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SUR LA STABILITÉ DE L'ÉQUILIBRE DES CORPS FLOTTANTS. 91 

Sur la stabilité de Véquilibre des corps flottants; 

PAR M. P. DUHEM 

—INTRODUCTION, HISTORIQUE. 

On sait que l'équilibre d'un corps flottant sur un liquide pesant 
est assuré lorsque le flotteur déplace un volume liquide aussi pesant 
que lui et que les deux centres de gravité du flotteur et dit liquide 
déplacé sont sur une même verticale (axe primitif ). Mais cet équi-
libre est-il stable? 

Bouguer est le premier géomètre qui ait cherché à approfondir cette 
question. Il se borna à examiner le cas où le flotteur est symétrique 
par rapport à un plan qui demeure vertical pendant le mouvement; il 
supposa que le volume du liquide déplacé restait constant et démontra 
que la stabilité dépendait de la position d'un point particulier qu'il 
nomma métacentre. Ce point est l'intersection de l'axe primitif avec 
la direction de la résultante de la poussée du fluide après un déplace-
ment infiniment petit. Si ce point est au-dessus du centre de gravité1 

du corps, les forces tendront à ramener le corps à sa première position ; 
elles tendront à l'en éloigner dans le cas contraire. L'équilibre est donc 
stable ou instable suivant que le métacentre est au-dessus ou au-dessous' 
du centre de gravité du corps flottant. Telle est la condition de stabi-
lité donnée par Bouguer et qui a été longtemps admise sans contesta-
tion. 

Le raisonnement de Bouguer manquait entièrement de généralité ; 
Journ. de Math. (5· série), tome I. — Fasc. II, 1895. l3 
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non seulement il supposait que le plan de symétrie du corps demeurait 
vertical durant les oscillations effectuées par ce corps, mais, en outre, 
il supposait que le volume immergé demeurait invariable. 

Duhamel ( ' ) appela le premier l'attention sur le caractère arbitraire 
d'une pareille restriction. 

« La supposition, dit-il, de la constance du volume déplacé, a dû 
paraître bientôt trop restreinte ; car, comment admettre que la cause 
qui produit le dérangement ne puisse changer que l'inclinaison? On a 
reconnu d'ailleurs que, lors même que cette circonstance aurait lieu 
au commencement, elle ne subsisterait pas pendant toute la durée du 
mouvement, excepté dans le cas très particulier où le centre de gravité 
de la section à fleur d'eau serait situé sur l'axe primitif. 

» On ne pouvait donc plus, en restant dans la généralité delà ques-
tion, se dispenser d'avoir égard à la fois à la variation du volume et à 
celle de l'inclinaison; et c'est ce que l'on a fait. Mais ce que l'on n'a 
pas vu, c'est qu'alors le métacentre devenait un point complètement 
indéterminé, qui dépendait du rapport des deux variations et qui pou-
vait occuper toutes les positions de l'axe primitif. 

» Le raisonnement de Bouguer, que l'on a reproduit, prouverait 
donc à volonté la stabilité ou l'instabilité de l'équilibre du même 
corps, suivant la nature du dérangement primitif, en exceptant toute-
fois le cas particulier où l'axe primitif contiendrait le centre de gravité 
de la section à fleur d'eau. Cette conséquence absurde du genre de 
raisonnement suivi depuis Bouguer en rend l'insuffisance évidente 
et oblige de recourir aux équations du mouvement, même dans le cas 
d'un corps symétrique par rapport à un plan vertical. » 

Duhamel se propose de former ces équations, en considérant tou-
jours le cas d'un corps flottant symétrique dont le plan de symétrie 
demeure vertical; il suppose également que la surface du liquide 
demeure horizontale. Pour étudier le mouvement du flotteur, on peut 
faire abstraction de la présence du liquide, à condition d'appliquer au 
corps solide des forces de liaison convenablement choisies qui sont les 

(L) DUHAMEL, Note sur divers principes de Mécanique : Observations sur la 
stabilité de Véquilibre des corps flottants. (Journal de l'École Polytechnique, 
XXIVe Cahier, t, XV, p. 12; i835.) 
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pressions du liquide sur le solide. Duhamel admet que ces pressions 
peuvent être déterminées d'après les règles de l'Hydrostatique, telles 
qu'elles ont été établies par Archimède. Il forme alors les équations 
différentielles du mouvement du corps et, cherchant la condition pour 
que ce mouvement demeure toujours très petit, il retrouve ainsi la 
condition donnée par Bouguer, à savoir que le métacentre doit se 
trouver au-dessus du centre de gravité du corps. « En résumé, 
conclut-il, la théorie que l'on a donnée jusqu'ici de la stabilité de 
l'équilibre des corps flottants, par la considération du métacentre, 
renferme des inexactitudes qui ne permettent plus de la conserver. 
Néanmoins, la condition à laquelle elle conduit est conforme à celle 
qu'une analyse exacte aurait fait connaître, et c'est précisément pour 
cela que l'erreur est restée si longtemps inaperçue. » 

Plus tard, Poisson (') et Duhamel (2) cherchèrent, par une méthode 
analogue, la condition de stabilité d'un flotteur de forme quelconque; 
en admettant encore que les pressions du liquide sur le solide pouvaient 
être déterminées par les règles de l'Hydrostatique, et en faisant usage 
du principe des forces vives, ils parvinrent au théorème suivant : 

L'équilibre peut être encore stable lorsque le centre de gravité 
du corps est au-dessus de celui du fluide déplacé; il suffit que la 
distance de ces deux points soit moindre que le plus petit des mo-
ments d'inertie de l'aire de la section à fleur d'eau par rapport 
aux droites menées par son centre de gravité, divisé par le volume 
immergé. 

Cette règle peut encore s'énoncer d'une autre manière. 
Donnons au flotteur toutes les positions pour lesquelles le poids du 

liquide déplacé est précisément égal au poids du corps flottant ; mar-
quons, dans le corps, le centre de poussée correspondant à chacune de 
ces positions; ces centres de poussée dessinent une surface, considérée 
par Dupin, et nomméesurface des centres de carène; on sait que la 
verticale passant par le centre de gravité d'un flotteur en équilibre est 
normale à la surface des centres de carène. 

Ο POISSON, Traité de Mécanique, t. II, p. 5yg (2
0 édition). 

(2) DUHAMEL, Cours de Mécanique, t. II, p. 262. 
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Sur cette normale se trouvent deux centres de courbure principaux 
de la surface des centres de carène ; ces deux points se nomment les 
deux métacentres du flotteur; le petit métacentre est celui qui se 
trouve le plus bas. 

Ces définitions posées, la condition de stabilité donnée par Poisson 
et Duhamel peut s'énoncer ainsi : Le centre de gravité du flotteur 
doit être au-dessous du petit métacentre. 

Cette règle avait été également donnée par Bravais (' ); mais Bra-
vais s'était borné à examiner le cas où le flotteur possède deux plans 
de symétrie rectangulaires et où les déplacements imposés au flotteur 
n'altèrent pas le volume immergé. Après avoir énoncé la règle précé-
dente, Bravais ajoute : « Ce serait une erreur de croire que, confor-
mément à un principe bien connu de Mécanique, le centre de gravité 
.du flotteur est le plus bas possible dans la position d'équilibre stable; 
ce serait mal entendre le principe de Mécanique auquel nous faisons 
allusion; mais le centre de gravité du système formé par le flotteur 
et le liquide environnant doit être et est, en effet, le plus bas possible 
dans l'équilibre stable, comme il nous sera actuellement facile de le 
démontrer. » Bravais démontre cette proposition en supposant le 
niveau du liquide maintenu horizontal et le volume immergé maintenu 
invariable. 

Poisson et Duhamel avaient écrit et intégré les équations des oscilla-
tions infiniment petites d'un corps flottant dans le cas où le flotteur 
admet un plan de symétrie qui demeure vertical pendant le mouve-
ment et où toutes les vitesses initiales sont nulles. M. C. Jordan (2) 
se proposa de traiter dans toute sa généralité le problème des petits 
mouvements d'un flotteur. Pour mettre ce problème en équation, 
M. C. Jordan reprit l'hypothèse fondamentale déjà admise par Poisson 
et par Duhamel, à savoir que l'on pouvait faire abstraction de l'exis-
tence du liquide à la condition d'appliquer à la surface du corps des 

(
1
) AUGUSTE BRAVAIS, Sur l'équilibre des corps flottants, Thèse de Mé-

canique soutenue devant la Faculté des Sciences de Lyon le 5 octobre 1837. 
Paris, i84o. 

(*) C. JORDAN, Sur la stabilité de l'équilibre des corps flottants. ( Annalidi 
Matematica pura ed applicata, série II, tome I, p. 170; 1867.) 
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pressions données à chaque instant par les principes de VHydrosta-
tique; voici comment M. C. Jordan énonce ces hypothèses : 

« Nous supposerons que la surface du liquide est assez étendue pour 
que son niveau ne soit pas altéré parles oscillations du flotteur; qu'elle 
reste plane pendant toute la durée du mouvement ; enfin, que la poussée 
du liquide sur le flotteur à un instant quelconque est précisément la 
même que si tout le système était maintenu au repos. » 

M. C. Jordan ajoute : « Ces hypothèses ne sont pas parfaitement 
exactes; on conçoit, en effet, qu'il est impossible que le flotteur, en 
oscillant, ne communique pas quelque mouvement au liquide qui 
l'entoure et que, d'autre part, l'état de ce mouvement devra modifier 
les réactions qui se produisent; mais ces causes perturbatrices, qui ne 
paraissent pas susceptibles d'être soumises à un calcul précis, dimi-
nuent évidemment en même temps que l'amplitude et la vitesse des 
oscillations; et dans le cas limite où le déplacement et la vitesse initiale 
sont infiniment petits tous les deux, elles deviennent négligeables. » 

Les suppositions fondamentales sur lesquelles repose l'analyse de 
M. C. Jordan sont les mêmes que celles de Duhamel et de Poisson; 
on ne doit donc pas s'étonner qu'il retrouve la condition de stabilité 
indiquée par ces géomètres. 

Ces suppositions fondamentales avaient été très vivement critiquées 
par ClebschC); parlant des recherches de Poisson et de Duhamel sur 
les petites oscillations des corps flottants, il ajoute : « Les équations 
qu'ils ont données reposent sur l'hypothèse que, pendant les mouve-
ments infiniment petits du corps, on peut remplacer la pression hydro-
dynamique par la pression hydrostatique. Or, les deux pressions 
diffèrent entre elles de termes qui sont du même ordre que les vitesses 
que l'on a à considérer. Par conséquent, on voit qu'il n'est pas permis 
de négliger cette différence. En effet, les pressions hydrostatiques 
s'annulent les unes les autres à un infiniment petit près, puisque le 
corps qui éprouve des mouvements est dans une position infiniment 
voisine de la position d'équilibre. Au contraire, en ce qui concerne les 
pressions hydrodynamiques qui sont produites par le mouvement, il 

(*) CIKBSCH, Ueber das Gleichgemcht schmmmender Kôrper. {Journal de 
Cre/fe, Bd. LYII, p. 149; i860.) 
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n'existe aucune destruction de ce genre; d'une manière générale, elles 
s'opposent en chaque point au mouvement du corps ; l'action de ces 
forces est évidemment du même ordre que l'action totale des pressions 
hydrostatiques. 

» Les considérations qui précèdent suffisent à montrer que les 
équations ordinaires du mouvement d'un corps flottant ne sont pas 
simplement insuffisantes et en quelque sorte réduites à la première 
approximation, mais qu'elles sont nécessairement fausses en ce qu'elles 
négligent des termes qui sont du même ordre que les termes conservés 
et qui parfois les surpassent, ainsi qu'il arrive lorsqu'on étudie le 
mouvement qu'un corps de révolution, d'axe vertical, peut prendre 
autour de cet axe. » 

Après avoir formulé ces critiques, Clebsch cherche, à son tour, à 
•donner une théorie satisfaisante des oscillations infiniment petites des 
corps flottaiits. Les considérations auxquelles il se livre l'amènent à 
écrire six équations pour déterminer comment varient, en fonctions 
du temps, les trois translations ξ, η, ζ et les trois rotations φ, ψ, θ, en 
lesquelles peut se décomposer le mouvement du flotteur; ces équa-
tions ont l'aspect d'équations différentielles linéaires à coefficients 
constants; mais le premier membre de chacune de ces égalités, au lieu 
d'être formé par un nombre limité de termes et de contenir les dé-
rivées de la fonction inconnue seulement jusqu'à un certain ordre, est 
une série renfermant les dérivées de tousles ordres pairs de la fonc-
tion inconnue. A ces équations, Clebsch applique des considérations 
semblables à celles qui servent à intégrer les équations différentielles 
linéaires à coefficients constants ; il cherche à les vérifier par des ex-
pressions de la forme 

ξ = ξ
0
βσί, η=η

0
£σί, ..., 

?β> *)o> · ··> σ étant des constantes. Le carré de la constante σ est dé-
terminé par une certaine équation transcendante 

/(σ') = ο. 

Clebsch en conclut le théorème suivant : 

« L'équilibre d'un corps flottant est stable dans le cas suivant et 
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seulement dans ce cas : c'est le cas où toutes les valeurs de σ2 qui 
résultent de l'équation 

f(a*) = ο 

sont négatives. Cette équation dépend de la forme et de la position 
du corps, mais non des mouvements étrangers que le liquide possé-
dait initialement. » 

Sans vouloir examiner ici jusqu'à quel point les équations du mou-
vement d'un corps flottant, données par Clebsch, peuvent être assi-
milées à des équations différentielles linéaires à coefficients constants, 
nous ferons remarquer que la méthode suivie par Clebsch pour obtenir 
la condition de stabilité d'un corps flottant renferme un cercle vicieux; 
ce cercle est celui que Lejeune-Dirichlet a déjà signalé dans la démon-
stration donnée par Lagrange pour établir qu'un système est en équi-
libre stable lorsque son potentiel a une valeur minima. Pour former 
les équations du mouvement, Clebsch suppose que le corps demeure 
toujours infiniment voisin de sa position d'équilibre, c'est-à-dire que 
l'équilibre est stable; des équations qui renferment implicitement 
cette hypothèse ne peuvent servir à discuter si l'équilibre est stable ou 
instable. La méthode de Clebsch suffit à prouver que, lorsque l'équi-
libre est stable, la fonction /(cr2) ne s'annule pour aucune valeur 
réelle de σ; elle ne permet pas de démontrer la proposition réci-
proque. 

Clebsch ne forme pas la fonction qu'il désigne par /(ffa); en sorte 
que, bien qu'il affirme l'existence d'une distinction essentielle entre la 
règle de stabilité imaginée par Poisson et par Duhamel et celle qu'il 
propose, on ne voit pas que cette distinction soit établie dans son Mé-
moire. Un calcul complet lui aurait montré que cette distinction 
n'est qu'apparente. 

Pour éviter l'objection que l'on peut adresser à la méthode de 
Clebsch, une seule voie se présente; elle consiste à faire usage du 
principe si rigoureusement démontré par Lejeune-Dirichlet, et à 
chercher les conditions de stabilité du système en cherchant à reiidre 
minimum le potentiel des actions auxquelles il est soumis. 

Plusieurs essais ont été tentas-dans cette voie. Nous laisserons de 



98 P. DUHEM, 

côté ceux de Moseley (') et de Duhil de Benazé et Risbec (2), qui 
n'ont apporté aucun progrès à la solution du problème de la stabilité 
des corps flottants soumis à des déplacements infiniment petits, et 
nous aborderons de suite les recherches de M. Guyou (8). 

M. Guyou considère un flotteur immergé dans une cuve de dimen-
sions limitées; il cherche à quelle condition le potentiel de ce système 
sera minimum, ou, ce qui revient au même pour un système soumis 
exclusivement à l'action de la pesanteur, à quelle condition le centre 
de gravité de ce système sera aussi bas que possible ; par des démon-
strations géométriques très simples et très élégantes qui rappellent les 
méthodes suivies par Bravais dans sa thèse de Mécanique, M. Guyou 
établit cette condition, qui est indépendante des dimensions de la cuve 
et qui, par conséquent, assurera encore la stabilité de l'équilibre du 
"flotteur sur un liquide illimité ; cette condition se trouve être préci-
sément celle qu'avaient indiquée Poisson et Duhamel. 

Les raisonnements de M. Guyou nous semblent cependant affectés 
d'une erreur qui en vicie les conclusions; comme cette erreur est 
assez délicate à apercevoir, nous croyons nécessaire d'y insister 
quelque peu. 

M. Guyou démontre, en premier lieu, que si la surface libre du 
liquide n'était pas horizontale, on pourrait la déformer de manière à 
abaisser le centre de gravité du système, et cela sans déplacer le 
flotteur ni changer la partie de sa surface qui est immergée. 

Il démontre, en second lieu, que si le poids du liquide déplacé 
n'était pas égal au poids du flotteur, une translation verticale conve-
nablement choisie de ce dernier abaisserait le centre de gravité du 
système. 

Ï1 démontre, en troisième lieu, que si le centre de gravité du flotteur 

(^MOSELEY, On the dynamical stability and the oscillation of floating bodies 
{Philosophical Transactions; Ι8·5Ο). Voir aussi : SIR E.-J. REED, The stability 
of ships. 

(2) DUHIL DE BENAZÉ et RISBEC, Mémoire sur le mouvement complet du navire 
oscillant sur eau calme {Mémorial du Génie maritime, io° liv., 1874; p. 170). 
Voir aussi : POLLARD et DUDEBOUT, Théorie du Navire, t. II, p. 329. Paris, 1891. 

(3) E. GUYOU, Théorie nouvellede lastabilitéde l'équilibre des corps flottants 
(Revue maritime, mars 1879, p. 682). — Théorie du Navire, p. 25. Paris, 1887. 
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n'était pas sur la même verticale que le centre de poussée et au-dessous 
des métacentres, on pourrait, par un déplacement qui n'altérerait pas 
le volume immergé, abaisser le centre de gravité du système. 

De là, M. Guyou (') conclut que, pour qu'un corps flottant soit en 
équilibre stable, il est nécessaire et suffisant : 

i° Que la surface libre du liquide soit horizontale ; 
2° Que le poids du liquide déplacé soit égal au poids du flotteur; 
3° Que le centre de gravité du flotteur et le centre de poussée 

soient sur une même verticale ; 
4° Que le centre de gravité du flotteur soit au-dessous des méta-

centres. 
Il est bien clair que la nécessité de ces conditions pour assurer sinon 

que l'équilibre est stable, du moins que le centre de gravité du sys-
tème est le plus bas possible, découle des propositions établies par 
M. Guyou; mais ces propositions ne nous semblent pas prouver que 
les conditions dont il s'agit suffisent à assurer la stabilité de l'équi-
libre. 

