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Sur la stabilité d’un navire qui porte due lest liquide,

Piax M. P. DUHEM.

Introduction.

A la surface de séparation S,, de deux fluides quelconques, 1 ct 2,
soumis a des forces quelconques, flotte un corps solide 3. Ce corps
porte du lest liquide qui y peut étre contenu de deux manidres :

Tantot (fig. 1), une cavité entiérement close contient deux fluides,

Vig. 1. Fig. 2.

4 et 5, superposés suivant une surface S,;, par exemple un liquide ct
de l'air; tantdt ( fig. 2) une cavité, librement ouverte dans le fluide 1,
renferme une certaine quantité du liquide 4.

Ces deux cas différent & peine au point de vue de la Mécanique, et
il sera assurément suffisant de traiter I'un d’eux, le second par exem-
ple; les résultats obtenus s’étendront sans peine au premier,
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L’établissement des conditions d’équilibre d’un flotteur qui porte
du lest liquide n’offre rien qui soit difficile, ni rien qui soit nouveau.
Nous pourrons donc regarder cette question comme résolue et la
passer sous silence.

Imaginons que le flotteur et le lest liquide qui y est contenu aient
pris leur état d’¢quilibre; solidifions le lest liquide; il formera, avee
le vaisscau qui le porte, un flotteur enti¢rement solide dont la stabi-
lité pourra étre étudiée par les méthodes que nous avons discutées
ailleurs. Les conditions de stabilité ainsi obtenues ne sont pas celles
qu'il convient de réaliscr pour assurer la stabilité du vaisseau portant
du lest supposé liquide; le probléme qui va nous occuper consiste a
rechercher.en quoi les secondes conditions différent des premiéres.

Cette importante question ne parait pas avoir sollicité les efforts
des mécaniciens, jusqu’en 1881, époque ou M. Guyou publia, d'abord
dans le cours autographi¢ de I’Ecole Navale, puis dans la Recue ma-
ritime, une ¢tude sur la Théorie de la variation de la stabilité, ou
de la stabilité différentielle. Cette étude, exposée de nouveau par
son autcur dans sa Théorie du navire (Paris, 1887), renfermait un
important théoréme qui résout, pour un cas trés particulier, il est
vrai, le probléme qui nous occupe.

Nous nous proposons, dans le présent travail, d’étudier ce pro-
hléme d'une maniére entiérement générale, en faisant usage des mé-
thodes ct des formules qui nous ont servi (') & ¢tudier la stabilité
d’un flotteur ne contenant pas de liquide (*).

(') Sur la stabilité de Uéquilibre des corps flottants (Journal de Mathé-
matiques pures et appliquées, 3¢ série, 1. 1, p. g1; 1893).

(*) Dans notre précédent Mémoire, nous avions élevé quelques objections
contre la théorie de la stabilité des corps flottants donnée par M. Guyou; en
véalité, la démonstration de M. Guyou évite ces objections parce que :

1° La translation verticale d'un corps immergé dans un liquide que termine
une surface plane éléve le centre de gravité du systéme tant que le poids du
liquide déplacé differe du poids du flotteur, et cela quelle que soit l'orientation
du solide.

2> La dénivellation du liquide éléve le centre de gravité du systéme, quelle
que soit la position du flotteur.

Ces deux remarques entrainent 'égalité & zéro des termes dont la présence
justifierait, en général, notre objection.
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I. — Stabilité d’un flotteur portant du lest liquide et soumis
4 des forces extérieures guelconques.

Nous nous supposerons placés dans le cas auquel correspond la
fig. 2. En conservant alors des notations semblables de tout point a
celles dont nous avons fait usage dans notre travail Sur la stabilite

de l’équilibre des corps flottants, nous établirons la proposition sui-
vante :

Un flotteur solide 3, portant du lest liguide 4, flotte a la surface
de séparation de deux fluides 1 et 2 que limite une surface close,
d’étendue finie, invariable de position et de forme. Pour que Ué-
quilibre d’un tel systéme soit stable, il faut et il suffit que Uon ait,
pour tout déplacement virtuel du systéme, Uinégalité

fd .,(pl)( 2,) do, _,.f" °=(°’)(8.,)*de +fd ""(P‘)(Sp.)’ do,
+f P'(i)l Dx + d—‘-iDy—*—gD:) g dS,,
—i—f ( Dx—l—d‘/ Dy ()V

+fs“p,

-+
S

(1) | €.dS,,

Dx + Dy + e, dS,,

+R>o.

