des formules qui nous ont servi (') à étudier la stabilité 
d'un flotteur ne contenant pas de liquide (2). 

(1 ) Sur ta stabilité de t:équilibre des corps flottants ( Journal de Mathé-
matiques pures et appliquées, 5e série, t. I, p. 91; 1895). 

(*) Dans noire précédent Mémoire, nous avions élevé quelques objections 
contre la théorie de la stabilité des corps flottants donnée par M. Guyou; en 
réalité, la démonstration de M. Guyou évite ces objections parce que : 

i° La translation verticale d'un corps immergé dans un liquide que termine 
une surface plane élève le centre de gravité du système tant que le poids du 
liquide déplacé diffère du poids du flotteur, et cela quelle que soit L'orientation 
du solide. 

20 La dénivellation du liquide élève le centre de gravité du système, quelle 
que soit la position du flotteur. 

Ces deux remarques entraînent l'égalité à zéro des termes dont la présence 
justifierait, en général, notre objection. 
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I. — Stabilité d'un flotteur portant du lest liquide et soumis 
& des forces extérieures quelconques. 

Nous nous supposerons placés dans le cas auquel correspond la 
fig. 2. En conservant alors des notations semblables de tout point à 
celles dont nous avons fait usage dans notre travail Sur la stabilité 
de V équilibre des corps flottants, nous établirons la proposition sui-
vante : 

Un flotteur solide 3, portant du lest liquide 4, flotte à la surface 
de séparation de deux fluides ι et 2 que limite une surface close, 
d'étendue finie, invariable de position et de forme. Pour que l'é-
quilibre d'un tel système soit stable, il faut et il suffit que l'on ait, 
pour tout déplacement virtuel du système, l'inégalité 

>*S A*<T.-T,) = 2 IW«-W)-l(S)„V5l 

+f
s
/'{r>+àiDy+^^hd^· 

(1) >*S A*<T.-T,) = 2 IW«-W)-l(S)„V5l 

+f
Su

 ρ· (si 0λ'+^ Dy+siD-) ε> rfS'< 

>*S A*<T.-T,) = 2 IW«-W)-l(S)„V5l 

+ R o. 

R est une forme quadratique des six variables 8f, 8g, 8h, cl, 
8m, 8n : 

>*S A*<T.-T,) = 2 IW«-W)-l(S)„V5l 

>*S A*<T.-T,) = 2 IW«-W)-l(S)„V5l 
i ,x _ ffl| > » /* m.-*- m. 

(2)>*S A*<T.-T,) = 2 IW«-W)-l(S)„V5l 

1 4- B
15
 8f8m -h B

<E
 8f8n 

I -h B
AO

 8g on -h B
2A

 8g 81 
\ 4- Β

3Λ
 8h 81 4- B

35
 8h 8m. 
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Les coefficients B
/y

 ont des formes analogues à celles des coeffi-
cients A,y considérés dans notre Mémoire Sur la stabilité de l'équi-
libre des corps flottante) mais plus compliquées. Tandis que l'on 
avait, par exemple, 

(3) 
( A" ="J[ fl S5cos(N,a;)rfS" 

>*S A*<T.-T,) = 2 IW«-W)-l(S)„V5l 

on aura 

( Bn=rr ~f
Si

 p' pa^cos(N,j?)rfS
a

, 

>*S ,) = 2 IW«-W)-l(S)„V5l 

On aperçoit aisément, sur cet exemple, comment chacun des coef-
ficients B/y se déduit du coefficient A,y correspondant. 

On peut imaginer des déplacements virtuels qui laissent invariable 
la densité du fluide qui remplit chacun des éléments de volume du 
système; seulement, en exprimant que la masse de chacun des trois 
fluides doit demeurer invariable, on trouve que de semblables dépla-
cements sont assujettis aux conditions suivantes : 

f ρ^ε, ciS
12

-H / p
t
z
t
dS

n
-h f p, e

(
i/S

n
=o, 

>*S A*<W«-W)-l(S)„V5l 

>*S A*<T.-T,) = 2 IW«-W)-l(S)„V5l 

Si l'on remarque que, le long de la surface S,
2

, les densités pn p., 
ont des valeurs constantes r,, r

2
; que, le long de la surface SM, les 

densités ρ,, ρ
λ
 ont des valeurs constantes r\, r«, les conditions précé-
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dentes peuvent s'écrire 

(5) 

r{ f £,dSM-l·/ p,£,rfSl3 = o, 

Γ2 ̂  ^2 ̂ 12 4" £ Ps^2 dSo3 —o, 

r
4
 Γ £

4
cîS

m
4-/*

2
 / p

4
£
4

e£S
34

=o. 

