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SUR LA DIVISION ALGEBRIQUE, 61

Sur la division algébrique appliquée aux polynomes

homogenes ;

Par M. H. ANDOYER.

1. Soient g et f deux formes binaires des degrés n et p par rap-
port aux variables homogénes x, et z,. Soient y, et y, un autre couple
d’indéterminées, covariantes aux premiéres, et posons, pour abréger
I’écriture,

(@y) =@ Y2a— @205
(y)y" =a Y + 2P P, Y+ + 2] Y

m )

de sorte que, d'une facon générale, on a

m__ mm—1)(m—2)...(m—p+1) e
Yo =(—1)? a3 p AP 2N

En supposant 22 p, on peut déterminer deux formes ¢ et f,, res-

pectivement des degrés n — p et p — 1 par rapport aux variables z,
telles que 1'on ait 'identité

g+ fq+(zy)rf=o.

Cette opération, qui est une généralisation naturelle de la division
algébrique, est possible et possible d’une seule fagon.
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Soit en effet

-1 2 ,
g=aa, +a@\"'T, +..t a5+ e,

[=bxt 4 bt e, +.oii+ byt
fi=al " ot e, +o et

g=Bex{ P+ B2t ko B2,

les a et § étant des coefficients indéterminés.

Si I'on écrit les équations d’identification, et que I'on élimine les
coefficients inconnus entre ces équations et les deux relations écrites
en dernier lieu, on trouve immédiatement sous forme de déterminants
deux équations propres & déterminer ¢ et f,.

Pour plus de netteté dans I’écriture des déterminants, nous repré-
senterons par la notation

un tableau rectangulaire de A lignes et @ colonnes composé de la
facon suivante : la premiére colonne contient les éléments a,, a,,
Qyy + v vy Gaoyy @y, puis des zéros; la seconde colonne contient d’abord
un zéro, puisles éléments a,, a,, ..., @, et est terminée par des zéros;
la troisieme colonne contient d’abord deux zéros, puis les ¢léments a,,
@y, ..., @,, et est terminée par des zéros; et ainsi de suite. On a d’ail-
leurs la relation évidente

— . /-p  _.n—-p-\ n-
0=[(0 0........ 0 g =77 7P x, 0 ox)!
Yo : a  be

: : a :
(n+1,p) . . (R4, n—pa)

. (n-p+1) . ;

T et e ""Y/l-'P+€ aa ------ se e s et _.-.¢bp
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et

o="ul" &l r,...xl" —f, o o ... 00

- _
Yonp*”......t. ao bo-.......ca....4-u.-....
. a, . N

(41, p) - c(n+1,n—p+1)

. T(n-p+4) .

e Y, a, i ceinenn byl

Le coefficient de — ¢ ou — f, dans les seconds membres est, au
facteur (—1)? prés, le résultant des deux formes f et (zy)*-#+',

et par suite est égal & (— 1)?[ f(y)]*?*', en désignant en général
ar ¢(y) ce que devient la fonction ¢ des variables x, et x,, quand

ony faitx, = y,, x, = y,. Par suite, on a

(=)?[f (P g

=!0 0 ....... © o w/7" P lw, ... w7

Y:"-pﬂ)........ Qa, bo ..... bee e Vi
. a, . LY
(n+1,p) : : (n+1,n—p+1) :
:... .......... Y‘””‘—P,T:-'“ all :-.o.....-.. ...... o..o-bpl
(= PLF e f
=2l &, ... 0 0 0 .cevievievee.. O
Y[ a, b...... e
: . a, : N
s (n1,p) N (n+1,n——p+1)
e Y‘,,"_,f’,:’,” Y / 4

ce qui démontre la proposition annoncée.

2. Comme (xy) est un covariant, il résulte de la proposition pré-
cédente que ¢ et f, sont des covariants simultanés 4 deux séries de

variables des formes g et f;'¢ est méme un covariant absolu.
On pourra de méme obtenir successivement les identités snivantes,
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ol, pour la symétrie, on a écrit f, et ¢, au lieu de fet ¢,

8 +Joqo+(my) P [ =0,
So+figi+(xy) fo =0,
J +f:92+<wy)’f, =0,

............................

Fo-s+So-i@pr+(xy) fr=o0.

Les ¢; (sauf ¢,) sont du premier degré par rapport aux x; la
fonction f; est de degré p — ¢ par rapport aux mémes variables.

Ces fonctions ¢; et f; sont d’ailleurs des covariants simultanés des
deux formes données. l.es ¢; offrent peu d'intérét: on les éliminera
“en remplacant les identités précédentes par de nouvelles identités qui
s'en déduisent par un procédé bien connu, et dont la forme générale

sera .
Silxy )Pt Gig+ ¥ f=o,

les G; et les I¥; étant des fonclions nécessairement covariantes, des
degrés £ — 1 et n— p + ¢ — 1 respectivement par rapport aux .

En particulier, on a

Go =0, Fo :——-(.‘li}’)"""‘,
G, =1, Ky =gq,.

