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DE L^RE PLANE BALAYÉE PAR UN VECTEUR VARIABLE. 44^ 

De l'aire plane balayée par un vecteur variable, 

PAR M. ERNEST DUPORCQ, 

Élève-Ingénieur des Télégraphes. 

Les principales questions dont je me suis occupé dans cette étude 
avaient déjà, pour la plupart, été abordées à diverses reprises par 
différents auteurs : dans le Bulletin des Sciences mathématiques 
de 1878, M. Liguine a fait de leurs travaux un historique très complet 
qu'il me suffira de résumer en quelques lignes. 

Steiner, dans un Mémoire publié en 1840 dans le Journal de 
Crelle, étudie, entre autres questions, les relations qui ont lieu entre 
les aires décrites par les vecteurs qui joignent les différents points 
d'un plan mobile à son centre instantané de rotation : il trouve que, 
pour un mouvement donné, les points de ce plan mobile auxquels 
correspondent ainsi des aires équivalentes sont les points d'une cir-
conférence; il suppose d'ailleurs convexes les deux arcs (ω) et (ω') 
formés par les centres instantanés dans le plan fixe et dans le plan 
mobile. Dans le cas particulier où tous les points du plan mobile dé-
crivent des courbes fermées, il trouve que le centre de la circonfé-
rence obtenue coïncide avec le centre de gravité de la courbe (ω), à 
la condition d'attribuer aux divers éléments de cette courbe une masse 
proportionnelle à la somme des courbures correspondantes des arcs 
(ω) et (ω'). 
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Indépendamment de ce travail de Steiner, M. Holditch énonce, 
en 1858, le théorème suivant : 

Lorsqu'une corde d'une longueur donnée et invariable se meut 
dans une courbe fermée en parcourant la circonférence totale de 
la courbe par ses extrémités A, B, et si l'on considère la courbe 
décrite par un point Ρ de celte corde qui la divise en deux parties, 
AP = C|, BP = C2, l'aire comprise entre les deux courbes fermées 
est égale à πC,C2. 

En 1877, M. Williamson généralise ce théorème et obtient, sous 
une autre forme, le résultat que j'énonce au n° 18. 

D'un autre côté, M. Leudesdorf établit entre les aires A, B, C et Ρ 
des courbes fermées (a), (ô), (c) et (p) décrites par quatre points 
liés invariablement, a, ô, c et p> la relation 

Ρ = Αχ H- B y H- C ζ -h πΐ2, 

x, y et ζ désignant les coordonnées triangulaires du point ρ par rap-
port au triangle abc, et t* le carré de la tangente menée du point ρ 
au cercle abc. 

De ce théorème M. Kempe en déduit un autre, équivalent, dont 
l'énoncé, rectifié par M. Liguine, revient à celui que j'énonce au 
n° 13. 

Sur les mêmes sujets, il faut encore citer cet énoncé de M. Zeuthen, 
proposé en 1870 dans les Nouvelles Annales de Mathématiques : 

Les aires engendrées par quatre segments de droites qui font 
partie d'une même figure plane et invariable qui se meut dans son 
plan satisferont toujours à une équation linéaire et homogène. 

Enfin, M. Darboux, à la suite du travail de M. Liguine, expose 
aussi ses recherches personnelles sur ces questions : c'est par le calcul 
qu'il étudie le premier les relations entre les aires balayées par les vec^ 
teurs qui joignent à un point fixe les points d'un plan mobile : il 
trouve que ceux de ces points, auxquels correspondent des aires équi-
valentes, sont sur une circonférence, dont il définit géométriquement 
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le centre dans le cas particulier où le point fixe choisi est le centre 
de la rotation finie par laquelle on pourrait amener le plan mobile de 
sa position initiale à sa position finale. 

Gomme on va le voir, c'est par l'application d'une même méthode 
géométrique générale que j'ai été conduit à retrouver la plupart de 
ces résultats, qui se trouvent, par là même, exposés didactiquement, 
en même temps que complétés de propriétés nouvelles, et même gé-
néralisés dans la dernière partie de ce travail. 

ERNEST DUPORCQ. 

Fontainebleau. 19 décembre i8g4· 

I. 

1. Définissons d'abord avec précision l'aire balayée par un vecteur 
qui se déplace d'une manière quelconque dans le plan, et dont la lon-
gueur même est variable. 

Dans le cas où l'origine, o, du vecteur considéré, oa, reste fixe dans 
le plan, la valeur de l'aire, que balaye ce vecteur dans un déplace-
ment élémentaire, devra évidemment être représentée par la différen-
tielle 

—2 
$oady 

dy désignant l'angle élémentaire dont tourne le sens du vecteur, 
angle dont la valeur pourra être positive ou négative, quand on aura 
choisi un sens positif de rotation. 

Dans le cas où le vecteur ab se déplace d'une manière quelconque 
dans le plan, soit ο le point où la droite ab touche son enveloppe ; 
dans un déplacement élémentaire, l'origine, ο, des vecteurs oa et ob 
peut être considérée comme fixe : par définition, l'aire balayée par le 
vecteur ab dans ce déplacement élémentaire sera égale à la différence 
des aires balayées dans le même déplacement par les vecteurs ôb 
et oa. 