5

by &)

3)
(gD- +""D +"‘D) ds,,
(5% : Ds)e

R est une forme quadratique des six variables &f, &g, &, &,
Sm, on :

"R= B, (3) -+ Byu(5g)+ B,y (3h)?
+ B, (81)* + B,;(8m)? + B,y (8n)?
+ By, 8gdh + B;,chéf + B,,8f g
(2) { + B3 émdn + By, 8ndl + B, 8ldm
+B,;8fem + B,  8f én

+ B, 3gén + B, &g dl

\ ~+ B, Sh3l + B, ohdm.

Journ. de Math. (5 série), tome 1I. — Fasc. 1, 18g6. 4
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Les coefficients B;; ont des formes analogues a celles des coeffi-
cients A;; considérés dans notre Mémoire Sur la stabilité de Uéqui-
libre des corps floltants, mais plus compliquées. Tandis que I'on
avait, par exemple,

\% ~
A, _—__f o0 2¥ cos(N, z) dS,

(3)
_fp,d cos(N, x)dSq3+fpa %Y doy,

on aura

B,, = fsp, T cos(N, x)dS,:.——f cJn—cos(l\ z)dS,,
(4) 13
—j; p‘%cos(N,x)dS,,+ fs d ,dv,.

On apercoit aisément, sur cet exemple, comment chacun des coef-
ficients B;; se déduit du coefficient A; correspondant.

On peut imaginer des déplacements virtuels qui laissent invariable
la densité du fluide qui remplit chacun des éléments de volume du
systéme; sculement, en exprimant que la masse de chacun des trois
fluides doit demeurer invariable, on trouve que de semblables dépla-
cements sont assujettis aux conditions suivantes :

j;p.a.dS.ﬁ«lp.s.dS,3+£p,a.dS,,=o,

13 13 13

fpgsgdS|g+f PgigdSQ:y:O’
- sy,

Sy

peesdS, + [ p,e,dS,, =o.

Sie $y4

Si 'on remarque que, le long de la surface S, ,, les densités p,, ¢,
ont des valeurs constantes r, ry; que, le long de la surface S,,, les
densités p,, p, ont des valeurs constantes r}, r,, les conditions précé-
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dentes peuvent s’écrire

rlfsldsl2+r:£ 5|dscn+£P|54dS|3=°a
Sia 1° 13

(5) ‘rﬁf g, dS,, + £Pﬂe2dszs=o’
S 23

12

I“f E‘ ds._‘ +"3f P‘E4dS:N = 0.
] S.

15 34

On peut méme assujettir un tel déplacement a ne pas déformer ni
déplacer les surfaces de séparation S, S,, des divers fluides. Dans
ce cas, les conditions (5) deviennent

£p,s,dS.3=(),

(6) 4[?252d823=0’

S

f 2,5, dS;, =o.

Say

En vertu de P'égalité (11) de notre Mémoire Sur la stabilité de
Uéquilibre des corps flottants, ces trois conditions (6) deviennent
trois relations linéaires et homogénes entre les six variations &f, 8g,
ah, 81, 8m, Sn. Voici la premiére de ces relations:

! 3ff 24 cos(N,x)dS.3+3gf picos(N, y)dS,,
Sys S,

-I—ghfsup‘cos(N, 5)dS,,

(7) + 8l [ &,[ycos(N,3)— scos(N, y)]dS,,

sl!

+8m [ p,[5cos(N, z) — x cos(N, z)] dS,,

+ Srzf pi[zcos(N, y)— ycos(N,x)|dS,; = o.
sl&
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Les deux autres se déduisent de celle-ld en remplacant I'indice 1 soit
par l'indice 2, soit par l'indice 4. Nous les désignerons par (7 bis) et
(7 ter).

En raisonnant comme nous I'avons fait au Chapitre III, § 1I de
notre Mémoire Sur la stabilité de I’équilibre des corps flotiants,
nous obtiendrons sans peine les conditions suivantes pour la stabilité
d’un flotteur qui porte du lest liquide :

I. CoNDITIONS NECESSAIRES, MAIS PEUT-ETRE INSUFFISANTES. — 1° La
Sforce extérieure n’est pas nulle en tous les points d’une aire d’éten-
due finie, prise sur la surface de contact de deux fluides apparte-
nani au systéme; en tout point d’une telle surface oit elle est diffé-
rente de zéro, elle est dirigée vers Vintérieur du plus dense des
deuz fluides.

