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SUR LA STABILITE DE L'EQUILIBRE DES CORPS FLOTTANTS. QI

Sur la stabilité de l’équilibre des corps Sflottants ;

Par M. P. DUHEM.

-~ {NTRODUCTION, HISTORIQUE.

On sait que I'équilibre d’un corps flottant sur un liquide pesant
est assuré lorsque le flotteur déplace un volume liquide aussi pesant
que lui et que les deux centres de gravité du flotteur et du liquide
déplacé sont sur une méme verticale (axe primitif). Mais cet équi-
libre est-il stable?

Bouguer estle premier géométre qui ait cherché  approfondir cette-
question. Il se borna & examiner le cas ou le flotteur est symétrique
par rapport 4 un plan qui demeure vertical pendant le mouvement; il
supposa que le volume du liquide déplacé restait constant et demontra
que la stabilité dépendait de la position d’un point particulier qu'il
nomma mdétacentre. Ce point est I'intersection de I'axe primitif avec
la direction de la résultante de la poussée du fluide aprés un déplace-
ment infiniment petit. Si ce point est au-dessus du centre de gravité'
du corps, les forces tendront & ramener le corps 4 sa premiére position;;'
elles tendront & ’en éloigner dans le cas contraire. L’équilibre est donc
stable ou instable suivant que le métacentre est au-dessus ou au-dessous
du centre de gravité du corps flottant. Telle est la condition de stabi-
lité donnée par Bouguer et qui a été longtemps admise sans contesta-
tion. : :

Le raisonnement de Bouguer manqualt entiérement de generahté,
Journ. de Math. (5 série), tome 1. — Fasc. II, 18g5. 13
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non seulement il supposait que le plan de symétrie du corps demeurait
vertical durant les oscillations effectuées par ce corps, mais, en outre,
il supposait que le volume immergé demeurait invariable.

. Duhamel (') appela le premier l'attention sur le caractére arbitraire
d'une pareille restriction.

« La supposition, dit-il, de la constance du volume déplacé, a dd
paraitre bientot trop restreinte; car, comment admettre que la cause
qui produit le dérangement ne puisse changer que 'inclinaison? On a
reconnu d'ailleurs que, lors méme que cette circonstance aurait lieu
au commencement, elle ne subsisterait pas pendant toute la durée du
‘mouvement, excepté dans le cas trés particulier ou le centre de gravité
de la section a fleur d’eau serait situé sur I’axe primitif.

» On ne pouvait donc plus, en restant dans la généralité dela ques-
‘tion, se dispenser d’avoir égard a la fois & la variation du volume et &
celle de I'inclinaison; ‘et c’est ce que 1'on a fait. Mais ce que l'on n’a
pas vu, c’est qu’alors le métacentre devenait un point complétement
indéterminé, qui dépendait du rapport des deux variations et qui pou-
vait occuper toutes les positions de ’axe primitif.

» Le raisonnement de Bouguer, que I'on a reproduit, prouverait
donc a volonté la stabilité ou l'instabilité de 1'équilibre du méme
corps, suivant la nature du dérangement primitif, en exceptant toute-
fois le cas particulier olt I'axe primitif contiendrait le centre de gravité
de la section & fleur d’ean. Cette conséquence absurde du genre de
raisonnement suivi depuis Bouguer en rend Pinsuffisance évidente
et oblige de recourir aux équations du mouvement, méme dans le cas
d’'un corps symétrique par rapport & un plan vertical. »

Duhamel se propose de former ces équations, en considérant tou-
jours le cas d’un corps flottant symétrique dont le plan de symétrie
demeure vertical; il suppose également que la surface du liquide
demeure horizontale. Pour étudier le mouvement du flotteur, on peut
faire abstraction de la présence du liquide, & condition d’appliquer au
corps solide des forces de liaison convenablement choisies qui sont les

(1) Dunaner, Note sur divers principes de Mécanique : Observations sur la
stabilité de Uéquilibre des corps flottants, (Journalde I’ Ecole Polytechnique,
XXIVe Cahier, t. XV, p. 12; 1835.)
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pressions du liquide sur le solide. Duhamel admet que ces pressions
peuvent étre déterminées d’apres les régles de I’ Hydrostatique, telles
qu'elles ont été établies par Archimede. Il forme alors les équations
différentielles du mouvement du corps et, cherchant la condition pour
que ce mouvement demeure toujours trés petit, il retrouve ainsi la
condition donnée par Bouguer, 4 savoir que le métacentre doit se
trouver au-dessus du centre de gravité du corps. « En résumé,
conclut-il, la théorie que I'on a donnée jusqu'ici de la stabilité de
I'équilibre des corps flottants, par la considération du métacentre,
renferme des inexactitudes qui ne permettent plus de la conserver.
Néanmoins, la condition & laquelle elle conduit est conforme & celle
qu’une analyse exacte aurait fait connaitre, et c’est précisément pour
cela que P'erreur est restée si longtemps inapergue. »

Plus tard, Poisson (') et Duhamel (*) cherchérent, par une méthode
analogue, la condition de stabilité d’un flotteur de forme quelconque;
cn admettant encore que les pressions du liquide sur le solide pouvaient
étre déterminées par les régles de I'Hydrostatique, et en faisant usage
du principe des forces vives, ils parvinrent au théoréme suivant :

L’équilibre peut étre encore stable lorsque le centre de gravité
du corps est au-dessus de celui du fluide déplacé; il sufit que la
distance de ces deux points soit moindre que le plus petit des mo-
menis d’inertic de Uaire de la section & fleur d’eau par rapport

aux droites menées par son centre de gravité, divisé par le volume
immergeé.

Cette régle peut encore s’énoncer d’une autre maniére.

Donnons au flotteur toutes les positions pour lesquelles le poids du
liquide déplacé est précisément égal au poids du corps flottant; mar-
quons, dans le corps, le centre de poussée correspondant 4 chacune de
ces positions; ces centres de poussée dessinent une surface, considérée
par Dupin, et nommée surface des centres de caréne; on sait que la
verticale passant par le centre de gravité d'un flotteur en équilibre est
normale & la surface des centres de caréne.

(") Poisson, Traité de Mécanique, t. 11, p. 579 (2° édition).
(*) Dunaner, Cours de Mécanique, t. 11, p. 252.
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Sur cette normale se trouvent. deux centres de. courbure principaux
de la surface des centres de caréne; ces deux points se nomment les
deux métacentres du flotteur; le petit métacentre est celui qui se
trouve le plus bas.

Ces définitions posées, la condition de stabilité donnée par Poisson
et Duhamel peut s’énoncer ainsi : Le centre de graviié du flotteur
doit étre au-dessous du petit métacentre.

Cette régle avait été également donnée par Bravais (*); mais Bra-
vais s’était borné & examiner le cas ol le flotteur posséde deux plans
de symétrie rectangulaires et ot les déplacements imposés au flotteur
n’altérent pas le volume immergé. Aprés avoir énoncé la régle précé-
dente, Bravais ajoute : « Ce serait une erreur de croire que, confor-
mément & un principe bien connu de Mécanique, le centre de gravité
.du flotteur est le plus bas possible dans la position d’équilibre stable;
ce serait mal entendre le principe de Mécanique auquel nous faisons
allusion; mais le centre de gravité du systéme formé par le flotteur
et le liquide environnant doit étre et est, en effet, le plus bas possible
dans I'équilibre stable, comme il nous sera actuellement facile de le
démontrer. » Bravais démontre cette proposition en supposant le
nivean du liquide maintenu horizontal et le volume immergé maintenu
invariable.

Poisson et Duhamel avaient écrit et intégré les équations des oscilla-
tions infiniment petites d’un corps flottant dans le cas ou le flotteur
admet un plan de symétrie qui demeure vertical pendant le mouve-
ment et ol toutes les vitesses initiales sont nulles. M. C. Jordan (*)
se proposa de traiter dans toute sa généralité le probléme des petits
mouvements d'un flotteur. Pour mettre ce probléme en équation,
M. C. Jordan reprit 'hypothése fondamentale d¢ja admise par Poisson
et par Duhamel, & savoir que 1'on pouvait faire abstraction de I'exis-
tence du liquide & la condition d’appliquer 4 la surface du corps des

(*) Aveuste Bravais, Sur Uéquilibre des corps flottants, Thése de Mé-
canique soutenue devant la Faculté des Sciences de Lyon le 5 octobre 1837,
Paris, 184o0.

() C. Joroan, Sur la stabilité de I’équilibre des corps flottants. (Annalidi
Matematica pura ed applicata, série I1, tome 1, p. 170; 1867.)



SUR LA STABILITE DE L'EQUILIBRE DES CORPS FLOTTANTS. 95

pressions données a chaque instant par les principes de l’Hydrosta-
tiquey voici comment M. C. Jordan énonce ces hypothéses :

« Nous supposerons que la surface du liquide est assez étendue pour
que son niveau ne soit pas altéré parles oscillations du flotteur; qu’elle
reste plane pendant toute la durée du mouvement ; enfin, que la poussée
du liquide sur le flotteur & un instant quelconque est précisément la
méme que si tout le systéme était maintenu au repos. » -

M. C. Jordan ajoute : « Ces hypothéses ne sont pas parfaitement
exactes; on congoit, en effet, qu’il est impossible que le flotteur, en
oscillant, ne communique pas quelque mouvement au liquide qui
'entoure et que, d’autre part, I’état de ce mouvement devra modifier
les réactions qui se produisent; mais ces causes perturbatrices, qui ne
paraissent pas suscepnbles d’étre soumises & un calcul précis, dimi-
nuent évidemment en méme temps que I'amplitude et la vitesse des
oscillations; et dansle caslimite ol le déplacement et la vitesse initiale
sont infiniment petits tous les deux, elles deviennent négligeables. »

Les suppositions fondamentales sur lesquelles repose I'analyse de
M. C. Jordan sont les mémes que celles de Duhamel et de Poisson;
on ne doit donc pas s’étonner qu'il retrouve la condition de stabilité
indiquée par ces géometres.

Ces suppositions fondamentales avaient été trés vivement critiquées
par Clebsch (*); parlant des recherches de Poisson et de Duhamel sur
les petites oscillations des corps flottants, il ajoute : « Les équations
qu’ils ont données reposent sur ’hypothése que, pendant les mouve-
ments infiniment petits du corps, on peut remplacer la pression hydro-
dynamique par la pression hydrostatique. Or, les deux: pressions
différent entre elles de termes qui sont du méme ordre que les vitesses
que I'on a & considérer. Par conséquent, on voit qu'il n’est pas permis
de négliger cette différence. En effet, les pressions hydrostatiques
s’annulent les unes les autres 4 un infiniment petit prés, puisque le
corps qui éprouve des mouvements est dans une position infiniment
voisine de la-position d’équilibre. Au contraire, en ce qui concerne les
pressions h’ydrodynamiques qui sont produites par le mouvement, il

(') Ciesscu, Ueber das Gleichgewicht schwmzmender Korper. (Journal de
Crelle, Bd. LVII, p. 149; 1860.)
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n’existe aucune destruction de ce genre; d'une maniére générale, elles
s'opposent en chaque point au mouvement du corps; l'action de ces
forces est évidemment du méme ordre que I'action totale des pressions
hydrostatiques.

» Les considérations qui précédent suffisent & montrer que les
équations ordinaires du mouvement d'un corps flottant ne sont pas
simplement insuffisantes et en quelque sorte réduites a la premiére
approximation, mais qu’elles sont nécessairement fausses en ce qu’elles
négligent des termes qui sont du méme ordre que les termes conservés
et qui parfois les surpassent, ainsi qu'il arrive lorsqu'on étudie le
mouvement qu'un corps de révolution, d’axe vertical, peut prendre
autour de cet axe. »

Aprés avoir formulé ces critiques, Clebsch cherche, 4 son tour, &

-donner une théorie satisfaisante des oscillations infiniment petites des
corps flottants. Les considérations auxquelles il se livre 'aménent &
écrire six équations pour déterminer comment varient, en fonctions
du temps, les trois translations £, », { et les trois rotations 9, ¢, 3, en
lesquelles peut se décomposer le mouvement du flotteur; ces équa-
tions ont 'aspect d’équations différentielles linéaires a coefficients
constants; mais le premier membre de chacune de ces égalités, au lieu
d’étre formé par un nombre limité de termes et de contenir les dé-
rivées de la fonction inconnue seulement jusqu’a un certain ordre, est
une série renfermant les dérivées de tous les ordres pairs de la fonc-
tion inconnue. A ces équations, Clebsch applique des considérations
semblables i celles qui servent & intégrer les équations différentielles
linéaires & coefficients constants; il cherche & les vérifier par des ex-
pressions de la forme

r
C=Eoeﬂ’ 7]='ﬂoecty -

£ss Mo, - -+, O 6tant des constantes. Le carré de la constante ¢ est dé-
terminé par une certaine équation transcendante

S =o.
Clebsch en conclut le théoréme suivant :

« L’équilibre d’un corps flotiant est stable dans le cas suivant et

.-
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seulement dans ce cas : c’est le cas ot toutes les valeurs de a* qui
résultent de l'équation

f(e*)=o0

sont négatives. Celle équation dépend de la forme et de la position
du corps, mais non des mouvements étrangers que le liquide possé-
dait initialement. »

Sans vouloir examiner ici jusqu’a quel point les équations du mou-
vement d'un corps flottant, données par Clebsch, peuvent étre assi-
milées & des équations différentielles linéaires & coefficients constants,
nous ferons remarquer que la méthode suivie par Clebsch pour obtenir
la condition de stabilité d'un corps flottant renferme un cercle vicieux;
ce cercle est celui que Lejeune-Dirichlet a déja signalé dans la démon-
stration donnée par Lagrange pour établir qu'un systéme est en équi-

libre stable lorsque son potentiel a une valeur minima. Pour former
les équations du mouvement, Clebsch suppose que le corps demeure
toujours infiniment voisin de sa position d’équilibre, c’est-a-dire que
I'équilibre est stable; des équations qui renferment implicitement
cette hypothése ne peuvent servir a discuter siI'équilibre est stable ou
instable. La méthode de Clebsch suffit & prouver que, lorsque I'équi-
libre est stable, la fonction f(¢*) ne s’annule pour aucune valeur
réelle de o; elle ne permet pas de démontrer la proposition réci-
proque. :

Clebsch ne forme pas la fonction qu'il désigne par f(o?); en sorte
que, bien qu'il affirme I'existence d’une distinction essentielle entre la
régle de stabilité imaginée par Poisson et par Duhamel et celle qu'il
propose, on ne voit pas que cette distinction soit établie dans son Mé-
moire. Un calcul complet lui aurait montré que cette distinction
n'est qu apparente

Pour éviter lobJectlon que I'on peut adresser & la méthode de
Clebsch, une seule voie se présente; elle consiste & faire usage du
principe si rigoureusement démontré par Lejeune-Dirichlet, et a
chercher les conditions de stabilité du systéme en cherchant a rendre
minimum le potennel des actions auxquelles il est soumis.

Plusieurs essais ont été tent § cette voie. Nous laisserons de

P
1
\“ ! ',/)
— o
AN
N——————
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coté ceux de Moseley (') et de Duhil de Benazé et Risbee (*), qui
n’ont apporté aucun progrés a la solution du probléme de la stabilité
des corps flottants soumis & des déplacements infiniment petits, et
nous aborderons de suite les recherches de M. Guyou (®).

M. Guyou considére un flotteur immergé dans une cuve de dimen-
sions limitées; il cherche & quelle condition le potentiel de ce systeme
sera minimum, ou, ce qui revient au méme pour un systéme soumis
exclusivement & I'action de la pesanteur, & quelle condition le centre
de gravité de ce systéme sera aussi bas que possible; par des démon-
strations géométriques trés simples et trés élégantes qui rappellent les
méthodes suivies par Bravais dans sa thése de Mécanique, M. Guyou
établit cette condition, qui est indépendante des dimensions de la cuve
et qui, par conséquent, assurera encore la stabilité de 'équilibre du
flotieur sur un liquide illimité; cette condition se trouve étre préci-
sément celle qu'avaient indiquée Poisson et Duhamel.

Les raisonnements de M. Guyou nous semblent cependant affectés
d’une erreur qui en vicie les conclusions; comme cette erreur est
assez délicate & apercevoir, nous croyons nécessaire d'y insister
quelque peu.

M. Guyou démontre, en premier lieu, que si la surface libre du
liquide n’était pas horizontale, on pourrait la déformer de maniére a
abaisser le centre de gravité du systéme, et cela sans déplacer lc
flotteur ni changer la partie de sa surface qui est immergée.

Il démontre, en second lieu, que si le poids du liquide déplacé
n’était pas égal au poids du flotteur, une translation verticale conve-
nablement choisie de ce dernier abaisserait le centre de gravité du
systéme. :

11 démontre, en troisiéme lieu, que sile centre de gravité du flotteur

(1) MoskLeY, On the dynamical stability and the oscillation of floating bodies
(Philosophical Transactions; 1850). Voir aussi : Sir E.-J. Reev, The stability
of ships.

"(?) DuiL pe Bexazt et Rissec, Mémoire sur le mouvement complet du navire
oscillant sur eau calme (Mémorial du Génie maritime, 10° liv., 1874; p. 173).
Voir aussi : PoLrarp et Dubesour, Théorie du Navire, t. 11, p. 329. Paris, 1891.

(®) E. Guvou, Théorie nouvelle de la stabilité de I’ équilibre des corps flottants
(Revue maritime, mars 1879, p. 682). — Théorie du Navire, p. 25. Paris, 1887.
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n'était pas sur la méme verticale que le centre de poussée et au-dessous
des métacentres, on pourrait, par un déplacement qui n’altérerait pas
le volume immergé, abaisser le centre de gravité du systéme.

De 14, M. Guyou (') conclut que, pour qu'un corps flottant soit en
équilibre stable, il est nécessaire et suffisant :

1° Que la surface libre du liquide soit horizontale;

2° Que le poids du liquide déplacé soit égal au poids du flotteur;

3° Que le centre de gravité du flotteur et le centre de poussée
solent sur une méme verticale;

4° Que le centre de gravité du flotteur soit au-dessous des méta-
centres.