On peut même assujettir un tel déplacement à ne pas déformer ni 
déplacer les surfaces de séparation S

12
, S

14
 des divers fluides. Dans 

ce cas, les conditions (5) deviennent 

(<>) 

j ρ, ε, ciS,
3
 — o, 

Sis 

£ po —- O, 
. 

·/ p,£,rfSl3 = o, 

En vertu de l'égalité (11) de notre Mémoire Sur la stabilité de 
l'équilibre des corps flottants, ces trois conditions (6) deviennent 
trois relations linéaires et homogènes entre les six variations δ/, δ°% 
oh, δ/, δ/η, δη. Voici la première de ces relations : 

(7) 

δ/ f p, cos(N, og f p, cos(N, /)<fô
13 

-t- δΛ / p, cos(N,=) dS 12 

-h oil p,[ycos(N, z)— ^cos(N,/)]rfS
l;

, 

-f- δ m I p,[scos(N, x) — a?cos(N,-)] dS
i3 

-h on J p, [o;cos(N,y) —^cos(N,ir)]i/S,
3
 = o. 
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Les deux autres se déduisent de celle-là en remplaçant l'indice ι soit 
par l'indice a, soit par l'indice 4· Nous les désignerons par (7 bis) et 
(7 ter). 

En raisonnant comme nous l'avons fait au Chapitre III, § II de 
notre Mémoire Sur la stabilité de Véquilibre des corps flottants, 
nous obtiendrons sans peine les conditions suivantes pour la stabilité 
d'un flotteur qui porte du lest liquide : 

I. CONDITIONS NÉCESSAIRES, MAIS PEUT-ÊTRE INSUFFISANTES. — I° La 
force extérieure n'est pas nulle en tous les points d'une aire d'éten-
due finie, prise sur la surface de contact de deux fluides apparte-
nant au système; en tout point d'une telle surface où elle est diffé-
rente de zéro, elle est dirigée vers l'intérieur du plus dense des 
deux fluides. 

20 La forme R est une forme définie positive lorsqu'on suppose 
les six variables 8f, 8g, 8/1, δ/, δ/η, 8n, liées par les trois relations 
("). (l bis), (τ 1er). 

II. CONDITIONS SUFFISANTES, MAIS PEUT-ÊTRE PAS NÉCESSAIRES. — 

i° La force extérieure n'est pas nulle en tous les points d'une aire 
d'étendue finie, prise sur la surface de contact de deux fluides 
appartenant au système; en tout point d'une telle surface où elle 
est différente de zéro, elle est dirigée vers l'intérieur du plus dense 
des deux fluides. 

20 La forme R, où les variables 8f, 8g, 8h, 8l, 8m, 8n sont indé-
pendantes, est une forme définie positive; ou, du moins, si elle 
s'annule, c'est pour des valeurs des variables 8f, 8g, 8/1, 81, 8m, 8n, 
qui ne vérifient pas les égalités (7), (7 bis), (7 ter). 

II. — Comparaison avec un flotteur portant du lest solide. 

Supposons que, le système étant en équilibre, on solidifie le li-
quide 4. On obtiendra un flotteur entièrement solide. Pour que l'équi-
libre d'un tel flotteur soit stable, il faut et il suffit que l'on ait, pour 
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tout déplacement virtuel du système, l'inégalité 

D*+%Dr+T; Dz) t2dS,..-h τ > ο. 

Ρ4 ^ cos(/i, ,x)dS(i- p4 —cos(Ν, Λ?) dS34. 

! φ (MD*+%Dr+T; Dz) t
2

dS,..-h τ > ο. 