De la relation générale

(xy ) fisn + fi9:+ fizs =0,
Givi+ Gigi+ (2y)* Gy =0,

on tire

Fi+| -+ Fi?i +(x}/)2 Fi—l =0,

et, par suite,

G/Fro, — FiGivy =(2y ) (Gi Fi— Fi, Gy
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comme on a en particulier

Go Fs - FlG(l = (w)’)"""",

1l vient

. GiFi+| _Fi Gi+| :____.(x),)n—p-o-zi—“
Les relations

fi(w),)n-—p+2i-l -’ G.‘g -+ Fif =o0,
Siwr (w.)’)'l_p+2i+‘ +Gig+ Fif=o0
donnent alors, en vertude la précédente,
p
JiFiev— (Y ) fir Fi+g=o, fiGioy = (xy ) firi Gi = f = 0.
Si maintenant on fait
fi=axd™ +axl™ e, 4.,

G;=Boa]' +B2w,  +

n—p+i-1 n—p+i-2
Fi= v\ -y @ e+

e hey

et gu'on élimine les coefficients «, 3, y entre ces relations et celles que

'on obtient en écrivant que I'identité fondamentile est vérifiée, on
trouve aisément

fi G _Fi_ 4
A, B G b
A; ¢tant indépendant des x, avec
T N 1 0 0 ... © 0 0 .civvvvvnnn O
(n—p+2i-1)
A . Yo s v et st a0 ao . e acee e o bo ...... te s e R .
= , . : : o : , b
C(p+ip—i+a) (n+1d,0) (i, n—p+i)
: (R -pe2iai) : . "
e e YR U :

9

Journ. de Math. (5 série), tome 1. — Fasc. I, 1895,
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0 0 ..ooovvvr O et ey 250 0 ieiiil. 0
Yo Gu.ovtinees Do
i=: . . . . .
(i p—i+1). (n+d,0) (a4 n—p4i) !
. . (n-prai-1) . 2
................... Y”_Pl.:;"f_‘ '.ov........a” '.-......‘..........bp
0 0 .oveevnn O 0 o ... o XM ig, gyt
C — Yl : Go..ooionnn, by
i = . . : L : . L.
c(r+ip—i+a): (n+1,0):  t(n+ln—pai):
. (n—p+2-1) . . . '
. Yooro R b,
Ces déterminants A;, B;, C; sont d’ordre » + i+ 15 ils compren-
nent trois groupes de colonnes, composés respectivement de p —i 1,
i, et 7 — p + i colonnes,
Il faut maintenant déterminer les A,;. D’abord, & cause dc A, = ')\ﬁ,
. ) e 0
on trouve immédiatement
— 1)
Ao = )
N 2 I
et, a cause de la valeur donnée plus haut de f,, on trouve aussi
— 7))
y VI Gall) L
1 [f()’ )]n—p+l
On a encore, en vertu de relations écrites plus haut,
FiP)Fui(y)+g(y) =0,
fi(y)Gz+|(}’)"f(y> =0,
ou
A Al(y)Cai(y) + 8(y) =0,
AN Ai(y) B () — f () = o
Considérons le déterminant d’ordre n + i,
: Yﬁ,"""“”.‘..........: Byooovinnnnn bo. i,
A=l (n+i,p—1) c(r+1i,7) .:(n—i—i,n-—p—l—i): ;
. (n-p+2i) - ' : ,
e YRR Ap b,
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une transformation évidente donne

A(y)=(—1yAs
On obtient aussi facilement
Bi()= (—=DPf(¥)As
Coret ) =—(—1)Pg(¥) Ay

et, par suite, il vient

MRy A = (—1)%.
A =[]

(=0
N“M%‘umrw

| On a d’ailleurs

et, par suite,

comme plus haut.
1l vient ensuite

X, A2 A2
No=— 220 —_ 1
2 AT’ As % Aza?’
ho A2 A2 A2 Al
A= INTYEL A=+ TR
ATA? Ao A2 AZ A2

Toutes les fonctions A;, B;, C;, A; que nous avons introduites sont

d’ailleurs des covariants.

3. Avant d’aller plus loin, nous allons démontrer quelques propo-
sitions dont nous pourrions nous passer & la rigueur, mais qui ont de

" I'importance par elles-mémes.

Considérons une matrice M de pg éléments, a p lignes ct ¢ co-

lonnes, avec p2 ¢ :

a, a al

A 2 q

M= a, a, a,
A 2 q

A, Qp -« @,
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De cette matrice on peut tirer p(l’_lz';'(P;’q+l) déterminants

d’ordre ¢ celui de’ces déterminants qui est formé par les lignes de
rangs i,, iy, ..., I, (les indices étant supposés aller en croissant)
sera représenté par (i,7,...%,). Plus généralement (,7,...:.) dé-
signera la matrice formée par les lighes de rangs i,, &y, ..., i du
a])leau M, les indices étant supposés aller en croissant et » pouvant
étre 2 q.

Nous dirons que la matrice M est nulle quand tous les déterminants
dordrele plus élevé ¢ qu’on en peut tirer sont nuls : pour qu'il en soit
ainsi, il faut et il suffit que, M’ désignant une matrice non nulle formée
avec ¢ — 1 lignes de M, tous les déterminants obtenus en bordant M’
avec I'une quelconque des p — ¢ + v autres lignes de M soient nuls :

-en tout p — ¢ + 1 conditions. Si toutes les matrices telles que M’ sont
nulles, il en est évidemment de méme de M. Plus généralement, si une
matrice M” & r — 1 lignes (rr<{gq) tirée de M n’est pas nulle, et si
toutes les matrices & r lignes obtenues en bordant M” avec une quel-
conque des p — r + 1 autres lignes de M sont nulles, toutes les ma-
trices & 7 lignes tirées de M sont nulles. Ces propositions sont ren-
dues évidentes par la théorie élémentaire des déterminants et celle
des équations linéaires.

.Nous ﬁppellcrons poids du déterminant (i;i,...7,) la somme
I, + i, +...4+ L, cc poids pourra prendre toutes les valeurs entiéres

depuis 841 9'(7"‘ 1) jusqu'a Z(_P._g_‘li’_! en nombre total g(p — ¢)+ 1.

Soient 8,,,,, 8y +++y O, les s déterminants de méme poids , ct A,
Mg,y »++» Mg, des nombres arbitraires tous différents de zéro : nous
allons faire voir que les conditions nécessaires et suffisantes pour que
la matrice M soit nulle, indépendamment de ioute Lypothése faite a
priori, sont celles du type suivant, en nombre g(p —g)+1:

Ao, 8, Ag, 8, + -+« + Ag, 8, = 0.