I1 est bien clair quela nécessité de ces conditions pour assurer sinon
que I'équilibre est stable, du moins que le centre de gravité du sys-
teme est le plus bas possible, découle des propositions établies par
M. Guyou ; mais ces propositions ne nous semblent pas prouver que
les conditions dont i} s’agit suffisent & assurer la stabilité de I'équi-
libre.

M. Guyou n'indique pas explicitement comment il a été amené a
conclure que ces conditions sont suffisantes; mais un passage de son
Livre (*) nous met sur la voie qui permet de reconstituer sa pensée;
voici ce passage : '

« Pour amener & une position quelconque le systéme composé du
flotteur et du liquide supposés primitivement en équilibre, on peut
d’abord donner au flotteur 1'orientation considérée en le maintenant
isocaréne dans le liquide en repos; conservant ensuite cette orienta-
tion, on I’¢lévera ou on l’abaissera de la quantité nécessaire, et 'on
donnera enfin au liquide son dénivellement. »

Guidés par ce passage; nous pensons pouvoir reconstituer, de la
maniére suivante, le raisonnement quia sans doute conduit M. Guyou
a énoncer-la proposition que nous discutons :

Notre systéme, formé d’une masse liquide et d'un flotteur, est dé-
fini par certaines variables indépendantes, en nombre limité ou illi-

(1) Guvou, Théorie du Navire, p. 3o.
(*) Ibid., p. 31.

Journ. de Math. (5 série), tome I — Fasc. I, 18g4. 14
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mité. Les conditions précédemment énoncées suffiront & assurer la
stabilité de 'équilibre du systéme si, grace & elles, la variation infini-
ment petite la plus générale de ces variables devient incapable
d’abaisser le centre de gravité du systéme.

Or, la variation infiniment petite la plus générale de ces variables
indépendantes peut toujours étre regardée comme le résultat de trois
autres variations infiniment petites des mémes variables :

1° Une variation infiniment petite qui change I'orientation du flot-
teur sans altérer le volume immergé ni le niveau du liquide;

2° Une variation infiniment petite qui déplace verticalement le
flotteur et le niveau du liquide, en laissant plan ce dernier;

3° Une variation infiniment petite qui déformela surface du liquide
sans déplacer le flotteur.

Chacune de ces variations partielles est incapable, lorsque les con-
ditions énoncées sont vérifiées, d’abaisser le centre de gravité du sys-
téme.

Mais, lorsque des variations infiniment petiles des variables qui
Sixent un systéme sont isolément incapables d’abaisser le centre de
gravilé du systéme, la variation infiniment petite que U’on obtient
en les composant n’abaisse certainement pas le centre de gravité
du systéme. ‘

Donc la variation infiniment petite la plus générale des variables qui
fixent un systéme formé d’un liquide ct d'un flotteur, ne peut abaisser
le centre de gravité, du systéme lorsque les quatre conditions énon-
cées sont vérifiées, en sorte que ces conditions assurent la stabilité de
I'équilibre du systéme.

Ce raisonnement renferme une proposition sujette & critiques;
c’est celle que nous avons mise en italiques.

Ex ENEraL, celle proposition est exacte; soient, en effet, «, f3, ...
les variables indépendantes qui fixent un systéme et { la cote du centre
de gravité de ce systéme; si les variables «, 3, ... éprouvent une va-
riation infiniment petite 8, 6@, ..., la cote { du centre de gravité
éprouve une variation qui peut, en général, se mettre sous la forme

(1) o{=A8e+B3J+...,

A, B, ... étant des fonctions finies de «, f, .. ..
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Imaginons alors qu'une premiére variation infiniment petite &'a,

&'B, ... soit incapable d’abaisser le centre de gravité du systéme;
nous aurons '

(2) 8C=A%a+B&¥B+...20;

imaginons qu’une seconde variation infiniment petite &"a, 8B, ...
soit incapable d’abaisser le centre de gravité du systéme; nous aurons

(2 bis) Cl=A&x+B&B+...20

L R R A I R R R N N LI B AR IR

Composons entre elles ces variations infiniment petites; nous obtien-
drons une variation résultante

Ad =¢'o + 8" +.
AB =B+ 8”(3 + .

qui fera varier la cote du centre de gravité de

(3) Al=AQ@e+8a+..)+BEB+B+..)+....

Les égalités (2), (2 bis), ... et (3) permettront d’écrire
AL=8C+ 80 +...20,

ce qui démontre la proposition énoncée.

Mais cETTE PROPOSITION DEVIENT INEXACTE DANS CERTAINS CAS EXCEP-
TIONNELS; ce sont ceux oi les valeurs de a, 8, ... sont telles que
toute variation infiniment pelile du premier ordre imposée a ces
variables entraine une variation de la cote du centre de gravité
quiest un infiniment petit d’ordre superzeul au premier.

Imaginons, par exemple, que 8¢ soit un infiniment petit du second
ordre lorsque 3, 88, ... sont des infiniment petits du premier ordre;
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nous devrons remplacer 1'égalité (1) par une égalité telle que
(4) . N=a,(8a) 4+ ayw(B)l+...+2a,8adB +...,

les quantités a;; étant finies; les égalités et inégalités (2) et (2 bis)
seront remplacées par

(5) dl=a,(Ta) +an, (@Bl +...+2a,8adB +...20,
(5bis) &C=ua, (5e)+ an(dB) +...+2a,adB+...20.

Nous aurons également dans ce cas, au lieu de I'égalité (3),

AL=a,,(Fa+&a+... ) +au(@Bp+8B+...0%+...
+2a,(a+0"a+.. )(B+B+..)+....

On voit alors sans peine que les égalités ou inégalités (5) et (5 bis)
n’entrainent pas nécessairement 'égalité ou inégalité

AL>o.

Or, c’est précisement dans un cas exceptionnel de ce genre que
M. Guyou parait avoir fait usage de la proposition en question; parmi
les quatre conditions qu'il énonce, les trois premiéres expriment que
la'variation éprouvée par la cote du centre de gravité est un infini-
ment petit d’ordre supérieur aux variations infiniment petites des va-
riables indépendantes.

Cette discussion montre que les raisonnements de M. Guyou ne
permettent pas d'affirmer que les conditions par lui énoncées sont
suffisantes pour assurer I'équilibre d’'un systéme formé par un fluide
et un corps flottant; nous verrons d'ailleurs, au cours du présent tra-
vail, que ces conditions suffisent & assurer la stabilit¢ de I'équilibre
d’un corps flottant sur-un fluide limité; mais c'est a des circonstances
toutes spéciales que le raisonnement de M. Guyou, inexact en général,
doit son succés dans ce cas particulier (*).

(*) Une étude analogue a celle de M. Guyou aurait été faite par Morgau ( Prin-
cipes fondamentaux de Uéquilibre et du mouvement des corps flottants,; Brest,
1830). 1l nous a été impossible de nous procurer cet Ouvrage, que nous citons
d’aprés la Théorie du navire de MM, Pollard et Dudebout.
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Cet exposé rapide nous montre que les conditions de stabilité d’un
corps flottant sont loin d’étre encore établies d’'une maniére certaine
et rigoureuse, méme dans le cas simple ou le fluide et le flotteur sont
soumis seulement & l'action de la pesanteur. Quant au cas plus gé-.
néral ot le fluide et le flotteur sont soumis a des forces extérieures
admettant une fonction potentielle quelconque, il est demeuré jus-
qu’ici inabordé.

C’est ce probléme général que nous nous sommes proposé de
traiter.

Nous avons composé le potentiel d’un systéme formé par un solide
et un fluide, et nous avons cherché & quelles conditions le potentiel de
ce systéme avait une valeur minima.

On sait, - par la belle et rigoureuse démonstration de Lejeune-
Dirichlet, que tout état ol le potenuel d'un systéme a une valeur mi-
nima est un état d’équilibre stable; la réciproque de cette proposi-
tion est-elle vraie? N'y a-t-il pas d’autres états d'équilibre stable que
ceux qui correspondent & une valeur minima du potentiel?

Cette réciproque est vraisemblable; toutefois, elle n’a pas été dé-
montrée jusqu'ici d’une maniére entiérement rigoureuse, et elle est
généralement admise & titre de postulat.

Bien que ce postulat ne paraisse pas susceptible d’étre démontré
dans I'état actuel de la Mécanique, il nous semble que I'on peut le
déduire, du moins pour les systémes dépourvus de frotiement et de
viscosiié, d'une autre proposition plus simple et dont I'acceptation
s'impose plus aisément & l'esprit; cette proposition est la suivante :

Un état d'équilibre stable d’un systéme ne peut cesser d’éire
stable parce qu’on introduit dans le systéme de nouvelles liaisons
indépendantes du temps.

Avant d’exposer cette déduction, quelques remarques sont néces-
saires.

Considérons un systéme défini par n variables indépendantes «,
B, ..., A. Prenons un état initial (a,, B, ..., A,) de ce systéme.

Faisons ensuite choix d'une variable 0 et de n fonctlons a(h),
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b(8), ..., {(0) jouissant des propriétés suivantes :
1° Pour 6 = 0,, ona

a(8) =,  B(0)=Bp  ..r) z(eo)=xo.

2° Lorsque 6 croit a partir de 8,, les fonctions a(6), 6(0), ...,
{(0) demeurent finies, continues et uniformes, du moins tant que 0 ne
surpasse pas une certaine limite ; de plus, les dérivées d;éﬁ), id%z, vees
d 1(9) .
—— sont finies.

Si nous posons

(6) a=a(b), B=5b(0), ..., A=")

nous définirons une suite linéaire et continue d’états du systéme

partant de I'état («y, B4, ..., Ay) ou, en d’autres termes, une modifi-
cation virtuelle finie issue de I'état a,, B, ..., A,.

Cela posé, imaginons que le potentiel thermodynamique

O(a,fB,...,N)

du systéme ne soit pas minimum pour & =y, 8 =f,, ..., A=12,.
Il est possible d’imaginer au moins une modification virtuelle finie,
issue de I'état (a,, By, ..., Ay ), le long de laquelle la fonction

®(a,B,...,0)

commence par ne pas croitre. En d’autres termes, on doit pouvoir, au
moins d’une maniére, choisir les fonetions a(0), (0), ..., I(6), qui
figurent dans les égalités (6), de maniére que, pour toute valeur de 6

supérieure & 0, et inférieure 4 une certaine limite ® qui surpasse 9,
d’une quantité finie, on ait

() @[a(®), b(8), ..., [(8)] — B (e Boy .., ho)So.

. Considérons une de ces maniéres de choisir les fonctions a(),
b(0), ..., 1(6). Ecrivonsles égalités (6); entre ces égalités, éliminons
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la variable 0 ; nous trouvons les (n — 1) relations

f(&B,..,\)=o,
(8) _ g(e,B,..., \)=o,

h(a,B,...,A\)=o.

Sinous imposons au systéme les (2 — 1) liaisons bilatérales, indé-
pendantes du temps, exprimées par les relations (8), nous le transfor-
mous en un systéme a liaisons complétes, ne dépendant plus que du
seul paramétre 8; nous pourrons, en outre, imposer 4 ce systéme la
liaison unilatérale et indépendante du temps

(9) >80,
Le potentiel thermodynamique du systéme deviendra unc simple
fonction de 9, ,
W(0)=[a(8), b(0), .., D)}
et I'égalité ou inégalité (7) pourra s’écrire
(10) ¥(0)—W(h,)o.

Prenons le systéme dans P'état initial («,,B,,...,2,), ot 0,, et

, db < e . .. . .
donnons & — une valeur initiale ¢, qui soit positive; les divers points

du systéme seront animés de vitesses initiales ui seront compatibles
avec les liaisons (8) et (9); le systéme va prendre un mouvement que
le principe des forces vives suffira 4 mettre en équation.

La force vive du systéme peut se mettre sous la forme F(O)(g-g>,

la fonction F(0) demeurant comprise entre deux limites positives M
et m lorsque 0 varie entre 9, et 6.
Le principe des forces vives nous donne alors

() FO)(G) =F(h)ei=[¥(6)— W(D)]

Cette égalité nous apprend tout d’abord que, tant que § demeurera
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compris entre 0, et © * ne peut s’annuler; en effet, le premier terme

! dt
du second membre est essentiellement positif et le second ne peut étre
, . , \ N ., dl .
négatif, d’aprés(ro). La quantité — ne pouvant changer de signe sans
passer par o, on voit que cette quantité, positive au début du mouve-
ment, demeurera positive tant que 0 n’aura pas franchi la limite 0.
Si nous convenons de ne considérer que la partie du mouvement

pendant laquelle 6 n’a pas encore franchi la limite @, nous pourrons
écrire 1’égalité (11) sous la forme

3 —F()
(12) . dt = db \/F(oo)pz-}-[‘F(Oo)‘*W(e)]’

le radical étant pris en valeur absolue.

Le systéme, partant de I'état caractérisé par la valeur 6, du para-
métre variable, atteindra pour la premiére fois 1’état caractérisé par la
valeur @ du méme parameétre au bout d’un temps

0)
(x3) —f \/F(oov T
On voit sans peine que 1'égalité (13) permet d’écrire ‘
M e—40,
(14) Ti\/mo) o

Ainsi, quelle que soit la valeur initiale donnée de ¢,, on pourra fixer
un temps fini au bout duquel le systéme aura passé au moins une fois
tous les états caractérisés par des valeurs du paramétre variable com-
prises entre 0, et .

Cette proposition démontre que I'état 6,, ou (&, B, ..., A), n’est
pas un état d’équilibre stable pour le systéme soumis aux liaisons (8)
et (9); dés lors, d’aprés le principe que nous avons admis, ce ne peut
&tre non plus un état d'équilibre stable pour le systéme non soumis a
ces liaisons et nous arrivons ainsi 4 la proposition suivante, réci-
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proque du théoréme de Lejeune-Dirichlet :

Un état ot le potentiel thermodynamique d’un sysiéme n’a pas
une valeur minima ne peut étre, pour ce systéme, un étal d’ équi-
libre stable.

C’est sur cette proposition que nous allons nous appuyer, en méme
temps que sur le théoréme de Lejeune-Dirichlet, pour traiter de la
stabilité de I'équilibre des corps flottants.

Ce n’est cependant pas ce probléme que nous traiterons en premier
lieu; nous commencerons par étudier la stabilité de I'équilibre d’un
systéme de fluides ne portant pas de flotteur ; ce probléme, plus simple
que la question de la stabilité de 'équilibre des corps flottants, la pré-
céde logiquement. La méthode employée, les résultats obtenus en étu~
diant les fluides qui ne portent pas de flotteur préparent I'étude des
fluides qui portent un flotteur.

Ce que nous dirons iciau sujet de la stabilité d'un systéme composé
exclusivement de fluides n'est pas entiérement inédit; aprés avoir
amorcé cette question dans un premier travail ('), nous 'avons dé-
veloppée en partie dans le cours (*) que nous avons professé 4 la IFa-
culté des Sciences de Lille, en 18go-1891; plus récemment, nous avons
traité complétement (*) la stabilité de I'équilibre d’un nombre
quelconque de fluides mélangés, question qui renferme comme cas
particulier celle dont nous parlons en ce moment. Néanmoins, nous
avons cru devoir traiter ici la stabilité de 1'équilibre d’un systéme
composé uniquement de fluides non mélangés, parce que ce probléme,
incomplétement résolu dans nos deux premiéres publications, se trou-
vait, dans la troisi¢éme, impliqué dans un probléme plus général.

Aprés un premier Chapitre, consacré a la stabilité de 'équilibre de
fluides qui ne portent pas de flotteur, un deuxiéme Chapitre traite des

(') Sur les principes fondamentaux de ’Hydrostatique (Annales de la
Faculté des Sciences de. Toulouse, t. 1V, C. 18go).

() Hydrodynamigue, élasticité, acoustique, Liv. 11, Chap. 1L Pans, 18g1.

(*) Dissolutions et mélanges; premier Mémoire : L'équilibre et le mouve-
ment des quzdes mélangés (Tramux et Mémoires des Facultés de Lille, t. I[l

Journ. de Math. (5* série), tome 1. — Fasc. II, 1894, 15
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conditions d'équilibre des corps flottants; c’est seulement alors que,
toutes les propositions preéliminaires étant établies, nous 1bordons,
dans un troisitme Chapitre, I'étude générale de la stablhte de I'¢ qu1-
libre des corps flotiants.

CHAPITRE L

STABILITE DE L'EQUILIBRE DE FLUIDES QU1 NE PORTENT PAS DE FLOTTEUR.

I. — Rappel des principes de U’Hydrostatique.

Considérons un fluide ayant en tout point la méme température;
nous supposerons que I'état de ce fluide soit entiérement déterminé
lorsqu’on connait la forme de la surface qui le limite et la densité p en
chaque point (z, Yy z) de l'espace que cette surface enferme; cette
densité est supposée fonction continue de z, y, z. Lorsque deux fluides
différents sont en contact, la densité varie d’'une maniére discontinue a
la traversée de la surface de contact.

Nous admettrons, ce qui implique certaines hypothéses que nous
avons détaillées ailleurs (' ), que le potentiel thermodynamique interne
d’un systéme formé de deux semblables fluides 1 et 2 est donné par la
formule suivante

(1) 5'-:‘/“?!(9«)‘["-‘*‘_['%(92)‘{"2’

la premiére intégrale s'étendant & tous les éléments de volume do, du
fluide 1 et la seconde intégrale s’étendant & tous les ¢éléments de
volume dp; du fluide 2; la fonction ¢, et la fonction ¢, sont deux fohcf
tions analytiques différentes, caractéristiques des fluides 1 et 2.

Les forces extérieures appliquées au systéme sont de deux sortes :

1° Chaque élément dS de la partie déformable de la surface qui
limite le systéme supporte une force dont les composantes sont

Pcos(P,z)dS, Pcos(P,y)dS, Pcos(P,z)ds.