Τ est une forme quadratique des six variables Sf, Sg, Sh, cl, 
om, Sn, 

/ τ = G „(S/y +C
22

(^)2 + C 33 (δΛ)2 

-+- C
44

(S/)2 H-C
55

(§M)24-C
CO

(S/I)2 

cos(/i, ,x)dS(i- p4 —cos(Ν, Λ?) dS34. 
i ,x _ ffl| > » /* m.-*- m. 

A*<T.-T,) = 2 IW«-W)-l(S)„V5l 

2 IW«-W)-l(S)„V5l 
\ 4-C

34
δΛδί 4-0

35
δΑδ/η. 

Les coefficients C,y· ont des formes analogues à celles des coefficients 
A^ ou B/y. On a, par exemple, 

( C,, = ~X
t

 p,^COS(N' ̂ ^δ,3_Χ P2^cos(N' a?)rfS28 

(ίο) | - f p, ~cos(n,,x)dS,
A 

[ +JJ>âJdv>+l?>àF>di'>> 

les autres coefficients C
tJ

- ont des formes analogues. 
L'expression (ro) du coefficient G,, peut se transformer. 
On a, en effet, 

>*S A*<T.-T,) = 2 IW«-W)-l(S)„V5l 

Ρ4 ^ cos(/i, ,x)dS(i- p4 —cos(Ν, Λ?) dS34. 
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Cette égalité et d'autres analogues permettent de transformer l'expres-
sion de T. Posons 

<») 

\x = δ/-h ζ Sm — χ δη, 
\y = Sg H- χ δη — ζ δΐ, 
Is = δ/ι -h y δΐ — χδηι; 

Δχ, Δy, Δζ sont les composantes du déplacement du point (x, y, ζ), 
si on le suppose invariablement lié au corps solide. 

Nous aurons, on le voit sans peine, 

U2) 

~i* + Tyty + 37 Δι) (ÈSx + + 37 A:) dv> 

dl» rf*-. ày' ;(?*) <h ¿X-

X [cos(/i,,#)A.r -+- cos(n,,y)Δ/ + cos(«, ζ)Δζ] c/S,, 

- f p1 (dv (n, x)+djty + 37) 
X [cOS(«,,#)A# -+- COS(rt,,y)Aj -+- COS(fl,, 3)Δ?]βί8η. 

Mais on a ( '), en tout point du fluide 4 en équilibre, 

ίψϊ +v=c, 

C étant une constante. On déduit de là 

dl» rf*-. ày' ;(?*) <h ¿X-

dl» rf*-. ày' ;(?*) <h ¿X-

(') 5«r la stabilité de l'équilibre des corps flottants, Chap. I, égalité (38) 
( Journal de Mathématiques pures et appliquées, 5e série, t. I, p. 128). 
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En vertu de cette égalité, l'égalité (12) peut s'écrire 
3i 

T= R 

*1.^0^*^)'"·· 

-f,AdV Ax + dv Ay + dV Az) 
X [cos (Λ,, χ) Δχ H- cos (nK,y) Δγ ■+■ cos (Λ, , ζ) Δζ] rfSl4 

+J^'{te^+r
y

*y+T^z) 
x[cos(wnic)Aa7 4-cos(/i,,y)Ay-H cos(/i,,s)Δ-sJrfS,*. 

(ι3) 

Cette expression de la forme Τ va nous permettre de démontrer le 
théorème suivant : 

Lorsque le flotteur portant le fluide 4 est en équilibre stable, 
l'équilibre demeure stable si l'on vient à solidifier le fluide 4. 

En effet, l'hypothèse de ce théorème revient à supposer que l'inéga-
lité (1) est vérifiée pour tous les déplacements virtuels que l'on peut 
imposer au système. Or, parmi ces déplacements, figurent évidem-
ment ceux où chaque point matériel du fluide 4 demeure invariable-
ment lié au solide 3. Pour un tel déplacement, on a, en tout point du 
fluide 4, 

Sa? = Δχ $γ = Δγ, L· = Δζ, 

Δχ, Δγ, Δζ étant données par les égalités (11); on a aussi 

ε, = cos(h cos(n,,iy)Ay -h cos(η,,ζ)Δζ, 

En tout point de la surface S,4f on a 

ε, = cos(ηηχ)Δχ -h cos(n,,
i
y)Ay -h cos(η,,ζ)Δζ, 

= — [οο8(η
η

χ)Δχ -h cos(η,,γ)Δγ H- COS(/I,, 2)ΔΖ] 
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et Ton peut prendre 

D# = Aa?, Dy = ày, Dz = Δζ. 