M. Guyou n'indique pas explicitement comment il a été amené à 
conclure que ces conditions sont suffisantes; mais un passage de son 
Livre (2) nous met sur la voie qui permet de reconstituer sa pensée; 
voici ce passage : 

« Pour amener à une position quelconque le système composé du 
flotteur et du liquide supposés primitivement en équilibre, on peut 
d'abord donner au flotteur l'orientation considérée en le maintenant 
isocarène dans le liquide en repos; conservant ensuite cette orienta-
tion, on l'élèvera ou on l'abaissera de la quantité nécessaire, et l'on 
donnera enfin au liquide son dénivellement. » 

Guidés par ce passage, nous pensons pouvoir reconstituer, de la 
manière suivante, le raisonnement quia sans doute conduit M. Guyou 
à énoncer la proposition que nous discutons : 

Notre système, formé d'une masse liquide et d'un flotteur, est dé-
fini par certaines variables indépendantes, en nombre limité ou illi-

(·) GUYOU, Théorie du Navire> p. 3o. 
(s) Ibid., p. 31. 

Journ. de Math. (5· série), tome I. — Faso. II, 1894.14 
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mité. Les conditions précédemment énoncées suffiront à assurer la 
stabilité de l'équilibre du système si, grâce à elles, la variation infini-
ment petite la plus générale de ces variables devient incapable 
d'abaisser le centre de gravité du système. 

Or, la variation infiniment petite la plus générale de ces variables 
indépendantes peut toujours être regardée comme le résultat de trois 
autres variations infiniment petites des mêmes variables : 

i° Une variation infiniment petite qui change l'orientation du flot-
teur sans altérer le volume immergé ni le niveau du liquide ; 

2° Une variation infiniment petite qui déplace verticalement le 
flotteur et le niveau du liquide, en laissant plan ce dernier; 

3° Une variation infiniment petite qui déforme la surface du liquide 
sans déplacer le flotteur. 

Chacune de ces variations partielles est incapable, lorsque les con-
ditions énoncées sont vérifiées, d'abaisser le centre de gravité du sys-
tème. 

Mais, lorsque des variations infiniment petites des variables qui 
fixent un système sont isolément incapables d'abaisser le centre de 
gravité du système, la variation infiniment petite que l'on obtient 
en les composant n'abaisse certainement pas le centre de gravité 
du système. 

Donc la variation infiniment petite la plus générale des variables qui 
fixent un système formé d'un liquide et d'un flotteur, ne peut abaisser 
le centre de gravité, du système lorsque les quatre conditions énon-
cées sont vérifiées, en sorte que ces conditions assurent la stabilité de 
l'équilibre du système. 

Ce raisonnement renferme une proposition sujette à critiques; 
c'est celle que nous avons mise en italiques. 

En générxl, cette proposition est exacte; soient, en effet, α, β, ... 
les variables indépendantes qui fixent un système et ζ la cote du centre 
de gravité de ce système; si les variables oc, β, ... éprouvent une va-
riation infiniment petite δα, δβ, ..., la cote ζ du centre de gravité 
éprouve une variation qui peut, en général, se mettre sous la forme 

(ι) δζ = A δα -f- Β δβ H- ..., 

A, Β, ... étant des fonctions finies de α, β, 
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Imaginons alors qu'une première variation infiniment petite δ'a, 
δ'β, ... soit incapable d'abaisser le centre de gravité du système; 
nous aurons 

(2) δ'ζ = Αδ/α + Βδ'β-Η...>ο; 

imaginons qu'une seconde variation infiniment petite δ"α, δ"β, ... 
soit incapable d'abaisser le centre de gravité du système; nous aurons 

(2 bis) δ"ζ = Αδ'/α-+-Βδ"β-Η...>ο; 
................................................................ 

Composons entre elles ces variations infiniment petites; nous obtien-
drons une variation résultante 

Δα = δ'α H- δ" α+............., 

Δβ = δ'β -h δ" β -f-..., 
...................................... 

qui fera varier la cote du centre de gravité de 

(3) Δζ = Α(δ'α H- δ"α + Β(δβ δ'β H- ...) H-

Les égalités (2), (2 bis), ... et (3) permettront d'écrire 

Δζ = δ'ζ + δ"ζ>0, 

ce qui démontre la proposition énoncée. 

Mais CETTE PROPOSITION DEVIENT INEXACTE DANS CERTAINS CAS EXCEP-

TIONNELS; ce sont ceux où les valeurs de α, β, ... sont telles que 
toute variation infiniment petite du premier ordre imposée à ces 
variables entraîne une variation de la cote du centre de gravité 
qui est un infiniment petit d'ordre supérieur au premier. 

Imaginons, par exemple, que δζ soit un infiniment petit du second 
ordre lorsque δα, δβ, ... sont des infiniment petits du premier ordre; 
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nous devrons remplacer l'égalité (i) par une égalité telle que 

(4). δζ = αΗ(δα)24- α22
(δβ)2 4-... 4-2«

12
δα δβ 4-..., 

les quantités étant finies; les égalités et inégalités (2) et (2 bis) 
seront remplacées par 

(5) δ'ζ = (δ'α)2-μ^ί^'β)2 4-... 4-2α,
2
 δ'αδ'β 4-. ..Jo, 

(5 bis) δ"ζ = (δ"α)2-μ α22(δ"β)24-... 4- 2<ζ,
2
 δ"αδ"β -μ... Jo. 

Nous aurons également dans ce cas, au lieu de l'égalité (3), 

Δζ = α
Η

(δ'α 4- δ"α 4-. . .)2-η α
22

(δ'β -μ δ" β -μ .. .)24-... 
4- 2 et)

 2
 (δ' α -μ δ"α -μ... ) ( δ' β -μ δ" β -μ... ) 4-.... 

On voit alors sans peine que les égalités ou inégalités (5) et (5 bis) 
n'entraînent pas nécessairement l'égalité ou inégalité 

Δζ>ο. 

Or, c'est précisément dans un cas exceptionnel de ce genre que 
M. Guy ou parait avoir fait usage de la proposition en question; parmi 
les quatre conditions qu'il énonce, les trois premières expriment que 
la variation éprouvée par la cote du centre de gravité est un infini-
ment petit d'ordre supérieur aux variations infiniment petites des va-
riables indépendantes. 

Cette discussion montre que les raisonnements de M. Guyou ne 
permettent pas d'affirmer que les conditions par lui énoncées sont 
suffisantes pour assurer l'équilibre d'un système formé par un fluide 
et un corps flottant; nous verrons d'ailleurs, au cours du présent tra-
vail, que ces conditions suffisent à assurer la stabilité de l'équilibre 
d'un corps flottant sur un fluide limité; mais c'est à des circonstances 
toutes spéciales que le raisonnement de M. Guyou, inexact en général, 
doit son succès dans ce cas particulier ('). 

(*) Une étude analogue à celle d&M. Guyou aurait été faite par MOREAU (Prin-
cipes fondamentaux de l'équilibre et du mouvement des corpsflottants ; Brest, 
J83O). Il nous a été impossible de nous procurer cet Ouvrage, que nous citons 
d'après la Théorie du navire de MM. Pollard et Dudebout. 
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Cet exposé rapide nous montre que les conditions de stabilité d'un 
corps flottant sont loin d'être encore établies d'une manière certaine 
et rigoureuse, même dans le cas simple où le fluide et le flotteur sont 
soumis seulement à l'action de la pesanteur. Quant au cas plus gé-
néral où le fluide et le flotteur sont soumis à des forces extérieures 
admettant une fonction potentielle quelconque, il est demeuré jus-
qu'ici inabordé. 

C'est ce problème général que nous nous sommes proposé de 
traiter. 

Nous avons composé le potentiel d'un système formé par un solide 
et un fluide, et nous avons cherché à quelles conditions le potentiel de 
ce système avait une valeur minima. 

On sait, · par la belle et rigoureuse démonstration de Lejeune-
Dirichlet, que tout état où le potentiel d'un système a une valeur mi-
nima est un état d'équilibre stable; la réciproque de cette proposi-
tion est-elle vraie? N'y a-tril pas d'autres états d'équilibre stable que 
ceux qui correspondent à une valeur minima du potentiel? 

Cette réciproque est vraisemblable ; toutefois, elle n'a pas été dé-
montrée jusqu'ici d'une manière entièrement rigoureuse, et elle est 
généralement admise à titre de postulat. 

Bien que ce postulat ne paraisse pas susceptible d'être démontré 
dans l'état actuel de la Mécanique, il nous semble que l'on peut le 
déduire, du moins pour les systèmes dépourvus de frottement et de 
viscosité, d'une autre proposition plus simple et dont l'acceptation 
s'impose plus aisément à l'esprit; cette proposition est la suivante : 

Un état d'équilibre stable d'un système ne peut cesser d'être 
stable parce qu'on introduit dans le système de nouvelles liaisons 
indépendantes du temps. 

Avant d'exposer cette déduction, quelques remarques sont néces-
saires. 

Considérons un système défini par η variables indépendantes a, 
β, ..., λ. Prenons un état initial (α

0
, β„, ..λ

0
) de ce système. 

Faisons ensuite choix d'une variable 0 et de η fonctions a(S), 
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6(θ), ...,/( θ ) jouissant des propriétés suivantes : 
i° Pour θ = θ0, on a 

#(6
0
) — a0) ^(®o) — βθ) ···> ί(βο) — λ

0
. 

2° Lorsque θ croît à partir de θ
0

, les fonctions α(θ), 6(θ), ..., 
/(θ) demeurent finies, continues et uniformes, du moins tant que 0 ne 

surpasse pas une certaine limite ; de plus, les dérivéesda(O)/dO, db(O)/dO 

dl(0)/ dOsont finies. 

Si nous posons 

(6) β = α(θ), β = 6(θ), ..., λ = /(9)·, 

nous définirons une suite linéaire et continue d'états du système 
partant de l'état (α0

, β
0

, ..., λ
0

) ou, en d'autres termes, une modifi-
cation virtuelle finie issue de l'état α

0
, β„, ..., λ„. 

Cela posé, imaginons que le potentiel thermodynamique 

Φ(α,β, ...,λ) 

du système ne soit pas minimum pour α = α
0

, β == β
0

, ..., λ = λ
0

. 
Il est possible d'imaginer au moins une modification virtuelle finie, 

issue de l'état (α
0
, β

0
, ..., λ„), le long de laquelle la fonction 

O (&, B,.....,y) 

commence par ne pas croître. En d'autres termes, on doit pouvoir, au 
moins d'une manière, choisir les fonctions α(θ), 6(θ), ..., /(θ), qui 
figurent dans les égalités (6), de manière que, pour toute valeur de 6 
supérieure à θ

0
 et inférieure à une certaine limite Θ qui surpasse θ

0 

d'une quantité finie, on ait 

(7) Φ[α(0),ύ(θ), ...,/(θ)]-Φ(«
0
,β„ ...,λ,)<ο. 

Considérons une de ces manières de choisir les fonctions α(θ), 
6(θ), ../(θ). Ecrivons les égalités (6); entre ces égalités, éliminons 
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la variable θ ; nous trouvons les (η — i) relations 

(8) 

/(α,β, ...,λ)=ο, 

g(«,β, ..., λ) = ο, 

Λ(«,β, ...,λ)=ο. 

Si nous imposons au système les (η — i) liaisons bilatérales, indé-
pendantes du temps, exprimées par les relations (8), nous le transfor-
mons en un système à liaisons complètes, ne dépendant plus que du 
seul paramètre θ ; nous pourrons, en outre, imposer à ce système la 
liaison unilatérale et indépendante du temps 

(9) θ>θ0. 

Le potentiel thermodynamique du système deviendra une simple 
fonction de Θ, 

Ψ(0) = Φ[α(θ),6(θ),...,/(θ)] 

et l'égalité ou inégalité (7) pourra s'écrire 

(,o) ψ(θ)_ψ(θ,)ίο. 

Prenons le système dans l'état initial (α
0

, β
0
,...,λ

0
), où 0„, et 

donnons à ̂  une valeur initiale P
()
 qui soit positive; les divers points 

du système seront animés de vitesses initiales qui seront compatibles 
avec les liaisons (8) et (9); le système va prendre un mouvement que 
le principe des forces vives suffira à mettre en équation. 

/ \ " La force vive du système peut se mettre sous la forme F(G)i ̂  J » 

la fonction F(G) demeurant comprise entre deux limites positives M 
et m lorsque θ varie entre θ0 et Θ. 

Le principe des forces vives nous donne alors 

(») fW®!=f<®.k=W) - ψ(β)ΐ· 

Cette égalité nous apprend tout d'abord que, tant que 0 demeurera 
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compris entre 0
o
 et Θ, ̂  ne peut s'annuler; en effet, le premier terme 

du second membre est essentiellement positif et le second ne peut être 

négatif, d'après(10). La quantité ~ ne pouvant changer de signe sans 

passer par o, on voit que cette quantité, positive au début du mouve-
ment, demeurera positive tant que 0 n'aura pas franchi la limite Θ. 

Si nous convenons de ne considérer que la partie du mouvement 
pendant laquelle θ n'a pas encore franchi la limite Θ, nous pourrons 
écrire l'égalité (11) sous la forme 

(12) dt ν/,ρ(ο
0
)<>;+[ν(ό

0
)-ψ(θ)]' 

le radical étant pris en valeur absolue. 
Le système, partant de l'état caractérisé par la valeur θ

0 du para-
mètre variable, atteindra pour la première fois l'état caractérisé par la 
valeur Θ du même paramètre au bout d'un temps 

(i3) Τ -f\/ dO 

On voit sans peine que l'égalité (r3) permet d'écrire 

04) Τ <4 i ^ Β — OO 

Ainsi, quelle que soit la valeur initiale donnée de i>
0
, on pourra fixer 

un temps fini au bout duquel le système aura passé au moins une fois 
tous les états caractérisés par des valeurs du paramètre variable com-
prises entre θ

β
 et Θ. 

Cette proposition démontre que l'état θ0, ou (α0, β0, ...,λ0), n'est 
pas un état d'équilibre stable pour le système soumis aux liaisons (8) 
et (9); dès lors, d'après le principe que nous avons admis, ce ne peut 
être non plus un état d'équilibre stable pour le système non soumis à 
ces liaisons et nous arrivons ainsi à la proposition suivante, réci-
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proque du théorème de Lejeune-Dirichlet : 

Un état où le potentiel thermodynamique d'un système n'a pas 
une valeur minima ne peut être, pour ce système, un état d'équi-
libre stable. 

C'est sur cette proposition que nous allons nous appuyer, en môme 
temps que sur le théorème de Lejeune-Dirichlet, pour traiter delà 
stabilité de l'équilibre des corps flottants. 

Ce n'est cependant pas ce problème que nous traiterons en premier 
lieu ; nous commencerons par étudier la stabilité de l'équilibre d'un 
système de fluides ne portant pas de flotteur; ce problème, plus simple 
que la question de la stabilité de l'équilibre des corps flottants, la pré-
cède logiquement. La méthode employée, les résultats obtenus en étu-
diant les fluides qui ne portent pas de flotteur préparent l'étude des 
fluides qui portent un flotteur. 

Ce que nous dirons ici au sujet de la stabilité d'un système composé 
exclusivement de fluides n'est pas entièrement inédit; après avoir 
amorcé cette question dans un premier travail (4), nous l'avons dé-
veloppée en partie dans le cours (2) que nous avons professé à la Fa-
culté des Sciences de Lille, en 1890-1891; plus récemment, nous avons 
traité complètement (a) la stabilité de l'équilibre d'un nombre 
quelconque de fluides mélangés, question qui renferme comme cas 
particulier celle dont nous parlons en ce moment. Néanmoins, nous 
avons cru devoir traiter ici la stabilité de l'équilibre d'un système 
composé uniquement de fluides non mélangés, parce que ce problème, 
incomplètement résolu dans nos deux premières publications, se trou-
vait, dans la troisième, impliqué dans un problème plus général. 

Après un premier Chapitre, consacré à la stabilité de l'équilibre de 
fluides qui ne portent pas de flotteur, un deuxième Chapitre traite des 

(t) Sur les principes fondamentaux de l'Hydrostatique (Annales de la 
Faculté des Sciences de. Toulouse, t. IV, C. 1890). 

(8) Hydrodynamique, élasticité, acoustique, Liv. II, Chap. II. Paris, 1891. 
(8) Dissolutions et mélanges; premier Mémoire : L'équilibre et le mouve-

ment des fluides mélangés {Travaux et Mémoires des Facultés de Lille, t. III. 
B. 1893). 

Journ. de Math. (!>.· série), tome I — Fasc. II, i8g4« 
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conditions d'équilibre des corps flottants ; c'est seulement alors quej 
toutes les propositions préliminaires étant établies, nous abordons, 
dans un troisième Chapitre, l'étude générale de la stabilité cle l'équi-
libre des corps flottants. 

CHAPITRE I. 

STABILITÉ DE LFÉQUILIBRE DE FLUIDES QUI NE PORTENT PAS DE FLOTTEUR. 

I. — Rappel des principes de VHydrostatique. 

Considérons un fluide ayant en tout point la même température; 
nous supposerons que l'état de ce fluide soit entièrement déterminé 
•lorsqu'on connaît la forme de la surface qui le limite et la densité ρ en 
chaque point (a?, y, z) de l'espace que cette surface enferme; cette 
densité est supposée fonction continue d ex, y, z. Lorsque deux fluides 
différents sont en· contact, la densité varie d'une manière discontinue à 
la traversée de la surface de contact. 

Nous admettrons, ce qui implique certaines hypothèses que nous 
avons détaillées ailleurs (1 ), que le potentiel thermodynamique interne 
d'un système formé de deux semblables fluides ι et 2 est donné par la 
formule suivante 

(0 t = J <?,(p.)dv, + Γ?
2
(ρ

2
)dv„ 

la première intégrale s'étendant à tous les éléments de volume dv
{
 du 

fluide 1 et la seconde intégrale s'étendant à tous les éléments de 
volume dv2 du fluide 2; la fonction φ, et la fonction φ

2
 sont deux fonc-

tions analytiques différentes, caractéristiques des fluides 1 et 2. 
Les forces extérieures appliquées au système sont de deux sortes : 
i° Chaque élément dS de la partie déformable de la surface qui 

limite le système supporte une force dont les composantes sont 

Pços(P, #)c?S, Ρ cos(P, y)dS, Pcos(P,s)e?S. 

(V) P. DUHEM, Le potentiel thermodynamique et la pression hydrostatique. 
(Annales de l'École Normale supérieure, 3e série, t. X, p. 183 ; 1893.) 
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: 2° Chaque élément de volume dv dé l'un des fluides, élément dont 
la masse est ρ dv, est soumis à une force dont les composantes sont 

pXdp, ρ Y dp,. " pZrfp. 

Ces principes posés, on peut établir d'une manière très rigoureuse (') 
les propositions suivantes, qui sont, pour la plupart, très anciennement 
connues, et qui sont les fondements de l'Hydrostatique : 

i° Il existe une fonction Π,, uniforme, finie, continue, douée de 
dérivées partielles, en tous les points du fluide ι ; il existe une 
fonction Π

2 possédant les mêmes propriétés en tous les points du 
fluide 2. 