,> (%) P. Dunen, Le ﬁotentiel thermodynamique et la pression hydrostatique.
(Annales de UEcole Normale supérieure, 3¢ série, t. X, p. 183; 1893.) -
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:2° Chaque ‘élément de volume do de I'un des fluides, élément dont
la masse est p dp, est soumis & une force dont les composantes sont

eXde, pYdy, pZdp.

- Ces principes posés, on peut établir d'une maniére trés rigoureuse ()
les propositions suivantes, qui sont, pour la plupart, trés anciennement
connues, et qui sont les fondements de I'Hydrostatique :

1° 11 existe une fonction II,, uniforme, finie, continue, douée de
dérivées partielles, en tous les points du fluide 1; il existe une
fonction II, possédant les mémes propriétés en tous les points du
fluide 2.

La fonction II, n’est négative en aucun point du fluide t; la fonc-
tion II, n’est négative en aucun point du fluide 2. '

2° En tout point du fluide 1, ona .

Pa r—ﬂl“’
;1:
Lo Y =2,
(2) g dy
all,
p|Z-— W"

(3) ?, (P )—op, ‘Pn(P:) + 10, = o.

3° En tout point du fluide 2, on a

o,
| P X =5
. ~ ‘ _on,
(2 bis) \ p,Y—W,
Pl = ’dE:

(3 bis) 2a(p2) = s “”("’) +1,=o.

(') P. Dumen, Hydrodynamique, élasticité, acoustique, cours professé a la
Faculté des Sciences de Lille en 18go-1891, t. I, p, 60-80. Paris, 18g1:" :
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* 4° En tout point de la surface de contact S, des fluides 1 et 2,
ona

(4) : ' I, = 11,.

5° En tout point de la partie déformable S, de la surface qui sépare
le fluide 1 de I'extérieur, ona
P cos(P, z) =11, cos(n;, x),
(5) P cos(P, y) =11, cos(n; y),
P cos(P, 3 ) =1I, cos(n;, 3),

n; étant la normale menée 4 la surface 9, par le point considérée et di-
rigée vers 'intérieur du fluide 1.

6° En tout point dc la partic déformable S, de la surface qui sépare
le fluide 2 de 'extéricur, on a

P cos(P, ) =11, cos(n;, x),
(5 bis) P cos(P, y) = I, cos(n;, y),

P cos(P, 3) =11, cos(n;, 2).

D’apres I'égalité (3), la densité p,, en un point du pu,micn fluide,
dépend uniquement de la pression II, en ce point; écrivons abréviati-
vement l'égalité (3) :

(6) or=F(,).
Moyennant cette égalité (6), les égalités (2) deviennent
: - o0,
\ F,(I,)X = 2

(7) F,(IL)Y =F4

- ) ()[ll.
B,(H,)Z=7‘—£°

Désignons par V, une fonction uniforme; finie ev continue des coor-
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données x,, ¥,, 5, d’un point de l’espace occupe par le fluide 1, telle ’
que I'on ait

(8) Fi(n')dﬂ +dV,=o.

Cette fonction V, sera définie & une constante prés. Les égalités (7)
deviendront alors

(9) Xde +Ydy +Zdzs +dV,=o,

en sorte que I'on aura, en tout point du fluide 1,

Y di _

05 dy

o2 X
(IO) : <'0—d"—-52_

X_ 9N _,

\dy odx "~ '

icrivons de méme I’égalité (2 bis) sous la forme
pa = Fo(I,).

Désignons par V, une fonction uniforme, finie et continue des coor-
données z,, ¥, 5, d’un point de I'espace occupé par le fluide 2, définie,
a une constante prés, par I'égalité
(8 bis)

o Fily 4l + AV =o.

Nous aurons alors, en tout point du fluide 2,

(9 bis) Xdz +Ydy +Zdz +dV,=o,

en sorte que les fonctions X, Y, Z vérifieront encore les egahtgs (10)
en tout point de I'espace occupé par le fluide 2.

Les fonctions X, Y, Z, vérifiant les égalités (to) en tout pomt du
systéme, il existe une fonctlon V des coordonnées d’un pomt du’sys-
téme, variable d’'une maniére continue dans tout l'espace occupé par
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le systéme, telle que 'on ait

Al

X+5§“°'
av

(ll) . . Y+'d—y—0,
r av

L+d—z=0

Sculement, si 'espace occupé par le systéme n’est pas simplement
connexe, cette fonction peut n’étre pas uniforme. Cette fonction est
d’ailleurs définie & une constante prés.

Dans ’espace occupé par le fluide 7, les deux fonctions V et V, sont
continues et ont les mémes dérivées partielles; elles ne différent donc
que par une constante, en sorte queI'on a

V=V, +(,.

D’ailleurs la fonction V, est une fonction uniforme des coordonnées

d’un point de l’cspace occupé par le fluide 1; la fonction V demeure

" donc uniforme si le point (x, y, z) auquel elle se rapporte varie seule-
ment & 'intérieur du fluide 1.

Des considérations analogues s'appliquent au fluide 2.

"Ainsi, pour que des forces extérieures puissént maintenir en cqm-
libre un systéme formé d’un certain nombre de fluides, il faut qu’elles
admettent une fonction potentielle V en tout point de 1'espace occupé
par ces fluides. Cette fonction potentielle n’est pas forcément uniforine
dans tout I'espace occupé par le systéme; mais elle est uniforme dans
chaque espace partiel qu’occupe chacune des masses fluides connexes
qui composent le systéme.

On voit, par conséqient, que les surfaces qui limitent les divers
fluides connexes ou les séparent les uns des autres forment autant de
surfaces—poupures transformant la fonction continue, mais non forcé-
ment uniforme, V en un groupe de fonctions V,, Vy, ..., V,, séparé-
ment uniformes et continues, mais ne se raccordant pas I'une & I'autre
avec corltmulte. ~
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“L'égalité (8) donne
(12) V,=¢o,1I,)
ou, en résolvant cette équation par rapport i II,,
(13) II, = G,(V,).

La fonction G, (V,)est une fonction uniforme de V,; en effet, la
fonction F(II,), qui est égale & la densité p, du fluide 1, est essen-
tiellement positive; I’égalité (8) montre alors que V, diminue con-
stamment lorsque II, augmente, en sorte qu'une valeur de V, ne peut
correspondre a plus d'une valeur de II,.

Chacune des surfaces définies, a I'intérieur du fluide 1, par une
¢équation telle que

V, = const.,

ou, ce qui revient au méme, telle que
V = const.,

est alors une surface d’égale pression; elle est aussi, d’aprés 1'éga-
lité (6), une surface d’égale densité. Une telle surface se nomme,
comme on sait, une surface de niveau.

Lorsqu'une partie déformable de la surface qui limite le systéme
fluide est soumise & une pression uniforme et donnée P,, cette por-
tion de surface prend le nom de surface libre.

Si nous considérons une surface libre connexe, confinant, par
cxemple, au fluide 1, on aura, en tout point de cette surface, I, = P,
et, par conséquent, V, aura, en tout point de cette surface, la valeur
constante @, (P,); d’ou le théoréme suivant :

Toute portion connexe de surface libre est située dans une méme
surface de niveau.

Si la surface libre d’'un systéme liquide se compose de plusieurs
parties différentes, non connexes entre elles mais confinant avec une
méme masse fluide connexe 1, ces diverses parties seront encore si-
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tuées dans une méme surface de niveau; si, au contraire, ces diverses
portions de surface libre ne confinent pas & une méme masse fluide
connexe, elles pourront étre situées dans des surfaces de niveau diffé-
renles.

En tout point de la surface de séparation de deux fluides continus 1
et 2, on doit avoir

(4) I, =1I,. -
On a, d'ailleurs,

(13) o, = G,(V,),

(13 bis) o, =G,(V,).

. L’égalité (4) devient donc
(14) | Gy(V,) = Go(V,) =o.

Si donc dix, dy, d3 sont les composantes d’un déplacement iufini-
ment petit effectué sur la surface de séparation, on aura

dGy(Vy)
dV,

(15) < . . .
ng(V,) d"g = Q},’_? ] d\g o)
: ( —_— M((Vg (-a;d.l/ -+ ay d)""i— d—sd.v) = 0.

dy

(%dx—l— dy + %‘%‘(lz)

Mais, en tout point de la surface commune aux deux fluides, on a

Ny Vs _ 9V
dr — oz — T dr’
Ny Ve v
dy ~ dy —dy’
Ny _ Vs g 0V
dz ~ ds T o5

“On a d’ailleurs, d’aprés les égalités (13) et (13 bis),
4G, (Vy)
dGy(Vs)

av, +dH| =0,

dV_,+ dil, =0
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ou bien, en vertu des égalités (8) et (8 bis),

dG,(V
(16) | S, 2 =F@m)
1
dGy(V
S =TFu(IL).

Si donc nous désignons par I la valeur commune des pressions II,,
IL,, en un point de la surface S,,, I'égalité (15) deviendra

(17) [F4(H)—F2(H)](3;d}v+ a—;dy—-l—%f;dz) =o.

Si, sous la pression Il qui régne & la surface de contact, les deux
fluides n’ont pas la méme densité, F, (II) n’est pas égal & F,(II) et
I’équation (17) devient

"Vd +"de+

d\; dz =o.

En sorte que toute portion connexe de la surface de contact de
deux fluides de densité différente est une surface de niveau.

Si, au contraire, les deux fluides ont la méme densité, I, (II) est
égal 4 T, (IT); P’égalité (17) est satisfaite identiquement et la forme de
la surface de contact est indéterminée.

Sidecux fluides différents, 1 et 2, formant chacun une masse connexe,
sont en contact le long de plusieurs surfaces séparées, on peut se de-
mander si ces diverses surfaces sont ou ne sont pas dans une méme
surface de niveau.

Il n’est pas possible de donner une réponse entiérement geénérale a
cette question. Toutefois, si I'un des fluides, le fluide 1 par exemple,
est toujours plus dense que 'autre fluide, le fluide 2, quelles que soient
les pr(,ssions @,, @y, SOUS lesquclles ces deux fluides sont pris (ces
pleSSIOIlS étant, toutefois, comprises parmi celles qui sont réalisées au
seindu systéme), on peut affirmer que les diverses parties de la surface
de contact sont dans une méme surface de niveau. :

Imaginons, en effet, que S,,, S, soient deux parties différentes de
la surface de contact; la premiére correspond & des valeurs V,, V,,, T
des fonctions considérées dans ce qui précéde; la'seconde, a des va-

Journ. de Math. (5* serle), tome I. — Fasc, II, 1895. 16
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leurs V', V',, I’ des mémes fonctions. Nous aurons les égalités
(14) - G(V) =G, (V) =0,
(14 bis) G,(V)) — Gy (V) =o.

De: ces égalités nous déduisons

G (V)= Gi(Vi) = Ga(V,) + Gy (Vo) =0

ou hien

“idG (¢) v"d'G,,(v) _
(18) L—jf®~ﬁ—?7@—m

Mais nous savons que I'on peyt écrire, a I'intérieur du fluide 1,
V,=V-C,,
C, étant une constante, et a l'intérieur du fluide 2,
V,=V—0C,,

C, étant une constante. La fonction V étant continue dans tout I'es-
" pace, nous concluons aisément de la que

V,—V,=V,-V,.
L'égalité (18) peut alors s'écrire

. dG, (U d Gy (U,)
a9) (M=) - St =,

U, étant compris entre V, et V' et U, entre V, et V,,.
Soient w,, @, les valeurs de II,, II,, qui correspondent aux valeurs
U,, Uyde V,, V,. Les égalités (16) nous donneront

4G, (U,)

v, =F(®);
d64(U)
—av, = (@)

D’ailleurs, d'aprés I'égalité (8), V, varie toujours en sens contraire
, 9 ’
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dell,; U, étant compris entre V, et V', &, sera compris entre II' et II;
de méme @, sera compris entre II et IT'. L'égalité (1g) deviendra
donc

(Vi = VO[F . (®,) — Fy(m,)] =0,

les pressions @, et w, étant toutes deux comprises entre II et IT', et,
par conséquent, se trouvant au nombre des pressions réalisées au sein
du systéeme.

Mais, par hypothése, le fluide 1 est plus dense sous la pression @,
que le fluide 2 sous la pression @, ; on a donc

F.(®,)—Fy(m) >0,
en sorte que l'égalité précédente devient
V,—V, =o.

II en résulte que les deux surfaces S, ,, S|, sont, comme nous’avions
annonce, dans une méme surface de niveau.

§ 1L - Fluide soumis & une pression uniforme et constante; poten-
tiel thermodynamique de ce fluide; variation premiére de ce po-
tentrel.

Nous avons vu que |'on avait, dans tout I'espace occupé par le fluide,

oV v oV
(ll) X———%a Y—-——J)ja Z-——m_-s

la fonction V étant une fonction continue de x, y, 5, mais pouvant
n’étre pas uniforme lorsque le systéme est formé de plusieurs fluides
distincts, et que I'espace ‘qu'il remplit n’est pas simplement connexe.

Nous admettrons désormais que I'on peut tracer autour du systéme
une surface dont tous les points soient 4 une distance finie de la sur-
face qui limite le systéme; qu'il existe une certaine fonction V, uni-
forme, finie et continue & l'intérieur de cette surface, telle qu'une
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masse fluide dm, placée au point (z, y, z), soit soumise & une force
ayant pour composantes
av av av
- a—;dm, - ,‘)3,'d’”’ - 0—sdm.
Cette hypothése admise, considérons la quantité
(20) W = / Vo do,

dans laquelle I'intégrale s’étend au volume entier d’un fluide continu
et cherchons quelle variation subit cette quantité W lorsqu’on impose
au fluide une modification infiniment petite.

- Soit p la densité du fluide, au commencement de la modification,
en un point d'un élément de volume do, fixe dans I’espace ; soit (g + ¢p)
la densité, au sein du méme élément de volume, & la fin de la modifi-
cation; soient S la surface primitive du fluide et S’ la surface défor-
mée; soit ¢ une quantité dont la valeur absolue est la distance normale
infiniment petite des deux surfaces S, &', dont le signe est le signe +
dans les régions ou la surface S’ est extérieure & la surface S et le

signe — dans les régions ol la surface S’ est intérieurc a la sur-
face S; nous aurons évidemment

(21) SW =fV39do+prst,

la premiére intégrale s’étendant au volume du fluide, et la seconde a
la surface qui le limite.

Cette égalité (21) peut se transformer.

Soient &z, Sy, 0z les composantes du déplacement du point maté-
riel qui avait pour coordonnées z, y, z, au début de la modification;
nous aurons, en désignant par »; la normale & la surface S vers l'inté-
rieur du fluide, '

89:—9(%-{—%—1—%}
¢ = cos(ny, x) 8z + cos(n;, ¥ ) Sy + cos(n;, 5) 85,
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cn sorte que 1’égalité (21) deviendra

3W=_fpv(%%”ﬁ+%y-+%?)do

—fpV[cos(n,-, % )0z + cos(ny y) 8y + cos(ny, z) 82]dS.
Des intégrations par parties transforment aisément cette égalité en
3W=fp(%3x+ %3y+ %‘;’35>d0
ou bien, en vertu des égalités (11), en
SW_—_-—fp(XSw-l-YSy,-I—ZSz)dv.

L'intégrale qui figure au second membre est évidemment le travail
virtuel, effectué dans la modification considérée, par I'ensemble des
forces appliquées aux diverses masses élémentaires qui composent le
fluide. Donc, moyennant les hypothéses faites, les forces appli-
quées aux divers éléments de masse qui composent un fluide admei-
tent un potentiel W, dé fini par Uégalité (20).

Sile systéme était composé de deux fluides, 1 et 2, le potentiel des
forces qui agissent sur les divers éléments de masse qui le forment
serait donné par I'égalité

(20 bis) W =pr, dp, +j.Vp2 dp,.

La variation que cette quantité éprouve dans une modification infini-
ment petite du fluide s’obtiendra par une formule analogue 4 la for-
mule (21); si nous désignons par ¢, une quantité, analogue a ¢, comp-
tée positivement vers l'extérieur du fluide 1, et par ¢, une quantité,
. analogue a ¢, comptée positivement vers l'intérieur du fluide 2, nous
aurons

W =f'V 8p, dp, +fV‘392 de, .
(21 bis) ( + [ Vo, dS,+ [ Vpusads,
1 2 ’

+/ V(piei+ pata) dS,..

Sie
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Les pressions appliquées 4 la surface déformable du systéme n'ad-
mettent pas, en général, de potentiel; il faut, toutefois, faire excep-
tion & cette régle dans le cas out les parties déformables S,, S, de la
surface qui limite le systéme supportent une pression uniforme
qui garde une valeur invariable P, pendant les diverses modifica-
tions du systéme; dans ce cas particulier, oli nous nous supposerons
placé désormais, les pressions extérieures admettent, comme l'on sait,
pour potentiel la fonction '

(22) | W':R,( [ o+ fdc>2>,
1 §

dont la variation est

(23) 8W’=P,,< [edsi+ [« dsg).
) S S;

1

En toutes circonstances, le systéme admet pour potentiel thermo-
dynamique interne la quantité

(1) 7= [ 9o do+ [ 2u(ps) dou

dont la variation est

. __ ("d2(pr) d95(p2) ,
b= [ o [T B,

(24) 2 EYCOLY IS EXCATESS

+'[ [2.(p)e +32(p2)e21d5,..

Si donc on admet les deux hypothéses indiquées dans le présent
paragraphe, on voit que le systéme admet un potentiel thermodyna-
mique total; ce potentiel a pour expression, en vertu des égalités (1),
(20 bis) et (22),

D=5+ W+ W

S =[[?.(P.)-+Vp.+Po]dv‘+f2[%(pe>+"9-.»+P»]d%-
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Dans une modification infiniment petite du fluide, cette quantité @
¢prouve une variation é®, qui a pour valeur, d’apres les égalités (24),

(21 bis) et (23),

3 = [ [ 2088 + V] 8pudoy [ [ 2508+ V] 35, i,
+ [ [8:(p)+ Ver+ Pole, S,
+ [ [:Ce2) )+ Voo +Pyle,ds,

+f 3[?4(?4)4—\/9.]5. +[92(p2) + Vpu]ea (dS.,

(26) ¢

On remarquera que cette formule, trés générale, ne suppose pas que
le systéme fluide auquel on 'applique soit en équilibre.