Moyennant ces égalités et l'égalité (i3), l'inégalité (i) devient iden-
tique à l'inégalité (8), ce qui démontre le théorème énoncé. 

La réciproque de la proposition précédente n'est pas exacte; il 
peut se faire que le flotteur, chargé du corps 4 solidifié, soil en 
équilibre stable et que l'équilibre devienne instable si l'on rend la 
fluidité au corps 4-

Considérons, en effet, le déplacement le plus général du système où 
le fluide 4 est supposé solidifié. De ce déplacement, nous pourrons dé-
duire un autre déplacement virtuel du système où le corps 4 a gardé 
sa fluidité en opérant de la manière suivante : 

i° Les quantités δ/, og, δl, δ m, δη ont la même valeur en cha-
cun des deux déplacements; 

2° Les quantités δρ,, δρ2
 sont les mêmes dans les deux déplace-

ments ; 
3° Les quantités D#, Dy, Dz ont la même valeur, en chaque point 

de la surface S12, en l'un et l'autre déplacement; 
4° Les déplacements Dse, Dy, Dz aux divers points de la surface S,, 

vérifient l'égalité 

(14)Il [cos(n,,a;)Dic -+- cos(/i
0

jy)Dy cos(n,, z)Dz] dS
tA 

r | = J [cos(N, χ)Δχ -4- cos(N,/)A/ -t-cos(N, z)Az]dS
34

; 

5° En tout point du fluide 4, on a 

Sp4= - [dp1 ̂ +J' Δ·χ+· 

Cherchons à écrire, pour le second déplacement virtuel, l'inéga-
lité (i). Nous verrons sans peine que, pour former le premier membre 
de cette inégalité, il suffit de prendre le premier membre de l'inéga-
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lité (12) relative au second déplacement virtuel et y ajouter la quan-
tité 

¿(p.-^gn.+ gDy+gDs) 

(15) X [cos(«,, a-) Dx -t- cos(n,,y) 

Dy -+- cos(n,,z) Ds] rfS 

\ x[cos(«,,a?)Ax-f- cos(//,,y)A/ -h cos(/i,,i)Ai]r/S,,. 

Or, on peut aisément montrer que cette quantité (i5) peut prendre 
des valeurs négatives alors que l'égalité (14) est vérifiée; en sorte que 
l'inégalité (12) peut être vérifiée sans que l'inégalité (1) le soit. 

Supposons, en effet, que l'on ait, dans le premier déplacement vir-
tuel. 

[eos(N, x)Xc -t- cos(N,/) Ay -+- cos(N, ^)Aj] = o, 

égalité qui constitue une relation linéaire et homogène entre les six 
variables 

0/, ο//, o/, 0//2, G/I. 

On pourra alors satisfaire à la condition (i4) en prenant, en tout point 
de la surface Sm 

Dx = o, Dy = o, . D3 = o. 

La quantité (i5) se réduira à son second terme que l'on pourra écrire 

Js lcoa("«>x)t* + «“(«.»/)Ak + cos(«. =)A=j'dS(l 

Or, les conditions nécessaires pour la stabilité de l'équilibre des 
fluides 1 et 4» considérés comme seuls mobiles, nous enseignent que 
cette quantité est forcément négative. 

La proposition énoncée est donc démontrée. 
Joura. de Math. (5· série), tome II. — Fasc. I, 1896. 5 



54 P. DUΙΪΕM. 

III. — Cas où les forces agissantes se réduisent & la pesanteur 
et où les fluides sont homogènes. 

Considérons maintenant le cas particulier où les forces extérieures 
agissantes se réduisent à la pesanteur et où les fluides i, 2, 4 sont 
sensiblement homogènes, soit qu'ils oiîrent, comme les liquides, une 
compressibilitc négligeable, soit que leur faible densité varie très peu 
avec la hauteur, comme il arrive pour les gaz. 