Nous allons démontrer ce théoréme sur un cas particulier : la marche
de la démonstration prouvera immédiatement sa généralité.
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Soit p =7, ¢ = 4, et faisons les A" égaux a I'unité, ce qui nc modi-
fic en rien la démonstration; les conditions ci-dessus s’écriront

o=(123[;5,

o =(1235),

0 =(1236)+ (1245),
0 =(1237)+(12406) + (1345),

0 =(1247) +(1256) + (1346) + (2345),
o =(1257)+(1347) + (1356) + (2346),
0 =(1267)+ (1357) + (1456) + (2347) + (2356),
0 =(1367)+ (1457) +(2357) + (2456),
0 =(1667)+(2367) + (2457) + (3456),
o =(1567)+(2467) +(3457),

o =(2567)+(3467),

0 = (3567),

0 =(./|567).

Nous pouvons supposer (1) == o, sans quoi on serait ramené 4 la méme
(question pour p =6, ¢ = 4. '

Soit :

1° (12)£ 0 : (@) (123) 5% 0. — Les conditions donnent (1234)=o,
(1235)= o0, d’oti (12345) = 0; les conditions donnent alors (1236) =o
ct, par suite, (123456)=o0; les conditions donnent encore (1237)=o,
d’oli, enfin, on tirc M = o.

(D) (123)=o0, (124)7 0. — Les conditions donnent (1245)= o,
d'ou (12345)=10; les conditions donnent alors (1246)=o0, d’ot
(123456) = o} les conditions donnent encore (1247)= o, d’oti enfin
M =o. :

(¢) (123)=(124)=0, (125)%# 0. — Les matrices & trois lignes
tirées de (1234 ) sont nulles. Les conditions donnent alors (1256)= o,
d’olt (123456) = o; puis (1257)=0, d'ou M = o.

(d) (123) =(124)=(125) =0, (126) % 0. — Les matrices a trois
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lignes tirées de (12345) sont nulles. Les conditions donnent alors
(1267)=o0, d'ou M =o.

(e) (123)=(124)=(125)=(126)=0. — Les matrices & trois
lignes tirées de (123456) sont nulles, d'od M = o.

2° (12)=o, (13)50: (a) (134) 5 o. — Les conditions donnent
(1345)=0, d’ot1 (12345)= o; puis (1346)= o, d'ou (123456) = o;
puis (1347)=o0, d’od M =o.

(b) (134)=o0, (135)5 0. — Les miatrices & trois lignes tirées de
(1234) sont nulles. Les conditions donnent alors (1356) = o, d’ou
(123456) = o; puis (1357)= o, d'ou M = o.

(¢) (134)=(135) =0, (136)5~ 0. — Les matrices & trois lignes
tirées de (12345) sont nulles. Les conditions donnent alors.
(1367) =0, d'ou M = o.

(d) (134)=(135)= (136)_ o.— Les matmces a trois lignes tirées
de (123456) sont nulles, d'ot M = o.

3o (12)=(13)=o0, (14)5+ 0. — Les matrices & deux lignes tirées
de (123) sont nulles.

(@) (145) 0. — Les matrices a trois lignes de (1234) sont nulles.
Les conditions donnent alors (1456)= o, d’ou (1 23456)=o0; puis
(1457)=o0, d’od M =o.

(b) (145)=0, (146)=~ 0. — Les matrices a trois lignes tirées de
(12345) sont nulles. Les conditions donnent alors (1467)= o, d’ou
M =o.

(¢) (¥45)=(146)=o0. — Les matrices & trois lignes tirées de
(123456) sont nulles, d'ot M = o.

4° (12)=(13)=(14) =0, (15) 0. — Les matrices 4 deux lignes
tirées de (1234 ) sont nulles.

(a) (156)5~ 0. — Les matrices a trois lignes tirées de (12345)sont
nulles. Les conditions donnent alors (1567) =10, d'ou M = o. _

(b) (156)=0. — Les matrices & trois lignes tirées de (123456)
sont nulles, d’ou M = o.

50 (12)=(13)=(14)=(15)=0. — Les matrices & deux lignes
tirées de (12345 sont nulles, d’ott M = o.

Cette démonstration montre clairement que les conditions sont né-
cessaires et suffisantes, comme nous I'avons annoncé, indépendamment
de toute hypothése. Celles, en effet, qui n'interviennent pas dans la
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démonstration interviendraient si I'on supposait successivement

(1)=o0, 2%#0; (1)=0, (2)=o0, (3)5o0;

4. Considérons la méme matrice M et faisons-en un déterminant P
d’ordre p, en la bordant de p— ¢ colonnes nouvelles, de fagon & ob-
tenir

()] | 2 q

Y& a, a; ... a

P=|: a, a, ... a
pp—9: .. .. ’

. V() 2 q

| o, Yla, a, ... af

les Y gardant toujours la signification indiquée au début.
Développons P par rapport aux déterminants de M soit

AT

Pun de ces déterminants, avec i, <1, <...< iy, et faisons P = ZD¢, de
sorte que D est le coefficient de & dans P.

On voit d’abord immédiatement que, si @ est le poids de ¢, D est
U S Ry U R )

égal iy’ * 5, * D, D,désignantce que devientD quand
ony fait y, =y, =1; et ceci montre tout de suite que les détermi-
nants ¢ de méme poids sont multipliés par les mémes puissances de y,
et y,.