La définition de cette aire élémentaire suffit à déterminer la valeur 
de l'aire balayée par le vecteur ab dans un déplacement fini. 
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Nous représenterons, désormais, cette aire par la notation 

(ab). 

2. Soit ο un point fixe : si un point a décrit une courbe fermée, on 
voit que, en grandeur et en signe, l'aire balayée par le vecteur oa est 
indépendante du point o : sa valeur est, par définition, celle de l'aire 
de la courbe fermée considérée. 

5. On peut se rendre compte également que : 

Si les deux extrémités, a et b, d'un vecteur ab décrivent des 
courbes fermées (a) et (b)f

 l'aire balayée par le vecteur ab est, en 
grandeur et en signe, égale à l'excès de l'aire de la courbe (a) 
sur l'aire de la courbe (b). 

4. Si, en particulier, la courbe (a) est l'enveloppe de la droite «6, 
l'aire balayée par le vecteur ab sera, d'après sa définition même (1), 
égale à l'aire de la courbe (m), lieu des extrémités des vecteurs ο m, 
identiques aux vecteurs ab, et issus d'un point fixe, o. 

On obtient, par exemple, ainsi la propriété suivante : 

Soient (ρ) lapodairej relative à un point o, d'une courbe fer-
mée (a), et(q)la podaire, relative au même point, de la développée 
de (a) : l'aire de la courbe (p) est égale à la somme des aires des 
courbes (a) et (q). 

5. De la définition, ou plutôt des conventions de signes qui pré-
cèdent, résulte immédiatement que, si un vecteur ab, de grandeur 
fixe, tourne d'un angle φ autour d'un point fixe ω, pris dans le plan, 
on aura 

(αό) = ^(ωό — ωα )φ. 

6. Si c représente un point invariablement lié au segment ab, on 
voit ainsi que 

(ab) 4- (bc) -h {ca) = o. 
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Cette propriété, vraie pour une rotation infiniment petite, sera 

vraie encore, par suite, pour un déplacement quelconque du triangle 
abc, car on peut considérer ce déplacement comme résultant de la 
succession d'une infinité de rotations élémentaires autour de centres 
instantanés de rotation : nous pouvons donc énoncer la proposition 
suivante : 

Si un polygone fermé quelconque, abc. ..la, de grandeur inva-
riable, se déplace d'une manière quelconque dans le plan, la 
somme des aires balayées par les vecteurs ab, be, ..., la est nulle. 

Plus généralement : 

Un contour fermé quelconque balaye toujours une aire nulle. 

6 bis. Les expressions des aires balayées par les trois vecteurs aa\ 
bb' et cc', qui tournent d'un angle φ autour d'un point fixe ω, peuvent 
encore s'écrire 

(aa') = aa!. α. φ, 

(bb')=W. ρ.φ, 

(cc' ) = cc'.y .©, 

a, β et γ désignant les distances respectives du centre ω aux perpen-
diculaires élevées aux milieux des segments considérés. Comme ces 
distances sont liées par une relation linéaire, indépendante du centre 
ω, on voit qu'il en est de même des aires en question. En considérant 
une suite de rotations élémentaires, on trouve donc ainsi que : 

Les aires balayées par trois vecteurs qui font partie d'une 
même figure plane ci invariable qui se meut dans son plan satis-
feront toujours à une équation linéaire. 

II. 

7. Supposons qu'un plan Ρ se meuve sur un plan fixe Q. Soit a un 
point du plan Ρ : nous nous proposons de chercher quels sont les 
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points m du plan Ρ, tels que, dans un déplacement donné de ce plan, les 
vecteurs am balayent dans le plan fixe des aires équivalentes à une 
aire donnée. 

8. Un cas particulièrement simple est celui où le déplacement 
considéré du plan Ρ est une rotation autour d'un point ω : le lieu cher-
ché est alors une circonférence de centre ω, puisque (5), si l'on désigne 
par φ l'angle dont tourne le plan P, 

Cela posé, supposons que le plan Ρ tourne successivement des 
angles φ,, φ

2
, ... autour des centres respectifs ω,, ω

2
, ... pris dans 

ce plan Ρ : l'aire balayée par le vecteur am dans le déplacement total 
du plan Ρ aura pour valeur 

ou, si l'on désigne par γ
ω
 le centre de gravité du système des points 

ω
1?

 ω8,... du plan P, considérés comme de masses proportionnelles 
aux angles Φ,, <p

2
, ..., et par φ l'angle total de rotation du plan P, 

9. Or, un déplacement quelconque du plan P peut généralement 
être considéré comme formé par la succession d'une infinité de rota-
tions élémentaires : le point γ

ω
 devient alors le centre de gravité de 

l'arc de courbe (ω) formé dans le plan P par les centres instantanés 
de rotation, à la condition d'attribuer à un arc quelconque de cette 
courbe une masse proportionnelle à l'angle correspondant dont tourne 
le plan P. 

i 0. On peut obtenir le mouvement du plan P en faisant rouler sans 
glissement l'arc (ω) sur l'arc de même longueur (ω'), formé par les 
centres instantanés dans le plan fixe Q; soient r et r' les rayons de 

(α/?ϊ) = |(co'm — ωα )φ. 