La fonction Π, n'est négative en aucun point du fluide i; la fonc-
tion ÏI2

 n'est négative en aucun point du fluide 2. 
2° En tout point du fluide ι, on a 

(2) 

p' dx' 

?'Y~W 

P'z- W 

(3) ?ι(Ρι> ~ P. + Π, = o. 

3° En tout point du fluide 2, on a 

(2 bis) 

n
 γ ^5? 

P' d/' 

7 àW-1 

(3 bis) ?a(Pa) — p
a
 -h Π

2
 = Ο. 

(1 ) P. DUHEM, Hydrodynamique, élasticité, acoustique, cours professé à la 
Faculté des Sciences de Lille en 1890-1891, t. I, p, 60-80. Paris, 1891. 
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4° En tout point de la surface de contact S,
2
 des fluides ι et 2, 

on a 

(4) Π» = ïï2. 

5° En tout point de la partie déformablc S, de la surface qui sépare 
le fluide 1 de l'extérieur, on a 

(5) 

Ρ cos(P, χ) = Π, cos(/i,·, x)
y 

P cos(P, /) = Π, cos(n„ y), 

Ρ cos(P, ζ ) = Π, cos(/i,·, z)y 

tii étant la normale menée à la surface S, par le point considérée et di-
rigée vers l'intérieur du fluide 1. 

6° En tout point de la partie déformable S2 de la surface qui sépare 
le fluide 2 de l'extérieur, on a 

(5 bis) 

Ρ cos(P, x) = 1I
2 cos (Λ,·, Χ), 

Ρ cos(P, y) ̂  Π2 cos(/i„ y), 
Ρ cos(P, ζ) — 1Ι

2 cos(n
;
-, ζ). 

D'après l'égalité (3), la densité ρ,, en 11η point du premier fluide, 
dépend uniquement de la pression Π, en ce point; écrivons abréviati-
vement l'égalité (3) 

(6) ?,-=Ρ,(Π,). 

Moyennant cette égalité (6), les égalités (2) deviennent 

(7) 

F,(II) X = dII1/dx, 

F,(n,)Y = ff. 

F,(II/)Z = !&. 

Désignons par V, une fonction uniforme; Unie et continue des coor-
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données #,,/<, zt

 d'un point de l'espace occupé par le fluide î, telle 
que l'on ait 

(8) I / F1(II1)dII1"
+

"^« —
 0< 

Cette fonction V, sera définie à une constante*près. Les égalités (7) 
deviendront alors 

(9) X dx -h Y dy 4- Ta dz + d\
t
 = o, 

en sorte que l'on aura, en tout point du fluide 1, 

(10) 

àY dZ __ 
dz dy= 0, 

àZ __àX _ 
dx dz 
dX dY 
dy dx °* 

Ecrivons de même l'égalité (2 bis) sous la forme 

P2 — F iC^l-a)· 

Désignons par V
â
 une fonction uniforme, finie et continue des coor-

données #
a
, y

3
, z2 d'un point de l'espace occupé par le fluide 2, définie, 

à une constante près, par l'égalité 

(8 bis) 
ΐ?ΐ(ΐΜ^Π2+ dVz—o. 

%-
Nous aurons alors, en tout point du fluide 2, 

(9 bis) X dx -+- Y dy -f- Ζ dz ·+· dV2 = o, 

en sorte que les fonctions Χ, Y, Ζ vérifieront encore les égalit^ (10) 
en tout point de l'espace occupé par le fluide 2. . 

Les fonctions X, Y, Z, vérifiant les égalités (10) en tout point du 
système, il existe une fonction V des coordonnées d'un point du sys-
tème, variable d'une manière continue dans tout l'espace occupé par 
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le système, telle que l'on ait 

(«O 

X + dV / dx = 0, 

V^=o, 

L 4- -τ- = Ο. 

Seulement, si l'espace occupé par le système n'est pas simplement 
connexe, cette fonction peut n'être pas uniforme. Cette fonction est 
d'ailleurs définie à une constante près. 

Dans l'espace occupé par le fluide ι, les deux fonctions Y et V
t
 sont 

continues et ont les mêmes dérivées partielles; elles ne diffèrent donc 
que par une constante, en sorte que l'on a 

V=V,4-C,. 

D'ailleurs la fonction V, est une fonction uniforme des coordonnées 
d'un point de l'espace occupé par le fluide ι ; la fonction Y demeure 
donc uniforme si le point (a?, y, z) auquel elle se rapporte varie seule-
ment. à l'intérieur du fluide ι. 

Des considérations analogues s'appliquent au fluide 2. 
Ainsi, pour que des forces extérieures puissent maintenir en équi-

libre un système formé d'un certain nombre de fluides, il faut qu'elles 
admettent une fonction potentielle Y en tout point de l'espace occupé 
par ces fluides. Cette fonction potentielle n'est pas forcément uniforme 
dans tout l'espace occupé par le système ; mais elle est uniforme dans 
chaque espace partiel qu'occupe chacune des masses fluides connexes 
qui composent le système. 

On voit, par conséquent, que les surfaces qui limitent les divers 
fluides connexes ou les séparent les uns des autres forment autant de 
surfaces-coupures, transformant la fonction continue, mais non forcé-
ment uniforme, V en un groupe de fonctions Y

n
 V

2
, ..., Y„, séparé-

ment uniformes et continues, mais ne se raccordant pas l'une à l'autre; 
avec continuité,. . 
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L'égalité (8) donne 

(12) ν, = Φ,(Π,) 
ou, en résolvant cette équation par rapport à Π,, 

(.3) H, = G,(V,). 

La fonction G,( V,)est une fonction uniforme de Y,; en effet, la 
fonction F, (II,), qui est égale à la densité p, du fluide 1, est essen-
tiellement positive; l'égalité (8) montre alors que Y, diminue con-
stamment lorsque Π, augmente, en sorte qu'une valeur de Y, ne peut 
correspondre à plus d'une valeur de Π,. 

Chacune des surfaces définies, à l'intérieur du fluide 1, par une 
équation telle que 

Y, = const., 

ou, ce qui revient au même, telle que 

Y = const., 

est alors une surface d'égale pression; elle est aussi, d'après l'éga-
lité (6), une surface d'égale densité. Une telle surface se nomme, 
comme on sait, une surface de niveau. 

Lorsqu'une partie déformable de la surface qui limite le système 
fluide est soumise à une pression uniforme et donnée P

0
, cette por-

tion de surface prend le nom de surface libre. 
Si nous considérons une surface libre connexe, confinant, par 

exemple, au fluide 1, on aura, en tout point de cette surface, Π, = P0, 
et, par conséquent, Y, aura, en tout point de cette surface, la valeur 
constante Φ, (P0); d'où le théorème suivant : 

Toute portion connexe de surface libre est située dans une même 
surface de niveau. 

Si la surface libre d'un système liquide se compose de plusieurs 
parties différentes, non connexes entre elles mais confinant avec une 
même masse fluide connexe 1, ces diverses, parties seront encore sv-
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tuées dans une même surface de niveau; si, au contraire, ces diverses 
portions de surface libre ne confinent pas à une même masse fluide 
connexe, elles pourront être situées dans des surfaces de niveau diffé-
rentes. 

En tout point de la surface de séparation de deux fluides continus ι 
et 2, on doit avoir 

(4) lI, = II
a

. 

On a, d'ailleurs, 

(,3) n. = G,(V,), 
(i3 bis) n,= G,(V

f
). 

. L'égalité (4) devient donc 

('4) G, (V,) — G,(V
2
) = o. 

Si donc dx, dy, dz sont les composantes d'un déplacement infini-
ment petit effectué sur la surface de séparation, on aura 

(i5) 
rfO

t
(V

t
)/JV

l£fa
. , à\

ld
 d\\d\ 

- svr \'dïdx + iydy+-^dv = o· 

Mais, en tout point de la surface commune aux deux fluides, on a 

dV, _ dVt _ __ χ __ dV 

—1 = ̂  ^ — Y= — , 
dY dY dY 
dV1 dV2 dV 

dz dz 4 dz 

On a d'ailleurs, d'après les égalités (i3) et (i3 bis), 

dG1(V1)/dV1 dV1 +dll = 0 

dG2(V2)/dV dV + dLL= 
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ou bien, en vertu des égalités (8) et (8 bis), 

(16) 
dG1(V1) / dV1 = F1(II1), 

^ip=F,(II
2
). 

Si donc nous désignons par Π la valeur commune des pressions Π,, 
Π

2
, en un point de la surface S

<2
, l'égalité (i5) deviendra 

(«7) [F, (Π) - F, (Π)] (g dx + %dy 4- f dz) = o. 

Si, sous la pression Π qui règne à la surface de contact, les deux 
fluides n'ont pas la même densité, F, (Π) n'est pas égal à F

2
(II) et 

l'équation (17) devient 

-τ— dx -f- -j-dv ~dz — o. 

En sorte que toute portion connexe de la surface de contact de 
deux fluides de densité différente est une surface de niveau. 

Si, au contraire, les deux fluides ont la même densité, F,'(II) est 
égal à Fa(II); l'égalité (17) est satisfaite identiquement et la forme de 
la surface de contact est indéterminée. 

Si deux fluides différents, 1 et 2, formant chacun une masse connexe, 
sont en contact le long de plusieurs surfaces séparées, on peut se de-
mander si ces diverses surfaces sont ou ne sont pas dans une même 
surface de niveau. 

Il n'est pas possible de donner une réponse entièrement générale à 
cette question. Toutefois, si l'un des fluides, le fluide 1 par exemple, 
est toujours plus dense que l'autre fluide, le fluide 2, quelles que soient 
les pressions σ,, GT

2
, s°us lesquelles ces deux fluides sont pris (ces 

pressions étant, toutefois, comprises parmi celles qui sont réalisées au 
sein du système), on peut affirmer que les diverses parties de la surface 
de contact sont dans une même surface de niveau. 

Imaginons, en effet, que S,2, S'
12

 soient deux parties différentes de 
la surface de contact; la première correspond à des valeurs Y,, V2, Π 
des fonctions considérées dans ce qui précède; la seconde, à des va-
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leurs V',, V2, IT des mêmes fonctions. Nous aurons les égalités 

(•4) G,(V,)-G
î
(V,) = o, 

(14 bis) G,(v;)-G
a
(v;) = o. 

De ces égalités nous déduisons 

Gi(V
4
) - G,(V,) — G,(V

e
) + G

2
(V

2
) = ο 

ou bien 

(ι8>/ dG1(v)/dv dv - /dG2(v)/dv 

Mais nous savons que l'on peijt écrire, à l'intérieur du fluide ι, 

V, = V —C,, 

C, étant une constante, et à l'intérieur du fluide 2, 

V2 = V — C2, 

C2 étant une constante. La fonction V étant continue dans tout l'es-
pace, nous concluons aisément de là que 

v,-v,=v;-v
a

. 
L'égalité (18) peut alors s'écrire 

('9) 

U, étant compris entre V, et V', et U
2
 entre V

s
 et V'

a
. 

Soient σ„ ©2 les valeurs de Π,, Π
2
, qui correspondent aux valeurs 

U,, U2 de Y,, V
2

. Les égalités (16) nous donneront 

Λ? G, ( U
T
 ) Ρ / \ 

-
3ûr

- = F.(®
3
)· 

D'ailleurs, d'après l'égalité (8), V, varie toujours en sens contraire 

(V1 - V1) [dG1(U1) - dG1U2] 
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de II, ; U, étant compris entre V, et V',, ®, sera compris entre ΙΓ et Π ; 
de même GJ

2
 sera compris entre Π et ΙΓ. L'égalité (19) deviendra 

donc 
(V,- V,)[F,(ra,)-F

1
(oa)]=o, 

les pressions cr, et ©2
 étant toutes deux comprises entre Π et Π', et, 

par conséquent, se trouvant au nombre des pressions réalisées au sein 
du système. 

Mais, par hypothèse, le fluide 1 est plus dense sous la pression tu, 
que le fluide 2 sous la pression GJ2; on a donc 

F|(®«) - F
2
(G7

2
)>O, 

en sorte que l'égalité précédente devient 

V, — V, = o. 

11 en résulte que les deux surfaces S, 2, S,, sont, comme nous l'avions 
annoncé, dans une même surface de niveau. 

§ II. — Fluide soumis à une pression uniforme et constante; poten-
tiel thermodynamique de ce fluide; variation première de ce po-
tentiel. 

Nous avons vu que l'on avait, dans tout l'espace occupé parle fluide, 

(■o Λ = — j— 1 1 = — "τ—5 £1= — -j— y 

la fonction V étant une fonction continue de a?, y, 2, mais pouvant 
n'être pas uniforme lorsque le système est formé de plusieurs fluides 
distincts, et que l'espace qu'il remplit n'est pas simplement connexe. 

Nous admettrons désormais que l'on peut tracer autour du système 
une surface dont tous les points soient à une distance finie de la sur-
face qui limite le système; qu'il existe une certaine fonction V, uni-
forme, finie et continue à l'intérieur de cette surface, telle qu'une 
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masse fluide dmt placée au point (a?, y) ζ), soit soumise à une force 
ayant pour composantes 

— dm, — ~-dm, — — dm. 

Cette hypothèse admise, considérons la quantité 

(20) W=/\pdo, 

dans laquelle l'intégrale s'étend au volume entier d'un fluide continu 
et cherchons quelle variation subit cette quantité W lorsqu'on impose 
au fluide une modification infiniment petite. 

• Soit ρ la densité du fluide, au commencement de la modification, 
en un point d'un élément de volume dv, fixe dans l'espace ; soit ( ρ -h op) 
la densité, au sein du même élément de volume, à la fin de la modifi-
cation; soient S la surface primitive du fluide et S' la surface défor-
mée; soit ε une quantité dont la valeur absolue est la distance normale 
infiniment petite des deux surfaces S, S', dont le signe est le signe -+-
dans les régions où la surface S' est extérieure à la surface S et le 
signe — dans les régions où la surface S' est intérieure à la sur-
face S ; nous aurons évidemment 

(21) SW=f VSpdc + y VpsdS, 

la première intégrale s'étendant au volume du fluide, et la seconde à 
la surface qui le limite. 

Cette égalité ( 21 ) peut se transformer. 
Soient &», ty, Sz les composantes du déplacement du point maté-

riel qui avait pour coordonnées Λ?,/, z, au début de la modification; 
nous aurons, en désignant par Λ,· la normale à la surface S vers l'inté-
rieur du fluide, 

^ = -Ρ(ιζ+:^ + ΊΓ)' 
ε = cos(/i

t
·, χ) lx 4- cos(/i/,y)&y 4- cos(/*

t
·, ζ) οζ, 
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en sorte que l'égalité (21) deviendra 

îw = -f
t
v(%L + '-g

 +
 *g)d, 

—fPV[cos(n
Îf
 x)Sx -h cos

(%y) ty *+"
 cos

(
w

/j
 z

)■&*] d§. 

Des intégrations par parties transforment aisément cette égalité en 

dW = /p(dV / dx dx + dV/dy dy + dV / dz)dv 

ou bien, en vertu des égalités (11), en 

m = -f p(\h! + YSy + ZSz)dv. 

L'intégrale qui figure au second membre est évidemment le travail 
virtuel, effectué dans la modification considérée, par l'ensemble des 
forces appliquées aux diverses masses élémentaires qui composent le 
fluide. Donc, moyennant les hypothèses faites, les forces appli-
quées aux divers éléments de masse qui composent un fluide admet-
tent un potentiel W, défini par Végalité (20). 

Si le système était composé de deux fluides, 1 et 2, le potentiel des 
forces qui agissent sur les divers éléments de masse qui le forment 
serait donné par l'égalité 

( 20 bis) W = f Vp, dv
{
 H- f Vdv

2
. 

La variation que cette quantité éprouve dans une modification infini-
ment petite du fluide s'obtiendra par une formule analogue à la for-
mule (21); si nous désignons par ε, une quantité, analogue à ε, comp-
tée positivement vers l'extérieur du fluide 1, et par ε

2
 une quantité, 

. analogue à ε, comptée positivement vers l'intérieur du fluide 2, nous 
aurons 

( m = jf.V + f V-δρ, dv
t 

(21 bis) | + f Vp, ε, efô, + f Vp
1

e
2
dS

i 

! +f v(PiSi + Ps«2)rfSis· 
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Les pressions appliquées à la surface déformable du système n'ad-
mettent pas, en général, de potentiel; il faut, toutefois, faire excep-
tion à cette règle dans le cas où les parties dèformablcs S,, Sa de la 
surface qui limite le système supportent une pression uniforme 
qui garde une valeur invariable P

0
 pendant les diverses modifica-

tions du système; dans ce cas particulier, où nous nous supposerons 
placé désormais, les pressions extérieures admetten t, comme l'on sait, 
pour potentiel la fonction 

(22) W=P„(j^, + jfA'uj· 

dont la variation est 

.(23) ÎW" = P„ f t, dS, + f i._, dS,J ■ 

En toutes circonstances, le système admet pour potentiel thermo-
dynamique interne la quantité 

(0 9=.J <(,(?,)dv,+ f fr(p
3

)dv.,, 

dont la variation est 

(24) 

dF = /dyi(P1)dP1 dv1 + /dy²(p²) 

H-jf φ,(ρ,)ε, dS, H-jf 9
3
(pa)£2^S

a 

+" f [φ, (ρ,)ε, Η- φ-(ρ
2

)ε
2

]dS12 

Si donc on admet les deux hypothèses indiquées dans le présent 
paragraphe, on voit que le système admet un potentiel thermodyna* 
inique total; ce potentiel a pour expression, en vertu des égalités (1), 
(20 bis) et (22), 

(25) 
® = ,f4-W + W' 

— f.?a(p2)-^^rp2+ Ρϋ]^2· 
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Dans une modification infiniment petite du fluide, cette quantité Φ 
éprouve une variation δΦ, qui a pour valeur, d'après les égalités (a4), 
(21 bis) et (23), 

(2<j) 

*
φ

=X
 +v

] **
 rfp

«
+
l νψ

+V
I
 Λ

· 

+Vp,-t- P
0
]£j c?S, 

+ f [?a(P2)-+~ Vp
2

-+- P
0
]£a^S

2 

+/J[?i(p«) + vP«]£« + [?2(p
a
)+ Vp

2

]£
2

[c?S
12

. 

On remarquera que cette formule, très générale, ne suppose pas que 
le système fluide auquel on l'applique soit en équilibre. 

§ III. — Variation seconde du potentiel thermodynamique. 

Une variation infiniment petite des variables indépendantes dont 
dépend l'état du système a fait subir au potentiel thermodynamique 
une variation δΦ, donnée par l'égalité (26); donnons, de nouveau, la 
même variation aux variables indépendantes et cherchons la varia-
tion δ2Φ que subit la quantité δΦ. 