I nous reste & déterminer les coefficients numériques D,. A cet
effet considérons la matrice

1 1 7 ... I
I 2 2% ... oft
1\/[0 == 1 3 32 ... 371 y

‘1 p p* ... p!
et appelons &, ce que devient & dans cette hypothése; soit de plus P,

le déterminant P ou 'on a fait y, =y, =1, et ol I'on a remplacé M

par M,, de sorte que
. P,=XD,¢,.
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On sait que, si I'on ajoute les coefficients du développement de
(@ — a)” multipliés respectivement par les puissances p*m® (p < m)
de nombres entiers consécutifs, le résultat est zéro. Si denc on fait le
carré de P, par colonnes, on voit immédiatement que P? est égal au
produit de deux déterminants qui sont respectivement les carrés de la
matrice M, et de la matricc complémentaire qui, avec M,. forme P,.
D’aprés un théoréme connu, on a donc

P!=(2D,8,)*=3D2x £82;
de cette identité entre quantités réelles, on conclut que les coefficients

D, sont proportionnels aux détcrminants &,. Le facteur de proportion-
nalité est d’ailleurs facile a calculer : en effet, si

8o=(123...¢),= 2923, ..(¢ — 3)*(¢ — 2)*(g — 1),

on a Dy =1, et, par suite, si, cn général, 8, = (%, 7, ... i;),, on a

D, = b ,
07 aum230=3, L (g —3)} (g —2) (g —)
avec
C o w -t
I PR X L
i l i‘.’ l'q-l ' lr>’*n
8, = 2 R =T — 1) r|_ .
C e =1,2,..,¢
$
v o2 g1
L A .

Finalement, on obtient donc pour développer P la formule

-1 1
P [C iV (Uil

P=)y, 2

V. . H(i,»—is)
Ve * (1412"’lll)gq—-23'l-3...((]—2)2(‘1“1)’

@ = by Ay By,

Ceci nous montre suffisamment que, écrire quela matrice M est nulle,
ou bien écrire que le déterminant P, fonction de y, et y., cst idenli-
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quement nul, sont deux choses équivalentes. Clest surtout de cette
propriété que nous allons nous servir maintenant.

5. Revenons aux résultats obtenus au n® £, et supposons que le -
déterminant A; soit nul identiquement sans qu'il en soit de méme
pour aucun des A d'indice inféricur 4 . Alors, d’aprés ce qui précéde,
la matrice :

ao ........... bo.............-.-....-
fndy i) (rAdn—pai):

P

est nulle, et, par suite, A; et f; sont eux-mémes nuls identiquement.
On a donc I'identité

G‘g-l" F,f: 0,

et les deux polynomes g et f ont p — i +1 facteurs lincaires com-
muns, ni plus ni moins. La condition qui exprime ce fdit est donc
'évanouissement identique du covariant A; & deux séries de variables,
ou plus simplement du covariant A; & une seule série de variables : ce
dernicr covariant est d’ailleurs aisé a développer, d’aprés ce qui a ¢té
dit plus haut.

Si T'on a A;=o, tous les A, +(¢'>o0) seront nuls ainsi que les
Aoy Biwy Cipy il 0’y a pas lieu de s’occuper des firy Fisy Givrs
ona . ,

M=o,  B=—(—1yfE,  C=(—ryglh.

Ces derniéres formules se vérifient tout de suite en remarquant
que les p — i + 1 facteurs linéaires communs a f et g sont donnés par
'équation f;_,=o0, ouA,_, = o, et cela quelles que soient les valeurs
attribuées & y, et y, : donc A,_, est le produit de deux facteurs, I'un
fonction des = seuls, I'autre fonction des y seuls, et il en est de méme

de Bi et C". .
6. Reprenons l'identité

| ﬂ(wy)”“p”i_.+Gig+F,-f=o, . .

Journ. de Math. (5° série), tome I. — Fasc. I, 18¢5. 10
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ct supposons
g= (a;u(")(xa"))...(xoc"')).

_en faisant
' (o=, &) — z,a),

de sorte que g est ainsi décomposé en ses factcurs linéaires.
En faisant , = ", z, = & dans Iidentité précédente, il vient

(=P fi( @) (yat)rrrti=t 4 Fi(a) f(al) = o,
ct I'on a des formules analogues jusqu’a
(—1 )ll—b—l' Fi(a)( yramy=pr3i=t 4 Fy(am) f(a®) = o.

Supposons alors
[fi=axl™ +...,

I n—p+i—~|
l‘i—Yow| 4 +...’

ct éliminons les coefficients « et y entre ces diverses relations.

1 vient
P (=1)r-r-1f; zB zh-i ° 0
, F; o . o al-pri- - z}Pri-
0= 0 (af{l))ri(ya(l))n—pﬂl—l e (att)e —1(ya(l))u-p+2i—l (a(li ))n—-p+i—1f( 2) L, (el l)n«p-}—!-—t‘/‘(a(l)) .
0 (a(‘n))p-i(y almyn—p+2i=t (a(zﬂ))p—i(}, a(u))u—p-t-zt—i (a(””)ll—p-(—i— 1f(u(n>) oo (alpl)n—p+i-t f(a‘”’)
On en tire
fi _ Fi_

@ o =

en désignant par §; une quantité indépendante des x, et posant

(@) (2 a®). W(ralp=9) [(_yu“)) (.ya(l)).“(yalp—l))]ﬂ—p+li—1f(a(l’—i-+i))_ ..f(u("))
ai_"z (aLl)agp—i+l)). ..(a(l)a(n))(a(2)4(p—i+1)).. _(a(p-d’) a(")) ’

= (it 3, () Nyttt ) ).

(a(!)a(p—in))_ .. (a(p-f-l-l)a(n))
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Les sommations sont étendues a tous les termes analogues & ceux qui
sont écrits; dans les dénominateurs figurent les produits des détermi-
nants («@a), g étant 'un des indices des « qui sont aux numérateunrs
accompagnés des y, et ¢’ I'un des indices des a qui sont aux numéra~
teurs sous la forme f(a4").