1/2(w, m.φ,-ί-ο^/η .φ, η- ...) — ^(ω,α .<ρ, + ω
2
α .φ

2
+....) 

(am) = 1/2(ywm² - ywa²)y 
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courbure respectifs de ces deux courbes aux deux points correspon-
dants ω et ω' : il est bien facile de voir que la densité à attribuer à 
Tare (ω) autour du point ω devra être proportionnelle à la somme 

~ -h ρ > à la condition de considérer les rayons r et r' comme de 

même signe lorsque les cercles osculateurs correspondants deviennent 
tangents extérieurement, et comme de signes différents dans le cas 
contraire ; on pourra, évidemment, avoir à considérer ainsi des arcs 
de masse négative : d'une manière générale, la densité en un point, 

proportionnelle à la somme ^ + pi devra changer de signe quand la 

rotation du plan Ρ changera de sens. 

11. S'il arrive, par exemple, que l'angle total de rotation du 
plan Ρ soit nul, la masse totale de l'arc (ω) le sera également, et le 
point γ

ω
 sera rejeté à l'infini, dans la direction de la droite qui joint 

le centre de gravité des éléments de masses positives à celui des élé-
ments de masses négatives. 

12. Notre raisonnement suppose que le plan Ρ ne subit pas, pen-
dant son déplacement, de translation finie. 

Supposons donc que le plan P, après avoir subi un déplacement A, 
constitué par une suite de rotations, subisse une translation. Soit φ 
l'angle total de rotation du plan P, et soit γ

ω
 le point de ce plan tel 

que l'aire balayée, pendant le déplacement A, par un vecteur quel-
conque, γ

ω
#ι, issu de ce point, ait pour valeur 

1/2ywm².y 

Soient m, et ma les positions occupées par le point m au début et à 
la fin de la translation : désignons par Ί la longueur mK m2 ; et par α 
l'angle, positif ou négatif, que fait avec la direction mK le vecteur 
ywm,pendant la translation : l'aire (y

w
m) correspondant à la transla-

tion aura évidemment pour valeur 

Ζ.γω/ttsina. 
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L'aire totale balayée par γ
ω

/η sera donc 

ο — _____ 
1/2ywm..9 4- Z.y

w
m sinoc. 

En égalant cette expression à une constante, on trouve pour le lieu 
du point m une circonférence : son centre, O, est tel que le vecteur γ

ω
0 

ait pour longueur 
7 - ? 
? 

et, quand ce vecteur occupe sa position finale, la direction m, m
2
 fait 

avec lui un angle droit positif. 
L'aire totale balayée par le vecteur om aura pour valeur 

—2 
jom .φ. 

15. Les résultats précédents nous permettent d'énoncer le théo-
rème suivant : 

Quand un plan Ρ se déplace d'une manière quelconque sur un 
plan fixe, il existe toujours dans ce plan Ρ un point 0, tel que tout 
vecteur du plan Ρ balaye une aire équivalente à celle qu'il balaye-
rait si le plan Ρ tournait autour du point 0 d'un angle égal à son 
angle total de rotation pendant le déplacement considéré. 

Ce point 0 est généralement le centre de gravité γ
ω
 de l'arc (ω) 

formé dans le plan Ρ par les centres instantanés de rotation ω, en 
supposant la masse d'un élément quelconque de cette courbe pro-
portionnelle à l'angle de la rotation correspondante du plan P. 

14. Comme application immédiate de ce théorème, nous nous 
bornerons à énoncer la proposition suivante : 

Une courbe fermée admettant un centre ο roule sans glisser 
sur une droite, jusqu'à ce qu'elle ait accompli une révolution : 
l'aire balayée par un vecteur om entraîné dans le mouvement est 
égale à l'aire du cercle de rayon ο m. 
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En particulier : 

L'aire balayée par un rayon d'un cercle qui accomplit une révo-
lution en roulant sur une droite est égale à l'aire de ce cercle. 

15. Un cas particulièrement intéressant est celui où le plan Ρ 
revient, à la fin du déplacement, à sa position initiale, de sorte que 
tous ses points décrivent dans le plan Q des courbes fermées : car, 
alors (5), l'aire balayée par un vecteur ο m a pour valeur la différence 
des aires des courbes fermées (m) et (o) décrites par ses extrémités. 
Nous obtenons donc le théorème suivant : 

Si un plan Ρ se déplace sur un plan Q, de sorte que tous ses 
points décrivent des courbes fermées, tous les points de ce plan qui 
décrivent des courbes d'aires équivalentes sont les points d'une 
circonférence de centre ο : si le plan Ρ a accompli η révolutions, 
dans le sens positif, l'aire de la courbe décrite par un de ses 
points, m, est équivalente à l'aire de la courbe décrite par le centre 
o, augmentée de la somme des aires de η cercles de rayon om. 