La variation de la quantité j* ■ -H vj δρι dv
K
 est aisée à for-

mer. Nous avons évidemment 4 

(27) 

df[dy1(P1) / dP1]_
 V

]
 !f

 ■
 Λ = 

jr £sM]
(tf:)

.
 Ai 

+
Χ[τΓ

 + ν
]

!
·''

Α
' 

+
Χ[τΓ^

ν
]
,
»'·"

β
· 

+ / [dy1 (P1) / dp1 + V] 
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La variation de la quantité δρ2 s'exprime d'une 

manière analogue. 
Le calcul de la quantité 

δ/ [<Ρ«(ρ<)·+-νρ,+ Ρ
0
]ε, tfS, 

nécessite quelques explications plus détaillées. 
S, (fig- ι) est la position initiale de la surface S,; S', sa position 

Kig. i. 

après la première variation; S'^ sa position après la seconde variation. 
Faisons correspondre, suivant une loi quelconque, un point M' de 

la surface S', à chaque point M de la surface S,, cette loi étant seule-
ment assujettie à faire correspondre des points infiniment voisins à des 
points infiniment voisins. 

Ce mode de correspondance fait correspondre à l'élément superfi-
ciel MN = dS

t
 l'élément superficiel M'N' = c?S'

t
. 

Pour calculer la nouvelle valeur prise par l'intégrale 

/ [?.(pO-*-vPi-*-po]£ids
n

 . 
Si 

il faut substituer à [ç>
4
 (p^)-f— Vp<] la valeur [φ, (p'

f
) h- Vp',] que prend 

la même quantité non plus au point M, au commencement de la pre-
mière modification, mais au point M', au commencement de la 
deuxième modification ; à la distance normale ε, = Mm' du point M à 
la surface S', la distance normale ε, = M'm" du point M' q la surface S", ; 
à l'élément c?S,, l'élément ifô

4
 ; enfin intégrer non plus pour la sur-

face S,, mais pour la surface S',. La nouvelle valeur de notre intégrale 
sera donc 

/ [*(
P
;)+v'pV+p,]E1 dS1'' 
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et la variation cherchée aura pour valeur 

&/[9<(pi)+vPi + ïVMs< 

= jft?<(p'.)-?i(p«)+v(p'. — pO + P.CV'-Vfle.dS, 

■+-/[?<(Pi)+ Vpi +Ρο](ει- E1) dS1 
Si 

+ f[ï.(p.) + Vp, +P,].
l
(dS'

l
-dS

l
). 

Posons 
fi Pi — UPn 
V_ γ — DV, 

ε',- ε, =Ώε,, 

rfs; - rfs, = Drfs; 
et nous aurons 

<s8) 

«jTtç.ÎpO + Vp. + p.ii.rfs, 

=
 i

([^ + v]D

P

,^s,
+t

(
P

.Dv^s, 

~+~ f lVii?*) Po]DE1dS1 

+ f [î<(Pi) "+" ^Pi *+"Po]E1DdS1 

Soient Dsr, Dy, Dζ les composantes du segment MM' ; nous aurons 

(29) DV = dV/ dx Dx + dV / dy Dy + dV / dz. 

Si p, est la densité, au point M, au commencement de la première 
modification, la densité au même point et au commencement de la 
deuxième modification est (ρ,-ι-ΐρ,); la densité au point M' et au 
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commencement de la deuxième modification est alors 

p, + Dp, = p, + jp, + D* + *£i+*ù Dy H- d-^±kA
Dz

. 

On a donc, en négligeant les infiniment petits d'ordre supérieur, 

(3o) Dp.^p. + ̂  + jDr+liDs. 

En vertu des égalités (29) et (3o), l'égalité (28) devient 

(3.) 

â jf [?I (p. ) + νΡι + Po] ε. dS, 

= / [dY1(p1) / dP1 + V] dp1EdS1 

+ /{ [ dy1(p1 + Vdp1 + p1 dV]) 

'

 +

^ |

+v

|

+pi

^

Dr 

+ [^^+v^ + P'i]D*it'dS' 

+/[?,(?,) ·+■ Vpi ■+· P«]D(e,rfS|). 

Les quantités 

d/IfaÎPa) + vPs + P«1 ̂ Sj, 

S f ([?. (P<) + VP.]£. + [?»(p>) + v Pû]tî I dS
l3 

se calculent d'une manière analogue. 
Nous avons laissé entièrement quelconque la loi de correspondance 

établie entre un point M(a?,y, z) de la surface primitive et un point 
M' (χ + Da?,y -h Dy, <j + D^)de la surface déformée; nous avons 
supposé que cette loi faisait toujours correspondre deux points infini-
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ment voisins M', N' de la surface déformée à deux points infiniment 
voisins. M, N, de la surface primitive. Dans certains cas, il est com-
mode de faire correspondre au point géométrique M, où se trou-
vait un certain point matériel du fluide au début de la première 
modification, le point géométrique M' où se trouve le même point 
matériel à la fin de la première modification; on a alors 

(3a) Da? = Sx, Dy = Sy, Ds = Sz, 

Sx, Sy, Sz étant les composantes du déplacement virtuel du fluide au 
point M. Lorsque nous adopterons ce mode particulier de correspon-
dance, nous conviendrons d'écrire Si, SdS, au lieu de De, D dS. Il ne 
faut pas oublier que l'adoption de ce mode de correspondance n'est 
nullement obligatoire; dans certains cas, il est plus commode d'en 
adopter un autre. 

§ IV. — Expression de la variation seconde dans le cas 
où le système est en équilibre. 

Les résultats précédents nous permettent d'écrire la forme générale 
de δ2Φ. Il nous sera utile, pour les développements qui vont suivre, 
de chercher l'expression de δ2Φ dans le cas particulier où l'état initial 
du système est un état d'équilibre. 

Pour cela, il nous faudra introduire dans l'expression de δ2Φ les 
simplifications qui résultent des conditions d'équilibre données au §1. 
Mais ces simplifications se trouveront indiquées d'une manière toute 
naturelle si nous donnons aux conditions d'équilibre la forme que 
l'on obtient en exprimant que l'on doit avoir 

(33) δΦ = ο, 

pour toute modification virtuelle du système. 
Si l'on observe que l'on a, en tout point de la surface Sl2, 

(34) E +Ê2 —0, 
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l'égalité (33) pourra s'écrire, en vertu de l'égalité (26), 

(35) 

/ [dY1(P1) + V] dp1 dv1 + /[] 

+f [?< + 4-P
e
]6,0?S

1

 4- f [<p
2
(p2)H-Vp

2
 + P

0

]£
2

îÎS
2 

■+■f [?<(pO-+-VP« — ?
3
(p

2
)—' Vp

2

]£,c?S
12

:=o. 

Cette égalité (35) ne doit pas avoir lieu identiquement; elle doit 
avoir lieu seulement pour les modifications virtuelles qui laissent in-
variable la masse de chacun des corps 1 et 2. Ces conditions s'expri-
ment par les égalités 

£jfp, £&,= 0, Sjfp
2

dt>
2
=o, 

qui peuvent encore s'écrire 

(36) 

f 8p,dv,-h ( pfSidSf-t-Ι p,£,c?S
l2
 = o, 

ΙSp
2

efo
2

-1- f p
2

£
2

G?S
2

4- / p
2

£
2

G?S,2 = o. 

L'égalité (35) devant avoir lieu toutes les fois que les égalités (34) 
et (36) ont lieu, il doit exister deux constantes C, et C

2
, telles que 

l'on ait 

(37) 

jrp^
+V+

C1] dp1dv + /[dy²(p²) + V + C²] 

+f [?*(?*) ^p< 4" P<) 4" C
4

 ρ,]ε,dS1 

+f*[^p2(Ρ2) 4- Vp
2
 4- P

0
 4- C

2
p

2
]£

2
rfS

a 

4- J* [ç, (pi) 4- Vp, C<p< ^>
2
(ρ

2
) ^Pî ^2P2]<*S

12
 = O, 

quelles que soient les quantités δρ
η

 δρ
2
, ε,, ε

2
. 
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Par conséquent, on doit avoir, en désignant par C, et C
2
 deux 

constantes : 
i° En tout point du fluide 1, 

(38) £iiÎ£!}+V + C, = o, 

et, en tout point du fluide 2, 

(38 bis) isM +y + Ca = o: 

2° En tout point de la surface S
n 

(39) ?< (P0 ~t~(y +■ c, )p,+p
0
—o, 

et, en tout point de la surface S2, 

(39 bis) ?a(Pa)~i-(V -l-C
2
)p

2
 -+-P

0
 — °i 

3° En tout point de la surface S
12

, 

(4o) Y1(P<) + ^)P» = ?2(Pa) -*-(y -+- C
2
)p

2
. 

Avant de faire usage de ces conditions d'équilibre, assurons-nous 
qu'elles résultent des conditions posées au § I. 

Les égalités (2) nous donnent, en tout point du fluide 1, 

dx p
t
 àx °' 

~Λ~ Λ— Ο, 

dz pi àz °* 

D'autre part, l'égalité (3) nous donne 

dnt ^ ^φι(ρι) dpi 
dx Pi dp! dx"" 9 

dji . ^'yi(pi) àpt
 n 

ày Pl dp\ dy-°r 

dPi , *yt(Pt) dpi __ 
dz r*

 dp
x fa"0' 
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Ces égalités nous montrent que l'on a, en tout point du fluide i, 

d/dx [dy1(p1)]/ dp1 + V]=0, 

d/dy [dy1(P1)/ dp1 + V] = 0, 

d/dz [dy1(p1) / dp1 + V] = 0, 
et, par conséquent, 

(38) il£Uv
 +

 C, = ., 

C, étant une constante. L'égalité (38 bis) se déduit de même des 
égalités (2 bis) et (3 bis). 
■ Les égalités (3) et (38) donnent, en tout point du fluide 1, 

04') <Pi(Pi) + (V + C,)p, + Π, = 0. 

Les égalités (3 bis) et (38 bis) donnent, en tout point du fluide 2, 

(41 bis) Çi(Pa) -*~(y 4- C
2
)p

2
-h Π

2
 — O. 

Observons que l'on a, en tout point de la surface Sn Π, = P0; en 
tout point de la surface S

2
, Π

2
 = P

0
; enfin, en tout point de la sur-

face S,2, Π| = Π2, et nous verrons sans peine que les égalités (41) 
et (4i bis) donnent les égalités (39), (3q bis) et (4°). 

Revenons maintenant aux égalités (38), (38 bis), (3q), (3g bis) 
et (4o), et voyons quelles simplifications subit l'expression de δ2Φ 
lorsqu'on les suppose vérifiées. 

Les modifications virtuelles auxquelles se rapporte la variation se-
conde δ2Φ ne sont pas quelconques; elles laissent constante la masse 
de chacun des deux fluides 1 et 2, en sorte qu'elles sont assujetties aux 
égalités 

S / pi dv
K
 = ο, δ I p

2
 dv

%
 = o, 

δ2jfp< cfo, == o, 82yp
2

efo
2
= o. 

Les deux premières égalités équivalent, nous l'avons vu, aux éga-
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lités (36); quant aux deux dernières, elles peuvent se transformer par 
un raisonnement semblable à celui qui fait connaître δ2Φ; elles 
prennent alors la forme suivante : 

(4») 

/ δ2ρ, cfc,-f-2 / δρ,ε, c?S, + 2 / δρ,ε, dS,a 

+ / (dp1/dx + dp1 / dyDy + dp1/dz) 

+
jC®

Ds+
i

D
^
+

^
D

*)
i
-
<e

». 

+ ΓρίΙ>(ε. rfS,)+ / ρ, ϋ(ε, dS
{2

) = ο, 

(4^ bis) 

/ S2p
2

âfa
2
-f-2 / 0p

2
£
2
^S

2
-f-2 / £p

2
£
2

fl?S,
2 

+
j((35

D
*
 +

 &
D
'

 +
 £?»M· 

+ / (dp2/dx Dx + dp2/dy Dy + dp2/dz Dz) 

h- / p
2
 0(ε,ί/δ

2
)-h / p

2
D(s

2
c?S

12
) = o. 

Considérons maintenant l'expression de δ2Φ. Par un groupement 
convenable des termes qui la composent, elle peut s'écrire 

(43) 

*'
Φ = Jf ■+ jf + ν] S°p, Λ, 

+
l
 +V

1K
+d
£

Ox+
w»?

+d
£

D2
)
i
>
dS

' 

+i,[^r+VK2 +1'D*+1 rfS· 

-+■ f [Tl(?0 + VPl + Po]D(ElrfS() 

r+"jf [î,(p,.)+VP<]D(*|i®i») 

:+l p< ëDx+%Dy+%D*}E< d&< 

*£ p.(iD:B+ %By+ fD^rfs.
a

+· ··. 
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le signe : ... désignant des termes de même forme que ceux qui sont 
écrits, mais où l'indice 2 remplace l'indice 1. 

En vertu des égalités (34), (38), (38 6w), (39), (39 bis) et (4o), 
l'égalité (43) peut s'écrire 

(44) 

°,φ dv< 

+ / p1[dV Dx + dV Dy + dV) E1dS1 

+
i,

pi

®
Da:+

i
Dr+

^
D2

)
£iûÎs

'
2 

+ c, [jfS'p, rfo, 

+
l{^?'

+
È

Ox+
^

O
y
+

T^y·^' 

+
ί{^'

+
^

Ώχ+
dP1Dy + dp1 Dz )E 

+ fpi D(ï
t
 d&,)4-p.DfcdS,.)]-

En chaque point de la surface S
12

 on peut attribuer à Da?, Dy.D* 
la même valeur dans l'expression 
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Dès lors, en vertu des égalités (34), (42) et (42 bis), l'égalité (44) 
devient 
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Telle est la forme très simple que prend la variation seconde du 
potentiel thermodynamique d'un système composé de deux fluides, 
soumis à une pression constante, dans le cas où l'état initial est un 
état d'équilibre. 

§ Y. — Stabilité de l'équilibre d'un fluide dont les masses 
élémentaires ne sont sollicitées par aucune force. 

Imaginons tout d'abord que les divers éléments de masse qui com-
posent le système ne soient soumis à aucune force extérieure; la seule 
force extérieure qui agisse sur le système est la pression P0, appliquée 
à la surface libre. 

Dans ce cas, la fonction Y se réduit à une constante; l'égalité (38) 
nous apprend alors que la densité p, a la même valeur en tous les 
points du fluide ι et l'égalité (40 nous enseigne qu'il en est de même 
de la pression Π,; les égalités (38 bis) et (4i bis) entraînent égale-
ment la constance des quantités p2

 et Π2
 à l'intérieur du fluide 2; 

chacun des fluides que renferme le système en équilibre est homo-
gène. 

La constance de la fonction Y entraîne, en tout point du système^ 
les égalités 

à\ â\ d\ 
doc 7 oy 1 oz 7 

en sorte que l'égalité (45) se réduit à 

*2φ=+d²Y2(P2)(dP2)²dv² 

Si l'on remarque que p, a la même valeur en tout point du fluide 1 
et p

2
 la même valeur en tout point du fluide 2, cette égalité peut encore 

s'écrire 

(46) 8.φ =
 £($?ly do, + jf (Shy d„t. 

Il est des modifications pour lesquelles cette quantité δ2 Φ est évi-
demment égale à o; ce sont celles dans lesquelles chaque particule 

Journ. de Math. (5* série), tome I. — Fasc. II, 1895, 18 
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fluide qui se déplace est remplacée par une particule fluide de même 
densité; pour de semblables modifications, non seulement δ2Φ est 
égal à o, mais il en est de même de toutes les variations d'ordre supé-
rieur de Φ, en sorte que, pour de semblables modifications, l'équilibre 
du système doit être regardé comme indifférent; cette proposition est 
une conséquence immédiate et évidente de la définition du mot fluide. 

Excluons ces modifications particulières et cherchons à quelles con-
ditions l'équilibre du système sera stable pour toutes les autres modi-
fications; la condition cherchée s'obtiendra en exprimant que, pour 
toutes ces modifications, la quantité δ2Φ est positive, ce qui donnera, 
en vertu de l'égalité (46)> 

(4?) d²y1()ί jf (S
?

, >· dv, + j («p,)i d,, > o. 

Les variations δρ
η

 δρ
2
 sont seulement assujetties aux condi-

tions (36), qui les laissent entièrement arbitraires. La condition (47) 
équivaut donc aux deux conditions 

(48) d²df\ >°> ~w>°· 

Telles sont les conditions qui expriment que le système est en 
équilibre stable sous Taction d'une pression uniforme et con-
stante. 

Nous admettrons que l'équilibre d'un système fluide, soumis uni-
quement à l'action d'une pression uniforme et constante, est toujours 
un équilibre stable; nous admettrons, par conséquent, que les iné-
galités (48) sont toujours vérifiées par tous les fluides. 

Interprétons ces inégalités. 
La densité p

{
 que prend le fluide 1 soumis exclusivement à une 

pression uniforme P0 est donnée par l'égalité (3), où Π, prend la 
valeur P0, c'est-à-dire par l'égalité 

(49) y1(p1) - p1 dy1(p1)dp1 + Po = 0. 

Sous la pression uniforme (P0H-dP0), à la même température, le 
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lluide ι prend une densité (p, -h dp,); l'équation qui lie dp{ à dP01 

obtenue en differentiant l'égalité (49)» est 

pl -^2 »P I — "1 0· 

La première inégalité (48) nous apprend donc simplement que dp
{ 

est de même signe que dP0. Ainsi, Vhypothèse que nous avons ad-
mise revient à supposer que, dans tout fluide soumis exclusive-
ment à une pression uniforme, un accroissement de celle pression 
détermine un accroissement de la densité. 

§ VI. — Stabilité de l'équilibre d'un système fluide 
terminé par des surfaces libres. 

lie venons au cas général auquel se rapporte l'égalité (45). 
Nous avons vu que, dans ce cas, chacune des surfaces S,, S

2
, S,

2 

était une surface de niveau. 
De ce fait que la surface S, est une surface de niveau, il résulte que 

l'on peut, en désignant par ra,· la normale à la surface S,, dirigée vers 
l'intérieur du fluide ι, écrire 

S = ̂  "»(»»*)> 

_
 =
 _COS(„.

r;
, 

âF= SÎT,00^""5)-

On a donc 

j— D# + j— D/ -f- y D~> 

= [cos(/î/, χ) Dx -+- cos(ni1 y) Dy -h cos(nh z)Dz). 

Mais, d'autre part, on a évidemment 

ε, = — [cos(/i/, x)Dx -h cos (η,·, y) Dy -+- cos (nh s)Dz]. 
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Par conséquent, on a 

(dV / dx Dx + dV /dy Dy + dV / dz Dz) E1 = - dV / dni E². 