On aici, comme plus haut,

itiri @ (Y) i (¥) + 8(¥)=0;

soit alors

al.(y) —_ 8‘, =2 [Craty... (.)'“(II—I))]II-p-!-!if( alp=i+1)) .f(z("));

(a(lla(li-1+l)). s '(m(p—-t')“(/l))
ona aussi
i (Y)=(—1)"""82(y)
et, par suite, il vient

rieias 8 = (— 1),

Calculons ¢, ; on a

_ ($¢(l))($a(2))_ . .(.z-‘a_z“’))[(y'z“)). . .(‘Va(ﬁ))]ll—p—l.f(a(p-f-l!). . .f(a('”) .
a"_z (athiate+iny L (alPrait) ’

le développement du déterminant de Vandermonde donne d’ailleurs
I'identité

(—- l)(” np _ 2 (1(21) . ..1({7) )lz-p(a(‘lH-l) . .Q(I’”)l'
: (aVap+0y | (albigin))

et, par suite, il vient

ay= (= S

il suffit de comparer les premiers termes de ces covariants pour véri-
fier leur égalité. ' ‘
Finalement, on a donc
(__ 1)tn~=1p

b= o

Quant a la valeur de &,, c’est (=1)=V2 f(yyi=P, et, 'par suite, on a
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successivement
P.' — (___ l)"’ . (__ ,)'H-p(n—-l)’
%o 85 L/ (y)]e—er
1% 83
. g =— =39

2 8

(=13
g —_—— )
tha tho 05 83
— Bo OF 3:
ol 3T

173

----------------

On voit encore que les fonctions a;, ¢;, ¢; ne différent des fonctions
A;, Gy A, que par le signe, si elles en différent.
La condition nécessaire et suffisante pour ue les polynomes fet g
~aient p — ¢ + 1 facteurs linéaires communs est I'évanouissement iden-
tique du covariant &;, ce que montre bien sa forme.

7. Soit de méme encore
S= (B (8. (2§
On a des formules telles que
(= Y FE B G (B g (B =,

~ ct'on en tire, comme précédemment,

Ji G _

L= = .
«; by 0

en posant

' - (.’L’ﬁ“’...(w afp-"‘)[(,yﬂ“’)---(,r' B(p—i))]n—p-i—!i—lg- (ﬁ(l;—i+1))__'g(p(/;})
a =2‘ ([3(1) p(p—i'l-l)). . _(g(p-i) g(m) ’

by = (—ry=t 3 2R AZRONGED ). (B dY e g (). g(80),

(p(l) p(p—i+=)), B .(3(1»—“1) 3y

On a la relation

W i @ ()b (¥) — f(y) = 05
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en faisant

, , my,, ( (p~i)|n-p+2i (p—l+i)) s p(p))
“i(}’):S«':Z[('yB , (;?)p(p Ll) z;((%—np(m) (

on a aussi

Vo (7)) = (= 1) &, f (),

et, par suite, 3
Ty '2 n—i—\
Pi Bia i —( I) *

On trouve facilement

G=ffs =g B=UO

ct, par suite,

—q)n—t — 1)t 8'2

U', ( 7 ZI = ( ) ’ v’:n = }Lol 4
ST TUmre BT

(g _ B
hat] P'Io "oi “':! P’Q 8"2 8'31

................... 9 creeracr e

Les fonctions a;, b}, ¢; ne différent que par le signe, si elles en diffe-
rent, des fonctions A;, B;, A;.

8. Supposons que I'on prenne pour forme f,

' . 98 . 98
S =Y g, T 0y

~de sorte que 'on a p=n — 1, et aussi

bo=nao)’|+a|y2’
by=(n—1)ay, +2a,y,,
b, —(n—2)a,y‘+3a3y,,

in outre, sil'on fait

= (wa")(za®)... (xa™),
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. ona A
S=Z(ya) (wa?) ... (wa®).

On aici

ai=(—1)

n—tj{ it T

¥ g () E(ma) .. () [(yat). . (yar-)
pe (a(n-i) a(u—i—q—i))n . (a(n—.i) a(n))g’

(i) (414 ol

ci=(—1) T () B L (ma) [(y o) L (et
< (m(n-—iﬂ)a(n—na))z s ( a(n—i)a(n))n’

(=t (i) Y

T g Bl .. (i

=< (a(n-—i)“(n—i-t-l))'.’ o (oc"'»‘”a("))"’.

8,‘——'—-(—— I)

En outre
S)=ng(y)
etl'ona
pe=(= 1 =
_ (=1)tet &
N R T A

si I'on fait

g, = 2[(}’0’.“)) . (ya(n—i-l))]zi < (a("—i) a(n--iﬂ))‘z . (“(n—l) 'a(u])z,

.
de sorte que, en particulier
g, =n.
Sil'on fait encore

9, = 2(.’1:0!.“)) . (wa(”""‘”) [()’a(”) . (),a(n—i—l))]zi—c
< (a(n—i)am—i-i-s))z . (a(n-« ')a"‘))",
de sorte que
9:(y) =0
et en particulier

[~

?0=g ,)’

—_~
e
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on aura donc
Jo =8(¥) %0

1

Jr=gorm o

£ =&

7
o

P

— 9
fo=gmaa

------------------

De méme, sil'on fait

"”i — Z(xo:"““‘”) . (:ccc"")[(ya“)) .. (ya(n—i) )]ai-4

< (a(lc—i'b-l)“(ll—i-i-?))ﬁ e (a(n‘—l)a(n))u’

de sorte que
o Yirt () = 8(r) 90y
et en particulier )
S
bo= g(y)
on aura
Fo:"g(y)q’o:_ 1,

1
YT (e Yo

F:! = — g({g % q’z,

---------------------

De méme enfin, si 1'on fait

1
SEmatTh

_gly)s

: Ge——TXna

Gy=——
T &

..................