Le centre ο sera généralement le centre de gravité^ de la courbe 
(ω) formée dans le plan Ρ par les centres instantanés, pourvu que la 
masse d'un arc quelconque de cette courbe soit proportionnelle à 
l'angle correspondant de rotation du plan P. 

16. Considérons le cas particulier d'une courbe fermée C', qui 
roule sans glisser sur une courbe identique, C, de sorte que ces deux 
courbes soient constamment symétriques par rapport à leur tangente 
commune au point de contact : le point ο sera dans ce cas le centre 
de gravité delà courbe C si l'on suppose en chacun de ses points la 
densité proportionnelle à la courbure, ou inversement proportion-
nelle à la longueur du rayon de courbure ; le point ο est appelé le 
centre de gravité des courbures de la courbe C. 

D'ailleurs, m' étant un point lié invariablemeiît à la courbe C', soit 
m le point correspondant lié à la courbe C, avec lequel m' coïncide 
lorsque C' coïncide avec C : ces points m et m' restent constamment 
symétriques par rapport à la tangente au point de contact, de sorte 
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que la trajectoire (m') a une aire égale au quadruple de l'aire de la 
podaire du point m relativement à la courbe C. Il résulte de là que : 

Le lieu des points m dont les podaires, relatives à une même 
courbe fermée C, ont des aires équivalentes, est une circonfé-
rence, dont le centre est le centre de gravité des courbures de la 
courbe C. 

Remarque. — De cette propriété combinée au théorème obtenu 
au n° 4 résulte immédiatement la propriété suivante : 

Une courbe fermée a le même centre de gravité des courbures 
que sa développée. 

On voit donc que : 

Des courbes fermées parallèles entre elles ont le même centre de 
gravité des courbures. 

17. Nous signalerons encore le cas particulier suivant : 

Si le plan Ρ est entraîné par le mouvement d'une courbe à 
centre, qui roule sans glisser sur une courbe à centre de même 
longueur, le point ο sera le centre de la courbe mobile. 

On voit, par exemple, ainsi que : 

L'aire de l'épicycloïde à η rebroussements, décrit par un point 
d'un cercle de rayon r, qui roule sur un cercle de rayon nr, a pour 
valeur 

(n -+-1) (#ι -h 2)π/'2. 

L'aire de l'hypocyclolde analogue sera de même 

(n — 1) (η — 2 )π/*2. 

18. Considérons, en particulier, dans le plan P, une droite Δ : si 
l'on connaît les aires A et Β des courbes fermées (a) et (b) décrites 
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par deux de ses points, a et b, il sera facile d'en déduire l'aire C de 
la courbe (c) décrite par l'un quelconque de ses points c. 

Supposons, · en effet, que la droite Δ ait accompli η révolutions 
dans le sens positif, et désignons par Ο l'aire de la courbe fermée dé-
crite parle point ο (15). On a 

2 * 
A = Ο -h Λπ.οα, 

Β = Ο ■+■ rnz.ob, 

C = Ο 4- mz.oc. 

Grâce à la relation de Stewart, on déduit de ces égalités que : 

Les aires A, Β et G des courbes fermées décrites par trois points 
a,b et c d'une droite qui se déplace dans le plan, et revient à sa 
position initiale après avoir accompli η révolutions, sont liées par 
la relation 

A.bc + B.ca -h C .ab mz.bc.ca.ab ~ o. 

19. En particulier : 

Si les extrémités a et b d'un segment de grandeur fixe décrivent 
des courbes fermées d'aires équivalentes {par exemple, la même 
courbe) l'aire de la courbe décrite par un point c de ah sera égale 
à la valeur commune de ces aires équivalentes, augmentée de 
l'aire 

mt.ca.cb. 

Si les points a et b décrivent des courbes d'aire nulle, l'aire de la 
trajectoire du point c aura pour valeur : wK.ca.cb. On en déduit la 
propriété suivante : 

On suppose que les deux extrémités a et b .d'un segment ab, au 
lieu de se déplacer sur deux droites, de sorte qu'un point quel-
conque du segment décrive une ellipse9 se déplacent, dans des con-
ditions analogues, sur deux courbes quelconques : l'aire de la 
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courbe fermée, décrite par un point quelconque du segment ab, 
sera égale à l'aire de l'ellipse correspondante. 

III. 

20. Soit a un point d'un plan Q, sur lequel se meut un plan P. 
Proposons-nous de chercher quels sont les points m du plan Ρ tels 
que, dans un déplacement donné de ce plan, les aires balayées par les 
vecteurs am soient équivalentes à une aire donnée. 

21. Considérons d'abord le cas d'une rotation élémentaire : soit ω 
le centre de rotation du plan P, et dy l'angle élémentaire dont il 
tourne. Désignons par ρ la projection du point a sur la perpendicu-
laire mp à ω/w , et par h le point du plan Ρ qui coïncide avec le milieu 
du segment αω : l'aire élémentaire balayée par α/Λ a évidemment pour 
valeur 

^ωηι.αρ .dy, 

les vecteurs ω m et ap étant pris de même signe, s'ils sont de même 
sens. Or, on a alors, en grandeur et en signe, l'égalité 

<ûm.ap = hm — ha — hm — γ αω . 