Cette remarque et deux autres remarques analogues permettent de 
transformer l'égalité (45) en 

(5o) 

5>φ
 =/

(S?,)î<fo
'
 +

f,
 d
^r

 (Spi
>'

dv2 

- /p1 dV / dni E² dS1 - /p2 dV /dni 

- /(p2 - p1) dV / dn2 E²dS 

n2étant la normale à la surface S,2 vers l'intérieur du fluide i. 
Il existe évidemment des modifications du système dans lesquelles 

cette variation est égale à ο : ce sont celles où le liquide se meut de 
telle manière que chacune des trois surfaces Sn Sa, S

12 demeure inva-
riable et que chaque particule fluide déplacée soit remplacée par une 
particule de même densité. De pareilles modifications annulent non 
seulement δ2Φ, mais encore toutes les variations d'ordre supérieur 
de Φ ; on doit regarder l'équilibre du système comme indifférent à de 
semblables modifications ; en fait, elles ne font varier aucun des para-
mètres qui, par hypothèse, suffisent à déterminer l'état du système. 

Laissons de côté ces modifications particulières et cherchons la 
condition de stabilité du système pour toutes les autres modifica-
tions; cette condition s'obtiendra en exprimant que la quantité δ2Φ 
est positive pour toutes ces modifications; elle s'écrira, en vertu de 
l'égalité (5o), 

(50 

/d²y1(p1) dp1² dv1 + /<**)·*. 

- / p1 dV/dni E²dS - / p² dV / dni Eé 

-f(p2 -P')^O^u>0· 
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Si nous admettons l'exactitude de l'hypothèse énoncée au para-
graphe précédent, nous pouvons énoncer lë théorème suivant : 

Pour que l'équilibre d'un système de fluides terminés par des 
surfaces libres soit un équilibre stable, il faut et il suffit que 
l'on ail : 

i° En tout point des surf aces libres S,, S2, 

(02) j-5o; 

2° En tout point de la surface de contact S,a de deux fluides 
ι et 2, 

(S3) / \ <>v < 

Dans ces deux conditions, l'égalité n'a jamais lieu pour tous 
les points d'une région d'étendue finie de la surface. 

Que ces conditions suffisent à assurer l'inégalité (51), cela est bien 
évident; mais qu'elles soient nécessaires pour que cette égalité soit 
vérifiée, cela s'aperçoit moins aisément, car les quantités îp

n
 δρ

2
,· 

ζ
κ

, ε
2 ne sont pas arbitraires, mais soumises aux conditions (36); 

une démonstration est donc ici nécessaire; démontrons, par exemple, 
qu'en tout point de la surface S,, on a nécessairement 

(52 bis) dnt-
0' 

l'égalité n'ayant pas lieu en tous les points d'une région d'étendue 
finie prise sur la surface S, ; la nécessité des deux autres conditions 
s'établirait d'une manière analogue. 

La condition (52 bis) ne peut être en défaut que de deux ma-

nières ; ou bien est égal à ο en tous les points d'un domaine d'é-

tendue finie tracé sur la surface S, ; ou bien ̂  est positif au moins, en 

un point de la surface S, ; dans ce dernier cas, on pourrait, autour du 
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point où ̂ | est positif, tracer un domaine d'étendue finie où, par 

raison de continuité, ^-serait également positif; donc, si la condi-

tion (52 bis) était en défaut, on pourrait assurément tracer, sur la 
surface S,, un domaine D, d'étendue finie, en tout point duquel la 

quantité ̂  serait nulle ou positive. 

Gela posé, imaginons qu'on laisse immobiles le fluide 2 et les sur-
faces S

2
, S,

3 qui le limitent; qu'on laisse également invariable la 
partie de la surface S, qui est extérieure au domaine D; qu'on déplace 
le fluide 1 de telle manière que le liquide qui remplissait un élément 
de volume fixe dans l'espace soit remplacé par un liquide de môme 
densité; que l'on donne enfin, aux divers points du domaine D, des 
déplacements tels que 

Ι ε, dS, = o. 

Si l'on observe que la densité p, a la même valeur en tous les points 
du domaine D, qui appartient à une surface libre et partant à une 
surface de niveau, on verra sans peine que les égalités (36) sont véri-
fiées et, par conséquent, que la modification considérée est une modi-
fication virtuelle du système. 

Or, pour une semblable modification, le premier membre de l'iné-
galité (5r) se réduit à 

- / p1 dV / dni E²1 dS1 
• 

et, contrairement à l'inégalité (5i), ce premier membre serait nui ou 
négatif si la condition (52 bis) n'était pas vérifiée. Cette condition 
(52 bis) est donc nécessairement vérifiée. 

Maintenant que nous avons, en (52) et (53), les conditions géné-
rales de la stabilité de l'équilibre, cherchons à interpréter ces condi-
tions. 

La surface libre S, est une surface de niveau; la force (X, Y, Z) en 

un point de cette surface est normale à cette surface ; pour que ̂  

soit négatif, il faut et il suffit que la force soit dirigée vers l'intérieur 
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du fluide i; la condition (52) peut donc s'énoncer ainsi : 

La force extérieure ne doit pas être nulle en tous les points 
d'une région d'étendue· finie prise sur une surface libre; en tout 
point d'une telle surface où elle n'est pas nulle, elle doit être di-
rigée vers l'intérieur du fluide. 

De même, la condition (53) peut s'énoncer ainsi : 

La force extérieure ne doit pas être nulle en tous les points 
d'une région d'étendue finie prise sur la surface de contact de 
deux fluides; en tout point d'une telle surface où elle n'est pas 
nulle

y
 elle doit être dirigée vers l'intérieur du fluide le plus 

dense. 

CHAPITRE II. 

L'ÉQUILIBRE DES CORPS FLOTTANTS. 

§ I. — Théorèmes généraux sur l'équilibre des corps flottants. 

Imaginons un système formé de deux fluides ι et 2, et d'un solide 3. 
Ce dernier sera supposé absolument invariable de forme et d'état. 
Nous supposerons le solide en contact avec le fluide 1 par une partie 
S

13
 de sa surface, et avec le fluide 2 par une autre partie S

23
 de sa 

surface. Le fluide sera soumis à deux sortes de forces extérieures : des-
forces appliquées à ses divers éléments de masse, et des pressions ap-
pliquées aux divers éléments de la surface qui le limite; au sujet de 
ces forces, nous admettrons les mêmes hypothèses, nous emploierons 
les mêmes notations qu'au Chapitre précédent; quant au corps solide, 
nous le supposerons soumis à des forces que nous réduirons à une force 
et à un couple; ξ, η, ζ seront les composantes de la force résultante 
suivant les trois axes de coordonnées et λ, p., ν les composantes de 
l'axe du couple suivant les trois mêmes axes. 

L'état du solide étant supposé rigoureusement invariable, la présence 
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de ce corps introduit seulement, dans le potentiel thermodynamique 
interne, un terme constant que l'on peut négliger d'écrire ; le potentiel 
thermodynamique interne sera donc encore donné par l'égalité (i) 
du Chapitre I. ' 

Les conditions d'équilibre d'un pareil système, s'obtiendront en 
écrivant que, pour toute modification virtuelle du système, on a 

(0 δ| — cfe
e

>O, 

étant la variation du potentiel thermodynamique interne dans la 
modification considérée et d§e le travail des forces extérieures. 

Désignons par δ#, δ^, lz les composantes du déplacement imposé 
à un point matériel de l'un des deux fluides ; par δ/, δ#, lh les trois 
translations suivant Ο », ο y, Ο ζ et par δ/, δ/η, δη les trois rotations 
autour de ces mêmes axes; le travail des forces extérieures appliquées 
au système aura pour expression 

(»>'■ 

d&
e
 = f[ Ρ cos(P, a?) δα? H- Ρ cos(P,y) δ/ 4- Ρ cos( Ρ, z)Bz]dS

i 

-t- f [ Ρ cos (Ρ, a?) δα? 4-Ρ cos (Ρ, y) δ)'4-Ρ cos (Ρ, s) δ*] cfë., 

4-jfp, (Χ δα? 4- Y δ/ 4- Ζ lz)dv
{ 

4-/p
2
 (X && 4- Y δ/ 4- Ζ δζ) dv

2 

4- ξδ/4- ηδ# 4- ζδΛ 4- λδΖ 4- μδ/n 4- νδη. 

D'autre part, on aura 

(3) 

δ|= ̂ d§t 4-y^
a
(p

a
)e

s
rfS

i 

+ /dp1(p1) / dp1 dp1 dv1 + / dp2(p2/ dp2 dp2 dv2*) 

Ces égalités (2) et (3) permettent de donner une forme explicite à 
l'égalité (1). 

On peut supposer, en premier lieu, que le corps solide demeure im-
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mobile et que, seul, le fluide éprouve un déplacement virtuel. La con-
sidération de tels déplacements virtuels redonnera toutes les conditions 
énumérées au Chapitre I, § I. 

En vertu de ces conditions, les inégalités et égalités (i), (2) et (3) 
donnent, pour toute transformation où le fluide ne se creuse pas de 
cavité, 

(4) 

ξδ/4- ηδ# 4- ζδ/ι -t- \Sl 4- 4- νδη 

—j* Π, £c0s(N,&*)Sar4-C0s(N,y)fy4- COS(N,£)8sJdS,
;
,, 

—Π
2
 j^cos ( Ν, χ) Sx 4- cos (Ν, y) Sy 4- cos ( Ν, ζ) δζ J dS., < ο, 

Ν étant la normale au point (χ, y, ζ) de la surface du corps solide, di-
rigée vers l'extérieur de ce corps. D'ailleurs, comme toute modifica-
tion où le fluide ne se creuse pas de cavité est une modification ren-
versable, le signe d'inégalité peut être effacé.' 

Le fluide demeurant en contact avec le corps solide durant la modi-
fication considérée, si l'on désigne par Αχ, Ay, As les composantes du 
déplacement du point matériel appartenant au corps solide, dont 
les coordonnées sont x, y, s, à l'instant t, on a, en tout point des sur-
faces ^13 et S,,, 

cos(N*,a?) Sx 4- cos(N,/)Sj 4- cos(N,s)8.s 

— cos(N,a?)Aa? 4- cos(N,^)A/ 4- cos(N,z)Az. 

On a, d'autre part, 

(5) 

Ax — Sf 4- zSm — ySn, 

Ay — Sg 4- χδη — ζ Sly 

Az — Sh 4- ySl — xSm, 
Jour τι. de Math. (5· série), tome I. — Fasc. II, 1895. '9 
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L'égalité (4) devient donc 

(6) 

[ E - / IIι cos(N, x)dS
n

 cos(N,a?)i£S,
3
 j Bf 

-+- ^Η —Y Π
Η

 cos(N,Y)C?S,
3

 — Y II
2

COS(N,7)Ù?S
23

J Bg 

-f- Γ ζ ~ Γn,cos(N, *)<fô
ia
- Γn,cos(N,5)rfS„l δΛ 

L 'Su Sja J 

H- |λ — Γ Π, [y cos(N, s) — scos(N,y)]dS,
3 

— Γ ïï
2
[y cos(N, s) — -scos(N,y)]dS

23
j Bl 

H- j (A— Π, [s cos(N, a;) — a?cos(N, z)] o?S,
3 

— Γ H
2
[^ cos(N, x) — a? cos(N, 5)] c£S

23
| Bm 

+lv~Ln'
 \oc cos(N,y)—y cos(N, &')]dS,

3 

— f n
2
[#cos(N,y) — y cos(N, #)] dS

23
| Bn = o. 

Cette égalité doit avoir lieu quels que soient Bf, Bg, Bh, δ/, δ/?2, δ/«, 
en sorte que nous trouvons les conditions 

(7> 

ξ= Γ Π, cos(N, x)dS
ri

 4- Γ ILcos(N, χ) dS
23 

η = f Π, cos(N,y)dS
l3

 -h f ILcos(N,y) û?S
as

, 

ζ— f Π, cos(N, 2s) dS
r3

 -f- f Π
2
 cos(N, z) o?S

23
, 

λ= f'Hl
l
[ycos(N

)
z) - scos(N,y)]dS

13 

-h / ïï
2
[ycos(N, *) — ζcos(N,y)] ciSo

3
, 
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(7) 

jjt= f Π, [scos(N, x) — #cos(N, s)] c?S,
3 

H- Ι IL [s cos(N, a?) — a?cos(N, 5)] rfS
aa

, 

Ν = I ÏÏ,[a?cos(N,y)— ycos(N, a?)] Û?S,, 

-+- / II
a
[a?cos(N,y) —/COS(N,ÎP)]C?S

2;1
. 

&»a 

Telles sont les conditions qui, jointes aux équations de l'Hydrosta-
tique, donnent les conditions d'équilibre d'un système de fluides qui 
porte un flotteur. 

Ce que nous venons de dire est général. 
Imaginons maintenant que les forces extérieures admettent une 

fonction potentielle Y ; que cette fonction soit uniforme, finie et con-
tinue en tous les points d'un espace renfermant non seulement les 
fluides, mais le corps solide. 

La surface de séparation S,2 des fluides 1 et 2 est une surface de 
niveau; la fonction Y prend, en tous les points de cette surface, une 
même valeur A. 

Le lieu des points, intérieurs au corps 3, ou la fonction V prend la 
valeur A, forme une surface S'12, connexe avec la surface S,2 (fig' a)· 

Fig. 2. 

Cette surface S'12 sépare le corps 3 en deux régions; l'une, contiguë au 
fluide 1, que nous désignerons par Γ; l'autre, contiguë au fluide 2, 

que nous désignerons par 2'. 

A l'intérieur du fluide 1, la densité p{
 et la pression Π, sont des 
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fonctions bien déterminées de Y : 

(8) P. = R.(V), 

(9) n, = P,(V); 

ces fonctions sont telles que l'on ait 

(10) p, dV -h eftl, = o. 

En chaque point de l'espace 1', nous définirons les fonctions p, et Π, 
par les équations (8) et (g). Nous aurons donc encore, en tout point 
de l'espace i', l'égalité (10), qui peut s'écrire 

<»> 

dV dn, 
P1dx dx= 0, 

9ldy H~ ~dy~^ 
dY <?Π, 

P1 dz + dz = 0. 

De même, à l'intérieur du fluide 2, la densité p
2
 et la pression Π2 

sont deux fonctions bien déterminées de V : 

(8 bis) p
2
=R

2
(V), 

(9 bis) n
a
 = P,(V). · 

Ces fonctions sont telles que l'on ait 

(10 bis) p2 d\3 H- c?H2 — o. 

En chaque point de l'espace 1', nous définirons les fonctions p2 etn2 

par les équations (8 bis) et (9 bis). Nous aurons donc encore, en tout 
point de l'espace 2', l'égalité (ro bis), qui peut s'écrire 

(11 bis) 

dY , <m, 
P2dx> dx= 0, 

P* dy + dy ~ °* 

P2dï + lï-0· 
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Cela posé, on trouvera sans peine que l'on a 

(12) 

f Π, cos(N, x) rfS
u

H- I n
2
cos(N,#)dS

23 

= xs^+xs^ 

=
 -f

r
f'&

d
*-f,?'ïï

dp
' 
) 

f II,[ycos(N,s)-*cos(N,y)]dS
ls 

-h J* II
2

[/COS(N, z) — zcos(N,y)]rfS
23 

= /(y dII1 / dz - zdII1 / dy) dv3 + / 

= -JM*y~4rz) .{. ρ· U y - Tyz ) dv°< 

....................................................................... 

En vertu des égalités (12), les égalités (7) prennent la forme sui-
vante : 

(i3) 

ξ=—Xp- —χP2 dV / dx dv3, 

λ=~Χ f'Vi;-zTy)d'''-Jj'{y^-zWdi'" 
................................................................ 

Ces égalités peuvent s'interpréter. 
Remplissons l'espace occupé par le corps solide par un fluide fictif 

ayant pour densité p, en tout point de l'espace l'et p
2
 en tout point de 

l'espace 2'. Considérons les forces extérieures qui agissent sur les 
divers éléments de masse de ce fluide, et composons-les comme s'il 
s'agissait d'un corps solide; soient ξ', η', ζ' les composantes de la 

Jorce résultante et λ', p/, ν' les composantes de l'axe du couple résul-



τ44 P. DUHEM. 

tant; on voit sans peine que l'on a 

(-4) 

ξ- ? = o, 

η - η' = ο, 

ζ - ζ' = ο, 

Λ — λ' == ο, 

(Λ - |Λ' :=- Ο , 

ν — ν' = ο. 

Ces égalités sont une généralisation du principe d'Archimède. 

§· II. — Potentiel thermodynamique d'un système qui renferme 
un flotteur. Variation première de ce potentiel. 

Considérons un- système formé de deux fluides et d'un flotteur en 
contact avec ces deux fluides. Le potentiel thermodynamique interne 
de ce système pourra s'écrire [Chapitre I, égalité (i)] 

(r5) & — Ç 91 ( ρ » ) do, -+- 9 2 ( pa ) do
2

, 

la présence du corps solide introduisant seulement dans ce potentiel 
un terme constant qu'il est inutile d'écrire. 

Nous supposerons le système limité par une surface invariable, en 
sorte que les pressions qui peuvent agir aux divers points de cette sur-
face n'effectueront aucun travail. Pour calculer le potentiel des forces 
extérieures, il suffira de tenir compte des forces appliquées aux divers 
éléments de masse des corps fluides et du corps solide. 

Les forces appliquées aux divers éléments de masse des corps 
fluides admettent un potentiel qui a pour valeur 

06) Ω = f Vp
t
 do, ■+ Ι Vpu do

3
. 

Nous supposerons que chaque masse élémentaire dm
z
 — p, do

z
 du 
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corps solide soit soumise à une force dont les composantes ont pour 
valeur 

dU , dU , dû , 
~ dx 3 ' ~~ * dy 3 ' ~ P3 ~ds 3 ' 

U étant une fonction potentielle, qui est uniforme, finie et continue 
en tous les points d'un domaine à l'intérieur duquel se trouve le corps 
solide. 

Les forces extérieures auxquelles le corps solide est soumis admet-
tront alors un potentiel qui aura pour valeur 

('7) Ω' — / pU
3
 dv

a 

et le système admettra un potentiel thermodynamique total ayant 
pour valeur 

(18) Φ = ^+Ω+ί1'. 

La variation première de ce potentiel aura pour valeur 

(r9) δφ = δ(ί?4-ΰ)4-δΰ'. 

Si Ton se reporte à l'expression de (# + Ω), donnée par les éga-
lités (i5) et (16), on voit que cette expression se rapproche du po-
tentiel thermodynamique total d'un système ne renfermant pas de 
flotteur, potentiel dont nous avons calculé la variation première au 
Chapitre I [égalité (26)]. Seulement les parties déformables de la 
surface qui limite le fluide se nomment ici S

u
, S

23
, au lieu de se nom-

mer S,, S2
 ; de plus, les termes en P

0
 font défaut. On aura donc 

(23) 

*e
 + = .(ί,^Γ + V] *<='[^T + V]^ dv> 

H- f [?<(?«)+" f [φ
2
(ρ

2
) -l· Vp

2
]£

a
c?S

23 

H- f I [? 1 (Pi) Vp, ] ε, -h [φ
2
(p

2
) -h Vp

a
] ε, j rfS,

2
. 
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D'autre part, on a 

(21) 3û
' = /P> (37 ̂  + fy Ar + dJi^) rf«·»· 

Ax, Ay, Az étant donnés par les égalités (5), cette dernière égalité 
devient 

(22) 

Sa
'
= ?3

 3s
 dv

'
+

*ef,
Ps 37 dv'+SAXp> dv' 

-t- &jfp. (y dv
* + p> (

s
 g§ - ® -37)^' 

+ Sn / p3 (x dU / dy - y dU / dx) dv 

Les égalités (19), (20), (21), (22) font connaître la variation pre-
mière du potentiel thermodynamique. 