Prenons l'axe des ζ vertical et dirigé vers le haut. 
Soient 

S'
)s

 la section que le plan S
l2

 prolongé détermine dans l'espace clos 
occupé par les corps 1 et 4 ; 

Σ, l'aire de cette section; 
σ, l'aire de la surface S14 ; 
μ. = M, -+- M4, la masse de l'ensemble des corps 3 et 4 ; 
ζ, la cote du centre de gravité de cette masse ; 
Z, la cote du centre de gravité de la masse des fluides 1 et 2 déplacés 

par les corps 3 et 4. 

Des calculs semblables à ceux que nous avons développés dans 
notre Mémoire Sur la stabilité des corps flottants (Chap. Ill, §V) 
nous donneront aisément l'égalité suivante 

R= g(?i-?l)s(Shy 

sr[V(z - - ?.)j£ -(p..!(*/;’ 

+ S|V(
Z
 - 0 + ?«)jf #2^S;,-(p

4

 — p,)jf ardS
14

j(o/>/)2 

— xydS;
2

-(p,-p,)^a7</S
M

J Ubn 

+ Χ^'
(ϊ

-(ρ
4

- pOjfydS14] SAbo 

- 2g [(p2-p1) Ss1 #dS'
12

-(p
4
-p»)^ ;rdS

l4
lS4$/w. 

(«6) 
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Les conditions (7), (7 bis), (7 1er) prennent les formes suivantes : 

(17) (Σ-σ)δΛ + ̂  xd$'
ri

-jf ydS^Sm = 0, 

(18) 
Σ ΔΛ -h Y Î/S',, — %dS\., = 0, 

S oh + ol Ss14 ydS
tA

 — $m£ xdS
tA
 = o. 

L'égalité (17) est une conséquence des égalités (18), qui doivent 
seules être conservées. 

L'inspection des égalités (16) et (18) montre immédiatement que 
l'on ne pourra pas, en général, raisonner dans le cas qui nous occupe 
comme nous l'avons fait pour traiter la stabilité d'un corps solide et 
pesant flottant à la surface de séparation de deux fluides pesants et 
homogènes. On ne pourra étendre ces raisonnements au cas qui nous 
occupe actuellement que dans le cas où il sera possible de choisir les 
axes coordonnés de telle façon que l'on ait à la fois 

£ xdS'^ = °> f ydS'
ri
 = o, 

S„ 

f xdS„ =0, f ydS
l!k
 =0, 

c'est-à-dire dans le cas oà le centre de gravité de l'aire de la sec-
tion à fleur d'eau S'

J2
 et le centre de gravité de l'aire de la sur-

face S,, qui limite le fluide 4 sont sur une même verticale. 
Dans ce cas, si nous prenons cette verticale pour axe des z, la 

forme quadratique R deviendra 

('9) 

sr[V(z - - ?.)j£ -(p..!(* 

+ (?»-?.) f ys<<s
u
l(5/)! 

+* ^^(
z
-ï)+(?a-p«)jTp<)£y2dSi^omy 

~ «/«®',
3
-(p4-Pi)jra?yrfS

M
j 8/om, 
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tandis que les conditions (17) et (18) se réduiront à 

(20) oh = o. 

Moyennant la condition indiquée en italiques, on peut énoncer la 
proposition suivante : 

Pour que l'équilibre du système soit stable, il faut et il suffit : 
i° que le fluide 1 soit moins dense que les fluides 2 d/j; 20 que la 
forme quadratique en δ/, δ/w, 

(21) 

Û = |V(Z - ζ) + (ρ, - Ρ,)jf y2 dS'
l2

 - (p
4
 - ρ,)jf y

2 dS
t t 
j (δ/)2 

-h Γρ.(Ζ-ζ) + (ρ
2
-ρ

2
) Γ x2dS'

ts
-(p

4
-p

i
)f a-2rfS

#4
l(ow)2 

- 2 Γ( p
2
 - ρ, )jf xy dS\

 2
 - ( ρ

4
 - ρ, )jf #7

 4 
j δ/ om 

ΑΌ/£ une forme définie positive. 

Dans le cas que nous venons de préciser, la solution du problème 
relatif à la stabilité d'un vaisseau qui porte du lest liquide est com-
plète; mais on voit combien ce cas est particulier, si on le compare à la 
généralité de la solution obtenue depuis longtemps dans le cas où le 
flotteur ne porte pas de lest liquide. 