79
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de sorte que
_—; Ll
yi= VAT t’?:(‘,ry) ’

-4
et, par suite,
L (y) = ng(y)an
et, en particulier,

Yo =n"g(y)

on-irouvera en déterminant y; par cette relation méme ct faisant les
réductions nécessaires

Y= zg [(ya(l)) o (),a(n-i))]ei—i (oz(’“"*"a(”"'“))‘-‘ . (a(n-—l)“(n))z
< 2(y“(ll—i+l)) (Jlja(""i+2) L (.’IIOC(”)) t
+ 22 {[(ya) ... (yation)
1% Z(wa""”) (',L.a(n—nl)) s (.‘L‘d("‘n)) (),m(nd) )i(ya(u))i
= (a(lz—i)a(rz—i+1))2 o (a(n-.'i) Oﬁ("_g))ﬁ
< (a(n._o a(n—d)) (a(n—i) d(”)) . (a(u—z)z(n—l)> (“(nma)a(u)) z‘

L’évanouissement identique du covariant o; est la condition néces-
saire et suffisante pour que le polynome g ait » — i facteurs linéaires
communs avec sa forme polaire f.

9. On peut chercher encore & exprimer les diverses fonctions que
nous venons de considérer sous forme de déterminants. En se repor-
tant au n° 2 et faisant quelques transformations faciles & retrouver,
on obtient les formules suivantes

i+t
(=1 *
%= T
Yo Ry, CTEORUPRRR
< : (n—1)a, - 20,
(n+i—1,n—i—1) c(ni—1y0) (n+i—r1,1)
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1 ni-!
‘,L.I'l—l‘—l “'...".“.";II—I‘ 0 P R ) 0 [ P ¢ ]
Y(::[-n) .......... Ny, ....covivivvannns. L2
x : : : :
(/z—i—/—r n—1i): o(n+i—r,0) : (R+1—1,0)
.......... TTUURUTUR v et P - J S Y 12
i(i—1)
. (—n' T
‘Pi_' i1
S NP ¢ 2w, 2 . @, —x, —a'my, . —xay
Y“”"” ..... OO (2 A @i
> . . : : :
(Il-i—L—I n—1): o (n+i—ry0) ; (n+i—1,1)
|. .......... e JYRED . A ST USRI (1.
( )n—l+-l-l—')_—l)
——I -
yJ= ni-2
&4 =2, i1 =1, -2 KAL)
O iiiviiiiiieia. O 2y Ty @y Yy =2y =2 ey — 2y,
Yo U N Ay .
x : : J : .
(n-l—l——l n——z) D (m+i—1,0) : (n+i—1,1) :
2i-4) . ) : )
................... .YE_,,-’_, Y SRR 1/ %1

Ces trois dernié¢res formes sont d’ailleurs illusoires pour i = o.

10. Les fonctions f; dont nous venons de donner I'expression sous
forme de déterminant, ou sous forme de fonction symétrique des
racines de g, sont les fonctions de Sturm telles qu’on doit les conce-
voir dans la théorie des formes. Elles jouissent des proprletes de ces
fonctions ; cependant remarquons que l'on a

(ra).
2 (za®))

Ce rapport change donc de signe lorsque (la forme g étant supposée
Journ. de Math. (5 série), tome I. — Fasc. I, 1895. R
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a coefficients réels) ~ 'dewent égal 4 unc racine réelle = ~ “de , les

valeurs données & y, et y, étant fixes, d’ailleurs quelconques : mais la
variation qui en résulte peut &tre perdue ou gagnée.
Pour fixer les idées, supposons que l'on prenne toujours x,, y.,

alh)
! positifs : la variation est perdue si 'on a y 2> (L) gagnée dans le

cas contraire.

On peut donc énoncer la régle suivante : Soit a chercherle nombre N
des racines réelles de g comprises entre decux nombres a et b, tels que
I'on ait @ < b; donnons a y, et y, des valeurs fixes quelconques, ct

soit iy, positif : 1° si ;— > 0, N est égal au nombre des variations per-

dues par la suite des fonctions g, fy, f1, fay -+ quand on y remplace
. &

" successivement — par @ et b(w, >0); 2° su L < a, N cst égal au
2

nombre des variations gagnées dans les memcs circonstances; 3° si

a<l ;{;’ < b, désignons par ¢, 0,, v les nombres des variations de la

Z x
'=b,——‘—_:l’-‘:ona
Jy

suite lorsqu’on y fait respectivement = = a,
T'a xq Yo

alors
N=v,+ 0, — 20.

On remarquera d’ailleurs que la suite des fonctions g, fo, £, fa -

peut étre remplacée dans ces opérations par la suite E%’TV—), Tor Pis

. . X .
®s, ..., cten particulier, quand on fera ;; = %31, par la suite 1, o, a,,

gy ...; ceci résulte des formules données plus haut.

Si, en particulier, on veut avoir le nombre total N des racines réelles
de g, on fera @ =— o, b =+ ; alors ¢, + ¢, = n, nécessairement,
etN = n — a¢; ainsi, comme on le sait, chaque variation dans la suite
I, Gy, G,y Gy ..., O plus simplement & cause de ¢, = n, dans la suite
N, G,y Gay «+ .y Opey, indique la présence d’un couple de racines imagi-
naires, et.cela quelles que soient les valeurs attribuées & y, et y,.

On obtiendra les fonctions de Sturm ordinaires en faisant y, =1,
7y, =0, et le nombre des couples de racines imaginaires sera cclui des
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variations de la suite n, s, s, ..., S,;, ot 'on a

sp= I (agal? .., a'(’n—-i—i) Yol (qin—i) gin—i+ty2 | (gln—~1)glaly2

nay [ T ] ay O veesessosness O
iti+1)| (n—1ay nay' . . 20, @ ", ’
_=n Do .
- nl—i . : . '-. : . .