La valeur de l'aire élémentaire balayée par am peut donc s'écrire 

^hm .dy — |αω .dy
t 

22. Dans le cas d'un déplacement quelconque, soit ω le point du 
plan Ρ qui devient son centre instantané de rotation à un instant 
donné, soit ω' le point du plan Q, avec lequel ω coïncide à cet instant; 
enfin, soit h le point du plan Ρ qui coïncide alors avec le milieu du 
segment α ω'. De la même manière que plus haut (9), on déduit du 
résultat précédent que le lieu cherché (20) pour le point m est une 
circonférence : son centre, A, est le centre de gravité de l'arc de 
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courbe (h), formé dans le plan Ρ par les points A, pourvu qu'on 
attribue aux différents arcs de cette courbe une masse proportionnelle 
à l'angle de la rotation correspondante du plan P. 

Désignons, comme précédemment (10), par r et r' les rayons de 
courbure des arcs (ω) et (ω') aux points correspondants ω et ω'. 
Soit γ

ω
 le centre de gravité de Parc (ω), dont on suppose la densité, 

au point ω, proportionnelle à la somme i -f- ρ · Considérons la courbe 

(a) du plan P, dont les points α viennent successivement coïncider 
avec a, et attribuons à chaque arc de cette courbe une masse égale à 
celle de l'arc correspondant de la courbe (ω) ; soity

a
 le centre.de gra-

vité de la courbe hétérogène ainsi déterminée : le point A est évidem-
ment le milieu du segment γ

ω
γ

α
. 

La courbe (a) n'est d'ailleurs autre que la trajectoire du point « 
dans le plan P, supposé fixe, lorsque, dans un mouvement inverse de 
celui que nous considérons, le plan Q est entraîné par le roulement 
sans glissement de Parc (ω') sur l'arc (ω). 

23. En désignant par φ l'angle total de rotation du plan P, on voit, 
en intégrant l'expression de Paire élémentaire balayée par am (21), 
que, pour un déplacement fini du plan P, 

[am) — {A m . φ = const., 

la constante ne dépendant que de la position du point a dans le 
plan Q. 

24. On peut donc énoncer le théorème suivant : 

Un plan P se déplace sur un plan Q : a désignant un point fixe 
du plan Q, le lieu des points m

y
 du plan P, tels que les vecteurs am 

balayent des aires équivalentes à une aire donnée, est une circon-
férence de centre A. 

Si φ désigne l'angle total de rotation du plan P, l'aire (am) 
équivaut à l'aire (α A), augmentée de l'aire 

{Am .φ. 
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Le point A est généralement le milieu du segment γ
ω
γ

α
, déter-

miné comme il suit : on considère, dans le plan P, la courbe (ω) 
formée par les centres instantanés de rotation, et la courbe (a) 
formée par les points a qui viennent coïncider successivement avec 
le point a : les points γ

ω
 et γ

α sont les centres de gravité de ces 
courbes, pourvu qu'on suppose que la masse d'un arc quelconque 
soit proportionnelle à l'angle dont tourne le plan Ρ dans le dépla-
cement correspondant. 

25. Dans le cas où l'angle <p sera nul, le point A sera rejeté à l'in-
fini, et les circonférences concentriques, obtenues dans le cas général, 
se réduiront à des droites parallèles. 

26. Parmi les cas particuliers, le plus simple est celui où le plan Ρ 
est entraîné par le mouvement d'une circonférence qui roule sans 
glisser à l'intérieur d'une circonférence de rayon double, le point a 
étant au centre de cette circonférence fixe : car le point h (21) reste 
fixe dans le plan P, et coïncide constamment avec le centre de la cir-
conférence mobile. On déduit de là que, m étant un point quelconque 
du plan P, le secteur d'ellipse balayé par le vecteur am est propor-
tionnel à l'angle de rotation du plan P. 

27. Un autre cas simple est celui où le plan P tourne d'un angle ç 
autour d'iin point fixe, ω : le point A est alors le centre de gravité de 
l'arc de cercle homogène du plan P dont les points viennent successi-
vement coïncider avec le milieu du segment ω a. 

28. On obtiendra d'ailleurs le point A en prenant le centre de gra-
vité d'un arc homogène, toutes les fois que le plan P sera entraîné par 
le mouvement épicycloïdal d'un cercle roulant sans glisser sur un 
cercle fixe du plan Q admettant le point a pour centre. 

29. Des résultats généraux obtenus, on déduit, comme nous avons 
fait déjà dans un cas analogue (18) que : 

Les aires (ap), (aq) et (ar) balayées par les vecteurs ap, aq et 
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ar, qui joignent un point fixe, a, à trois points, p, q et r, d'une 
droite mobile dans le plan, sont liées par la relation 

(ap). qr ( aq ) rp -+- [ar) pq -4- £ φ. qr. rp .pq = 0, 

φ représentant l'angle dont tourne la droite pqr dans son déplace-
ment. 