§ IlI. — Variation seconde du potentiel thermodynamique.

Une variation infiniment petite des variables indépendantes dont
dépend T'état du systéme a fait subir au potentiel thermodynamique
une variation 8@, donnée par I'égalité (26); donnons, de nouveau, la
méme variation aux variables indépendantes et cherchons la varia-
tion 3@ que subit la quantité 6.

La variation de la quantité f [é—%ﬁ-) + V] 3p, do, est aisée & for-
1 1

mer. Nous avons évidemment ‘ N

af[fi?;iw-,-v] 3o, dv, = [ L2l °')(3, o) de,

+f[ 2 (p1) +V]3’o,dv,
fs[ (o) +V]39,e ds,

f[ ’(P’ +V]3p,a ds,,.

(27)

\
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La variation de la quantjté f [@%@ + V] 0p, do, s’exprime d’une
2 2
maniére analogue.

Le calcul de la quantité
Sf[q).(p‘)-i- Vo, + Py e, dS,
Lh

nécessite quelques explications plus détaillées.
S, (fig. 1) est la position initiale de la surface S,; S sa position

Fig. 1.

aprés la premiére variation; S| sa position aprés la seconde variation.
Faisons correspondre, suivant une loi quelconque, un point M’ de
la surface S' & chaque point M de la surface S,, cette loi étant seule-
ment assujettie & faire correspondre des points infiniment voisins & des -
points infiniment voisins. :
Ce mode de correspondance fait corl'espondre a I'élément superfi-
ciel MN = d8, I’élément superficiel M'N’' = dS,.

Pour calculer la nouvelle valeur prise par U'intégrale

fs[?.(p.)-i-vp'-%-l’o]e,ds,,

il faut substituer & [9,(p,) + Vp,] la valeur [9,(g,)+ Vp,] que prend
la méme quantité non plus au point M, au commencement de la pre-
miére modification, mais au point M’, au commencement de la
deuxi¢me modification; & la distance normale ¢, = Mm"du point M &
la surface S, la distance normale ¢, = M'm” du point M’ § la surface S';
a 'élément dS,, Pélément dS'; enfin intégrer non plus pour la sur-
face S,, mais pour la surface S/. La nouvelle valeur de notre intégrale
sera donc

[ [au(e)+ Vi, + PuJE, S,
s, .
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et la variation cherchée aura pour valeur

3f[?«(9«)+Vp.+Po]a.dS.
= fs[?«(P")—?i(P«)'*'V(P:“Pi)+p.(V’—V)]e.dS,
+ [Tou(p) + Vo, +B] (€, —2,) ds,
+ [18:(p1) + Voo +Py]e,(dS, — d8,).
Posons
P:_ P =DP‘4a
Vi— V =DV,

’
g, — g, = De,,

dS, — dS,= DdS,

el nous aurons

Sf[q)‘(p,)—f- Vo, + P,]e, dS,

§,

- fs["_d;f_’ + V] Dp,¢, dS, +[sp.DVe. ds,
(28) { ! :
+fs[<p,(p.)+vp.+Po]De,ds.

+ [ [9:(p1) + Vo, +Pgle,DdS,.
: 8

Soient Dz, Dy, Dz les compbsantes du segmeni MM’ nous aurons
oy ov av

Si p, est la densité, au point M, au commencement de la premiére
modification, la densité au méme point et au commencement de la
deuxiéme modification est (p, -+ dp,); la densité au point M’ et au

Journ. de Math. (5* série), tome 1. — Fasc. I, 18¢y5. 17
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commencement de la deuxiéme modification est alors

0 ) 7} 0 d o
P'+DP‘=P‘+89|+ (Pn;‘r Pi)Dx+ (Pl;}: Pi)Dy_{_ (910—:00,)1)3.

On a donc, en négligeant les infiniment petits d’ordre supérieur,
d doy 0
(30) Dp,:gp.—i-g%Dx-i-Eg;‘DyA— 2 Da.
En vertu des égalités (29) et (30), I'égalité (28) devient

3/[q,(p.)+Vp, +P,]e,dS,
8§

1

{ d oy (p1) dpy dpy A4
ARt Rt S H L

doye) doy , oo , . 9V
+[ dp, dy+vdy+9‘ ]Dy

do(py) dpy QPJ QXJ -
+|:———-—dp1 —5;-1—\’()5 + Pz Dz'le,dS,

|+ [I9(e) + Vo + PID(eidS,).

(31)

Les quantités
) A [?2(92) + VPa + Py]e, dS,, .

st:}[?‘ (ps) + VP*]E! + [?2(92) + VP:]‘-Q;dSm

se calculent d’une maniére analogue.

Nous avons laissé entiérement quelconque la loi de correspondance
établie entre un point M(z, y, z) de la surface primitive et un point
M’ (z + D,y + Dy, 5 + Dz) de la surface déformée; nous avons
supposé que cette loi faisait toujours correspondre deux points infini-
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ment voisins M/, N de la surface déformée 4 deux points infiniment
voisins, M, N, de la surface primitive. Dans certains cas, il est com-
mode de faire correspondre au point géoméirique M, ou se trou-
vait un certain point matériel du fluide au début de la premiére
modification, le point geometmque M’ oi se irouve le méme poml
matériel d la fin de la premiére modification; on a alors

(32) Dr=8, Dy=38y, Dz=2s

8z, 8y, 8z étant les composantes du déplacement virtuel du fluide au
point M. Lersque nous adopterons ce mode particulier de correspon-
dance, nous conviendrons d’écrire d¢, 8 dS, au lieu de De, D dS. Il ne
faut pas oublier que l'adoption de ce mode de correspondance n’est
nullement obligatoire; dans certains cas, il est plus commode d’en
adopter un autre.

§ IV. — Expression de la variation seconde dans le cas
oz le systéme est en équilibre.

Les résultats précédents nous permettent d’écrire la forme générale
de 82®. Il nous sera utile, pour les développements qui vont suivre,
de chercher Pexpression de 8?® dans le cas particulier ou I'état initial
du systéme est un état d’équilibre.

Pour cela, il nous faudra introduire dans I'expression de §2® les
simplifications qui résultent des conditions d’équilibre données au §1.
Mais ces simplifications se trouveront indiquées d’'une maniére toute
naturelle si nous donnons aux conditions d’équilibre la forme que
l'on obtient en exprimant que ’on doit avoir

(33) 30 =o,

pour toute modification virtuelle du systéme.
Sil’en observe que I'on a, en tout point de la surface S,,,

(34) . atg=o0,
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I'égalité (33) pourra s’écrire, en vertu de I'égalité (26),

d d9:(ps
[[ ":}(‘P‘) +V] 3p, do, +f[ #af) V] Spdo,
(38) |+ [Ioi(o)+ Vi +PJedS, + fs [92(p)+ Vs + PJexdSs

+£ [?'(P‘)'*' VPO - ?ﬂ(?z) - VP2]51d512 =o0.

Cette égalité (35) ne doit pas avoir lieu identiquement; elle doit
avoir lieu seulement pour les modifications virtuelles qui laissent in-
variable la masse de chacun des corps 1 et 2. Ces conditions s’expri-
ment par les égalités

8fp,dv, =o, 3f92d02= 0,

qui peuvent encore s'éerire

fSp.do, +fsp,s,d5,+ 016, dS,, = o,

Sia

LSp,dvz +f’pqaodS +fp,e,dS ,= 0.

Sps

(36)

L'égalité (35) devant avoir Jieu toutes les fois que les égalités (34)
et (36) ont lieu, il doit exister deux constantes C, et C,, telles que
U'on ait
doi(py) P2 (Ps)
[[ , +V+C]89.dv+f[ -4—V+C]3.pzdo2
+£[?!(9*)+VPC + Po + CaPileudsq
+£[?2(P‘-’) + Ve, + Py + CaPz] €, dS,

+£ [‘P' (Pl) +VP« - C«Pi “‘?2(92) —V92*0292]54 dS,,=o,

(37) o

quelles que soient les quantités Sp,, g, €, €.
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Par conséquent, on doit avoir, en désignant par C, et C, deux
constantes :
1° En tout point du fluide 1,

(38) del) L v C =o,
dp,

et, en tout point du fluide 2,

(38 bis) i‘%—f”+V+C,=o;
2° En tout point de la surface S,,
(39) 2:(p)) +(V+GC)p+Py=o0,
et, en tout point de la surface S,,
(39 bis) 92(p2) +(V +Co)py +Py =03

3° En'tout point de la surface S,,,
(40)  9u(p) +(V+C)pi=0a(pa) + (V + Ca)pa

Avant de faire usage de ces conditions d’équilibre, assurons-nous
qu’elles résultent des conditions posées au § I.
Les égalités (2) nous donnent, en tout point du fluide 1,

WL
oz ' p 0z ~
ov 1 d0,

— —-——:O
g Ty T
v L,
0z pr 0z~

D’autre part, I’égalité (3) nous donne

om, _ &1 (1) dpy

oz P dp? oz D
o1, d’?:(Pi) Jpy

TR Tar T

% . @i (p) dey =0
0z Yodpt 0z )
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Ces égalités nous montrent ue I'oni a, en tout point du fluide 1,

[+ V] =o
A

et, par conséquent,
(38) L) 4V C =0,

G, étant une constante. L’égalit¢ (38 bis) se déduit de méme des
égalités (2 bis) et (3 bis). '
- Les égalités (3) et (38) donnent, en tout point du fluide 1,

(41) e (pe) +(V+Cp,+1,=o0.
Les égalités (3 bis) et (38 bis) donnent, en tout point du fluide 2,
(41 bis) 92(p2) +(V+ GCy)pa+ M, =o0.

Observons que I'on a, en tout point de la surface S,, II, = Py; en
tout point de la surface S,, Il = P; enfin, en tout point de la sur-
face S,,, I, =1I,, et nous verrons sans peine que les égalités (41)
et (41 bis) donnent les égalités (3g), (39 bis) et (40).

Revenons maintenant aux égalités (38), (38 bis), (39), (39 bis)
et (40), et voyons quelles simplifications subit l'expression de 3*®
lorsqu’on les suppose vérifiées.

Les modifications virtuelles auxquelles se rapporte la variation se-
conde §*® ne sont pas quelconques; elles laissent constante la masse
de chacun des deux fluides 1 et 2, en sorte qu’elles sont assujetties aux

_ égalités

3fp.dv.=o, Sfpgd&)g:o,
8 (o doi=o, 8 {pades=o.
»/;FN "l..oi 'IPa 92. o

Les deux premiéres égalités équivalent, nous l'avons vu, aux éga-
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lités (36); quant aux deux dérniéres, elles peuvent se transformer par
un raisonnement semblable & celui qui fait connaltre §2®; elles
prennent alors la forme suivante : :

(42)

(42 bis)

/;3*53,alv,—i—2fs'39,a.dS,-i—zfsp‘e,dS.2

S1a
+fs. (%‘;‘Dx + dP'Dy + op‘Da)s ds,
| '*'L(g%l)x + %‘Dy-:— %"5’ Dz)é. dS,,
+ [0 DG ds.)+js;p.D(e. dS.,)=o,
/[8292dp,+ 2fs’89252d32+2fs"892s2d5u
+f& (32Do + 2Dy + £ D), a8,
_,_fsu(g% Dz + 35 des Dy + dP’Dz)s, ds,,

+£92D(52d82)+£pgD(s2dS”)=o.

\

Considérons maintenant l'expression de 82®. Par un groupement
convenable des termes qui la composent, elle peut s’écrire

| 310 = [ (5, ) do,+ |75 + V]3¢, d,

+f [ +V] (28, + 2Dz + %D}+ %Ds)e, ds,
+L’[‘L‘%‘l + V](z 8oy + _p_, Dz + dp‘Dy—{- d lDz)e‘. ds,,
+ [Te:(p0) + Ver-+ Po]D(s,d3))
:+fs“[‘?4(9i) +Vp,]}D(s, ds,;)

, av av AN

av Ve o Vo N e
: ;k.-f.snp,(b;Dw%— @Dy +, :a?,z—Dz).s. dsS,, +
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le signe : ... désignant. des termes de méme forme que ceux quisont
écrits, mais ot I'indice 2 remplace I'indice 1.

En vertu des égalités (34), (38), (38 bis), (39), (39 bis) et (40),
I'égalité (43) peut s'écrire

S — fd "1(91)(894)2 d‘,‘
av ov oV
- [ (Ees g0 E0uan
ov ov ov
+L’P‘(%Dx + -é:y‘Dy - EDZ) E‘ ds’2
@) | +C, [.[Sﬁpidv.
de, 0?1 0?1
-+ 29 ,-+— D D Dz d
fs( 0 @+ 5= Dy + 52 )s S,
+ (239, -+ ap’Dw+ dp’ Dy+ P'Dz)e,dS
SI’

| —+—fs:p,D(a.dS‘)_+js‘up.D(ai ds,g)]ﬂu

En chaque point de la surface S,, on peut attribuer a Dz, Dy, Dz
la méme valeur dans I'expression

av aV VAl
p.(d—x Dz + 37Dy+ EDz)e.dSm,
et dans I’expression
92<ox Dz + Dy + = Al Dz)s2 ds,,.

Dés lors, en vertu des egahtes (34), (42) et (42 bis), 'égalité (44)

devient
d 2\[F?
82(1)=[ 91(9')(89,)2&’.—*—/ @ (P )(892)26202
—+~fp‘(0va+dVDy+ Dz)s,dS
(45)
+fpg( D+ 2 Dy+—Dz)egd52

A p,)(dvaﬁ-avDy—i—"VDz)s,dS,,
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Telle est la forme trés simple que prend la variation seconde du
potenzicl ther modynamique d’un systéme composé de deux fluides,
soumis & une pression constanie, dans le cas ol l’etat initial est un
état d’équilibre.

§ V. — Stabilité de U'équilibre d’un fluide dont les masses
élémentaires ne sont sollicitées par aucune force.

Imaginons tout d’abord que les divers éléments de masse qui com-
posent le systéme ne soient soumis & aucune force extérieure; la-seule
force extérieure qui agisse sur le systéme est la pression P,, appliquée
a la surface libre. ,

Dans ce cas, la fonction V se réduit & une constante; 'égalité (38)
nous apprend alors que la densité p, a la méme valeur en tous les
points du fluide 1 et I'égalité (41) nous enseigne qu'il en est de méme
de la pression II,; les égalités (38 bis) et (41 bis) entrainent égale-
ment la constance des quantités p, et II, & l'intérieur du fluide 2;
chacun des fluides que renferme le systéme en équilibre est homo-
géne.

La constance de la fonction V entraine, en tout point du systéme;
les égalités
N_ N v
FQ—' - 0)’ - do

en sorte que I'égalité (45) se réduit &
320 — fd ?‘(P‘)(3o,)2dv,+fd ‘h(Ps)(gps)a do,.

Si I'on remarque que p, a la méme valeur en tout point du fluide

et p, 1a méme valeur en tout point du fluide 2, cette égalité peut encore
s'écrire

(46) 2P — d? ‘91(91)/‘(39')2‘1‘,. ‘?:(Pz)f(sp )2 db,.

Il est des modifications pour lesquelles cette quantité 8*® est évi-
demment égale & o; ce sont celles dans lesquelles chaque particule
Journ. de Math, (5 série), tome 1. — Fasc. II, 1895, 18
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fluide qui se déplace est remplacée par une particule fluide de méme
densité; pour de semblables modifications, non sculement ¢*® ‘est
égal & 0, mais il en est de méme-de toutes les variations d’ordre supé-
rieur de @, en sorte que, pour de semblables modifications, I’équilibre
du systéme doit étre regardé comme indifférent; cette proposition est
une conséquence immeédiate et évidente de la définition du mot fluide.

Excluons ces modifications particuliéres et cherchons-a quelles con-
ditions 'équilibre du systéme sera stable pour toutes les autres modi-
fications; la condition cherchée s’obtiendra en exprimant que, pour
toutes ces modifications, la quantité 8*® est positive, ce qui donnera,
en vertu de 1'égalité (46),

(/'7) d‘?x(Pi)f(aa')gd‘, 02(92)/"(8, )g(l()>0

Les variations &p,, 8p, sont seulement assujetties aux condi-
tions (36), qui les laissent entiérement arbitraires. La condition (47)
équivaut donc aux deux conditions

d?91(p1) @93(pa)
(48) g % Tay O
Telles sont les conditions qui expriment que le systéme est en
dquilibre stable sous ’action d’une pression uniforme et con-
stante.

Nous admettrons que I’équilibre d’un systéme fluide, soumis uni-
quement & I'action d’une pression uniforme et constante, est toujours
un équilibre stable; nous admettrons, par conséquent, que les iné-
galités (48) sonttoujours vérifices par tous les fluides.

. Interprétons ces inégalités.

La densité p, que prend le fluide 1 soumis exclusivement 4 unc
pression uniforme P, est donnée par I'égalité (3), ot II, prend la
valeur P,, c'est-a-dire par I'égalité

(49) - P(p)—p T8l 4P, =,

Sous la pression uniferme (P, + dP,), 4 Ja méme température, le
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fluide 1 prend une densité (p, + dp,); 'équation qui he dp, & dP,,
obtenue en différentiant I'égalité (49), est

d?o, (s
p, 1( 1)

dp, = dP,.

La premiére inégalité (48) noﬁs apprend donc simplement que dp,
est de méme signe que dP,. Ainsi, I’hypothése que nous avons ad-
mise revient d supposer que, dans tout fluide soumis exclusive-
ment & une pression uniforme, un accroissement de celle pression
détermine un accroissement de la densite.