(n—20+1)agi—1 (B—2i+2)Agi~2...(n—E)a; 2iay (20—1)@y—y «.. ({4 1)@y

le déterminant étant d’ordre 2.
Faisons encore
z, =, T, =1,
et

Ry= (2., agt~i=0 )=t (gln=igle—ity | (2, qap)2(zall! — 20)) ... (zaft-i=0— gn-i=1))

gr—i=1 gn—i-2 g | O <iereernes O 0 4iierrinns O
o 0 .v.. 0 O RAgerorenns R @evvriinnnns
i+1) .
=n* | ° IR : : .
= =1 0 1 0 (a+i—1,0) S+ i—1, )
. . : : : :
o 0 I o : . :
) o o 1 Vesesanarnan Ap—1 LRI LRI IR ne,

les véritables fonctions de Sturm seront alors

S-I‘:g’

do
Sl):'_o
dz
ot
11— 72—‘{0' 19
nta,
Sz= _g? 112’
i

Si I'on pose

i{i+1) iHit1)
(=n * (=1 *
§¢ = d;y Ri=~,‘{i_—1—Di’
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on a d'une fagon générale

o Dy, 2. .. d2,
(it Dagyy dy dy a1
S-_),.n-—( ]) nia, d;d?---diz‘,
Nardr ... di,,

S._;,' :-(-— l)inaoD

Les D; et d; sont les déterminants qui figurent dans R; et 5,5 leur
composition est facile 4 retenir. '

Les résultats précédents sont connus : je les ai rappelés ici pour
réunir ensemble les principales formules relatives & cette théoric.

11. A propos des fonctions de Sturm, j'indiquerai encore ici un
procédé qui permet de les calculer assez rapidement quand on est en
présence d’équations numériques.

Soient deux polynomes des degrés n et n — 1, dont les coeflicients
successifs sont pour le premier a,, @/, a,, ... et pour le second ,,
b, b,, .... Faisons

. Q; . b,'
£ ao’ Bl - 7):’
et sout
Co={3.—-% ¢, = Py — dy, C:=BJ_°‘37 5
faisons encore
N, =— C_i,
13 cO
et soit
do——""c“pn d|=”(:l"'g2’ d-.*:\f:x“’ﬁ:n ey

le reste changé de signe de la division des deux polynomes est, & un
facteur prés qui a le signe de a,c¢,, le polynome qui a pour cocfficients

successifs d,, d,, d,, ....
Les calculs se font aisément par logarithmes, et 'application répétée
de cette régle fournit les fonctions successives de Sturm & des facteurs

positifs prés, ce qui est sans importance.

12. Cherchons maintenant la condition nécessaire et suffisante
pour que le polynome homogéne g ait ¢ facteurs linéaires d’ordre p



de multiplicité. Connaissant cette condition, on saura exprimer que g a ses facteurs linéaires groupés en facteurs égaux de

telle facon qu’on voudra.
Considérons les deux formes covariantes de g, ou y, et y,, 3, ct 3, désignent deux nouveaux couples de variables

1 pr 0PN S L p- Iy ! _p-1 Oy I or-lg
(p—x)!<)’ praay T+ Gl st ) o3V aerr F L ET s s, e )

C!” étant le nombre des combinaisons de m lettres p a p.
m pap
Egalons a zéro ie covariant qui exprime par son évanouissement que ces deux formes ont, quelles que soient les varia-
bles y et z, q facteurs linéaires communs : on aura ainsi la condition cherchée.
On peut simplifier cette condition en faisant, aprés division par une puissance convenable de (y3), 3, =y, 3. =)a; et
I’on obtient un nouveau covamant égalé 4 zéro, et qui n'est autre que le déterminant qui exprime par son évanouissement que
q q P P

les deux formes
1 i Ll
(p—l)l[(p 1))’. ().z'”_‘ +(P"‘2)C(p_). ' y_m-k ']Z

. dp 1o

T (1) 2 2y dl'—io'
*—'—(p_])![lc WY d_x,;fg—'d—x——i—ZC;,_)f‘ )’_m-’i—...]

ont ¢ facteurs linéaires communs.
Aprés des modifications immédiates dans I'écriture des cocfficients, on obtient, en faisant i=n+2 —p — ¢,

D '(- L D ceenen . @ . ay as -
0 : a, yP ’+WCSJ—§J"{ Bygmerier reeesesens . m}”:—’-"'_(x—;cwi}"; 3 ygdece- R
. - n . . n Cn. .
: : a4 — Qs s - : as :

: : (1) p—2 13 3. .

. : Clzl--[H-l (C"” yi °+ c® CSJ—: N4 J’Z""w) . C("uf""l(ﬁﬁ? yi—2 C(” C,,_)z}”' 3yet-.. .) :
. . n : M -

o=1+(a: oo Ba yb=2 o T3 U, B3y, 4 : -
=li(2i+g—1,9—1); w-pr1| E M1 raEll Y1 Ty e ) :
' M . An ‘n . :
. - '(2i+q—|, ) : . (2i+4qg—1,10)
. . ’ : . -

: : Gn—p+1 -2 e reereeeaaaas Ln—p+t  p-3,
) .Yle') .................. C(n—}l+l)y e C("_p"'” }’, -+

On peﬁt .re'I'nplacer cette condition par la suivante, qui est 'évanouissement d’un déterminant d’ordre pi -+ q — 1, dans



lequel on a

et ou les notations

.........

......

O,....... .
Sy )
(8]

.........

désignent, la premiére un tableau carré de A lignes et A colonnes dans lequel tous les éléments sont nuls, sauf ceux
de la diagonale principale qui sont tous égaux 4 «, et la seconde un tableau rectangulaire de A lignes et y. colonnes,

. dans lequel tous les éléments sont nuls :

Y(ozl') ................ (27 T A1 R Ap—y . ... e
. . R EERPRE PR s -
. M cw ay Cn. Cnp ) ) :
: : Crtengry cly G Cillpy 2 :
: : ‘n p1 C‘” . . 'n--p-l—‘l C‘{’) .
. _ . : . L : n : -
:(2‘+q Lg—1) . (2!-!—9-—1, L) - . .. ° N . :
: : : :(2z+q—l,l) . c (2t+qg—1,t) -
. Apn— p+1) : Qn—p+2 . . .. : .