50. En particulier, si /* est le milieu du segment pq, on a 

(<w) = 5 [(a?) + («?)] + ï9 · rp ■ '·?· 

On déduit de là, par exemple, la propriété suivante : 

Soient G et G' deux branches de courbe indéfinies, limitées à 
leur point commun, a, et telles que C coïncide avec C' après avoir 
tourné de l'angle φ autour du point a. Un vecteur pq, de grandeur 
fixe, se déplace de sorte que ses extrémités ρ et q restent respecti-
vement sur les courbes C et G' : le point a est à la fois la position 
initiale du point q sur C' et la position finale du point ρ sur G. Soit 
r le milieu de pq : l'aire balayée par le vecteur ar est indépendante 
de la courbé C, et a la même valeur absolue que l'expression 

i(ic - <t)pq~. 

54. Considérons spécialement le cas où le déplacement du plan Ρ 
sur le plan Q est tel que tous ses points m décrivent des courbes fer-
mées : dans ce cas, l'aire balayée par le vecteur am, égale à l'aire de 
la courbe fermée décrite par le point m, est indépendante du point a. 
La position du point A ne dépendra donc pas du point a, et ce point 
coïncidera toujours, d'après ce que nous avons vu précédemment (45) 
avec le point γω. 

On déduit de là le théorème suivant : 

Un plan Q se déplace sur un plan P, de sorte que tous ses points 
décrivent des courbes fermées. Si l'on suppose que la masse d'un 
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arc quelconque de ces courbes soit proportionnelle à Vangle corres-
pondant dont tourne le plan Q, toutes ces trajectoires hétérogènes 
ont le même centre de gravité. 

Ce point coïncide, en général, avec le centre de gravité de la 
courbe formée dans le planV par les centres instantanés de rotation, 
pourvu qu'on suppose encore la masse de tout arc de cette courbe 
proportionnelle à l'angle correspondant de rotation du plan Q. 

IV. 

32. Quand l'angle φ, dont tourne le plan Ρ dans son déplacement, 
n'est pas multiple de 2π, il existe toujours dans le plan Ρ un point s, 
qui revient, à la fin du déplacement, à sa position initiale. Ce point, 
décrivant une courbe fermée, l'aire balayée par le vecteur as, issu 
d'un point quelconque, a, du plan Q, est indépendante du choix de 
ce point a. Soit, dans le plan Ρ, A le centre correspondant au 
point a (24) ; on a 

—— . 

(as) = (aA)-h{As .9 

et 

(am) = (aA) -h {Am .9. 

En posant 
(as) — (am) = £K29, 

on a donc 

As — Am = Κ2. 

On voit, par suite, que : 

Toutes les circonférences (m) du plan Ρ qui correspondent(24) 
aux différents points a du plan Q et à une aire donnée coupent 
ortliogonalement le cercle de centre s, dont le rayon K, réel ou 
imaginaire, est tel que {Κ2φ représente l'excès sur l'aire donnée 
de l'aire de la courbe fermée décrite par le point s. 

33. Pour obtenir le cercle correspondant au point α et à une aire 
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donnée, il suffira donc de connaître son centre A. Nous allons étu-
dier comment les points A du plan Ρ correspondent aux points a du 
plan Q. 

34. Nous ferons d'abord la remarque suivante. 
Le plan Ρ subissant un déplacement donné, soient, dans le plan Q, 

m, et m, les positions initiale et finale d'un point m du plan P. Le 
lieu des points a du plan Q, tels que les aires (arh) soient équiva-
lentes, est visiblement une parallèle à la droite m

i m2. 

53. Soit a un point quelconque de cette parallèle (a), et soit A le 
point correspondant du plan P. La différence 

(as) — (am) 

étant constante, il en est de même (24) de la différence 

ο 
As — Am, 

ce qui prouve que les points A ont la même projection sur la 
droite sm. 

Ainsi, quand le point a se déplace, dans le plan Q, sur une paral-
lèle (a) à m, rrii, le point A se déplace, dans le plan P, sur une per-
pendiculaire (A) à sm. 

56. Soit, dans le plan Q, st la position initiale et finale du point s ; 
comme l'angle mts, m2

 est précisément égal à l'angle <p, on voit que, 

si l'on fait tourner le plan Ρ de l'angle £ à partir de sa position initiale, 

la droite (A) deviendra parallèle à sa correspondante (a). Par suite : 

La correspondance des points a et A donne lieu, dans les plans 
Q et P, à des figures semblables. ^ 

37. Soient (a) et (b) deux droites du plan Q parallèles à m, m2, 
(A) et (B) leurs correspondantes dans le plan Ρ, α et β les points où 

Journ. de Math. (5· série), tome I. — Fasc. IV, 189^. 60 
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ces dernières coupent sm. Soit q la distance des parallèles (a) et (b), 
soit p celle des parallèles (A) et (B). On a évidemment 

(am) — (bm) — m2
 = q.m^s^ .sin |· 

D'ailleurs 

(am) — (as) = ep(Am — A s ) = y.ms(moi. — a$), 

(bm) — (Os) = φ(β/Λ — Bs ) = |. y.ms(m$ — fta). 