§ VI. — Stabilité de I’équilibre d’un systéme fluide
lerminé par des surfaces libres.

Revenons au cas général auquel se rapporte I'égalité (45).

Nous avons vu que, dans ce cas, chacune des surfaces S, S,, S,,
¢lait une surface de niveau.

De ce fait que la surface S, est une surface de niveau, il résulte que
I’on peut, en désignant par n, la normale 4 la surface S,, dirigée vers
I'intérieur du fluide 1, écrire

oV gV ‘

.()Tt' == b_l—l—, COS(".,‘, fI/),
oV oV »

a;; = 57{; COS(IZ,',)’),
A

9% = om, cos(n;, ).

On adonce

v oV A%
3z Dz + 5o Dy +5; Ds
_— Z—Z [cos(n;, ) Dz + cos(n;, y) Dy + cos(n;, 5)D3z].

Mais, d’autre part, on a évidemment

=—[cos(n;, #) Dz + cos(n;, y) Dy + cos(n;, 5) Dz].
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Par conséquent, on a’
oV oV, . dV 9V,
(%Dx—i- B_ny'*- ;EDz)s, =— Gt

Cette remarque et deux autres remarques analogues permettent de
transformer ’égalité (45) en

NP = fd ‘Pi(Pl) (SP')ng +fd %(oz) (892>2 d02

: ov .
(50) | —fsp.%efds.—fsp,ma;ds,

v
— [ =) gz 1S,

n, étant la normale & la surface S,, vers I'intérieur du fluide 2.

Il existe évidemment des modifications du systéme dans lesquelles
cette variation est égale & o : ce sont celles ol le liquide se meut de
telle maniére que chacune des trois surfaces S,, S,, S,, demeure inva-
riable et que chaque particule fluide déplacée soit remplacée par une
particule de méme densité. De pareilles modifications annulent non
seulement 3'®, mais encore toutes les variations d’ordre supérieur
de ®; on doit regarder I'équilibre du systéme comme indifférent 4 de
semblables modifications en fait, elles ne font varier aucun des para-
métres qui, par hypothése, suffisent & déterminer I'état du systéme.

Laissons de coté ces modifications particulitres et cherchons la
condition de stabilité du systéme pour toutes les autres modifica-
tions; cette condition s'obtiendra en exprimant que la quantité 82®
est positive pour toutes ces modifications; elle s'écrira, en vertu de
Iégalité (50),

d‘?:(Px)g 2 d‘Pst)a LI
1 (p1) oot | (3p,)? do,

v -V
(51) —fsp.me,ds,_fp,ma:dsz
~f(9= P1) o :" > o.
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Si nous admettons I'exactitude de I'hypothése énoncée au para-
graphe précédent, nous pouvons énoncer lé théoréme suivant :

Pour que Véquilibre d’un systéme de fluides terminds par des
surfaces libres soit un équilibre stable, il faut et il suffit que
Pon ait :

1° En tout point des surfaces libres S,, S,,

x (Al
(52) o,

A

0;

2° En tout point de la surface de contact S,, de deux fluides
1 el 2, '

av
(53) (92*94)0‘,7250-

Dans ces deux conditions, égalité n’a jamais lieu pour tous
les points d’une région d’étendue finie de la surface.

Que ces conditions suffisent & assurer I'inégalité (51), cela est bien
¢vident; mais qu’elles soient nécessaires pour que cette égalité soit
vérifiée, cela s’aper¢oit moins aisément, car les quantités 8p,, Op,,
&, € Ne sont pas arbitraires, mais soumises aux conditions (36);
une démonstration est donc ici nécessaire; démontrons, par exemple,
qu’en tout point de la surface S,, on a nécessairement

, av .
(52 bis) S0 .

I'égalité n’ayant pas lieu en tous les points d'une région d’étendue
finie prise sur la surface S,;la nécessité des deux autres conditions
s'établirait d’une maniére analogue. : v

Ta condition (52bis) ne peut étre en défaut que de deux ma-

niéres; ou bien g'% est égal & o en tous les points d'un domaine d’¢-

: . o, ‘ . oV . .
tendue finie tracé sur la surface S, ; ou bien on, est positif au moins. en

un point de la surface S, ; dans ce dernier cas, on pourrait, autour du

-
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. ) ()V v . . " . .
point ot - est positif, tracer un domaine d'étendue finie ou, par
raison de continuiteé, 37 serait également positif; donc, si la condi-

. {

tion (52 bis) était en défaut, on pourrait assurément tracer, sur la
surface S,, un domaine D, d’étendue finie, en tout point duquel la

g 9V . ‘o
quantité 5= serait nulle ou positive.

Cela posé, imaginons qu’on laisse inmimobiles le fluide 2 et les sur-
faces S,, S,; qui le limitent; qu'on laisse également invariable la
partie de lasurface S, qui est extérieure au domaine D; qu’on déplace
le fluide 1 de telle manitre que le liquide qui remplissait un élément
de volume fixe dans V'espace soit remplacé par un liquide de méme
densité; que 'on donne enfin, aux divers points du domaine D, des
déplacements tels que

e, dS, =o.
1}

SiI'on observe que la densité p, a la méme valeur en tous les points.
du domaine D, qui appartient 4 une surface libre et partant & une
surface de niveau, on verra sans peine que les égalités (36) sont véri-
fiées et, par conséquent, que la modification considérée est une modi-
fication virtuelle du systéme.

Or, pour une semblable modification, le premier membre de I'iné-

galité (51) se réduit A
"'f?c dn € dS,,

ct, contrairement éi’inégahte (51), ce premier membre serait nul ou
négatif si la condition (52 bis) n'était pas vérifiée. Cette condition
(52 bis) est donc nécessairement vérifiée.

Maintenant que nous avons, en (52) et (53), les conditions genc—
rales de la stabilité de 'équilibre, cherchons & interpréter ces condi-
tions.

La surface libre S, est une surface de niveau; la force (X,Y,Z) en
. ) oV
un point de cette surface est normale & cette surface; pour que 5~

soit négatif, il faut et il suffit que la force soit dirigée vers l'intérieur
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du fluide 15 la condition (52) peut donc s'énoncer ainsi :

La force extéricure ne doit pas étre nulle en tous les points
d’une région d’étendue finie prise sur une surface libre; en tout
point d’une telle surface oiv elle n’est pas nulle, elle doit étre di-
rigée vers U'intérieur du fluide.

De méme, la condition (53) peut s’énoncer ainsi :
) P

La force extérieure ne doit pas étre nulle en tous les points
d’une région d’étendue finie prise sur la surface de contact de
deuw fluides; en tout point d’une telle surface ol elle n'est pas
nulle, elle dait étre dirigée vers Uintérieur du fluide le plus
dense.

CHAPITRE II.

L'EQUILIBRE DES CORPS FLOTTANTS.

- § 1. — Théorémes généraux sur Uéquilibre des corps flottants.

Imaginons un systéme formé de deux fluides 1 et 2, et d’un solide 3.
Ce dernier sera supposé absolument invariable de forme et d’état.
Nous supposerons le solide en contact avec le fluide 1 par une partie
S,, de sa surface, et avec le fluide 2 par une aulre partie S,, de sa
surface. Le fluide sera soumis & deux sortes de forces extérieures : des
forces appliquées & ses divers éléments de masse, et des pressions ap-
pliquées aux divers éléments de la surface qui le limite; au sujet de
ces forces, nous admettrons les mémes hypothéses, nous emploierons
les mémes notations qu’ au~Chapitre précédent; quant au corps solide,
nous le supposerons soumis & des forces que nous réduirons 4 une force
et 4 un couple; &, 7, ¢ seront les composantes de la force résultante
suivant les trois axes de coordonnées et A,. s v les composantes de-
I’axe du couple suivant les trois mémes axes.

I’état du solide étant supposé rigoureusement invariable, la présence
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de ce corps introduit seulement, dans le potentiel thermodynamique
interne, un terme constant que 1'on peut négliger d’écrire ; le potentiel
thermodynamique interne sera donc encore donné par I'égalité (1)
du Chapitre I. '

Les conditions d'équilibre d'un pareil systéme, s'obtiendront en
écrivant que, pour toute modification virtuelle du systéme, on a

(1) 8¢ — de, >0,

8¢ étant la variation du potentiel thermodynamique interne dans la
modification considérée et dg, le travail des forces extérieures.

Désignons par 8z, dy, 8z les composantes du déplacement imposé
4 un point matériel de I'un des deux fluides; par 8f, 8g, ¢k les trois
translations suivant Oz, Oy, Oz et par &/, 8m, n les trois rotations
autour de ces mémes axes; le travail des forces extérieures appliquées
au systéme aura pour expression

| dg,= f[Pcos(P,x)3x+Pcos(P,y)3y+Pcos(P,z)Sz]dS,
S,

+£[Pcos(l’,x) 82+ P cos(P,y) 8y + P cos(P,5)83]dS,

(2) +fp.(xsx+ysy+zaz)dv,

+ [0a(X 80 + Y 3y + Z3z) do,
+ §3f + n0g + {8k + A8l +- pdm + von.

" D’autre part, on aura

(%= [ oi(p)e 8, + [ ga(ga)zadS,
() s'd () s:d (ps)
Palp P2(Pe
? +['Ti§]_l'89'dv‘ +‘/’——t—i£—-8pgdog.
Ces égalités (2) et (3) permettent de donner une forme explicite a

- Pégalité (1).
“On peut supposer, en premier lieu, que le corps solide demeure im-
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mobile et que, seul, le fluide éprouve un déplacement virtuel. La con-
sidération de tels déplacements virtuels redonnera toutes les conditions
énumérées au Chapitre I, § I. |

En vertu de ces conditions, les inégalités et égalités (1), (2) et (3)
donnent, pour toute transformation ot le fluide ne ‘se creuse pas de
cavité,

SES/+ n08g + {8k + A3l + wdm +vén
%) -—£ I, [cos(N,w)3x+cos(N,):)3y+cos(N,z)Sz]dS.,,,

( -—f H,[cos(N,x)Sx—Fco‘s(N, )8y+cos(N,z)8z]dSzz‘§o,
S:s

N étant la normale au point (z, y, z) de la surface du corps solide, di-
rigée vers 'extérieur de ce corps. D’ailleurs, comme toute modifica-
tion ou le fluide ne se creuse pas de cavité est:une modification ren-
versable, le signe d'inégalité peut étre effacé.

Le fluide demeurant en contact avec le corps solide durant la modi-
fication considérée, si I'on désigne par Az, Ay, As les composantes du
déplacement du point matériel appartenant au corps solide, dont
les coordonnées sont x, y, 5, 4 I'instant ¢, on a, en tout point des sur-
faces S,; et S,,,

cos(N,z) 8z + cos(N,y)dy + cos(N,z) 8z
== cos(N,z)Az + cos(N,y)Ay + cos(N, z)Az.

On a, d’autre part,

Az = 8f + z8m — yin,
%) Ay = 8g+ zdn — 33,
| Az = 8h + y 8l — xim,

Journ. de Math. (5¢ série), tome I. — Fasc. IT, 18g5. I9
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L'égalité (4) devient donc

[s_.fs I, cos(N, z) dS,, ~fn2 cos(N, z) dS,, | f

S:g

-+ L‘f] —-fS"IL cos(N,y) dsS,, —fs;sﬂ,_, cos(N,y) ds,,

og

) —

4+ Lc_‘fsnnl cos(N, 5)dS,, .'_.js;ﬂg cos(N, 3>dsgzl— oh
+IN = i II, |y cos(N, z) —zcos(N,y)]dsns
(6) — [ W[y cos(N, ) — scos(N, y)}dS.. | &

sfﬂ

+ % f‘,—f II,[z cos(N, z) — « cos(N, z)] dS,,

Si3

— [ (3 cos(N, @) — w cos(N, z)] dS,, | ém

s!)

+ g v —fS“II, [ cos(N,y)— ycos(N, z)]dS,,

~—f [z cos(N,y) —ycos(N, z)] dS%t on =o.
S ’

Cette égalité doit avoir lieu quels que soient 81, g, 84, 8/, Sm, &n,
en sorte que nous trouvons les conditions

- |

13

n= / 1T, cos(N, y) dS,, +fH2c0s(N,y)dSm,,
Si3 Sza

(7) = fsnchos(N,z)dS.a-’r—fsnﬂgcos(N,z)dsm,

A= fs‘n,[ycos(N,z) — zcos(N, »)] dS,,

+ [ My cos(N, z)— 5 cos(N, y)] dS,s,
sss

I, cos(N, z)dS,, +f IT, cos(N, z) dS,,
S!S
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p= fslI. [5cos(N,x) — wcos(N, 3)| dS,,
+f II,[ 3 cos(N, z) — z cos(N, 5)] dS,;,,
Sas V
fH,[xcos(N,y) —ycos(N,z)]dS,,
sll

+f II,[2 cos(N, y) — y cos(N, z)] dS,..
83 .

(1)

o~

Telles sont les conditions qui, jointes aux équations de I'Hydrosta-
tique, donnent les conditions d’équilibre d’un systéme de fluides qui
. porte un flotteur.

Ce que nous venons de dire est général.

Imaginons maintenant que les forces extérieures admettent une
fonction potentielle V; que cette fonction soit uniforme, finie et con-
tinue en tous les points d’un espace renfermant non sculement les
fluides, mais le corps solide.

La surface de séparation S,, des fluides 1 et 2 est une surface de
niveau; la fonction V prend, en tous les points de cette surface, une
méme valeur A. )

Le lieu des points, intérieurs au corps 3, ol la fonction V prend la
valeur A, forme une surface §',, connexe avec la surface S,, ( fig. 2).

Fig. 1.

Cette surface S, sépare le corps 3 en deux régions; I'une, contigué au
fluide 1, que nous des1gnerons par 1'; l’autre, contigué au fluide 2,
que nous désignerons par 2'.

A Tlintérieur du fluide 1, la densité p, et la pression II, sont des
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fonctions bien de'termin'ées deV:

(8) . po=R,(V),
(9) I, =P,(V);
ces fonctions sont telles que I'on ait

(10) p, dV +dll, =o.

En chaque point de Pespace 1', nous définirons les fonctions p, et II,
par les équations (8) et (9). Nous aurons donc encore, en tout point
de I'espace 1’, ’égalité (10), qui peut s’écrire

v o _

P15z -+ gz O
A ||

(1) Ceigy g =
‘A% on,

"'d_z' —d:,: =0.

De méme, a I'intérieur du fluide 2, la densité g, et la pression II,
.sont deux fonctions bien déterminées de V :

(8 bis) o= Ry (V),

(9 bis) I,=P,(V). -
Ces fonctions sont telles que 1'on ait

(10 bis) p2dV,~+dIl, = o.

En chaque point de I'espace 2', nous définirons les fonctions p, et Il,
par les équations (8 bis) et (g bis). Nous aurons donc encore, en tout
point de I'espace 2’, Pégalité (10 bis), qui peut s’écrire

Jav  am,

Pr =9z 09z = O
. : A

(11 bis) { P2 -Jy-i—-d—;::o,
ay  om

Pg 'd—z -+ ‘d—; = 0.
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Cela posé, on trouvera sans peine que I’on a

f I, cos(N, @) dS,; + [ 1L, cos(N,z)dS,,
84 Y 844

_ (o on,
= f'a‘—x"dpa + .’[;d‘” d‘)3

lz"
av ov
e 0.V do, — [0, N g
A/P‘P'dx‘ 3 2,920‘” 3

(12) f 10, [ y cos(N, z) — zcos(N, ¥)]dS,,
S
+f IL, [y cos(N, z) — zcos(N, y)] dS,,
Sy
—_ d"l _ 72& d_[]?_ —zil!z\
= fi(y_d? .,dy>dva+.£<y P dy).d‘)"

i
r \

i
|

ooooooooooooooooooooooooooooooooooooooooooooo

En vertu des égalités (12), les égalités (7) prennent la forme sui-
vante :

Ces égalités peuvent s’interpréter.

Remplissons 'espace occupé par le corps solide par un fluide fictif
ayant pour densité p, en tout point de 'espace 1’ et p, en tout point de
I'espace 2’. Considérons les forces extérieures qui agissent sur les
divers éléments de masse de ce fluide, et composons-les comme s’il
sagissait d’un corps solide; soient ¥, v/, {' les composantes de la
force résultante et X', ', v' les composantes de 'axe du couple- résul-
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tant; on voit sans peine que 1'on a

I’ E»_ 7'1::0’

n - =0,

(14) NN
) A — N:==o0,

!J. - l,).' e ()~’

v — Vv = o.

Ces égalités sont une généralisation du principe d’Archiméde.

§ II. — Potentiel thermodynamique d’un systéme qui renferme
un flotteur. Variation premiére de ce potentiel.

Considérons un- systéme formé de deux fluides et d’un flotteur en
contact avec ces deux fluides. Le potentiel thermodynamique interne
de ce systéme pourra s’écrire [ Chapitre I, égalité (1)]

(15) 5=f<p.(p.)dv, +‘[%(pg)(h‘2,

la présence du corps solide introduisant seulement dans ce potentiel
un terme constant qu'il est inutile d’écrire.

Nous supposerons le systéme limité par une surface invariable, en
sorte que les pressions qui peuvent agir aux divers points de cette sur-
face n’effectueront aucun travail, Pour calculer le potentiel des forces
extérieures, il suffira de tenir compte des forces appliquées aux divers
€léments de masse des corps fluides et du corps solide.

Les forces appliquées aux divers éléments de masse des corps
fluides admettent un potentiel qui a pour valeur

(16) : Q= (Ve do,+ [ Vo, do,.

Nous supposerons que chaque masse élémentaire dmy = g, dv; du
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corps solide soit soumise & une force dont les composantes ont pour
valeur

JUu
"‘"Psdx dps, "Pu;},"d"aa - Ps‘ggd"aa

U étant une fonction potentielle, qui est uniforme, finie et continue

en tous les points d’'un domaine a l'intérieur duquel se trouve le corps
solide.