2° La forme R est unc forme deﬁnie positive lorsqu’on suppose
les siz variables 3f, g, Sh, 8l, 8m, dn, lides par les trois relations

(7), (7 bis), (7 ter).

II. CoNDITIONS SUFFISANTES, MAIS PEUT-ETRE PAS NECESSAIRES. —
1° La force extérieure n’est pas nulle en tous les points d’une aire
d’étendue finie, prise sur la surface de contact de deux fluides
appartenant au systéme; en tout point d’unc telle surface ot elle
est différente de zéro, elle est dirigée vers Uintéricur du plus dense
des deux fluides.

2° La forme R, o& les variables £f, £g, Sh, 81, 8m, on sont indé-
pendantes, est une forme définie positive; ou, du moins, st elle
Sannule, ¢’est pour des valeurs des variables 8f, 8g, Sh, 81, 8m, cn,
qui ne verifient pas les égalités (7), (7 bis), (7 ter).

II. — Comparaison avec un flotteur portant du lest solide.

Supposons que, le systéme étant en équilibre, on solidifie le li-
quide 4. On obtiendra un flotteur enti¢rement solide. Pour que I'équi-
libre d’un tel flotteur soit stable, il faut et il suffit que 1’on ait, pour

q p
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tout déplacement virtuel du systéme, I'inégalité

Sfd’?: P')(Sp,)"'dv,+fd=?’(9’)(bp,)2d02
(8) +fp.(ﬂDx+‘ﬁDy+'ﬁD:-)e dS,,

+f (dVDa:+—Dy+ Dz)s,dS.q+T>0.

T est une forme quadratique des six variables df, &g, Sh, ¢l,
om, &, 'T= C, (8f)* + Cs(8g)* + Cy, (8h)?

+C, (81 +Cy5(8m)*+ Cyy (3n)?

+ Cby 8 S + Cq, SR 8f + C,,8f 8g

(9) ( + Csa®mon+ Cy,8ndl + C,,8l8m
+C;8fdm+ C,,8f on

+ Cy8g8n +C,, 8g dl

+Cy, 88l +C,;0hdm.

Les coefficients C;; ont des formes analogues a celles des coefficients
A;jouB;;. On a, par exemple,

ov ’ ov .
C,,:-L:p,%cos(N, ) dS.s—js;pgﬁcos(N, z)dS,,
(10) | —fp.j—zcos(n,,x)ds,.

ﬂ-qu—’—udo +fp, —dv,;

les autres coefficients C;; ont des formes analogues.

L’expression (10) du coefficient C,, peut se transformer.
On a, en effet,

Al oV oo,
P‘ dx’ f dx dr 9 s

A%
+fsup.ﬁcos(n.,x)dsu—fs“p. ﬁcos(N,w)dsu.
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Cette égalité et d’autres analogues permettent de transformer I'expres-
sion de T. Posons

( Az =8f + 358m — y dn,
(11) Ay =38g +xdn — 381,
Az =Sh+ydl —xdm;

Az, Ay, Az sont les composantes du déplacement du point (x, ¥, 3),
si on le suppose invariablement lié au corps solide.
Nous aurons, on le voit sans peine,

T= R ,
av ov aV .y N/, Opy 4. dps s
_[(%Ax-;—(—);,Ay+EAH)(0—xAx+5y-Ay+7);Ae)dva

oV v av ,
X [cos(n,, x)Ar + cos(n,,y) Ay + cos(n, 5)As]dS,,

v ov av . _
+ 5 Ps (;);Aw + WA}/ + BZA“)

(12) !

X [cos(n,, z) Az + cos(n,, y) Ay + cos(n,, 3)Az]dS,,.

Mais on a ('), en tout point du fluide 4 en équilibre,

(. étant une constante. On déduit de 13

oV oV v, _
d*o,(21)

+ —45
3}

024 92y Q& J
(b—x—Ax+b—;Ay+ 0 as)=o.