On a donc encore 

(am) — (bm) ~ <p.ras.a(3 = y.ms.p. 

On voit donc que 
gr.sin^ -=ρ.φ. 

Par suite : 

Le rapport cle similitude de deux figures correspondantes (A) 
et (a) a pour valeur 

I . Ό - sm - · 
cp 2 

58. Ces résultats, bien évidents quand le déplacement du plan Ρ 
est une rotation, peuvent d'ailleurs être déduits de ce cas particulier. 

Soit, en effet, D un déplacement quelconque du plan P, dans 
lequel il tourne de l'angle φ ; soit s le point de ce plan qui revient, à 
la fin du déplacement, à sa position initiale, s,; désignons par P, 
et P

2 les positions initiale et finale du plan Ρ sur le plan Q. Considé-
rons les rotations R, et R

2 du plan Ρ autour du point qui amène-
raient ce plan, la première, de la position P, à la position P2 en le 
faisant tourner de l'angle φ ; la seconde, de la position P2

 à la posi-
tion Pn en le faisant tourner de l'angle (2π — φ). Soit, enfin, poiir 
le déplacement D, γ

ω
 le centre de gravité de l'arc hétérogène (ω) (24). 

Désignons par A, A, et A
2
 les centres qui, dans le plan P, corres-

pondent (24) au point a du plan Q pour les déplacements D, R, 
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et R
2

. Supposons les masses des deux premiers proportionnelles à 
l'angle <p, la masse du troisième, proportionnelle à l'angle (2π — <p). 

Si le plan Ρ subit successivement les rotations R, et R
2
, le point 0 

(15) correspondant à son déplacement total coïncide avec s; s'il subit 
successivement le déplacement D et la rotation R2, le point 0 corres-
pondant de même au nouveau déplacement total devient le centre de 
gravité γ des points γ

ω
 et s, supposés de masses proportionnelles aux 

angles φ et (21: — φ). Par suite (31) le point s est le centre de gra-
vité des masses A, et A2 ; le point γ, celui des masses A et A

a
. 

On déduit de là que le vecteur A, A est identique au vecteur $γ
ω

, 
ce qui redonne les résultats précédents. On voit, de plus, que le 
point γ

ω
 est le point du plan Ρ qui correspond au points, du plan Q. 

59. Comme le point A est (24) le milieu du segment γ
ω
γ

α
, on 

obtient donc le théorème suivant : 

Un plan Q se mouvant sur un plan P, soit (a) la trajectoire dé-
crite par l'un quelconque, a, de ses points. En supposant la masse 
de tout arc de cette courbe proportionnelle à l'angle correspondant 
dont tourne le plan Q, on fait, dans le plan P, correspondre au 
point a, le centre de gravité, γ

α
, de cette trajectoire hétérogène. 

Deux figures correspondantes, (a) et (γ
α
), sont semblables; de 

plus, la figure (γ
β
) devient homothètique de la figure (a), le rap-

port d'homothéiie étant 
sin -

2 
* 

1 
2 

si le plan Q tourne
>
 à partir de sa position initiale, de l'angley/2 

φ désignant son angle total de rotation pendant le déplacement 
considéré. 

De plusj au point du plan Q, qui décrit une trajectoire fermée, 
correspond le centre de gravité de la courbe formée dans le plan P 
par les centres instantanés de rotation, supposés de masses propor-
tionnelles aux rotations élémentaires correspondantes. 
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Y. 

40. Pour compléter cette étude, nous indiquerons rapidement une 
généralisation des résultats précédents : nous ne développerons pas 
les démonstrations, à cause de leur analogie avec celles que nous avons 
données jusqu'ici. 

41. Soient Ρ et Q deux plans mobiles qui éprouvent sur un plan 
fixe des déplacements simultanés. Soil a un point quelconque du 
plan Q : le lieu des points m du plan P, tels que les vecteurs am ba-
layent sur le plan fixe des aires équivalentes à une aire donnée, est 
généralement une circonférence, de centre A. 

Soit φ l'angle total de rotation du plan Ρ : l'aire balayée par le 
vecteur am équivaut à l'aire balayée par le vecteur a A, augmentée 
de l'aire 

τ Am .φ. 

A un instant quelconque du déplacement, on considère, dans le 
plan P, son centre instantané de rotation, ω, le point ε, qui coïncide 
avec le centre instantané de rotation, η, du plan Q, enfin, le 
point α, qui coïncide avec le point a. Si l'on attribue à tout arc de 
la courbe (ω) une masse proportionnelle à l'angle correspondant 
Δφ dont tourne le plan P, à tout arc de la courbe (ε), une masse 
proportionnelle à l'angle correspondant, Δψ, dont tourne le plan Q, 
enfin, à tout arc de la courbe (a), une masse proportionnelle à la 
différence correspondante (Αφ — Δψ), le centre A sera le centre de 
gravité de Vensemble des arcs hétérogènes (ω), (ε) et (a). 