Les forces extérieures auxquelles le corps solide est soumis admet-
tront alors un potentiel qui aura pour valeur

(17) Q’-:t[pU:, dp,

et le systéme admettra un potentiel thermodynamique total ayant
pour valeur

(18) P=95+0+ Q.

La variation premiére de ce potentiel aura pour valeur
(19) 8D = 8(F + Q)+ oQ.

Si I'on se reporte a I’expression de (§+ Q), donnée par les éga-
lités (15) et (16), on voit que cette expression se rapproche du po-
tentiel thermodynamique total d'un syst¢me ne renfermant pas de
flotteur, potentiel dont nous avons calculé la variation premiére au
Chapitre I [égalité (26)]. Seulement les parties déformables de la

surface qui limite le fluide se nomment ici S,,, S,;, au lieu de se nom-
mer S,, S, ; de plus, les termes en P, font défaut. On aura donc

35+ Q)= f['d‘?'(“ +V]Sp,dv +—j[ 492 (p2) -i—V]Sp,dvz
(23) ¢ + [ oo+ VededSi+ [ [au(es) + Vol adSay

+fs {9 (p)+ Vo Doy +[2(p.) + Vo] e} S,
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D’autre part, on a
(21) -fps( A+ 9 Ay+ Az)d«,

Az, Ay, Az étant donnés par les égalités (5), cette derniére égalité
devient

0 = Sf/;ps g—g dv:,+8g£pggg—d0;,+Sh‘[ps%gd%
{ -i—Slv[ps(y%g - :%) dv3+8mf93<zgg ——xf)_g)dv:,
e +8n fp:‘(' ydw)dv‘.

Les égalités (19), (20), (21), (22) font connaitre la variation pre-
miére du potentiel thermodynamique.

Nous allons en faire usage pour retrouver les conditions d'équilibre
d’un systéme fluide portant un flotteur sous une forme qui nous sera
utile par la suite.

~ Ces conditions s’expriment en écrivant que I'on a, pour toute défor-
mation virtuelle,

( 22)

(23) 30 =o.
Si I'on observe que I'on a, en tout point de la surface S,
e, =—[Azcos(N, z) + Ay cos(N, y)+ Az co's(N, 5)];
qu'en tout point de la surface'S,, ¢, s’exprime d’une maniére ana-

logue; on voit sans peine que les égalités (5), (19), (20) et (22)
transforment I'égalité (23) en

g f[dq:’llp(, + V]SP' do,+ f[d—'%i@ +V] Sp dv.

() , ﬂ
+_£ 3 [?l (Pi)+ VPl] & '*"[%(P-z)*‘ v?e] € % ds,.
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‘*‘Sfjfa‘f’sgfgdva—fs:a[go,(m)-i-Vp.]cos(N,w)dS,,,

_fs[?2(9,)4-Vp,]cos(N,w)dSau‘ |
+3g{...j+8h;...§"

+81,[Pa(}’%{5j ;zg%)dvg,
= J o)+ Vo] [y cos(N, 2)= scos(N, )] dS.s

—/s‘ [9:(p2)+ V] [ycos(N,z)——zcos(N,}’)]dSnz

+dmf...)+dnj...|=o0.

Cette égalité (24) ne doit pas avoir lieu identiquement; elle doit

avoir lieu seulement pour les modifications virtuelles qui laissent
invariable la masse de chacun des fluides 1 et 2.

Exprimons que la masse du corps I demeure invariable; nous

trouvons

/‘SPl do, + Pi&y dSm"*"f predS,,=o0
i Sia

Sy

ou encore

fSp,alv‘—i-fp,e,dS,:l
1 Sis
— 3/f p.cos(N, 2)dS,; — 3gf picos(N, ¥)dS,,
sil sl:

— 3k | p,cos(N, 5)dS,,

(23) | >

——SIf pi[z cos(N, z) — zcos(N, ¥)]dS,,
Sis

— 3mf e[z cos(N, z) — « cos(N, )] dSn

sli

— Snf o, L@ cos(N, y) — y cos(N, )} dS,, = o.
Sys ’ _

Le fluide 2 fournit une égalité analogue, que nous désignerons

par (25 bis).

Journ, de Math. (5 séric),tome 1. — Fasc. If, 18g5. : T 20



(28)

148 P. DUHEM.

L’égalité (24) doit avoir lieu toutes les fois que les égalités (25)
et (25 bis) sont vérifides, et seulement dans ce cas. Le calcul des va-
riations nous enseigne qu'il existe alors deux constantes C,, C,, telles
qu'en ajoutant au premier membre de I'égalité (24 ) le produit par C,
du premier membre de 1'égalité (25) et le produit par C, du premier
membre de I'égalité (25 bis), on obtienne une quantitéidentiquement
nulle.

Sil'on observe alors que I'on a, en tout point de la surface S,,,
g, + &, = 0, on trouve les conditions suivantes :

1° On a, en tout point du fluide 1,
- dn)
(26) —d‘?;L +V+C, =0
et, en tout point du fluide 2,

- @ 9:(a) >
(26 bis) -——(;9—2’+V+(,2 =o.
* 2° Ona, en tout point de la surface S,.,,

(27) 2.(p)+(V+Cg =2:(p) +(V + Cy) g

3° On a, enfin,

U \
[930—56103: L'[?|(Pl)+(v+C|)P|JCOS(N7$)dS¢3

+fs [92(p2) -+ (V + Cy) 0,] cos(N, z) dS,,,

...........................................................

= [ T2+ (V+C)p ][y eos(N,2) = seos(N, )] dS,,

+fs. [92(p2) +(V + Cy)p.] [y cos(N, 2) — zcos(N, y)] dS,,,

......................................................................
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Telles sont les conditions nécessaires et suffisantes pour I'équilibre
d'un systéme de deux fluides portant un flotteur; on prouverait aisé-
ment qu’clles sont équivalentes aux conditions établies au § I.

CHAPITRE III.

STABILITE DE L'EQUILIBRE D'UN FLOTTEUR.

§ 1. — Variation seconde du potentiel thermodynamique d’un sys-
téme de fluides qui renferme un floticur.

Considérons un systéme de deux fluides, 1 et 2, contenant un flot-
teur; concevons que ce systéme soit soumis aux hypothéses indiquées
au § 2 du Chapitre 1I; ce systéme admet un potentiel thermodyna-
mique @, défini par les égalités (15), (16), (17), (18) du Chapitre II;
la variation premiére 8® de ce potentiel est donnée par les égalités
(19), (20), (21), (22) du méme Chapitre; proposons-nous de déter-
miner la forme générale de la variation seconde 82®.

Nous aurons

(1) 8“@:82(5”—*-0)4-3’0’.

En raisonnant sur I'expression de 8(§ + Q) [Chapitre 11, égalité (20)]
comme au Chapitre I, § 3, nous avons raisonné sur I’expression de
¢®, nous trouverons

5 (5+@) = [ THE (B, ydo, + [ 42 +V]829 do,

4_2[5”['1‘2(:‘) +V]39,s ds,,+ 2f [dm' +V]39'€.dsm

I(Pi) dey dP:
+f! ) dp, d.L'+V +V'd

| D
GG VG e Dy
]D

Tdp, 0z
+ fs‘[?.(e.)+Ve']D(e.dS>

+ d@l(Pl) dPI V()Pl +P| %a dS|~0
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+ f‘ [Mdpl*'vdm’*'f"ax]l)x

sul L dp 0
‘*‘[@ff” ?fy' VQP—‘H«@]Dy
b [l dy v o ] Dol a8,
+ [ [#:(p0)+ V1D (e dS,)

le symbole : etc. représentant des termes qui sont analogues a ceux
que nous avons écrits et qui se déduisent de ceux-la en permutant les
indices 1 et 2.

Les égalités [ Chapitre II, égalités (26) et (27)]
(3) d f;(f‘) +V4+C, =0 (en tout point du fluide 1),
(4) 9.(p)+(V+C))p,=0 (en tout point de la surface 3,,)

permettent d’écrire

[ e
+2f [M +V]Bp‘s dS,g-l-sz [d(fi‘(?‘)-f-\’] gieydS,,
8;2

512 !

M fs.,[dfilo(fi) + V] (dm Dz + dpy Dy + % Dz’)e'ds"'

* [ [9:(p)+ Vo, ID(z\d8,2)
Se
d o, (py) d2, dp, doy - -
& S [t V] (e + 5 Dy G0
+ L[?|(P4)+VP«]D(€.dSc3)
=—C, ‘ fS”p.dv. +2f So.¢, dS,o—f—zf dp,€,dS,,
Sis Sis
+f<"P'Dx+"P’ Dy + %Dz )s dS“-f—fp'D(s ds,,)
1] dl d l
+L‘.(£Dx+ Dy + d_f;Dz)e.ds.,!

|
+fs. [9,(p.)+ Vo, ID (e, dS,,).
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En exprimant que la masse du fluide 1 est essentiellement inva-
riable, nous trouvons 1'identité J

(6) [Sp.du, +‘/s“’p,s‘ds,,+fs"p,a, dS,, = o.

Le premier membre de cette égalité (6) étant identiquement nul, il
en doit étre de méme de sa variation, ce qui nous donne 'égalité

‘[829,010.-1— 2fsu3p.s.ds.,+ 2f dp,€,dS,,

Sy
(7) +f (g% Dz + gﬂ.D}r—]—-d-E}DZ) e,dS., +f PaD(EldSm>
Sia
-i—‘/s:‘(%Dx-i—dP’ D)’+ dP’Dz)E dscs +f PlD(E dS“')—'

Moyennant cette égalité (7), le second membre de I'égalité (5) se
réduit &

~£. [?4(P|) +(V + C|)p‘]D(g‘dS‘3>.

Ce calcul, et un calcul semblable effectue sur le fluide 2, donnent
a I'égalité (2) la forme.

P(e+0)= [T (30 de
+f p‘(d—YDx-i- g‘—[Dy—i- QYDZ)é.dSm
(.8) | +fp(dva+dVDy+dvD.,)s ds,,
Sy

+fs“[q>.(p.) +(V+GC,)p,]D(e,dS,s) + etc.,

le symbole : etc. ayant un sens analogue & celui qu'il a dans I'égalité (2).
Nous pouvons, en tous les points de la surface S,;, prendre

(9) Dz = Az, Dy = Ay, . Dz = Az,

Az, Ay, Az étant les composantes du déplacement diu point du corps
solide dont les coordonnées initiales sont z, y, 3, et étant donnés, par
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conséquent, par les égalités
Az = 8f &+ z8m — y én,

(10) sAy:Sg-i— z8n — 58l

C Az =2Ch + yil —xim.

Nous aurons alors
¢, = — [cos(N, z) Az + cos(N, y) Ay + cos(N, 5) As]

ou hien, cn vertu des égalités (10),

[ ¢,=— |cos(N, z)&f + cos(N, y) 8g + cos(N, 5)éh
+ [y cos(N, 5) — 5 cos(N, y)] ¢!
(.”) + [ zcos(N, ) — x cos(N, z)]ém

‘ ' + [z cos(N, y) — ycos(N, z)]en !.

Si nous convenons de prendre Sf, 8g, ok, 8, 8m, n comme
variations indépendantes, nous aurons, en vertu de I'égalité (11),

! Ae, = — &fAcos(N, z) — dgAcos(N, y) — ¢hAcos(N, z)
— 8l [yAcos(N, ) —zAcos(N, y)]

— &l [cos(N,2)Ay — cos(N, y)As]

(12) ! ~ dm[zAcos(N,z) — zAcos(N, z)]

— ém[cos(N, ) Az — cos(N, z)Az]

—on [zAcos(N, y) — yAcos(N,x)|

\ —3n [eos(N, y) Az — cos(N, z)Ay].

Mais on a également

Acos(N, z) = cos(N, ) 8m — cos(N, y) ¢n,
(13) Acos(N, y) = cos(N, x) én — cos(N, z) &,
Acos(N, z) =cos(N, )8l — cos(N, z)em.

En vertu des égalités (10) et (13), 'égalité (12) devient

(14) Ag,=o.
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D’ailleurs, I'élément dS,, est un élément d’aire invariable de la
surface du solide, en sorte que

(13) AdS,,=o.
En vertu des égalités (14) et (15), I'égalité (8) devient
Fr@)= [T @),
ov av av
+fsnp,(——Dx+ —yD_y—l— &DZ>€. ds,,

(16)
+ p.( Ax + VAy +%§-£Az)s'.ds.:,

Calculons maintenant 829)'.

Nous avons
Q’:fando:,,
3 = f ( Wz + % Ay+ Aa)d(,,

o= [o|5m (Aw) + 5 <Ay>a+ﬂ’<Az>ﬂ
+ 25 AyA.. + 25— Ad Az + ..——AwAy] dy,
U dA.z ()Aa: dAz' ’
(17) +f ( Ax -+ S 2oy + R As o ) de,
+/p3 (dAyAr—i—d'\yAy—*—dMAo—i-A y)dv,

aU dA., 0Ag dbs
+fp3d (d dy Ay A6+A2'>(lﬂa.

Les égalités (10) donnent

dy
Az = o,

98z on, ddAzx = dm,

J
Oz =9
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ce qui donne la premiére des égalités

d—d%Aa; dAxAy—l- dAwA.. -+ Az = (Az 8m — Ay Sn),
(18) {2 az ‘“’Ay+ 9 Az + Aty = (AzSn — As ),

dAO dAo dAJ

= AT+ =~ Ay+ =45 +4's = (Ay el —Axim).

Les deux autres s etabhssent d’unc maniére analogue.
Iin vertu des égalités (8), I'égalité (17) devient

, [ 9*U 7*U
2Q = fﬁ & (Ax)’-i— T () + d_, U Az
| +2 Aym+,d Y sz 42 20 5 Avdy | o,

(19). |
+fp,, L(Az Sm — Ay Sn) o +(Am8n —As 3!) 5

+(Ay 8l — Az dm) g—g] do,.
Les égalités (16) et (19), jointes aux égalités (10) et (11), donnent

sga(ma-{-a'): d’°'(f")(ap)2do +f ‘“(P*)(oo Y2 d,

1

+ < D.r-l- Dy—i—-d—Ds)s,dS .

(30)
( f92<0$D37+ "VDy+"VD~)e dS,,
+Q,

Q étant une forme quadratique des six variables

8f, og, Ok, &, d&m, dn,
Q= Au(8) +Aun(Pg) + Ay (Bh)
+ A (8 + Ay (Om)? + Ay (Bn)?
+ Ay, 8g Sk + Ay ShEf + A, 0f 82
(a1) 4+ Asa8mdn+ Ay, Sndl + A,,818m
‘ + A, 0f 8l + Ay 8gdm + A,y Sk dn
+A8fdm+A,,8f%n
+ A, 8g8n + A, 0g 8l
\ + Ay, 0h3l + A, SR dm.
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Les coefficients A;; de cette forme ont les valeurs Suivantes :

A, = fp,d cos(N, x)dS.,,—f 0232 cos(N m)dSn-;-fpad Udva,
_,=——f ey, cos(N,y)dS,3 f P2 35 cos(N,y)dS,,-l—fp3 S dv,,
n= —f Pl COS(N’ ")dsls fp’ COS(N7 ‘)ds?3+fpa d‘)“

A= -—[ P g :20—},cos(N, y)-yz[@cos(N, 3)+ EZCOS(N’-V)]
+y* v cos(N, 5)| @S,
. av A\ oV
—fs 92! st o-cos(N,y)—ys [%—ycos(N, 7) + 5, cos(N, y)]

+52 W eos(N, 2) |as.,

[ FU _ ,0U._ U _ _dU\
+ SP’ 5 2y°0ydz+y 9r ~Viy T %)%

f 0 —cos(N 4)—ow[(’—cos(N w)-i— cos(N A)

S5

+ 3? —cos(N x ‘dS.:,

fsp —cos(N 3)— 5% [ cos(N x)+ cos(N 4)
+z’5;cos(N,w)§ds._,3
f ( () — 252 5 ()WU +~‘g;—U — %g — %)dva,
Aye= f 3 cos(N, z) — [-—cos(N,y)—i— cos(N, a:)]

. ) + z? d—cos(N,y) ds,,
pggy —cos(\l w) z [—cos(N,y)—i— —cos(N, x)]
S:s

+ 22 Fj—/cos(N,y) ds,,

o0tU 202U -0U U d
fps y d 2 2&)’075;-1"% W—x-o—‘r—yd—y [2)
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Ay = P [—-— cos(N, z) + —cos(N,y)J dS,,
S5

U
- s“pz._--—-cos(N,z:)+ —;cos(N,y) dS,, + 2[935';7,;d03,
A=~ 1 p, -ﬂcos(N x)-l- cos(N,d) ds,,
80 L ~
[0V 0*U
— 8"92 —cos(N x)+ cos(N,.,) dsS,; + 2f9‘(5255d0"’
Ap=—1 g —?Xcos(N ¥)+ —-cos(N w)] ds,,
Sl’

fp,[ cos(N, y)+-——cos(N x)] ds,, + fp:,d 0),493,

[ o] Selayscos(N,a)—azcos(N, y)—ay cos(N, 2)]
s!l
+‘%¥ [=* cgs(N, z)— zzcos(N, x)]

g—}[xﬂ cos(N, y)—xycos(N,m)] %dS,ﬂ

ov A
+fs"pgz 35 [2r3cos(N, z) — zz cos(N, y) — 3y cos(N, z)]
?)V [a:2 cos(N, z) — xz cos(N, z)]

-+

[x‘-’ cos(N, y)— xy cos(N, )] EdS25
e 0°U U
ﬁfpg 2y.. — 23 5oo = 2EY e
d"U U gU
+ 22 adyd‘. —"o—f—yﬁ—gd‘)‘”

= [ Blreos(N,5)—yscos(N.y)
—-—[uxcos(N,y) yx cos(N, z) — yz cos(N, x)]

———[y cos(N,z)— yz cos(N, y)] gdS,,
+f eai 2 [y cos(N, z) —yzcos(N, )]

——[2zwcos(N,y) yxcos(N,z)uyzcos(N,x)]

(—E[y cos(N, x) — yx cos(N, y)] ‘dSM
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_f 25500 — ayz &Y _ oy BU
ap"i dy Yoy = 2V 592

U
+ 2y* dd’dw %S——Zo_U;d"u
A= £P,i g—;/[z cos(N, ¥) — zy cos(N, 3)]
+ %}[52 cos(N, z) — zy cos(N, z)]
+ %z.[gxycos(N,z)—zy cos(N, z) — zz cos(N, )] %dsas
] L oN, )=y os(N, )
+ % [2? cos(N, ) — sz cos(N, 2)]
+ %—g[zxycos(N,z)—zycos(N,x)—zﬂﬂcos(N’)’)] %dszs
U U 0*U
_.fap,gzwyag,— —28Y 3rgn — 258 59y
32U v x‘—’g%dv
dzdy Yoz " Tay|®w
=_f Pil3 [ycos(N z)—zcos(N, y)]
+ cos(N, x)(y%v 3}’>§d5.3
_f p,;d [ cos(N, 5) — zcos(N, ¥)]
+ cos(N, x)(yd %) tdses
[ ey 2% s 20,
393(9’0:005 Sozoy) e
Aas=“f P4 %%}[ZCOS(I\L x)—xcos(N z)]
S !
+cos(N,y)( = - );dscs
__f p,g‘;—v[zcos(N,x)— zcos(N, z)]
s (O
+ cos(N, y)(z—— — T )Edsns

a*U - 0*U
p,(za]dw - ) dp,,
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A:m:—-fs"p,1%}'[mcos(N,y)—ycos(N,x)]
+cos(N,a)( A g)tds'“
—-f po;d [z cos(N, y) —y cos(N, z)]
+cos(V,..)< AR %)‘dsas

(waiu LU
p“ 03 0y. Y 359z ) v

=—fs"p,gu__cos(N x)—~x[—-cos(N z)+ 31 cos(N, 5)]{dS,,
—-f p._.gzz——cos(N,x)—x[(Ts'«:os(N,x)—i-d—-xcos(N,z)]st._,g

+[p3( o — 2% — 3 ) doun
Asi=— [ pi|aafgoos(N,y) =y [ G5 cos(No ) + g eos(Ny o) [fas
*f pal 20 00 (N, ) — [ Fucos(N, ) + Feos(N, @) || .,

o (el — 2 e — ) 4
A“=—fs" p,gzy%‘;’cos(N,z) —'z[%cos(N,:) + %‘:ﬁcos(N,y)]idS,s
"fs,. af2y 57 cos(N, z) — z[%cos(N,s)+ reos(N, y) |l aS..