(*) Sur la stabilité de Uéquilibre des corps flottants, Chap. 1, égalité (38)
(Journal de Mathématiques pures et appliquées, 3¢ série, t. I, p. 128).
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En vertu de cette égalité, I'égalité (12) peut s'écrire

(13) |

T= R
dou(ps) (das des UTYVAY
+ A e (%M—}- oy Ay + 5;&) dy,
av oV v,
’“Lf*(d—xm'*' 5+ ;);A,,)

X [cos(n,, ) Az + cos(n,,y) Ay + cos(n,,5)Az]dS,,

v WV, o aV,

\ X[cos(r,,x) Az + cos(n,,y) Ay + cos(n,,3) As] dS,,.

Cette expression de la forme T va nous permettre de démontrer le
théoréme suivant :

Lorsque le flotteur portant le fluide § est en équilibre stable,
Uéquilibre demeure stable si I’on vient a solidifier le fluide 4.

Ene
lité (1)

ffet, ’hypothése de ce théoréme revient a supposer que I'inéga-
est vérifiée pour tous les déplacements virtuels que 'on peut

imposer au systtme. Or, parmi ces déplacements, figurent évidem-
ment ceux ou chaque point matériel du fluide 4 demeure invariable-

ment li

¢ au solide 3. Pour un tel déplacement, on a, en tout point du

fluide 4,

Sx=Ar Sy=A4y, Od3=As

Az, Ay, As étant données par les égalités (11); on a aussi

—_ (% 024 92 4 -

En tout point de la surface S,,, ona

e, = cos(n,,x)Ax + cos(n,,y)Ay + cos(n,,z)Az,
&, =—[cos(n,,x) Az + cos(n,, ¥ )Ay + cos(n,, 3)Az]
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et I'on peut prendre
Dz =Az, Dy=A4y, Dz=As.

Moyennant ces égalités et I'égalité (13), P'inégalité (1) devient iden-
tique a l'inégalité (8), ce qui démontre le théoréme énoncé.

La réciproque de la proposition précédente n’est pas exacte; il
peut se faire que le flolteur, chargé du corps 4 solidifié, soit en
équilibre stable et que Uéquilibre devienne instable si l'on rend la
fluidité au corps 4.

Considérons, en effet, le déplacement le plus général du systéme ou
le fluide 4 est supposé solidifié. De ce déplacement, nous pourrons dé-
duire un autre déplacement virtuel du systéme ou le corps 4 a gardé
sa fluidité en opérant de la maniére suivante :

1° Les quantités 8f, og, 8k, ¢!, m, Sn ont la méme valeur en cha-
cun des deux déplacements;

2¢ Les quantités 83,, 8p, sont les mémes dans les deux déplace-
ments;

3° Les quantités Dz, Dy, Dz ont la méme valeur, en chaque point
de la surface S,,, en I'un et 'autre déplacement;

4° Les déplacements Dz, Dy, Dz aux divers points de la surface S,,
vérifient I'égalité

f [cos(n,, x) Dz + cos(n,,y) Dy + cos(n,, 3)D3]dS,,
8,

4

(14)
( =f [cos(N, z)Az + cos(N, y)Ay + cos(N, 5)Az]dS,,;
Sy

5° En tout point du fluide 4, on a

)

—_[9 92 925 5
op‘_-—-[(—’;Ax+@Ay+d;A,].

Cherchons & écrire, pour le second déplacement virtuel, I'inéga-
lité (1). Nous verrons sans peine que, pour former le premier membre
de cette inégalité, il suffit de prendre le premier membre de I'inéga-
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lité (12) relative au second déplacement virtuel et y ajouter la quan-
tité

v oV N .
/s;(p. - p.)(a}-Dx + ;);D_y + 5 D.«)
 [cos(n,, x) Dz + cos(n,, y) Dy + cos(n,, 3) D3] dS,,
av aVv oV
[ G- 9;)(3}“ + G+ 7,-:A:)
. x[cos(n,,x)Ax + cos(n,,y)Ay + cos(n,,3)As]dS,,.

(15) o

Or, on peut aisément montrer que cette quantité (15) peut prendre
des valeurs négatives alors que I'égalité (14) est vérifiée; en sorte que
Pinégalité (12) peut étre vérifiée sans que I'inégalité (1) le soit.

Supposons, en effet, que I'on ait, dans le premier déplacement vir-
tuel.

f |cos(N, ) Ar + cos(N, y)Ay + cos(N, 5)As]=o,

égalité qui constituc une relation linéaire et homogéne entre les six
variables

N\ N N N N
of, cg, oh, cl, om, cn.

On pourra alors satisfaire & la condition (14) en prenant, en lout point
de la surface 5,,,

Dr = o, Dy =0, . Ds=o.