La condition que nous venons d'obtenir peut s'interpréter géomé-
triquement : 

Hig. 3. 
y*1 

/ ÎXj
v / 

A 

Sur le plan de flottaison traçons la ligne de flottaison Y {fig. 3), 
entourant l'aire Σ ; sur le même plan, projetons l'aire σ, dont la pro-
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jection est circonscrite par la ligne γ. Les deux aires Σ, σ ont, par 
hypothèse, le même centre de gravité G. 

Recouvrons l'aire Σ d'un fluide Actif ayant une densité superficielle 
positive (p

a
 — p, ) ; recouvrons l'aire σd'un fluide fictif ayant une den-

sité superficielle négative (ρ,— p,). 

Cherchons le moment d'inertie de ce système fictif par rapport à 
un axe variable AA', situé dans le plan de flottaison et passant par le 
point G. Ce moment d'inertie a, pour une certaine orientation de 
l'axe AA', une valeur minima j. 

La condition précédente équivaut à celle-ci 

ou 

(22) 

Ζ-ζ+^>ο 

ζ < Ζ -h - · 51 

Supposons que l'on solidifie le fluide 4· Soit i le plus petit moment 
d'inertie par rapport à l'axe variable AA' de la seule aire Σ recouverte 
du fluide fictif de densité positive (p3— p,). La condition nécessaire 
et suffisante pour la stabilité de l'équilibre du flotteur s'exprimerait 
par l'inégalité 

(23) 

Or, on a évidemment 
A < Z + 7 

i<L 

Donc, pour que l'inégalité (22) soit vérifiée, il est nécessaire, mais 
non suffisant, que l'inégalité (23) le soit également; on a ici un 
exemple de la proposition générale énoncée au § II. 

La proposition que nous venons de démontrer renferme comme cas 
particulier le théorème énoncé par M. Guyou. 

La condition, indiquée en italiques, à laquelle le théorème précé-
dent doit son exactitude, lui ôte tout intérêt au point de vue de la 
construction navale; cette condition, en effet, ne sera presque jamais 
remplie dans les divers cas qu'offre la pratique (navire dont un ou 
plusieurs compartiments étanches sont partiellement noyés, porteur 
de pétrole dont une ou plusieurs caisses sont incomplètement rem-
plies, etc.). Cette lacune, toutefois, peut être en partie comblée si l'on 
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observe que l'architecture navale a surtout besoin de connaître une 
condition suffisante, qui l'assure de la stabilité d'un navire, la condi-
tion nécessaire et suffisante constituant un idéal dont elle peut, à la 
rigueur, se passer. 

Nous savons qu'il suffit, pour la stabilité du navire, que la forme 
quadratique R soit une forme définie positive, bien que cette con-
dition ne soit peut-être pas nécessaire. 

Or l'expression de la forme R peut se simplifier. 
Sur le plan de flottaison, traçons la ligne de flottaison Τ (fig. 3), 

entourant l'aire Σ; sur le même plan, projetons l'aire σ, dont la pro-
jection est circonscrite par la ligne γ. Recouvrons l'aire Σ d'un fluide 
fictif ayant une densité superficielle positive (ρ2 — ρi); recouvrons 
l'au^d'un fluide fictif ayantune densité superficielle nègative($

K
 — p

4
). 

Soit G le centre de gravité du système fictif ainsi constitué; 
nous porterons en G l'origine des coordonnées, ce qui, dans la forme R, 
fera disparaître les termes en δ/ι δ/ et δ Λ δ/η. 

Cherchons le moment d'inertie du système fictif par rapport à un 
axe variable AA', situé dans le plan de flottaison et passant par le 
point G. Ce moment d'inertie a, pour une certaine orientation de 
l'axe AA', une valeur maxima (positive ou négative) J et pour une 
autre orientation une valeur minima (positive ou négative) j. Prenons 
la première orientation pour axe des x, la seconde pour axe des y. 
Le terme en δ/δ/η disparaîtra dans l'expression de R qui se réduira à 

v =#(?*-P()2(SA)2 

+ ,[P(Z - ζ)+ i)(Siy+ g[y.(z - ζ) +j](imy. 