0*U FU U
+f <2 _.__23._:___:___)d9:
L Pa\?Y5a dgzay  ay) %

A= szg—: cos(N, z) — [%}cos(N, x)+ S—Zcos(N, y)]i ds,,

Su

: " oV av
+/\.92%2’y g-.‘—[_cos(N,x)_—‘;x [5; cos(_N, z)+ 5;005(N,y)]§d523

auU_0U .
f 93(23’ 9zt *%ozas T -)d"”
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f p,%2zqycos(N, ¥) —y[g;/cos(N, y) + ‘; cos(N,,.)]}
fp,lzz cos(N, y)— y[—-cos(N,y)—i—% cos(\l,..)]

= (225~ s+ )

A= [p,{'zx}-cos(N,z)—z[%cos(N,z}—i—Z—Ycos(N,w)];dS,:,
Js 3 3

+f p,’zx%‘gcos(N,z)— [—-cos(‘l,‘-)-*-—ms(\J %)J;dsm
51
—fa ps(zx%%j - 23(-)?— ded

Ces égalités, jointes aux égalités (20) et (21), font connaitre la
forme de la quantité 8*(§+ Q + Q'), dans le cas particulier ou I’¢tat
initial du systéme est un état d’équilibre. Pour calculer plus briéve-
ment cette quantité, nous avons supposé que les variations

3f, ¢g, oh, 8l, om, on

étaient des variations arbitraires, en sorte que I'on etit
e*f =o, . &g =o0, Fh=o, &l=o, &Fm=o0, Sr=o.

Nous aurions pu ne pas faire cette hypothése; la quantité

82(5 +Q+ Q)
aurait alors renfermé une fonction linéaire et homogéne de
& f, g, Sk, 8l &m, Oa.
Mais les égalités (28) du Chﬁpi’fre IT nous aﬁraient permis de dé-

montrer que cette fonction est identiquement nulle lorsque l’etat ini-
tial du systéme est un état d’équilibre.
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§ 1I. — Stabilité de équilibre d’un sysiéme de flurdes
" qui renferme un flotteur.

Une transformation analogue & celle qui a fourni I'égalité (50) du
Chapitre précédent permet d’écrire ’égalité (20) sous la forme

3 (F+0+Q)= fd ?‘(P‘)(Sp,)‘*dv +f %(P’)(Spg)’dv.;.

(22)
— [ (=) g dS .+ Q.

Nous avons admis que, quels que soient les fluides 1 et 2, on avait
[Chapitre I, inégalités (48)], ‘

(23) a ‘39(?1) > o0, d"”a(?s) >o0.

Ces inégalités admises, nous allons chercher s'il est possible de
marquer les conditions nécessaires et suffisantes pour que I'on ait,
pour tout déplacement du systéme, 'inégalité

(24) 3(F+Q+Q)>o.

Ces conditions seront les conditions de stabilité du systéme.

Imaginons que V'on maintienne le flotteur immobile; que 'on
garde une densité invariable au fluide qui remplit chaque élément de
volume du systéme; on pourra néanmoins déformer la surface S,,,
cette déformation étant simplement soumise & la condition

fs:’s, dS,;=o.

L’inégalité (24) se réduira, dans ce cas, a
N
f; (pa— Pa)j,;; ;dS,; < o.

Cette inégalité entraine, comme nous I'avons vu a la fin du Cha-
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pitre I, la conséquence suivante, qui est une PREMIERE CONDITION NECES-
SATRE POUR LA STABILITE DE L'EQUILIBRE DU SYSTEME :

La force extérieure ne doit pas étre nulle en tous les points d’une
aire d’étendue finie prise sur la surface de contact des deux
Sluides; en tout point de cette surface o elle est différente de o,
elle doit étre dirigée vers Uintérieur du fluide le plus dense.

~ On peut imaginer des déplacements qui laissent invariable la den-
sité du fluide qui remplit chacun des éléments de volume du systéme;
seulement, en exprimant que la masse de chacun des deux fluides doit
demeurer invariable, on trouve que de semblables déplacements sont
assujettis aux conditions suivantes :

/ Plsidsi2+f Plsidsia=07
(25> 8. Sz

Pats dS.2+£ P2€s dS,, = 0.

v VS,

Si 'on remarque que les densités p,, p, ont des valeurs constantes
le long de la surface S,,, ces égalités peuvent s’écrire

p.fsﬂs. dS,,+° snp.a. dS,,;= o,

(26)
Pﬂf e A3, + Pzeads‘zs:(’-
;s

s;l

On peut méme assujettir un tel déplacement & ne pas déformer la
surface de séparation S,,; dans ce cas, les égalités (26) deviennent

L;P‘El dS;=o, fs;‘PaEadsn=0
ou bien, en vertu de I'égalité (11),

.Sf p.cos(N,x)dS,3+3gfp‘cos(N,y)dS.,+3hf picos(N,z)dS,,
sl’ sl,

S,

+8 { p[ycos(N, z)— 5 cos(N, )] dS,,
(27) { po | |
+8m [ p,[5 cos(N,z)— zcos(N, z)]dS,,

sll

+3nfsp,[xcos(N,y)-—ycos(N,w)]dS,:,io,
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et une égalité analogue, qui se déduit de la précédente en remplagant
I'indice 1 par I'indice 2, et que nous désignerons par (27 bis).

Lorsque les six quantités &f, 8g, &k, 8, 8m, Sn vérifient ces deux
relations (27) et (27 bis) on peut prendre :

Spy = o, en toul point du fluide 1;
8ps = 0, en tout point du fluide 2;
¢, = o, en tout point de la surface S,,.

L’inégalité (24) se réduit alors &

Q> o.

Cette inégalité nous donne une SECONDE CONDITION NECESSAIRE POUR LA
STABILITE DE L'EQUILIBRE DU SYSTEME : .

La forme quadratique Q des siz variables 8f, 8g, Sh, 81, 8m, dn
doit étre une forme définie positive loutes les fois que ces six va-
riables verifient les deux relations linéaires et homogénes (27) et

(27 bis).

Nous venons de trouver deux conditions qui sont nécessaires pour
que P'équilibre du systéme soit un équilibre stable; mais il n’est pas
prouvé que ces conditions suffisent a assurer la stabilit¢ de cet équi-
libre; inversement, nous pouvons énoncer deux CONDITIONS QUI SUFFi-
SENT A ASSURER LA STABILITE DE L'EQUILIBRE DU SYSTEME ; mais la seconde
de ces conditions peut n'étre pas nécessaire.

Voici ces conditions :

1° La force extérieure n'est pas nulle en tous les points d’unc
aire d’élendue finie, prise sur la surface de contact des deux
Sluides; en tout point de cette surface ot elle est différente de o,
elle est dirigée vers Uintéricur du fluide le plus dense.

2° La forme quadratique Q des siz variables &f, 8g, Sk, 81, ém,
dn est une forme définie positive, quelles que soient les valeurs
atiribudes & ces variables; ou, du moins, elle ne devient nulle que
pour des valeurs de ces variables qui ne vérifient pas @ la fois les

égalités (27) et (27 bis).

Considérons, en effet, la quantité 82(§ + Q + Q') donnée par I'éga-
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lité (22); notre premiére condition empéche le troisiéme terme d'étre
jamais négatif; notre seconde condition produit le méme effet sur le
quatriéme terme; quant aux deux premiers, en vertu des inégalités
(23), ils ne sont jamais négatifs. De plus, les quatre termes ne pour-
ront étre simultanément égaux 4 o; le quatriéme, en effet, ne peut
devenir égal & o que pour des valeurs de 8f, 8g, 8h, 8l, 8m, n qui ne
vérifient pas a la fois les deux relations (27) et (27 bis); dans ce cas,
I'un au moins des trois premiers termes, doit étre différent de zéro.

§ IIl. — Cas ot les deux fluides confinent
par une surface illimitée.

La surface fixe qui enferme les deux fluides et le flotteur a des di-
mensions limitées; mais il peut se faire que la fonction potentielle V
puisse se prolonger indéfiniment d'une maniére analytique en dehors
de cette surface; on pourra alors supposer que 'on prenne successive-
ment des surfaces closes de plus en plus grandes, et que I'on donne 4
la surface de contact des deux fluides des dimensions de plus en plus
grandes. C’est dans ce cas que nous allons maintenant nous placer.

Nous remarquerons, en premier lieu, que lorsqu’on étend ainsi, de
plus en plus, I'aire de la surface de contact des deux fluides, en pro-
longeant analytiquement cette surface, on ne modifie pas les valeurs
des coefficients de la forme quadratique Q.

Supposons que la forme Q puisse étre rendue négative par un choix
convenable des six variations

8f, 8g, ok, O, 8m, &n.

Si ces siz quantités ne vérifient pas les conditions (27) et
(27 bis), et si la surface qui enferme les deux fluides et le flotteur a
des dimerisions données, il n’est pas certain que I'équilibre du flotteur
ne soit pas stable; mais nous allons démontrer que, si ’on suppose va-
riables les dimensions de la surface de contact des deux fluides, on
pourra toujours prendre Uaire de cette sur-face assez grande pour
que, dans le cas considéré, Uéquilibre du systéme ne soit plus
stable.

Journ. de Math. (5° série), tome L. — Fasc. II, 185. 22
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Prenons, en effet, une surface S,, déterminée.

Nous pourrons imposer au systéme une variation virtuelle définic
de la maniére suivante :

1° Les éléments du déplacement du corps solide ont les valeurs
considérées 8f, 8g, Sk, 81, 8m, &n, qui donnent & Q une valeur néga-
tive;

2° La quantlte g, = — ¢, a la méme valeur en tout point de la sur-
face S,

3° La quantité 8p, a la méme valeur en tout point du fluide 1;

4° La quantité 8p, a la méme valeur en tout point du fluide 2;

Ces diverses quantités sont liées par les relations qui expriment que
chacun des fluides 1 et 2 garde une masse invariable; ces relations
sont I'égalité

f&p,dv, ——L 0,8, dS,, '
+ Sffsnp. cos(N,z)dS,, + 3g/s‘mp| cos(N,y)dS,,

+ Slzf o, cos(N, 5)dS,,
§,

S [ arenn - s,

13

+ Smf pi[5 cos(N,z) — zcos(N, 3)]dS,,
slﬂ

+28n | piJzcos(N,y)— ycos(N,z)]dS,,=o

Sy3

et une égalité, que nous désignerons par (28 bis), et qui se déduit de
la précédente en permutant les indices 1 et 2.

Ce déplacement peut faire prendre & la quantité ¢*(§ + Q-+ Q')
une valeur positive, bien que Q ait une valeur négative, car les trois
termes

(894)2fd 'Pl(Pl)dp” (892)2 2 %(Pg)dv,, (P; P.z)s 31\: ds,, .

ont des valeurs positives.
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Faisons maintenant croitre les dimensions de la surface close qui
enferme le systéme; l'aire de la surface S,, est multipliée par le
nombre A; le volume occupé par le fluide 1 est multiplié¢ par le
nombre w,; le volume occupé par le fluide 2 est multiplié par le
nombre ,.

On voit sans peine que I'on vérifiera les égalités (28) et (28 bis) en
prenant pour ,, 8p,, 0p, de nouvelles valeurs ¢}, dp', dp;, telles que

)‘5/4 =&, ey 89: == SP., [T 39; = 892.

Les valeurs des intégrales

d‘°1(Pl) 2 (p2) 0_Y
T dp? do., [deﬁ’ ‘L‘dn,ds'g

1 13

seront multipliées par des nombres qui seront respectivement de
Pordre de ,, ., A. Par conséquent, dans 'expression de

3 (F+ Q-+ Q),

le terme Q, qui est négatif, gardera une valeur invariable, tandis que
les valeurs positives des termes

d* 94 (94 d®o,(p, oV
@) | ‘””dv” (sz)f '(p do,, (p.*pz)e?fs,,mds

seront multipliées par des nombres de I’ordre de — " ——, i

On pourra donc toujours prendre p.,, ., A assez grands pour que
la quantité 6*(§ + Q + Q') soit négative, ce qui démontre la propo-
sition énoncée.

Il résulte de cette proposition que si deux fluides, portant un flot-
teur, confinent par une surface illimitée, ’équilibre du systéme sera
instable si la forme Q peut étre rendue négative.

En rapprochant cette proposition de celles qui ont été démontrées
au paragraphe précédent et qui sont indépendantes de laire de la
surface de contact des deux fluides, nous arrivons & énoncer de la
maniére suivante les CONDITIONS NECESSAIRES ET SUFFISANTES pour la
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stabilité de Péquilibre d’un corps flottant & la surface illimitée
qui sépare deux fluides :

1° La force extérieure ne doit pas éire nulle en tous les points
d’une aire d’étendue finie prise sur la surface de contact des deux
Sluides ; en tout point oil cette force esi différente de zéro, elle doit
étre dirigée vers Uintéricur du fluide le plus dense;

2° La forme quadratique Q ne doit étre négatioe pour aucun
ensemble de valeurs de 8f, 8g, 8k, &L, 8m, 8n; clle ne doit pas étre
nulle pour un ensemble de valeurs des mémes quantités vérifiant
les égalités (27) ou (27 bis).

Ainsi, dans le cas particulier ot les deux fluides qui portent le flot-
teur confinent par une surface illimitée, le probléme de la stabilité de
’équilibre des corps flottants est complétement résolu.

§ IV. — Cas ol les forces cxicrieures se réduisent
a la pesanteur.

Prenons 'axe des s dirigé vers le zénith; si les forces extérieures
qui agissent sur le flotteur et sur le corps solide se réduisent & la pe-
santeur, et si nous désignons par g l'intensité de la pesanteur, nous
aurons

ov _ v _ v _
BT T GwTE
U _ 9U _ ou

= 2.
o

w=% F=% 3

Les égalités données a la fin du § I, qui font connaitre les cocffi-
cients A;;, deviendront

A,, =0,
A, =o,
A,y =—gfs e, cos(N, z) dSm—-gfs pscos(N, 3)dS,,,

A=~ gl e ¥y cos(N, z) — zcos(N, ¥)] dS,,

~ng p2 ¥ [y cos(N, z) — zcos(N, y)] dses"‘g[PaZd"a,
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Agy=— gfs‘ evz[@ cos(N, z)—z cos(N, z)] dS,,

- gf px[x cos(N, z) — zcos(N, x)]dS,; — gfpszdva,
Sy ) 3
0

AGB )
Ay =— gL e.cos(N, ¥)dS,; — gj; pacos(N, y) dS,;,

A,, =-ng g, cos(N, ) dS,; — g/s. p2 cos(N, z)dS,;,

A,=o,

Au= g pulacos(N,y)—aycos(N,z)|dS.,
+g'[s 92[xzcos<N’y)"xycos(N’ x)]dses+gIP::ydvsa
Ay = gfs pi[y? cos(N, z) — yxcos(N, )] dS,,

+g [ ea[y* cos(N, z) — yzcos(N, y)] dS,; + g f osz doy,

s!%

A= gfs ei[ 2y cos(N, z) — 3y cos(N, )~ zx cos(N, y)| dS,,
+ gf pa[ 2y cos(N, z) — zy cos(N, x)~ sz cos(N, y )] dS,,,
Sis
A, =—-gf eiycos(N,z)dS,, — gf paycos(N, z) dS,,,
sll sll
A,, = gj p,x cos(N, ) dS.ﬁ—gf pa cos(N ) dS,,,
Sis Sss
Ayp=— gj; e[z cos(N, y)— ycos(N, z)]dS,,
— gL po[xcos (N, y)— y cos(N, x)] dS,;,,
A.5=_gfs 0.z cos(N, z)dS,,

+ g/; pa cos(N, ) dS,, — g‘[padva,

A, =o,
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A, = gfs o, [zc0s(N, y) ~ 2y cos(N, 5)] dS,,

+ g [ palsos(N, y) — 2ycos(N, 2)] dS.,
Sgy
A,=o,

A, =— gfs prycos(N, y)dS,,
- g‘/; g2y cos(N,y) dS,; — ng:sd":n

A= g | el2zcos(N,z)— zscos(N, z)]dS,,

St .