La quantité (15) se réduira a son second terme que P'on pourra écrire
) Ay .
f (75— 50 o [cos(n,, x)Ax + cos(n,,y)Ay + cos(n, 5)As]* dS,,.
S

Or, les conditions nécessaires pour la stabilité de I'équilibre des
fluides 1 et 4, considérés comme seuls mobiles, nous enseignent que
cetle quantité est forcément négative.

La proposition énoncée est donc démontrée.

Journ. de Math. (5° série), tome II. — Fasc. 1, 1896. 5
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III. — Cas ou les forces agissantes se réduisent & la pesanteur
et ol les fluides sont homogénes.

Considérons maintenant le cas particulicr ot les forces extérieures
agissantes se réduisent a la pesanteur et ou les fluides 1, 2, 4 sont
sensiblement homogeénes, soit qu'ils offrent, comme les liquides, une
compressibilité négligeable, soit que leur faible densité varie trés peu
avec la hauteur, comme il arrive pour les gaz.

Prenons 'axe des s vertical et dirigé vers le haut.

Soient

S,, la section que le plan S,, prolongé détermine dans I'espace clos
occupé par les corps 1 et 43

I, l'aire de cette section;

g, 'aire de la surface S,,;

1. = M, + M,, la masse de I'ensemble des corps 3 et 4;

¢, la cote du centre de gravité de cette masse;

Z, la cote du centre de gravité de la masse des fluides 1 et 2 déplacés

par les corps 3 et 4.

Des calculs semblables & ceux que nous avons développés dans
notre Mémoire Sur la stabilité des corps flottants (Chap. III, § V)
nous donneront aisément I’égalité suivante

R= g(p.—p)E(R)
N oy . . 2 g . . 1o 5
LD+ (= p) f S aSu~(ei=2) fs_ ‘y db.‘]u)

#(Z =0+ (=) [ #dS—(i—p.) [ 2*dS, ](»

(16) < __ggr(‘az—‘c')f xde’g—(p,—p.)f xde,.- Sldm
s'” Sy A

+2g[ -8 yds:,—@.—p.)[ yds,.| s
L 15

s, i

1 _sz(P”*P')fs;, wdszg—(ps—.o.)fs' 2ds,| nim.

+
ag

+
ag
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Les conditions (7), (7 bis), (7 ter) prenncnt les formes suivantes :

(17) (Z—c)3h+(fyd8 fytlS,;)o (f wdS,,—fsde.,)é‘m:o,

(19)

14

zs/¢+azf'yds;,_emf zdS,, =o,
(18) ‘
céh +3 [ ydS,, — Smf xdS,, =o.

Si, Sis

L’¢égalité (17) est une conséquence des égalités (18), qui doivent
scules &tre conservées.

L’inspection des égalités (16) et (18) montre immédiatement que
I'on ne pourra pas, en général, raisonner dans le cas qui nous occupe
comme nous Pavons fait pour traiter la stabilité d’un corps solide et
pesant flottant & la surface de séparation de deux fluides pesants et
homogénes. On ne pourra étendre ces raisonnements au cas qui nous

occupe actucllement que dans le cas ou il sera possible de choisir les
axes coordonnés de telle fagon que I'on ait i la fois

‘/s: zdS,, = o, fs‘;'de',2=
f

14

zdS,, =o, fde,,_o
S

¢'est-a-dire dans le cas o le centre de gravité de Uaire de la sec-
tion a fleur d’eau S, et le centre de gravité de Uaire de la sur-

Sface S,, qui limite le fluide 4 sont sur une méme verticale.

Dans ce cas, si nous prenons cetie verticale pour axe des z, la
forme quadratique R deviendra

R= g(pa— ¢ )Z(3h)
+ g[rED ) [ rdS—Gimp) [ SN (O

Sy

{ + g p.(Z D+(a—pn) [ 728, — (30— r,)f y-dS.,](am\'

sii

- 261(?2— Pq)js;w)’dS',g ,.,)f xde.,] clem,

Su
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tandis que les conditions (17) et (18) se réduiront &
(20) eh=o.