Nous allons en faire usage pour retrouver les conditions d'équilibre 
d'un système fluide portant un flotteur sous une forme qui nous sera 
utile par la suite. 

Ces conditions s'expriment en écrivant que l'on a, pour toute défor-
mation virtuelle, 

(23) δΦ = ο. 

Si l'on observe que l'on a, en tout point de la surface S,,, 

ε, = — [A^cos(N, X) -+- Ay cos(N, y) 4- Az cos(N, s)]; 

qu'en tout point de la surface' S
23

 ε2
 s'exprime d'une manière ana-

logue; on voit sans peine que les égalités (5), (19), (20) et (22) 

transforment l'égalité ( 23) en 

(24) 
/ [dy1 (p1) + V ] dp1dv1 + / 

+f i[îi(Pi)+-Vp
1

]£
l

+[ç
2
(p

2

)+Vp
2

]ε
2

{</S
ja 
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(24) 

+
 */) jf P· S?

 dv
* - j[ <P' ) '

+ V
P' 1

 C0S
<
N

-x dx ) 

-f [î»(P»)-+- Vp
a
]cos(N,a!)rfS»j 

+ ô>|...) + SA|...| 

+ s
'lfArf.->%)■*■ 

~ f f?i(p«)+ "vp
1

][7cos(N,z)~^cos(N,7)]rfS,
3 

— Γ [?a(Pa)+VPa] [>COs(N, *)—*COs(N,y)]dS„ j 

-f- δ/η j ... j $n j... | = o. 

Cette égalité (24) ne doit pas avoir lieu identiquement; elle doit 
avoir lieu seulement pour les modifications virtuelles qui laissent 
invariable la masse de chacun des fluides 1 et 2. 

Exprimons que la masse du corps I demeure invariable; nous 
trouvons 

/δρ,ί/ρ,+ Γ p,z,dS,
2
-l·-/ ρ,ε, dS

i3
 = o 

ou encore 

(25) 

/ δρ, dv
K
 -h j ρ,ε, dS

43 

— δ/ f p,cos(N,^)û?S,
3
-§«· f p,cos(N,y)c?S,

5 

— èh ( p, cos(N, sjc?S,
:
, 

— δ/ Γ pf[scos(N,s) — ^cos(N,/)]c?S
u 

Sis 

— δ/η ι p, [scos(N, χ) — χ cos(N, z)\ </S,3 
SU 

— δη ί p,[£ccos(N,/)—ycos(N,£c)]dS,
:
, = ο. 

Le fluide 2 fournit une égalité analogue, que nous désignerons 
par (25 bis). 

Journ, de Math. (5· série), tome I. — Fasc. H, i8g5. 20 
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L'égalité (24) doit avoir lieu toutes les fois que les égalités (25) 
et (20 bis) sont vérifiées, et seulement dans ce cas. Le calcul des va-
riations nous enseigne qu'il existe alors deux constantes C,, C

2
, telles 

qu'en ajoutant au premier membre de l'égalité (24) le produit par C, 
du premier membre de l'égalité (20) et le produit par C

9
 du premier 

membre de l'égalité (25 bis), on obtienne une quantité identiquement 
nulle. 

Si l'on observe alors que l'on a, en tout point de la surface S,
2
, 

ε, h- ε2 = ο, on trouve les conditions suivantes : 

i° On a, en tout point du fluide 1, 

(26) %&!>
+

V + C, = o 

et y en tout point du fluide 2, 

(26 bis) dY²(P2) / dp3 + V + C² = 0 

' 20 On a, en tout point de la surface S
l2

, 

(27) ?i(pi) + (V + C,)p, — ?
3
(p

2
) + (V + C

a
)p

2
. 

3° On a, enfliiy 

(28) 

1

(p>iï*
elç
'
=
 I

 + ci)?< J cos(N, as) oiS
(3 

+ / [y2 (p2) + (V + C2)] 
.................................................................. 

l?\yT*-zT
f
)di,> 

= f [?<(p.)-t-(v C<)?<] [r C0S(N, s) — scoa(N
>-r

)] rfS
>:

, 

+ f [i«(pa) + (V + C2>Pî][^-cos(N,z)-scos(N,y)]dS
a

„ 

• · · · ? 
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Telles sont les conditions nécessaires et suffisantes pour l'équilibre 

d'un système de deux fluides portant un flotteur; on prouverait aisé-
ment qu'elles sont équivalentes aux conditions établies au § I. 

CHAPITRE III. 

STABILITÉ DE L'ÉQUILIBRE D'UN FLOTTEUR. 

§ I. — Variation seconde du potentiel thermodynamique d'un sys-
tème de fluides qui renferme un flotteur. 

Considérons un système de deux fluides, ι et 2, contenant un flot-
teur; concevons que ce système soit soumis aux hypothèses indiquées 
au § 2 du Chapitre II; ce système admet un potentiel thermodyna-
mique Φ, défini par les égalités (t5), (16), (17), (18) du Chapitre II; 
la variation première δΦ de ce potentiel est donnée par les égalités 
(19), (20), (21), (22) du même Chapitre; proposons-nous de déter-
miner la forme générale de la variation seconde δ2Φ. 

Nous aurons 

(>) S!<î> = S2(,f + û) + «Jû'. 

En raisonnant sur l'expression de S(tf H- Ω) [Chapitre II, égalité O)] 
comme au Chapitre I, § 3, nous avons raisonné sur l'expression de 
δΦ, nous trouverons 

<>) 

d²(F + C) = / d² y1 (P1)² dv1 + / [dY1(P1) + V] 

*'£[
ϋ
«Γ

 + ν
]
ίί

'·'·'®
,
·
+,

.(,[
ί
ΪΓ +Ï]«V·'®.. 

*LI +P1 dV / dx ] Dx 

+ [dy1(p1) dp1 + Vdp1 + p1 dV] 

+ [dy1 (p1) dp1] + Vdp1 

~t_ f [?« ( pl )+ Vp1 ] D E, dS1 
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* 11 [^ £-*£-*£]»· 

+[^$-ν£*·ΐ·£]ιν 

<>) I .,.,«] D.J.,Λ,, 

+f [?.(p.)+V
Pl

]D(«
t
eS„) 

1 -f- etc 

le symbole : etc. représentant des termes qui sont analogues à ceux 
que nous avons écrits et qui se déduisent de ceux-là en permutant les 
indices ι et 2. 

Les égalités [Chapitre II, égalités ( 26) et (27)] 

(3) -f- V -h C, =0 (en tout point du fluide 1), 

(4) φ,(ρ,)-h (V-l· C,)p, = ο (en tout point de la surface S, 

permettent d'écrire 

/ [dY1(p1) + V] 

+2 / [dyi² +] 

+ fJ^+v](tD^py+diiO^'d^ 

+ f [i,(
P

.)+Vp,]DMS
12

) 

(5) + / [dy1(p1/ dp1 + V](dp1 / dx) 

j + f [?i(p.)-l-Vp,]D(£,rfS„) 

= — C,j j^S2p,é/p, 4-2jT Sp,£,rfS,2-H2j^ Sp,£,0?S,j 

+£(£
 Da! + φΓ D/ + ̂  D^E,rfS.

ls

 +£p,D(
£

,rfS,
2

) 

' py+T^y<d*>> | 

+f [?« ( Ρ « ) ~+~ ^Ρ<]^(ε, î/S
u

). 



SUR LA STABILITÉ DE L'ÉQUILIBRE DES CORPS FLOTTANTS. 151 

En exprimant que la masse du fluide ι est essentiellement inva-
riable, nous trouvons l'identité · 

(6) / dp1dv1 +ί p,£,dS
ia

H-i p«£,rfS,
e
 = o. 

Le premier membre de cette égalité (6) étant identiquement nul, il 
en doit être de même de sa variation, ce qui nous donne l'égalité 

/ d² p1dv1 + 2 / dp1 E1dS12 + 2 

(7)+£βΌ*+&Όχ+$Ώ*)^&,,+£ϊ,Ό(*&ύ' 

+£(^Dx+|iD/+^D^e,rfSli+^p(D(elrfSu)=o. 

Moyennant cette égalité (7), le second membre de l'égalité (5) se 
réduit à 

f [?
Î
(P.) + (V+c«)pi]D(£.^S«3)· 

Ce calcul, et un calcul semblable effectué sur le fluide 2, donnent 
à l'égalité (2) la forme. 

(8) 

8·(ί + 0)= jfi^)(8
Pl

)»dP, 

+fj<{^Ox+%By+TzOz)'<ds·* 

+
X
|

P'(^
D

*
 +
 f

D
/
+

S
D
«>'

<s
« 

+ f l?.(p.) + (v + C,)p.]D(e,iÎS,
s
) + etc., 

le symbole : etc. ayant un sens analogue à celui qu'il a dans l'égalité (2). 
Nous pouvons, en tous les points de la surface Sm prendre 

(9) Dx = Αχ, By = Δ/, Dz = Az, 

Ax, Ay, Az étant les composantes du déplacement dii point du corps 
solide dont les coordonnées initiales sont χ, y, ζ, et étant donnés, par 
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conséquent, par les égalités 

(10) 

l Ax — Sf z Sm — y en, 
] Ay = Sg H- χ Sn — s Si, 

Az = dh + ydl - xdm 

Nous aurons alors 

ε, = — [cos(N, x)Ax -h cos(N, y)Ay H- cos(N, z) Az] 

ou bien, en vertu des égalités (10), 

(,0 

ε, = — {cos(N, x) Sf 4- cos(N, y) Sg 4- cos(N, z)Sh 
4- [y cos(N, ζ) — ζ cos(N, y)] Si 
4- [ scos(N, χ) — χ cos(N, s)] Sm 
4- [A?cos(N, y)—JKCOS(N, x)]cn {. 

Si nous convenons de prendre Sf, Sg, Sh, Si, Sm, Sn comme 
variations indépendantes, nous aurons, en vertu de l'égalité (ι i), 

(12) 

Δε, = — S/Acos(N, Χ) — §g-Acos(N, y) — ShA COS(L\, Z) 

— Si [JKACOS(N,S) — sAcos(N,Y)| 

— Si [cos(N, z)Ay — cos(N,y)Asj 
— $/K[2ACOS(N, x) — #Acos(N, z)] 
— Sm [cos(N, x)Az — cos(N,-s)Aa?] 
— Sn [a?Acos(N,/) — ^Acos(N,a?)]· 
— Sn [cos(N,/)Aa? — cos(N,a?)Ay]. 

Mais on a également 

(.3) 

Acos(N, x) = COS(N,Z)O/M — cos(N,Y) Sn, 

Acos(N, y) = cos(N, x) Sn — cos(N, z) Si, 

Acos(N, 3) = cos (N, y) δ/ ~ cos(N, x)S/n. 

En vertu des égalités (10) et (i3), l'égalité (12) devient 

('4) Δε, = ο. 
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D'ailleurs, l'élément c?Su est un élément d'aire invariable de la 
surface du solide, en sorte que 

(iS) AdS,= o. 

En vertu des égalités (i4) et (i5), l'égalité (8) devient 

(>«) 

8·(*+0)=/d² Y1(P1) (dp1)² dv1 

+ / p1 (dV Dx/dx + dV/dyDy + dV) E1 

+
1?'{τχ*

χ +
Ty*y + π* )'<&>> 

-h. 

Calculons maintenant δ2 £2'. 
Nous avons 

Ω' = f pu Udv
3

, 

('7) 

8û'= /ρ·(®Δχ+?δ>'+^Δ«)Λ'.. 

8îQ
- Xp»[^

(ia
'
)s+

^
(Ar)a+

^
,(A

-'
)s 

+ 2WàiAyAz + *ΊΪΪΪΑζΑχ + 2s^4x] dv> 

+
X

Ps
 5Ï {^'Ax + lïfty + ^STAz + A'x) ̂  

+fj>w&*x+w*y+^Az+A2y)dv" 

+ΙΡΐ^Ι^Δχ + ̂ Δ^+^Δ2+ΔΪ2)Λν 

Les égalités (io) donnent 

-5— = ο, —τ— — — ùn, —r— = cm, 

Δ2#=ο, 
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ce qui donne la première des égalités 

(•β) 

^—Ax + 4/ + -t- Α'χ = (Az im — Ay in), 

dAy / dx Ax + dAy / dyY + ̂  Az + A%y = {Axin - A: il.), 

^Ax+d~i^ =(Ay'*1 -te*» >)·. 

Les deux autres s'établissent d'une manière analogue. 
En vertu des égalités (8), l'égalité (17) devient 

(•9). 

Sa£i
- $<*/)·+d²U / dz² (Az)² 

4- 2^—rAvàs 4- 2
 Λ Λ

 Δ3Δχ-\-2-Τ—-ζ-ΔΧΔΥ α»·' 

+£?
3
[(Asim-Ayin)tfe+(Axin-Az il) — 

+ (AyS' — Ακ8»ΐ)^ρ1 de,. 

Les égalités (16) et (19), jointes aux égalités (10) et (11), donnent 

[20) 

* y+û + û')=/ <S?,)
2
 dv, + f

 d
-^p> (thy d»

t 

+ /p1 (dV Dx / dx + dVDy/dy+ dVDz) 

+l?*(Z
Dx

 + %
O

r +
 d
<ij

 Ό
ή «»<«.· 

·+■ Q> 

Q étant une forme quadratique des six variables 

δ/, §g, δΛ, δ£, δηι, δη, 

(20 

Q = A, ,(i/y +A „(i
g
y +A„(ihy 

4- A
M

 (δ/)2 4- A
S5

 (δ?η)2 H- A
oe

 (δ/i)2 

-l- A
23

 δ^δΑ 4- A3<
 δάδ/ 4- A

12
 δ/δ»· 

-f- A
53

 δηι δη + Α
β

., δ/ζ δ/ 4- A
4S

 δ/dm 
4-Α

14
δ/δ/ 4- Α

25
 δ^· δ/w 4- Α

3β
 δά δη 

4- Α,
5
δ/δτη4- Α

10
δ/δη 

4- Α
2β

 8g δη 4- Α
24

 δ# δΐ 
4-A3Α

δΐιδΙ 4-ΑιιδΑδτη. 
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Les coefficients Ay de cette forme ont les valeurs suivantes : 

A» =-f Pi^
coe

(
N

>
a,
)

rfS

n-J^ P
2
3Ï

C0S
(

N
> ®)

ίβ
«·
+
/ρ>^

Λ
« 

A
m
 = - jf ρ, ̂ cos(N, 7)dS

n
—jf p

2
 |pCos(N, 7) +jfp, ̂  

A„=-f ?< 752 cos(N, s)dS
n
-f pj^cos(N, ^dS^-h f p

s
^ di>„ 

Aii= — jf p. j -a^cos(N,7)-yz[^cos(N, 2)+ ^cos(N,7)J 

+ r2g7C°s(N,2)JrfS
)J 

~X P21 S'^C0S(N>^) [^C0S(N> *) + S C0S(N' ̂ )] 

+7a^«os(N,2)JrfS
2;

, 

+J, p' Y W ~ *yZWài +y ~y~<iï ~~ ~dï) u 

A,
5
 = - f ρ, U·1 cos(N, 2) - 2a; cos(N, x) + ̂  cos( N, 2)! 

+ z'%tos( n,®)JÎS
m 

-f p
2
 j»'2 grc°s(N, 2) - cos(N, χ) + ^cos(N, 2)! 

Su 
+ ̂ ~cos(N,^) Ji/S.,3 

+J, '°3 r" dss 2ZXdzùx+* dx* * dz Xdx) 3 ' 

A ce = - f p.)72^cos(N,.Tr)-x7[^cos(N,7)+^cos(N,a?) 

+
 *>%cos(K,y)\dS

l3 

~ j[ ?> ί y'cos(N>χ) ~ xy [ScosçN> y)+%
cos

(
N

' *)] 

+ »2^cos(N,7)JrfS
2î 

J, P'V 33« — ^^dxdy If ~χϋ ~^ly) ^ 
Journ. de Math. (5e série), tome I. — Fasc. II, 1895. 21 
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A»~-f Pi[^
cos

(
N

'
z

)-·- ^cos(N,7)]rfS
13 

~f
u
 f2(^C°^N'S^+ 3FC0S(N'^] rfS»+ ajfP*~%7zdv" 

A,, = -jf p, ̂ cos(N, x)+ ~ cos(N, s)Jd 

_Xi>2f^C°S^N'a:)+ %cos(n's)]dSl'+2fj3Êjïdv3' 

A.,= -jT p, ^cos(N,y)+ ^cos(N,®)JdS„ 

-jf P» C0S(N. r) + 35· ««(N, ®)J rfS„ + 2jf p, ̂  <fo„ 

A„ = f pi j ' ^[27*cos(N,œ) —®scos(N,y) —aycos(N,*)] 

-+- Y [ÎP
2

COS(N, z)— #scos(N, #)] 

-1- -rp [a?2 cos(N, y) — xy cos(N, a?)] jdS 

+ J Ρϋ ^[273C0s(N,a:)-2;ZC0s(N,y)-2/C0s(N,3)] 

4- [a?2 cos (Ν, s) — xz cos (Ν, a?)] 

-f- ̂  [a?2 cos (Ν, y)— xy cos (Ν, a?)] Jî/S 

-Jf Pa | - aa*g^ -2xy d²U dx dz 

+ ™ dydi-'ty-y-fil*» 

A„= JFP,{ ^[7
2
COS(N,3)-73COS(N,J)] 

4- —[2 3a;cos(]>f,y) — ya?cos(N, s) — cos(N, a?)] 