: (8f) Seeeeeacan el o, il in . . i :
................. YO Cip—p+1 Cle—r+2) P 7
o..... B % s T TR 2% 2 TR 73 ¢ S . Ovnn.. Ouivvnnnen . Oeeeiiieinn. .
: : (5 %) Dot ()] S (N I (63 * B % ) T (5 i) :
o=|1 : e eeseee ﬁ])’% ........ . g;}’i_}’i . "{1_}’% M 4] Ceieeeaae- o ® L cesscssnasese o
L @oFF ervervnnnnns Berriyeee.ns Yoryie..... . [ T T R RRRTE
T p—2)i,g—11: (¢, ) Do (Z, ©) : (i, 3 (0 M O3 I (4 o) :
L e 0 heiiieeennn ¥} Bay1ye RS % e O  Ciiiiieeenean. o
Ouiereaianannn. Onreeieeeainennn. Ouvrrnnnn. °. .. Bp—2¥1¥2... Ap-2)ieeee-
: : (Z 0 : (i, ¥) : CI NN (R (i o) : (i) :
[ e 0 i, O iiiiieaeen J e o P 0 e Bo—2y1yr eeeieiao.. {p—a Y}




En effet, si I'on multiplic ce déterminant par cclui-ci

) I LS I R R R R
(g—1,9—1) : : (g — 1, pi) :
............... \ T
Oreernnnaannns & ST CUlayli™Byacee. cenennnsnncecenens yh L+ S
; S R T o S USSR NURE S CI0 B CIU M
: : TR L BTN ¢ L LD N P L R e = T o
Ouurneennnn . I LR ERETELTEE .. C.‘,}_‘,ygyf;" e 2oL .
Pophg—n) S S 73 S USSR S 1) B UL
' e o U yp—'z ................... : .“C(pi_)g.ylyl;:l Co yp—'2
E Oveernnnnnnes o | S SRR G S

: (p—2)5 0] : p—2)i,0) : [(p —2), (p—2)¢]
........ ceree..i0 liiiiii....0 e ieiiiiii..0 TP |

qui est égal & "?™*, on reproduit le déterminant proposé multiplié par le méme facteur.
Pour plus de clarté, appliquons ce résultataux questions suivantes :
1° Condition pour que la forme quintique

u = a,a;+ 5a,x|x, + 108,72, + 10a,232) + Sa,x,xt + a,x;

ait un facteur triple.

‘
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On obtient

@, 0
da, a,
3a, 3a,

a, 3a,
0=| O Qy
o 0
ry o
o
(0] O

0
a,
3a,
3a,
a,
0
(0]

9
,
2

H. ANDOYER.

a, 0
3a, a,
3a, Ja,
a, 3a,

0 a,

(¢] 0

— 2, %, o
o — &y
0 0

0 ) 0 o

0 , A, O
a, 3a, 3a, a,
da, a;, 3a, 3a,
Ja, 0 as 3a,
a, 0 0 a

0 £ o o

0 0 x 0
0 0 £

— X, Ly

ce qui, en conservant les notations de I'Algébre supéricure de Sal-

mon, donne

S*— 27T2=o.

En méme temps que cette condition, la suivante, qui exprime (ue z a
deux facteurs communs avec sa forme polaire, sera vérifiée :

. 2° Condition pour que la méme

quadruple.

—6zlx,

15z, x

—202) 7}
15z,

-6z,

6
wl

a, o0 o
ha, a, o
6a. 4a, a,
ba, Ga, ja,
a, 4a, Ga,
I\ a, 4a,
0 o a,

a,
ha,
Ga,
ha,

ay

0

0

0
a,
ha,
ba,
ha,
a;

0

forme quintique

(6]
o
a,
jea, |.
ba,
fa

Qa.-

Bl

ait un factcur
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On obtient
a © @,
2a, @, 2a,
a, 2a, .a
o a, 0
3z o —azuw,
o 3z 0
o o x;
o 0 )

DIVISION

ALGEBRIQUE,

—22

o

12

o a o
a, aa, a,
2a, as, 2a,
a, o a
0 o o |
x; o o
0 RY M
—2x, @, o 3,

ou, d’apreés les notations de Salmon, HS — T = o.

En méme temps, les conditions qui expriment que « a trois facteurs
communs avec sa forme polaire, ou deux facteurs communs avec sa
forme polaire du second ordre seront vérifi¢es, et ’on a ainsi :

)
2

—'llw:wi

T

2 .3

62
3
_['w2x|

A

Z,

(]

o

2
372

-4903:1;,
2.2

6x; x|

—4z, 7}

%

z,

ou 5HS — guT = o, avec

4

z, a,
—4x3z, 3a,
6x;x; 3a,

0=| —4x, %} a,

z, o

o ?

0 o

ou 2HS — 3uT =o.

a,
ha,
6a,
ba,

a;

(0]

a,
Ja,

3a,

o
423
ha,
6a,
ba,

a,

3a,

a,

ha,

6a,

ha,

a;

.—w|x2

Journ. de Math. (5¢ série), tome I. — Fasc. I, 1895,

o
a,
ha,
6a,
ha,
s
a, O
3a, a,
Ja, 3a,
a; 3a,
o as
?
o
12
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que S et T doivent étre nuls. On sait qu'il suffit que
et 'on voit par cet exemple que l'on aura souvent des

superflues. _ A

ey

Ceci nous montre que 'on a HS = o et «T = o, et, par suite,

S soit nul,

qwx,dlt,]?ns
s