+ g£ p.[ 2 cos(N, z) — z cos(N, z)] dS,;.

Six de ces coefficients, les coefficients A,,, A,s, Agg, A,z Agey Ayg
sont égaux 4 o; nous ne devons pas nous en étonner; en effet, il est
évident a priori que la forme Q doit étre identiquement nulle lorsque
I'on a

8h=o0, dm=o0, Odn=o.

Une modification, infiniment petite ou finie, qui consiste exclusi-
vement en une translation du flotteur parallélement a la surface de
contact des deux fluides et une rotation autour d’'un axe normal i
cette surface ne change en rien la valeur du potentiel thermodyna-
mique du systéme; pour de tels déplacements, I'équilibre du systéme
est indifférent; c'est seulement lorsqu’on les exclut qu'il peut étre
question de stabilité de I'équilibre.

§V. — Cas ot les deux fluides en contact sont homogénes.

L’expression de la forme Q devient beaucoup plus simple lorsque
I'on suppose homogénes les deux fluides 1 et 2, soit qu'on les regarde
comme incompressibles, soit que l'on néglige les variations que la
densité de chacun de ces fluides éprouve d’un point & I'autre par
Teffet de la pesanteur.

Pour transformer, dans ce cas, I'expression des coefficients A,;,
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nous ferons usage des formules bien connues
F
fF cos(n,, ) dS = g; do,
JF
(29) f F cos(z,, ) dS = f 5 4

chos(n,,, z)dS:fgg do,

dans lesquelles les intégrales des premiers membres s’étendent 4 une
surface fermée S et les intégrales du second membre au volume ¢
qu'enferme cette surface; n, est la normale extérieure a la surface S.

Transformation du coefficient A,,. — Nous avons, d’aprés les
formules du numéro précédent,

A, :——gp.f cos(N,z)dS”—-gpgf cos(N, 2)dS,,.
S1a Sss

Prolongeons, & I'intérieur du solide, la surface plane S,,; soit S|,
ce prolongement; soit Z aire de la surface S|,; appliquons la troi-
sieme égalité (29) 4 la surface fermée que forment les surfaces S,,
et S/, ; nous trouverons sans peine

fcos(N,z)(lS,3+ cos(n,, 2)dS,,=o
Sia S,

Mais, en tout point de la surface S',, cos(n,, z) =1, si nous sup-
posons le fluide 2 superposé au fluide 1. L'égalité précédente nous
donne alors

[cos(N,z)dS,3=—2.

Sia

Nous aurons de méme

f cos(N, 2)dS,;, =X

8y

et, partant,
Mgy =g(p1—p1) 2
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Transformation des coefficients A,, et Ay;,. — Nous avons

A,=— gp,/; [¥?cos(N, z)—zycos(N, ¥)] dS,,

- gp,L [y? cos(N, z) — zy cos(N, y)] dS,, — gfpaz do,.

!

La troisiéme égalité (29), appliquée a la surface fermée S,,8',,
donne

f y? 6os(N, z)dS,, +f y2dS,, =o.
Sys s,
(a) On a, de méme,

fy“‘ cos(N,z)dS..,s—f y*dS,, =o.
S 8,

La seconde égalité (29), appliquée & la méme surface fermée,
donne

fs‘;zycos(N,y)dS,n ::fzdo;,

¢, étant le volume compris entre les surfaces S|, et S,;.
On a, de méme,

f zy cos(N, y) dS,; :fzdo;,
Ses

v, étant le volume compris entre les surfaces S,, et Si,.
Soient

& N4, &, les coordonnées du centre de gravité du fluide 1 qui rempli-
rait le volume ¢/ ;

€55 Mas Ca les coordonnées du centre de gravité du fluide 2 qui rempli-
rait le volume ¢

M, la masse du premier fluide;

M, la masse du second fluide.
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Nous aurons, d’aprés les égalités précédentes,

P'f 5)’C°S(N,}’)d343=?§.M:,
(b)
0 f sy cos(N, y) dS,, = {,M..
\ Sas

Soient &,, 1, {, les coordonnées du centre de gravité du solide;
M, sa masse; nous aurons

(c) / ps5dv, = M,{,.
Les égalités (@), (b) et (¢) nous donneront
An=g(p — 92)f yrdS,, + g(Mg, — M3, — M, G,),
S1a
Désignons paf E, H, Z les coordonnées du centre de gravité de
I'ensemble des fluides déplacés par le corps solide; nous aurons
M, + M, =M, +M,)Z.
Drailleurs, d’aprés le principe d’Archiméde,
M +M,=M,.
On a dong, tout calcul fait,

Au=g(p—p) [ y2dS,+Mg(Z—1).

S

On a de méme
Aun=g(p — Pﬁ)f, s*dS,,+ Mg (Z—1).
. sl!
Transformation des coefficients A,,, A,,. — Nous avons

Ayy=— gp, fs cos(N, y) dS,, — g f cos(N, y)dS,,.

Journ, de Math. (5¢ série), tome 1. — Fasc. II, 18g5. _23
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La deuxiéme égalité (29), appliquée a lasurface fermée formée par S, ,
et 5, donne

f cos(N, y)dS,,=o.

1

On a également
f cos(N, y)dS,;=o
821

et, par conséquent, :
A23 =0.
On a de méme

A, =o.

Transformation des coefficients Ayg, Ag,. — Nous avens
Ay = gp‘f [z? cos(N, y) — xy cos(N, z)] dS,,
Sll
-+ g93£ [x* cos(N, y)—axycos(N,z)]dS,, + g [,y dvr,
On trouve sans peine, par les égalités (29),
f x* cos(N, y)dS,;=o, f x*cos(N, y)dS,,=o,
Ses : S
f xy cos(N, ) dS”:fydv',,
$is
f xy cos(N, «) dS,, =fy dv,,
Se3

en sorte que 'on peut écrire
Ao =g(Myn, — M\ n, — M, 7.) = gMy(, — H).

Mais le centre de gravité du flotteur et le centre de gravité de I'en-
semble des fluides déplacés sont sur une méme verticale; on a donc

n—H=o0

et

AS[) = 0.
On a de méme
B Ay, =o.
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Transformation du coefficient A,,. — Nous avons

Ay = gp,fs [22y cos(N, z) — sy cos(N, x) — zz cos(N, y)| dS,,

+ g,oa_.f [2zycos(N, z) — sy cos(N,xz) — sz cos(N, y)] dS,,.
Ses

On trouve sans peine, & I'aide des formules (29),

J;

13

f.'Lycos(N,Z)dSm-": fzc)/dS',2,
S:a S;,

f sy cos(N,z)+ xcos(N, y)|dS,; = o, |
S

13

xy cos(N,z)dS,, = —Qfst zy dS,,,

f 5[y cos(N, z)+ zcos(N, y)]dS,;=o

Su

el, par conséquent,
Ap=—28(p — Ps)f zy dS,.
$is
Transformation des coefficients A ,,, A,;. — Nous avons
A,=—g Pff)’ cos(N, z)dS,; — gpzfy cos(N, z)dS,;.
Sia N
On trouve sans peine, par les formules (29),
| yeos(N, @) dS,,=o, [ yeos(N, @) S, =0
Sis Seg .

et, par conséquent,

De méme,
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Transformation du coefficient A,,. — 11 suffit de remarquer que
I'ona
A:m =“'(AM + Aas)
pour trouver
Aj,=o.

Transformation des coefficients A ;, A,,. — Nous avons

A= gp.f z cos(N, x)dS,,
S,

18

+gP_2£ z cos(N, w)dses-—g‘fp3 dv,.

. Les formules (29) donnent

fxcos(N,w)dSm:v',,
*'8ya

f weos(N, x)dS,, = v,
S,

On adonc
As=g(M,+M,—M,).

Mais, d’aprés le principe d’Archiméde,

M, + M, =M,.

On a donc
A,=o0
et de méme
A, =o.

Transformation des coefficients A, A,;. — Nous avons

A, = gp,j;[:cos(N,y)——z_ycos(N,:)]dS,a

™M

"’"ngf [3cos(N, y)— 2y cos(N, )] dSy,.
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Les formules (29 ) nous donnent sans peine

f zcos(N, y)dS,, = o,

Su

f scos(N, ¥)dS,, = o,

LI

fycos(N,z)dS,:,=—fs{’de',2,

slﬂ

fycos(N,z)dS,3= j ydS,,
St ) S'l:
et, par conséquent,

Ass = 28'(?4 - PQ)‘/s: de'i,_,.

On a de méme
Ay =— 23’(9‘ - Pz)f 'st'u
8},

Les calculs que nous venons de faire nous apprennent que, dans le
cas ot le flotteur est porté par deux fluides homogénes soumis & la
seule action de la pesanteur, la forme quadratique Q peut s'écrire

Q=g (p— p.) Z(3h)’
+ g(.o.—.cz)f y“dS’.g+Mag(Z—‘C»)J (a0
L 8\
+[g(oi—p2) [ wrdS+ M,,g(Z—C:,)J(‘o\m)"'
8§

(30) —[2g(e,— 22) {Lde'm] SLom
L .

Y
bl!

+ et [ yasi] s
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Cette forme donnée & la quantité Q suppose I'axe des 5 vertical et,
par conséquent, le plan des zy horizontal ; mais elle ne suppose rien
de plus au sujet des axes de coordonnées. Par un choix plus parti-
culier des axes de coordonnées, on peut lui donner une forme beau-
coup plus simple.

En premier lieu, imaginons que Pon fasse passer I’axe des s par
le centre de gravité y de Uaire T de la section a fleur d’eau S, ;
nous aurons ' \

(31) [ wdSi,=o, [ ydS,=o.
St 8

En.second lieu, si par le centre de gravité y de la section & fleur
d’eau on méne, dans le plan de cette section, un axe mobile, le moment
d'inertie de 1’aire de la section & fleur d’eau par rapport & cet axe D
~ variera lorsqu’on fera tourner cet axe D autour du point y. On sait
qu'il existe une position de I'axe D pourlaquellele moment d’inertie est
maximum, et une position de I’axe D pour laquelle le moment d’inertic
est minimum; ces deux positions sont rectangulaires; on les nomme les
azes principaux d’inertie de la section S,,; les moments d’inertic
de la section S|, par rapport 4 ces axes sont les moments d’inertie
principaux de cette section. Prenons les axes Ox, Oy, paralléles
aux axes principaur d’inertie de la section & fleur d’eau; désignons
par J., J, les moments principaux d’inertie qui se rapportent respec-
livement a 'axe paralléle & O« et 4 I'axe paralléle & Oy. Nous aurons

Ifyzdslmz']w’

8ia
(32) [ [ o ds, =1,
fxde’,,:o

En vertu des égalités (31) et (32), I'égalité (30) seréduit a
s Q= g(pi— p:) Z(3R)*
(33) +[g(pi— pa)do+ My g (Z — T)] (31
| +g (o —p)dy+ Myg(Z — L)] (3m)™.
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Dans le cas o les fluides 1 et 2 sont homogeénes, les égalités (27)
et (27 bis) se réduisent 4 la forme unique

(34) 28h+ 8 [ ydS,—8m [ =dS|,=o.
e

S

Si I'on fait passer I'axe des z par le centre de gravité y de la section
a fleur d’eau, cette égalité se réduit & S

(35) ¢h=o.

Les égalités (33) et (35) nous permettent de donner les coxpirions
QUI SONT NECESSAIRES ET SUFFISANTES pour la stabilité de Uéquilibre
d’un corps solide pesant flottant & la sur face de séparation de deux
Jluides homogénes pesants.

Si nous nous reportons a ce que nous avons dit 4 la fin du §1I,
nous pouvons énoncer les propositions suivantes :

1° Il est nécessaire que le fluide le moins dense soit superposé au
fluide le plus dense, ce qu’exprime 'inégalité

(36) g1 — P2 >0.

11 est nécessaire que la forme Q soit positive pour tous les déplace-
ments du solide qui vérifient I'égalité (35), ce qui, en vertu de I'éga-
lité (33), donne les inégalités

M, g(Z —¢)+g(e— FQ)Ji’L’.> o,

3
7) M,g(Z—0C)+g(ey— g2)J, >o.
2° 11 est sufisant que le fluide le moins dense soit superposé au
fluide le plus dense et qu'en outre la quantité Q soit positive pour
tous les déplacements du solide. Or ces conditions suffisantes sont
vérifiées lorsque les conditions nécessaires (36) et (37) le sont.
Nous pouvons donc énoncer la proposition suivante :

Pour que Uéquilibre d’un corps solide pesanlqdi Sflotte a la
surface de séparation de deux fluides homogénes pesants soit un
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équilibre stable, il faut et il suffit que Uon ait les trois inégalités

(36) : Pi— p2>0,
(37) v Mag(Z~Ca)+g(p‘_92>Jx>o,
M, g(Z — )+ g(p, — pa)J, >o0.

On suppose exclus, bien entendu, les déplacements pour lesquels on
aurait

h=o0, 8l=0, Sm=o;

pour de tels déplacements, I'équilibre du systéme est indifférent.

Les conditions de stabilité obtenues sont indépendantes de I'aire de
lasurface de contact des deux. fluides; par conséquent, elles s’appli-
quent méme. au cas oi: les deux fluides sont en contact par une sur-
Sface illimitée.

Des deux inégalités (37), une seule est nécessaire; des deux mo-
ments d'inertie principaux, J,, J,, il en est un qui est plus petit que
I'autre, 4 moins qu'ils ne soient égaux entre eux; soit j la plus petite
des deux quantités J,,, J,; les deux inégalités (37) pourront étre rem-
placées par l'inégalité unique

(38) M,(Z —C)+(pi—pe)J >o.

On reconnait sans peine dans cette inégalité la condition trouvée par
Poisson et Duhamel et critiquée par Clebsch.

" Nous pouvons donc, en derniére analyse, énoncer la proposition
suivante :

PouRr QUE L'EQUILIBRE D'UN CORPS SOLIDE PESANT QUI FLOTTE SUR LA
SURFACE DE SEPARATION, LIMITEE OU ILLIMITEE, DE DEUX FLUIDES HOMO-
GENES PESANTS SOIT UN EQUILIBRE STABLE, IL FAUT ET IL SUFFIT : 1° QUE
LE FLUIDE LE MOINS DENSE SOIT SUPERPOSE AU FLUIDE LE PLUS DENSE;
2° QUE LE PETIT METACENTRE SOIT AU-DESSUS DU CENTRE DE GRAVITE DU
CORPS SOLIDE.

Nos formules générales nous redonnent donc la régle classique de la
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stabilité de I'équilibre des corps flottants; elles la démontrent par uné
méthode qui nous parait exempte de toute contestation. '

Il nous est possible maintenant d’expliquer pourquoi le raisonne:
ment de M. Guyou, bien qu'inexact, conduisait ‘dans le cas actuel 4
des conclusions exactes. .

Le raisonnement de M. Guyou consiste, comme nous I’avons vu, 4
partager toute modification du systéme en trois modifications compo-
santes : :

1° Une déformation de la surface de séparation des deux fluides;
2° Une translation verticale du corps flottant; :

3° Undéplacement qui n'altére pas le volume immergé c'est-d-dire
une rotation autour d'un axe passant par le centre de gravité de Laire
de la section & fleur d'eau.

M. Guyou cherche la condition pour que le centre de gravité du
systéme s’éléve en chacune de ces modifications isolées; en d’autres
termes, il cherche & rendre positive la variation seconde du potentiel
relative & chacune des modifications isolées.

Il admet alors que la variation seconde du potentiel relative & la
modification la plus générale du systeme est positive.

En général, ce raisonnement ne serait pas valable, parce que la va-
riation seconde du potentiel d’un systéme relative & la modification
la plus générale de ce systéme n'est pas la somme des variations se-
condes relatives & des modifications partielles en lesquelles la modifi-
cation la plus générale peut se décomposer. |

Mais cette proposition, qui n’est ordinairement pas vraie, se trouve
étre exacte dans le cas particulier qui nous occupe.

En effet, la variation seconde du potentiel thermodynamique du
systéme est, pour la modification la plus générale, en vertu des égali-

tés (20) et (33),
FP(I+2+Q)= (P-~Pz)gf€ dS,,+(p1— p2)82(3R)*

+[(pr—p2)gle+ My g(Z = L)I(3l)*
+[(pr— p2)g T, + M, g(Z — §))(Sm)2.

Or le premier terme représente précisément la variatien seconde rela-
Journ. de Math. (5 série), tome I, — Fase. II, 18g5. 24
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tive & la premiére modification composante considérée par M. Guyou;
le deuxiéme terme représente la variation seconde relative i la deuxiéme
modification composante; et les deux derniers termes représentent la
variation seconde relative & la troisiéme modification composante.
Ainsi la variation seconde du potentiel, relativement & la modification
la plus générale est bien la somme des ‘variations secondes relatives
aux trois modifications partielles que M. Guyou a imaginées.

Mais l'exactitude de cette proposition tient & une circonstance par-
ticuliére au cas que nous venons de traiter; cette circonstance, c’est
absence de termes en 813k et en 8m Sh. Elle cesserait d'étre exacte,
méme pour le cas de la pesanteur, si les deux fluides étaient assez
compressibles pour cesser d’étre sensiblement homogénes.