■+· ~[y2co.s(N,a?) — ̂ eosCN,/)] Jc?S 

+1?*\ .^[•>'Scos(N'2)-^cos(iN''>')] 
-h -^[2sa?cos(N,y) — yajcos^, s) — /2c°s(N, a;)] 

■+" jfïly* C0S(N>x) ~~ΎΧC0S(N,/)] J dS 
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-J, ?° 13ZXW ~ *yz¥ài - *yzWàï 
+2y² d²U / dzdzdx - x dU/ dz - z 

A,s= f P<! GS[Z3COS(N'X)_ */Β°8(ΝΙ«)] 

-H ^[s
2

cos(N,a?)— ^ycos(N, Z)J 

4- ~[2#ycos(N, z) — zycos(N, x) — 2£ccos(N,y)] JdS,, 

+/P2I ^[*2cos(N'^)~ ̂ C0S(N>*)1 

■+■ c°s(N, a?) — sa?cos(N, s)] 

4- -^[2ÎC/COS(N,Z) — z/cos(N, x) — sa?cos(N,y)] jdS
23 

-Jf h\**y-5* -2zrd^~2ZXd^ 

+2Zd7Ty-yii-xwr" 
A"= -jf P. jjg[.Kc0S(N> z)—zcos(N,y)] 

-t-cos(N,a;)(y^ -*^)|dS„ 

-/P²{dV / dx [ yd²U / dx [y cos (N, z) - zcos (N, y)] 

+ cos(N,a!)^^-z^)jiS„ 

+2 /p3(y d²U / dxdz - z d²U); 

A,» = — jf p, J^[zcos(N,aî)-a!Cos(N,z)] 

H-cos(N,y)(a^-®^)jrfS„ 

- Γ p
a
J^[zcos(N,i:)-a!COs(N,z)] 

+ cos(N,y)(*^-*|j)jdS„ 

+2J e'\Zdfâx Xàydz) " 
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A»« = -f Pi j3j[tfcos(N,y)—ycos(N,«)l 

+ cos(N, z)(xj^ — SJJ·) JE®,, 

-J Pijgj-t^cosiN^J-ycosiN,®.)] 

+ C0S(N,2)^JJ —z dV / dx) } dS23 

+y,t'\x*%-ri&s)d9» 

A= Pi j
2-s^cos(N>J!)-®[grcos(N,®)+^cos(N

)
s)]J(fô,

> 

~f
t
 Paja«^cos(N,®)-®^'cos(N

l
®) + gjCos(N,î)]jrfS

!1

, 

+Jj'{2zl^-2X^T,-li)de" 

A,„ = -jf Pi j2a5^cos(N, y) — y ̂ ^cos(N,j) + ^cos(N, ar)jJrfS,, 

~f
s>

 Pai2^«=o

S

(N,
r
)-

r
gcos(N

;7

)
 +

 gc°
S

(N
>:C

)]i^, 

+J, ?\™W-2yW3ï~Tx)d^ 

dS A„ = - jf p
(
j27^cos(N,s)-3^cos(N,;) + ^cos(N,/) jrfS,, 

— f Pa|2/^cos(Ni3)-2[Scos(N'-::)+ grCOS(N.r) jrfSas 

+jj>(2yiï-2ZôJTy-Ty)dv» 

Au = jf Pij2r^cos(N,®)-»^cos(N,»)+ ^cos(N,/)jJ<S„ 

+ f P»i2rJ^c0S(N,a?)-.a?[S
cos

(
N
i
x) + £cos(n.r)]J 

r ( d*O dsU <KJ\, 
- P3 2y dx² dxdz dy 
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A
ai

= jf p,j2z^cos(N,^)-7^cos(N, y) + ^cosCN.s^jrfS,, 

+
j[ 4

22Scos<N'yS>
 ~ ̂ [^008^'·?') + ï^C0S^N'5)]jrfS» 

~l ?\*ζ·ψ~-*γπτχ+ΊΓζΓ» 

A,» = f p,l2ar^cos(N,s) —sr^cos(N,z)+^cos(N,a-)ljf;S,
3 

-hj p
3
j2a?^cos(N,2) — s^cos(N,s) ■+· ̂ cos(N,dS

23 

-jf Ρ·1
β
®^-"5^

+
Λ?Γ

Ρ
·· 

Ces égalités, jointes aux égalités (20) et (21), font connaître la 
forme de la quantité δ2(ί-ι- Ω 4- Ω'), dans le cas particulier où l'état 
initial du système est un état d'équilibre. Pour calculer plus briève-
ment cette quantité, nous avons supposé que les variations 

δ/, êg, ο/ι, δ/, δ/77, δ/7 

étaient dès variations arbitraires, en sorte que l'on eût 

δ2/=ο, δ2 - = ο, δ2Λ = ο, δ2/ = ο, $- m = ο, δ2/ϊ = ο. 

Nous aurions pu ne pas faire cette hypothèse ; la quantité 

δ»(£+ΰ + Ω') 

aurait alors renfermé une fonction linéaire et homogène de 

δ2/ΐ δ2Λ, δ2/, δ2/77, δ2/7. 

Mais les égalités (28) du Chapitre II nous auraient permis de dé-
montrer que cette fonction est identiquement nulle lorsque l'état ini-
tial du système est un état d'équilibre. 
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§ II. — Stabilité de Véquilibre d'un système de fluides 
qui renferme un flotteur. 

Une transformation analogue à celle qui a fourni l'égalité (5o) du 
Chapitre précédent permet d'écrire l'égalité (20) sous la forme 

(22) 

8'(#+Ω+Ω') =/ d²y1(p1)/ dp² (dp1)² dv1 

- f (P*-P<)dTz1dS.2 + Q-

Nous avons admis que, quels que soient les fluides 1 et 2, on avait 
[ Chapi tre I, inégalités (48 )], 

(23Ï df\ >°> rfpl >0· 

Ces inégalités admises, nous allons chercher s'il est possible de 
marquer les conditions nécessaires et suffisantes pour que l'on ait, 
pour tout déplacement du système, l'inégalité 

(24) d² ( F+ Ω ·+■ Ω') ^> ο. 

Ces conditions seront les conditions de stabilité du système. 
Imaginons que l'on maintienne le flotteur immobile; que l'on 

garde une densité invariable au fluide qui remplit chaque élément de 
volume du système; on pourra néanmoins déformer la surface S,

2
, 

cette déformation étant simplement soumise à la condition 

j £4 — O. 

L'inégalité (24) se réduira, dans ce cas, à 

/(p2 - p1) dV/dn2 E² dS12 < 0. 

Cette inégalité entraîne, comme nous l'avons vu à la fin du Cha-
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pitre I, la conséquence suivante, qui est une PREMIÈRE CONDITION NÉCES-

SAIRE POUR LA STABILITÉ DE L'ÉQUILIBRE DU SYSTÈME : 

La force extérieure ne doit pas être nulle en tous les points d'une 
aire d'étendue finie prise sur la surface de contact des deux 
fluides; en tout point de cette surface où elle est différente de o, 
elle doit être dirigée vers l'intérieur du fluide le plus dense. 

On peut imaginer des déplacements qui laissent invariable la den-
sité du fluide qui remplit chacun des éléments de volume du système ; 
seulement, en exprimant que la masse de chacun des deux fluides doit 
demeurer invariable, on trouve que de semblables déplacements sont 
assujettis aux conditions suivantes : 

(25) 
f p,£,dS,,+f p,£,rfS,, = o, 

I I Pa£2 dQ, 2 "f" I ρ
2
ε

2
 é/S 23 o. 

Si l'on remarque que les densités p,, p
2 ont des valeurs constantes 

le long de la surface S,2, ces égalités peuvent s'écrire 

(26) 
ρ, ( ε ι c?S f 2 ~l~ f o, 

Ρ 2 / ^2 rfS | ο H- / p
2
 Sj i/So 3 O■ 

On peut même assujettir un tel déplacement à ne pas déformer la 
surface de séparation S,2; dans ce cas, les égalités (26) deviennent 

j Ρ1 ûfS , 3— Ο, j p2£qOÎS
2

3 — O 

ou bien, en vertu de l'égalité (11), 

(27) 

8/ f p,cos(N,x)dS„ + §g f p,cos(N,y)rfS
ll
 + 8A f p,cos(N,z)rfS,

s 

+ M f p, [y cos(N, ζ) - ζ cos(N, y)\ dS
{3 

-hSm / ρ, [z cos(N, x) — #cos(N, s)]dS
u 

Si, 

-l· In l p, [a?cos(N,/) — ycos^, λ?)] c?S,3 = ο, 
S|, 
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et une égalité analogue, qui se déduit de la précédente en remplaçant 
l'indice ι par l'indice 2, et que nous désignerons par (27 bis). 

Lorsque les six quantités δ/, δ#, δ/ι, δ/, Sm, δ/ι vérifient ces deux 
relations (27) et (27 bis) on peut prendre : 

§p
t
 = o, en tout point du fluide 1 ; 

Sp
2
 = ο, en tout point du fluide 2 ; 

ε, =o, en tout point de la surface Sl2. 

L'inégalité (24) se réduit alors à 

Q> o. 

Cette inégalité nous donne une SECONDE CONDITION NÉCESSAIRE POUR LA 

STABILITÉ DE L'ÉQUILIBRE DU SYSTÈME : 

La forme quadratique Q des six variables δ/*, Sg, δ/ι, Si, Sm, S/i 
doit être une forme définie positive toutes les fois que ces six va-
riables vérifient les deux relations linéaires et homogènes (27) et 
(27 bis). 

Nous venons de trouver deux conditions qui sont nécessaires pour 
que l'équilibre du système soit un équilibre stable; mais il n'est pas 
prouvé que ces conditions suffisent à assurer la stabilité de cet équi-
libre; inversement, nous pouvons énoncer deux CONDITIONS QUI SUFFI-

SENT A ASSURER LA STABILITÉ DE L'ÉQUILIBRE DU SYSTÈME ; mais la seconde 
de ces conditions peut n'être pas nécessaire. 

Voici ces conditions : 

i° La force extérieure n'est pas nulle en tous les points d'une 
aire d'étendue finie, prise sur la surface de contact des deux 
fluides; en tout point de cette surface ou elle est différente de o, 
elle est dirigée vers l'intérieur du fluide le plus dense. 

20 La forme quadratique Q des six variables δ/, Sg, Sh, II, Sm, 
δ/ι est une forme définie positive, quelles que soient les valeurs 
attribuées à ces variables; ou, du moins, elle ne devient nulle que 
pour des valeurs de ces variables qui ne vérifient pas à la fois les 
égalités (27) et (27 bis). 

Considérons, en effet, la quantité Sa(tf -+- Ω -h Ω') donnée par l'éga-
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lité (22); notre première condition empêche le troisième terme d'être 
jamais négatif; notre seconde condition produit le même effet sur le 
quatrième terme; quant aux deux premiers, en vertu des inégalités 
(23), ils ne sont jamais négatifs. De plus, les quatre termes ne pour-
ront être simultanément égaux ào; le quatrième, en effet, ne peut 
devenir égal à ο que pour des valeurs de 8/, 8g, 8h, 8/, 8m, 8n qui ne 
vérifient pas à la fois les deux relations (27) et (27 bis); dans ce cas, 
l'un au moins des trois premiers termes, doit être différent de zéro. 

§ III. — Cas où les deux fluides confinent 
par une surface illimitée. 

La surface fixe qui enferme les deux fluides et le flotteur a des di-
mensions limitées ; mais il peut se faire que la fonction potentielle Y 
puisse se prolonger indéfiniment d'une manière analytique en dehors 
de cette surface ; on pourra alors supposer que l'on prenne successive-
ment des surfaces closes de plus en plus grandes, et que l'on donne à 
la surface de contact des deux fluides des dimensions de plus en plus 
grandes. C'est dans ce cas que nous allons maintenant nous placer. 

Nous remarquerons, en premier lieu, que lorsqu'on étend ainsi, de 
plus en plus, l'aire de la surface de contact des deux fluides, en pro-
longeant analytiquement cette surface, on ne modifie pas les valeurs 
des coefficients de la forme quadratique Q. 

Supposons que la forme Q puisse être rendue négative par un choix 
convenable des six variations 

8/, 8g, 8b, 81, 8m, 8n. 

Si ces six quantités ne vérifient pas les conditions (27) et 
(27 bis), et si la surface qui enferme les deux fluides et le flotteur a 
des dim élisions données, il n'est pas certain que l'équilibre du flotteur 
ne soit pas stable; mais nous allons démontrer que, si l'on suppose va-
riables les dimensions de la surface de contact des deux fluides, on 
pourra toujours prendre l'aire de cette surface assez grande pour 
que, dans le cas considéré, l'équilibre du système ne soit plus 
stable. 

Journ. de Math. (5· série), tome I. — Fasc. II, i8g5. 22 
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Prenons, en effet, une surface S
n

 déterminée. 
Nous pourrons imposer au système une variation virtuelle définie 

de la manière suivante : 
i° Les éléments du déplacement du corps solide ont les valeurs 
considérées 8f, 8g, 8h, 8l, 8m, 8n, qui donnent à Q une valeur néga-
tive; 

2° La quantité ε, = — ε
2
 a la même valeur en tout point de la sur-

face S j q ^ 
3° La quantité δρ, a la même valeur en tout point du fluide ι ; 
4° La quantité δρ

2
 a la même valeur en tout point du fluide ι ; 

Ces diverses quantités sont liées par les relations qui expriment que 
chacun des fluides ι et 2 garde une masse invariable ; ces relations 
sont l'égalité 

(28) 

jf 8p, dv
{
 —ρ,ε,ί/8,2 

-{-δ/Γ Ρ, cos(N,A?)CFS,
3
 -h δ# f Ρ, COS(N,7)Î/S,, 

Sl;i 

+ 8/1 f p, cos(N, z)dS
Xi Sis 

-f- 8l f p,[/cos(N,^) - 5cos(N,jK)]rfS„ 

-\-8m Ι p, [s cos(N,a?) — χ cos(i\, ^)]t/S,
3 S |3 

-t-δτι f p,[#cos(N,y) — ycos(N,ir)]dS
1:J
 = ο 

et une égalité, que nous désignerons par (28 bis), et qui se déduit de 
la précédente en permutant les indices 1 et 2. 

Ce déplacement peut faire prendre à la quantité 8'2($ + Û + Ω') 
une valeur positive, bien que Q ait une valeur négative, car les trois 
termes 

Φ•)'f
l
^Îrdv"(dp2)² /d²y²(p2)/dp²dv2, (p1 - p2) 

ont des valeurs positives. 
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Faisons maintenant croître les dimensions de la surface close qui 
enferme le système; l'aire de la surface S,

2
 est multipliée par le 

nombre λ; le volume occupé par le fluide ι est multiplié par le 
nombre μ, ; le volume occupé par le fluide ι est multiplié par le 
nombre μ.2. 

On voit sans peine que l'on vérifiera les égalités (28) et (28 bis) en 
prenant pour ε

η δρ., δρ
2
 de nouvelles valeurs ε'

4
, δρ

4
, δρ

2
, telles que 

λε'
4
 = ε

4
, μ., δρ', = δρ., [xJp'

2
 =.·. δρ

2
. 

Les valeurs des intégrales 

/ d²y1(p1) dv1, F d²y2(p2)dv& 

seront multipliées par des nombres qui seront respectivement de 
l'ordre de [*4, μι

2
, λ. Par conséquent, dans l'expression de 

δ2(^+Ω + Ω'), 

le terme Q, qui est négatif, gardera une valeur invariable, tandis que 
les valeurs positives des termes 

(dp1)² / d²y1 (P1), (dp2)² / d² y²
(p
,-

h
y

t
fJLdS„ 

seront multipliées par des nombres de l'ordre de — > — 3I/y, 

On pourra donc toujours prendre μ.,, pu, λ assez grands pour que 
la quantité δ2(# + Ω + Ω') soit négative, ce qui démontre la propo-
sition énoncée. 

Il résulte de cette proposition que si deux fluides, portant un flot-
teur, confinent par une surface illimitée, l'équilibre du système sera 
instable si la forme Q peut être rendue négative. 

En rapprochant cette proposition de celles qui ont été démontrées 
au paragraphe précédent et qui sont indépendantes de l'aire de la 
surface de contact des deux fluides, nous arrivons à énoncer de la 
manière suivante les CONDITIONS NÉCESSAIRES ET SUFFISANTES pour la 
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stabilité de l'équilibre d'un corps flottant à la surface illimitée 
qui sépare deux fluides : 

i° La force extérieure ne doit pas être nulle en tous les points 
d'une aire d'étendue finie prise sur la surface de contact des deux 
fluides ; en tout point où cette force est différente de zéro, elle doit 
être dirigée vers l'intérieur du fluide le plus dense ; 

2° La forme quadratique Q ne doit être négative pour aucun 
ensemble de valeurs de 8f, 8g, 8h, 81, 8m, 8n; elle ne doit pas être 
nulle pour un ensemble de valeurs des mêmes quantités vérifiant 
les égalités (27) ou (27 bis). 

Ainsi, dans le cas particulier où les cleux fluides qui portent le flot-
teur confinent par une surface illimitée, le problème de la stabilité de 
l'équilibre des corps flottants est complètement résolu. 

§ IV. — Cas où les forces extérieures se réduisent 
à la pesanteur. 

Prenons l'axe des ζ dirigé vers le zénith; si les forces extérieures 
qui agissent sur le flotteur et sur le corps solide se réduisent à la pe-
santeur, et si nous désignons par g l'intensité de la pesanteur, nous 
aurons 

dx~~0' dy ~ °' dz~£> 

dx 0 ' dy dz © ' 

Les égalités données à la fin du § I, qui font connaître les coeffi-
cients A φ deviendront 

A,, = o, 

A22 = o, 
A33 =-gf PiCos(N,z)dS

(3
—g f p

a
cos(N,z)dS

u
, 

a<4=- g f Ρι7[^οοβ(Ν,^)-ί(ΐοβ(Ν,^)]ββ
ιβ 

~g f ?,zde„ 
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A
55

 — — g f 'p
4
ic[ajcos(N,z) — zcos(N,a?)]dS

13 

— g I p
a
a?[a?cos(N,s)— .scos(N,#)]dS

23
 — g f p

3
scfa

3
, 

A00 — o, 
A

23 =~gf P«cos(N,/)C?S
u

~^ f p
2
cos(N,y)dS

23
, 

A3 i=-gf p, cos(N,a?)dS,
3
-# f p

2
 cos(N,a?)dS

23
, 

A | Ο = O, 

As« = gl p,[a?2 cos(N,y) — a?/cos(N,a?)] c/S
13 

+ g f ?,[x2cos(N,y)-xycos(N,x)]dS
3
,-hg f p*ydt>„ 

A„ = g f pi [y2 cos(N, a;) —ya;cos(N, y)] dS
l3 

+ g f
&
 P2 [χ2 cos (Ν, χ) - y χ cos(N, y)] dS

33

 -h gjf p
3

 xde
3

, 

Α.,5 = g / p, [2îujcos(N, 5)— sy cos(3N",a?)~ cos(i\,y)J c?S
13 

+ §■ / p
a
[2a^cos(N,js)-«xcoB(N,a?).-«a5Cos(N,/)]dS„, 

A
M = ~~ gj p,ycos(N,tf)dS,

3
- g f p

a
ycos(N,A?)rfS

a3
, 

A25= gl p^cos(N, j)dS,
3

-t-g· f p
2

a? cos(N y)c?S
23

, 

A3c=-^· Γ p,[a?cos(N,^) —^cos(N,a?)]dS
13 

13 

~gf p.[®cos(N,/) — ycos(N,œ)]dS
iz

, 
u 

a,
5
 = — g[ pi®cos(N, x) o?S

l3 Su 

Λ-gf p
a
a?cos(N,a?)rfS„-gr / p

3
rfp

3
, 

A2C — °> 
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A»= gf P4*
C<)Kn>:K)-2/cos(N!S)]ÎIÎS" 

4- g Ι F>
2
[*

C
OS(N,y) — 2/COS(N, S)]^S

2<1
, 

A-( ο — O, 

Aj, = — gj p,ycos(N,y)(fô,j 

- gf
s
 p«ycos(N,/) rfS.,,— ^J ρ,ώ>„ 

A
35
 = g / P

4
 [2#C0S(N, ζ) — Ζ COS(N, #)] É/S

L3 
Si8 ♦ 

+g I p
2
[2a?cos(N, ζ) — ζ cos(N, a?)]rfS

2J
. 