Moyennant la condition indiquée cn nahques, on peut énoncer la
proposition suivante :

Pour que Péquilibre du systéme soil stable, il faut et il suffit :
1° gue le fluide 1 soit motns dense que les fluides 2 et 4; 2° que la
forme quadratique en &L, $m,

U= [sE=D+ (=) f 7= (mpo f 2 d80| CO*

) Z-% 2 f2 st'«z'— Py 2 dS,, om)?
(21) + [P'( )+ (3 .-)\/4"" (¢ O.)fs:‘:b ](Om)
_2[(92— 9.)L,xyd523—(9,— 5, /s:‘:cyds,.]Elam

soit une forme définie positice.

Dans le cas que nous venons de préciser, la solution du probléme
relatif & la stabilit¢ d’un vaisseau qui porte du lest liquide est com-
pléte; mais on voit combien ce cas est particulier, si on le compare & la
généralité de la solution obtenue depuis longtemps dans le cas ot le
flotteur ne porte pas de lest liquide.

La condition que nous venons d’obtenir peut s’interpréter géomeé-

triquement :
Fig. 3.
Al

A

Sur le plan de flottaison tracons la ligne de flottaison T' (fig. 3),
entourant P'aire Z; sur le méme plan, projetons l'aire o, dont la pro-
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jection est circonscrite par la ligne y. Les deux aires I, o ont, par
hypothése, le méme centre de gravité G.

Recouvrons I'aire & d’un fluide fictif ayant une densité superficielle
positive (g2 — #,): recouvrons I'aire od’un fluide fictif ayant une den-
sité superficielle négative (g, — g,)-

Cherchons e moment d'inertie de ce systéme fictif par rapport a
un axe variable AA’, situ¢ dans le plan‘de flottaison et passant par le
point G. Ce moment d’incrlie a, pour une certaine orientation de
I'axe AA’, une valeur minima j.

La condition précédente ¢quivaut i celle-ci

Z——C+£>o
ou

(22) t<z+ L.

Supposons que I’on solidifie le fluide 4. Seit ¢ le plus petit moment
d’inertie par rapport 4 I'axe variable AA’ de la seule aire X recouverte
du fluide fictif de densité positive (p, — z,). La condition nécessaire
ct suffisante pour la stabilité de I'équilibre du flottcur s’exprimerait
par I'inégalité

(23) (<Z+ }{

Or, on a ¢videmment
Jj<i

Donc, pour que I'inégalité (22) soit vérifide, il est nécessaire, mais
non suffisant, que l'inégalité (23) le soit également; on a ici un
excmple de la proposition générale énoncée au § II.

La proposition que nous venons de démontrer renferme comme cas
particulier le théoréme énoncé par M. Guyou.

La condition, indiquée en italiques, & laquelle le théoréme précé-
dent doit son exactitude, lui éte tout intérét au point de vue de la
construction navale; cette condition, en effet, ne sera presque jamais
remplie dans les divers cas qu'offre la pratique (navire dont un ou
plusieurs compartiments ¢tanches sont partiellement noyés, porteur
de pétrole dont une ou plusieurs caisses sont incomplétement rem-
plies, etc.). Cette lacune, toutefois, peut étre en partie comblée si I'on
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observe que I'architecture navale a surtout besoin de connaitre unc
condition sujffisante, qui I'assure de la stabilité d’un navire, la condi-
tion nécessaire et suffisante constituant un idéal dont elle peut, a la
rigueur, se passer.

Nous savons qu’il sufit, pour la stabilité du navire, que la forme
quadratique R soit une forme définie positive, bien que cetle con-
dition ne soit peut-étre pas nécessaire.

Or l'expression de la forme R peut se simplificr.

Sur le plan de flottaison, tracons la ligne de flottaison I ( fig. 3),
entourant I'aire Z; sur le méme plan, projetons l'airc o, dont la pro-
jection est circonscrite par la ligne . Recouvrons laire X d’un fluide
fictif ayant une densité superficielle positive (p, — g,); recouvrons
I'airesd'un fluide fictifayantune densité superficielle négative (5, —z,).

Soit G le centre de gravité du systéeme fictif ainsi constitué;
nous porterons en G 'origine des coordonnées, ce qui, dans la forme R,
fera disparaitre les termes en &4 8l et 6k Sm.

Cherchons le moment d’inertic du systéme fictif par rapport & un
axe variable AA’, situé dans le plan de flottaison ct passant par le
point G. Ce moment d'incrtic a, pour une certaine orientation de
I'axe AA’, une valeur maxima (positive ou négative) J et pour une
autre orientation une valeur minima (positive ou négative) j. Prenons
la premiére orientation pour axe des x, la seconde pour axe des y.
Le terme en ¢/&m disparaitra dans I'expression de R qui se réduira &

V=g(pa—p) IR .
+ gl (L =0+ IJ(cl)*+ gw(Z — O) +j1(zm)".