R est suffisant, pour la stabilité de l'équilibre du navire, que la 
forme V soit une forme définie positive. Pour que la forme Y soit 
une forme définie positive, il est évidemment nécessaire et suffisant 
que l'on ait l'inégalité 

Z -t- - — ζ>ο. 

Nous pourrons donc énoncer de la manière suivante une CONDITION QUI 

SUFFIT A ASSURER LA STABILITÉ D'UN NAVIRE PORTANT DU LEST LIQUIDE : 

On considère le navire dans son assiette d'équilibre, en le sup-
posant chargé du lest liquide; 
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On projette sur un même plan horizontal la surface de flottai-
son Σ et la surface terminale σ du lest liquide; 

On recouvre la surface Σ d'un fluide fictif de densité superfi-
cielle positive (p2 — ρ t) et la surface σ d'un fluide fictif de densité 
superficielle négative (p,— p

4
). On cherche le centre de gravité G 

de ce système fictif, puis son moment d'inertie par rapport à 
un axe horizontal variable passant par le point G ; soil j la plus 
petite valeur, positive ou négative, de ce moment d'inertie. La cote 
du centre de gravité du navire et du lest liquide qu'il porte doit 
être inférieure à la cote du centre de gravité des fluides ι et ι dé-

placés, celte dernière cote étant augmentée du quotient - de la 

quantité j par la masse totale du navire et du lest liquide. 
Celle règle s'étend sans peine au cas où le lest liquide forme 

plusieurs masses distinctes, de même densité ou de densités diffé-
rentes. 

IV. — Stabilité d'une cloche à plongeur. — Cas de la pesanteur. 

A la surface de séparation d'un liquide ι et d'un gaz 2, flotte une 
cloche renversée 3, qui renferme un fluide 4· 

Nous pourrions traiter directement et complètement le problème de 

Vi
S

. 4. 

la stabilité d'un pareil système. Mais nous nous bornerons à étudier 
le. cas où les forces extérieures agissantes se réduisent à la pesanteur 
et où les fluides sont supposés homogènes. Dans ce cas, on voit sans 
peine que le problème qui nous occupe actuellement se ramène au 
problème précédent, à la condition de changer ζ en (— z) et g en 



4o P. DXJHEM. — STABILITÉ D'UN NAVIRE QUI PORTE DU LEST LIQUIDE. 

(— g). Nous pouvons donc en donner immédiatement la solution, du 
moins lorsqu'il est possible de l'obtenir. 

Pour qu'il soit possible de résoudre entièrement ce problème, il 
faut que l'aire de la section à fleur d'eau et l'aire de la surface 
qui sépare les fluides ι et 4 aient leurs centres de gravité sur la 
même verticale. 

Si cette condition est réalisée, on peut énoncer la proposition sui-
vante : 

Pour que l'équilibre du système soit stable, il faut et il suflil : 
i° Que le fluide ι soit plus dense que les fluides 2 et 4 ; 
20 Que la forme quadratique en 8/, 8m, 

04) 

\v= ^(;-z)+(Pa - ?.) I y’ «;,-(?•- p.)jj'dS" J <*>» 

(í-Z)+(*. \ I y’ «;,-(?•- p.)jj'dS" J <*>» 

— 2 P.)jT #/<*S'
12

-(p
4

- p,)jf 8/om, 

soit une forme définie négative. 

On interprète aisément cette condition sous la forme que voici : 
Projetons les deux aires Σ, σ sur un plan horizontal. Les deux pro-

jections ont même centre de gravité G. 
Recouvrons la première d'une densité superficielle positive (p, — p

a
) 

et la seconde d'une densité superficielle négative (p
4
 — p,). 

Cherchons le moment d'inertie de ce système fictif par rapport à un 
axe horizontal variable AA'passant par le point G; soit j la valeur 
minima de ce moment d'inertie. La condition précédente équivaut à 
l'inégalité 
(25) l<ï + L-μ 
Si la condition indiquée en italiques n'est pas remplie, nous n'aurons 
plus, en général, de condition nécessaire et suffisante pour la stabilité 
de la cloche ; mais nous pourrons, comme dans le cas précédent, ob-
tenir une condition simplement suffisante de même forme. 