SÎ3 

Six de ces coefficients, les coefficients A,,, A
22

, Aeo, A
12

, A20, A1C 

sont égaux à o; nous ne devons pas nous en étonner; en effet, il est 
évident a priori que la forme Q doit être identiquement nulle lorsque 
l'on a 

oh = ο, δ/η = ο, δ/ζ — o. 

Une modification, infiniment petite ou finie, qui consiste exclusi-
vement en une translation du flotteur parallèlement à la surface de 
contact des deux fluides et une rotation autour d'un axe normal à 
cette surface ne change en rien la valeur du potentiel thermodyna-
mique du système; pour de tels déplacements, l'équilibre du système 
est indifférent; c'est seulement lorsqu'on les exclut qu'il peut être 
question de stabilité de l'équilibre. 

§V. — Cas où les deux fluides en contact sont homogènes. 

L'expression de la forme Q devient beaucoup plus simple lorsque 
l'on suppose homogènes les deux fluides ι et 2, soit qu'on les regarde 
comme incompressibles, soit que l'on néglige les variations que la 
densité de chacun de ces fluides éprouve d'un point à l'autre par 
l'effet de la pesanteur. 

Pour transformer, dans ce cas, l'expression des coefficients A φ 
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nous ferons usage des formules bien connues 

09) 

y F cos(n
e
, x)dS =J de, 

f F cos(n„ y)dS =/dF / dy dv, 

J" F cos (n„ z)dS=J^ de, 

dans lesquelles les intégrales des premiers membres s'étendent à une 
surface fermée S et les intégrales du second membre au volume ν 
qu'enferme cette surface; n

e
 est la normale extérieure à la surface S. 

Transformation du coefficient A
33

. — Nous avons, d'après les 
formules du numéro précédent, 

A33 =—/ cos(N, s)dS
u

 — gp
2
 f cos(N,s)dS

23
. 

Prolongeons, à l'intérieur du solide, la surface plane S12; soit 2 

ce prolongement ; soit Σ l'aire de la surface S', 2 ; appliquons la troi-
sième égalité (29) à la surface fermée que forment les surfaces S,3 

et S'
t2

 ; nous trouverons sans peine 

/ cos(N, s)f/S13 -t- / cos(«
2

, «s)î£S'
1()
 = 0. 

Mais, en tout point de la surface S'
12

, cos(/i2, z) = 1, si nous sup-
posons le fluide 2 superposé au fluide 1. L'égalité précédente nous 
donne alors 

f COS(N,S)Î£S
13
 =— Σ. 

Nous aurons de même 

f cos(N, *)dS
23
 = Σ 

et, partant, 
A-„ = g(p,-p,)S.' 
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Transformation des coefficients A
44

 et ku. — Nous avons 

a
M=-£P</ [y*cos(N,i)—«/cos(N,y))«S„ 

-gf«jf tracos(N, «) — zycos(N,y)]eiS
2

,-£j p,z dv3. 

La troisième égalité (29), appliquée à la surface fermée S
13

S'
)2

, 
donne 

( f y2 cos(N, *)dS
13

 +- f y2dS'
V2
 = o. 

(a) / On a, de même, 

f f y2 cos(N, z)dS.
23

— f y2dS'
ti
 = o. 

La seconde égalité (29), appliquée à la même surface fermée, 
donne 

J zycos(N,y)rfS„ = J zdv'„ 

v\ étant le volume compris entre les surfaces S'42
 et S

l3
. 

On a, de même, 

J zy cos(N, y) d$
23
 = j*ζ dv'

2
, 

p'
2
 étant le volume compris entre les surfaces S

23
 et S'

J2
. 

Soient 

ξ, η,, ζ, les coordonnées du centre de gravité du fluide 1 qui rempli-
rait le volume v\ ; 

£2? *îsi Ï2 Jes coordonnées du centre de gravité du fluide 2 qui rempli-
rait le volume P2 ; 

M', la masse du premier fluide ; 
M

2
 la masse du second fluide. 
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Nous aurons, d'après les égalités précédentes, 

(b) 
lp, f zycos(N,y)dS,, = ζ,Μί, 

) Ρ·> f z/cos(N,y)dS
2

.j = ζ
2
Μ

2

. 

Soient ξ„ η„ ζ
3 les coordonnées du centre de gravité du solide; 

M
3 sa masse; nous aurons 

(<0 jf p3*dv
3
 — Μ

3
ζ

3
. 

Les égalités (a), (b) et (c) nous donneront 

A,, = (p, -
 PA

) JT r
2 ̂ s;

2
 H- *(Μ; Ζ, - M;Ç

2
 - M

3
 Ζ,), 

Désignons par S, H, Ζ les coordonnées du centre de gravité de 
l'ensemble des fluides déplacés par le corps solide ; nous aurons 

Μ;ζ, + Μ;ζ
2
=(Μ; + Μ;)Ζ. 

D'ailleurs, d'après le principe d'Archimède, 

M' + M2 = M3 

On a donc, tout calcul fait, 

A» = g(?< - f>») f y*dS'.J + Μ,5·(Ζ - ζ,). 

On a de même 

Ass = g(pi-p»)/ +M3g (Z - C3) 

Transformation des coefficients A23, A,·,. — Nous avons 

A
23

=-£p,J cos(N,y)rfS
43

 — gpif cos(N, y)dS
23

i, 
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La deuxième égalité (29), appliquée à la surface fermée formée par S,, 
et S'12 donne 

f cos(N,y)rfS
ia

=:o. 

On a également 
f cos(N,y)o?S

23
 = ο 

et, par conséquent, 
A

S3
 = 0. 

On a de même 
A

3
, = O. 

Transformation des coefficients Α5β, Α
β4

. — Nous avons 

•Α
δ0

= gpj [a?2cos(N,/) — a?y cos(i\, a?)] dS
n 

+ cos( Ν J /) — a?/ cos ( N, a?)] dS
23
 + g f?*ydi\ 

On trouve sans peine, par les égalités (29), 

f x2 cos(N,y)dS
u
 = ο, Ι x2cos(N,y)dS.

i3
 = o, 

f aycos(N, x)dS„=f ydo\, 
S|3 

J IC/cos(N, x) G?S
23

 = JYDV'.^ 

en sorte que l'on peut écrire 

A
50
 = #(Μ

3
Η

3
 - M',Η, - Μ'

2
Η

2
) = ^Μ

3
(Η

3
 - H). 

Mais le centre de gravite du flotteur et le centre de gravite de 1 en-
semble des fluides déplacés sont sur une même verticale; on a donc 

η
3

— H= ο 
et 

Αδβ = ο. 
On a de même 

A0, = o. 



SUIT ΙΑ STABILITÉ DE L'ÉQUILIBRE DES CORPS FLOTTANTS. I?3 

Transformation du coefficient A
48

. — Nous avons 

À
4S

= [aa?ycos(N,s)— cos(N, se) — .zsecos(N, y)] dS
n 

4-8P*f [2®/cos(N,z) — sy cos(N,se) — ssecos(N,y)]rfS
a3

. 

On trouve sans peine, à l'aide des formules (29), 

/ sty cos(N, s) dS
13
 = — / xyd$

vl
, 

k|J j 

I xy cos ( Ν, s) dS
23
 = / xy c?S',

 2
, 

I z[y cos(N, se) 4- χ cos(N, y)ldS
13
 = o, 

I c[ycos(N,se)4-secos(N,y)]c?S
23
 = o 

et, par conséquent, 

A45 = - 2g(p1 - p3)xyds
n

. 

Transformation des coefficients Am A23. — Nous avons 

Ai« = -£?</ yw>*(N,x)dS
ls

-gp
i
f y cos(N,a?)<fë„. 

On trouve sans peine, par les formules (29), 

I ycos(N, £p)î/S
I3
 = 0, / ycos(N, x)dS

23
 — 0 

et, par conséquent, 
A,4 = 0. 

De même, 
A25 = o. 
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Transformation du coefficient A
30

. — Il suffit de remarquer que 
Ton a 

A;,n = — (A, 4 -f- A25) 
pour trouver 

Αλο — o. 

Transformation des coefficients Au, A24. — Nous avons 

A,i= gpi f a?cos(N,tf)dS
<a SIS 

4-gp-if χcos(N, x)dS
23

 —g f p
3
dv

3
. 

. Les formules (29) donnent 

Ç ÎCCOS(N, X)D§
N
 = C',, 

Ι χcos(N, χ)dS
23
 = t\,. 

On a donc 
A15 = g (M' + M2 - M3) 

Mais, d'après le principe d'Archiniède, 

M; + M: = M3. 
On a donc 

A,
5
 = O 

et de même 
A24 =0. 

Transformation des coefficients A
3
,„ A

#s
. — Nous avons 

A»,= g?< f |>cos(lV
!i
y)-2ycos(N,-)](«„ 

+ gh f [3COS(N,/)-2/COS(N, J)]<ÎS
M

. 
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Les formules ( 29 ) nous donnent sans peine 

Ι ζ cos(N, y)c?S
u
 = o, 

Ι ζ cos(N, y)^S
2;i
 = o, 

f ycos(N,z)dS
i;f

=- f ydS\
2

, 

jf y cos( Ν, s ) dS
2
, = ^ y dS\

2 

et, par conséquent, 

A„ = a^(p,-fj
s
)/ ydS'

ti
. 

On a de même 

A„ =- zg(p, - p,) fxdS' 

Les calculs que nous venons de faire nous apprennent que, dans te 
cas où le flotteur est porté par deux fluides homogènes soumis à la 
seule action de la pesanteur, la forme quadratique Q peut s'écrire 

(3o) 

Q = g(p1 - p2)E(dh)² 

■+■ [«■(?< - ?.)jf - L)1 («O2 

-+- jo ( ? t - p.)J^ x2<is;
s

+ m,^(Z - ζ,)|(ο»?.)-

- Γ
2
ο(?ι - ?s)J^xy dS'] dlm 

+- ί
2
£(ρ. - h)f r

rfs;„j ShU 

—j^2 g ( p, — ps)^
 χ

 S/Î «/«. 
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Cette forme donnée à la quantité Q suppose l'axe des s vertical et, 
par conséquent, le plan des xy horizontal; mais elle ne suppose rien 
de plus au sujet des axes de coordonnées. Par un choix plus parti-
culier des axes de coordonnées, on peut lui donner une forme beau-
coup plus simple. 

En premier lieu, imaginons que Von fasse passer l'axe des ζ par 
le centre de gravité γ de l'aire Σ de la section à fleur d'eau S'12; 
nous aurons 

(30 f xrfS'
n
 = o, f y dS>\

3
 = o. 

En.second lieu, si par le centre de gravité γ de la section à fleur 
d'eau on mène, dans le plan de cette section, un axe mobile, le moment 
.d'inertie de l'aire de la section à fleur d'eau par rapport à cet axe D 
variera lorsqu'on fera tourner cet axe D autour du point γ. On sait 
qu'il existe une position de l'axe D pour laquelle le moment d'inertie est 
maximum, et une position de l'axe D pour laquelle le moment d'inertie 
est minimum; ces deux positions sont rectangulaires; on les nomme les 
axes principaux d'inertie de la section S'<2; les moments d'inertie 
de la section S'12 par rapport à ces axes sont les moments d'inertie 
principaux de cette section. Prenons les axes Οχ, 0y, parallèles 
aux axes principaux d'inertie de la section à fleur d'eau; désignons 
par J*, Jy les moments principaux d'inertie qui se rapportent respec-
tivement à l'axe parallèle à Ox et à l'axe parallèle à 0y. Nous aurons 

(32) 

f y"· ds\
3
 =Jx, 

f x2 rfS'
)4
 = J

r
, 

I xydS'
ti
 = o. 

1 t 

En vertu des égalités (3i) et (32), l'égalité (3o) se réduit à 

(33) 
Q = eo-(

P
,-

?J
)S(i/t)

2 

+ [*<*-P.)J.+M,*(Z-C,)](8J)» 
+ [*(P.-P.)',+ M.*(Z-C,)](&»>·· 
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Dans le cas où les fluides 1 et 2 sont homogènes, les égalités (27) 
et (27 bis) se réduisent à la forme unique 

(34) Σ Sk -h Si f y d$>\ „ — f χ d§\
 0

 = o. 

Si l'on fait passer l'axe des ζ par le centre de gravité γ de la section 
à fleur d'eau, cette égalité se réduit à 

(35) oh = o. 

Les égalités (33) et (35) nous permettent de donner les CONDITIONS 

QUI SONT NÉCESSAIRES ET SUFFISANTES pour la stabilité de l'équilibre 
d'un corps solide pesant flottant à la surface de séparation de deux 
fluides homogènes pesants. 

Si nous nous reportons à ce que nous avons dit à la fin du § II, 
nous pouvons énoncer les propositions suivantes : 

i° Il est nécessaire que le fluide le moins dense soit superposé au 
fluide le plus dense, ce qu'exprime l'inégalité 

(36) p,-p>>o. 

Il est nécessaire que la forme Q soit positive pour tous les déplace-
ments du solide qui vérifient l'égalité (35), ce qui, en vertu de l'éga-
lité (33), donne les inégalités 

(37) 
M»#(z - <(») + é"(pi - ?"■)4>°» 
MJ<?(z — ) + g(?, - f

 2
) J, > o. 

20 II est suffisant que le fluide le moins dense soit superposé au 
fluide le plus dense et qu'en outre la quantité Q soit positive pour 
tous les déplacements du solide. Or ces conditions suffisantes sont 
vérifiées lorsque les conditions nécessaires (36) et (37) le sont. 

Nous pouvons donc énoncer la proposition suivante : 

Pour que l'équilibre d'un corps solide pesant qui flotte à la 
surface de séparation de deux fluides homogènes pesants soit un 
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équilibre stable, il faut et il suffit que l'on ait les trois inégalités 

(36) Pt p2 x5*0, 

(37) 
M.*(Z - ζ

3
) -h g(p

{
 - Pi)S

x
> o, 

M
3<
g(Z - Ca)+■#(?, - p

2
)Jr>o. 

On suppose exclus, bien entendu, les déplacements pour lesquels 011 
aurait 

δΛ = ο, Il = ο, om = o; 

pour de tels déplacements, l'équilibre du système est indifférent. 
Les conditions de stabilité obtenues sont indépendantes de l'aire de 

la surface de contact des deux fluides ; par conséquent, elles s'appli-
quent même au cas où, les deux fluides sont en contact par une sur-
face illimitée. 

Des deux inégalités (37), une seule est nécessaire; des deux mo-
ments d'inertie principaux, Jr, il en est un qui est plus petit que 
l'autre, à moins qu'ils ne soient égaux entre eux; soit j la plus petite 
des deux quantités J*, «Γ,.; les deux inégalités (37) pourront être rem-
placées par l'inégalité unique 

(38) M,(Z —ζ,) + (ρ
(
-ρ,χ/>ο. 

On reconnaît sans peine dans cette inégalité la condition trouvée par 
Poisson et Duhamel et critiquée par Clebsch. 

Nous pouvons donc, en dernière analyse, énoncer la proposition 
suivante : 

POUR QUE L'ÉQUILIBRE D'UN CORPS SOLIDE PESANT QUI FLOTTE SUR LA 

SURFACE DE SÉPARATION, LIMITÉE OU ILLIMITEE, DE DEUX FLUIDES HOMO-

GÈNES PESANTS SOIT UN ÉQUILIBRE STABLE, IL FAUT ET IL SUFFIT Î 1° QUE 

LE FLUIDE LE MOINS DENSE SOIT SUPERPOSÉ AU FLUIDE LE PLUS DENSE ; 

2° QUE LE PETIT MÉTACENTRE SOIT AU-DESSUS DU CENTRE DE GRAVITÉ DU 

CORPS SOLIDE. 

Nos formules générales nous redonnent donc la règle classique de la 
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stabilité de l'équilibre des corps flottants; elles la démontrent par uné 
méthode qui nous parait exempte de toute contestation^ 

Il nous est possible maintenant d'expliquer pourquoi le raisonne-
ment de M. Guyou, bien qu'inexact, conduisait dans le cas actuel à 
des conclusions exactes. 

Le raisonnement de M. Guyou consiste, comme nous l'avons vu, à 
partager toute modification du système en trois modifications compo-
santes : · 

i° Une déformation de la surface de séparation des deux fluides; 
2° Une translation verticale du corps flottant; 
3° Un déplacement qui n'altère pas le volume immergé, c'est-à-dire 

une rotation autour d'un axe passant par le centre de gravité de l'aire 
de la section à fleur d'eau. 

M. Guyou cherche la condition pour que le centre de gravité du 
système s'élève en chacune de ces modifications isolées; en d'autres 
termes, il cherche à rendre positive la variation seconde du potentiel 
relative à chacune des modifications isolées. 

Il admet alors que la variation seconde du potentiel relative à la 
modification la plus générale du système est positive. 

En générai, ce raisonnement ne. serait pas valable, parce que la va τ 
riation seconde du potentiel d'un système relative à la modification 
la plus générale de ce système n'est pas la somme des variations se-
condes relatives à des modifications partielles en lesquelles la modifi-
cation la plus générale peut se décomposer. 

Mais cette proposition, qui n'est ordinairement pas vraie, se trouve 
être exacte dans le cas particulier qui nous occupe. 

En effet, la variation seconde du potentiel thermodynamique du 
système est, pour la modification la plus générale, en vertu des égali-
tés (20) et (33), 

o'O + Ω + û') = (p, - P»)i"jf rfSn + (Pi - Ρ 

+[(p,-p.)'kr+M.*(Z - û)](îq· 
+ [(Ρι - h)s}r+ M»#(z -- C3 )] (dm)² 

Or le premier terme représente précisément la variation seconde rela-
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tive à la première modification composante considérée par M. Guyou; 
le deuxième terme représente la variation seconde relative à la deuxième 
modification composante; et les deux derniers termes représentent la 
variation seconde relative à la troisième modification composante. 
Ainsi la variation seconde du potentiel, relativement à la modification 
la plus générale est bien la somme des variations secondes relatives 
aux trois modifications partielles que M. Guyou a imaginées. 

Mais l'exactitude de cette proposition tient à une circonstance par-
ticulière au cas que nous venons de traiter; cette circonstance, c'est 
l'absence de termes en SlSh et en §m$h. Elle cesserait d'être exacte, 
même pour le cas de la pesanteur, si les deux fluides étaient assez 
compressibles pour cesser d'être sensiblement hoanogènes. 