Il est suffisant, pour la stabilit¢ de Iéquilibre du navire, que la
forme V soit une forme définie positive. Pour que la forme V soit
une forme définie positive, il est évidemment nécessaire et suffisant
que l'on ait I'inégalité

Z+-{;—-C>o.

Nous pourrons donc énoncer de la maniére suivante une coxpITION QUI
SUFFIT A ASSURER LA STABILITE D'UN NAVIRE PORTANT DU LEST LIQUIDE :

On considére le navire dans son assictte d’équilibre, en le sup-
posant chargé du lest liguide;
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On projette sur un méme plan horizontal la surface de /lottai-
son X et la surface terminale o du lest liguide;

On recouvre la surface E d’un fluide fictif de densité superfi-
cielle positive (p, — p,) et la surface o d’un fluide fictif de densité
superficielle négative (p,— p,). On cherche le centre de gravité G
de ce systéeme fictif, puis son moment d’inertic par rapport a
un axe horisontal variable passant par le point G soit j la plus
petite valeur, positive ou négative, de ce moment d’inertie. La cote
du centre de gravité du navire et du lest liguide qu’il porte doit
étre inférieure a la cote du centre de gravité des fluides 1 et 2 de-

placés, cette derniére cote élant augmentée du quotientﬁ de la
quantité j par la masse totale du navire et du lest liquide.

Cette régle s'étend sans peine au cas oit le lest liguide forme

plusicurs masses distinctes, de méme densité ou de densités diffe-
rentes.

IV. — Stabilité d’'une cloche & plongeur. — Cas de la pesanteur.

A la surface de séparation d’un liquide 1 et d’un gaz 2, flotte une
cloche renversée 3, qui renferme un fluide 4.

Nous pourrions traiter dircctement et complétement le probléme de

Fig. §

la stabilité d’un pareil systtme. Mais nous nous bornerons a étudier
le cas ol les forces extérieures agissantes se réduisent 4 la pesanteur
et ot les fluides sont supposés homogénes. Dans ce cas, on voit sans
peine que le probléme qui nous occupe actuellement se raméne au
probléme précédent, & la condition de changer 5 en (— ) et g en
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(— g)- Nous pouvons donc cn donner immédiatement la solution, du
moins lorsqu'il est possible de 'obtenir.

Pour qu'il soit possible de résoudre entiérement ce probléme, 7!
Saut que Uaire de la section a fleur d’cau et Uaire de la surface

qui sépare les fluides 1 et 4 aient leurs centres de gravité sur la
méme verticale.

Si cette condition est réalisée, on peut énoncer la proposition sui-
vante :

Pour que équilibre du systéme soit stable, il faut et il suffic :
1° Que le fluide 1 soit plus dense que les fluides 2 et §;
2° Que la forme quadratique en 8l, Sm,

W= [(*(C—-Z)+(pn-—p.)£ y S, —(e—p) | y’dSu](3l)’
w(C=Z)+(pa—2) [ ¥2dS,s—(pa—2)) [ 22dS,.](3m)*
5) BTyt (oimp) [ dSia—(oimp) [ S| )

—2 — dS:.,— Ps— dsu “l“ )
[(92 P)js;’x)’ . —(p r')L‘z)’ ]° om
soit une forme définie négative.

On interpréte aisément cette condition sous la forme que voici :

Projetons les deux aires X, ¢ sur un plan horizontal. Les dcux pro-
jections ont méme centre de gravité G.

Recouvrons la premiére d’une densité superficielle positive (g, — ¢,)
ct la seconde d’une densité superficielle négative (¢, — 7,)-

Cherchons le moment d'inertie de ce systéme fictif par rapport & un
axc horizontal variable AA’ passant par le point G} soit j la valeur
minima de ce moment d’inertie. La condition précédente équivaut a
I'inégalité .

(25) z<Z+§

Si la condition indiquée en italiques n'est pas remplie, nous n’aurons
plus, en général, de condition nécessaire et suffisante pour la stabilité
de la cloche; mais nous pourrons, comme dans le cas précédent, ob-
tenir une condition simplement suffisante de méme forme.

—————