42. On retrouve, comme cas particuliers, les résultats obtenus 
précédemment, d'abord, en faisant coïncider constamment les plans 
P et Q, puis en supposant le plan Q fixe. 

45. A un point, a, du plan Q, correspond, dans le plan P, le 
centre de gravité γ

α
 de l'arc hétérogène ( α ) : le théorème du n° 59 
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montre que, à une figure, (a), du plan Q, correspond ainsi dans le 
plan Ρ une figure semblable (γ

α
) : ces deux figures deviennent homo-

thétiques, si les plans Ρ et Q tournent seulement, à partir de leurs 

positions initiales, des angles ^ et le rapport d'homotbétie étant 

2 .CD — φ 
φ —ψ 2 

On déduit de là que : 

La correspondance des points a et A donne lieu, dans les plans 
Q et P, à des figures semblables. Si φ et ψ désignent les angles dont 
tournent respectivement les plans Ρ et Q dans leurs déplacements 
simultanés, ces figures deviennent homothéiiques, quand on fait 

tourner les plans Ρ et Q des angles \et\à partir de leurs positions 

initiales; enfin, le rapport d'homotliétie des figures (A) et (α) a 
pour valeur 

I . φ — il 

» 2 

VI. 

44. Dans la dernière Partie de ce Mémoire je vais exposer une 
généralisation fort intéressante des propriétés que j'ai obtenues dans la 
deuxième Partie : je vais supposer maintenant que la figure mobile Ρ 
n'est plus assujettie à garder une grandeur invariable, mais qu'elle est 
astreinte seulement à rester semblable à une figure donnée, Π. 

4*>. A un tel déplacement correspond une notion analogue à celle 
du centre instantané de rotation : le point ο qui permet d'amener par 
une rotation une figure P, de grandeur invariable, d'une position P, 
à une position P2

 est tel que, si a
K
 et δ, désignent les positions ini-

tiales, a
2
 et b

2
 les positions finales de deux points quelconques a et b 

de la figure P, les triangles oa
{
 b

i
 et oa

2
 b

2
 sont égaux ; on peut remar-

quer en outre que, si p désigne le point de rencontre des droites a
K bt 

et a
2
b

2
, les quadrilatères pa

s
a2o et pb

{
 b2o sont tous deux inscripti-
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bles à des circonférences. Supposons maintenant que les figures P, 
et P2 sont simplement semblables entre elles; soient a, et a2, bt et b2 

deux couples de points homologues : le second point d'intersection, o, 
des circonférences circonscrites aux trianglespaKa% etpbKb2 est visi-
blement tel que les triangles oa

K
 b

t
 et oa2b2 sont semblables. On peut 

donc, par une rotation autour de o, amener P, à être homothétique 
à P2

 par rapport à o. 
Si P, et P

2
 sont deux positions infiniment voisines de la figure II, 

dans le déplacement que nous avons envisagé, p devient le point où ab 
touche son enveloppe, et le point o est le second point d'intersection 
des circpnférences qui passent par p et qui touchent respectivement 
en a et b les trajectoires (a) et (b). 

La considération de ce point, qu'on peut appeler le centre instan-
tané d'homothétie rotatoire, va nous permettre d'appliquer au cas 
d'une figure de forme invariable les méthodes employées dans ce qui 
précède. 

46. Il est bien évident, en effet, que l'aire décrite par un vec-
teur am pendant un déplacement élémentaire de la figure P, diffère 
d'infiniment petits d'ordre supérieur de l'aire que décrirait le même 
secteur, si, sans varier de grandeur, il ne faisait que tourner du même 
angle autour du point o. Soit dy cet angle de rotation élémentaire; 
on aura (5) 

d(am)=~{om — oa )dy. 

Soit, dans la figure Π, ω l'homologue du point de P qui coïncide 
avec o ; soient oc et μ. les homologues de a et m ; enfin soit Κ le rap-
port de similitude des figures P et Π. On aura 

d(am) = {(ωμ — ωα )K2cfo. 

47.; Spit γ le centre de gravité de l'arc (ω) de la figure Π, corres-
pondant à un déplacement fini de la figure P, chaque élément de 
l'arc (ω) ayant urie masse proportionnelle à la différentielle corres-
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pondante K2cfy. On aura 

(am) = ί(γ|Α - ya) f K'do. 

48. Nous ne considérerons que le cas particulier où toutes les tra-
jectoires (m) sont des courbes fermées. On obtient alors le théorème 
suivant : 

Si une figure Ρ se déplace dans le plan en restant semblable à 
une figure donnée Π, le lieu des points p, de la figure Π, dont les 
homologues m décrivent des trajectoires Maires équivalentes, est 
une circonférence, de centre γ. 

La différence des aires (a) et(U), correspondant à deux points a 
et β, est proportionnelle à la différence des carrés des longueurs 
•ya βίγβ. 

49. On peut obtenir ainsi un grand nombre de théorèmes. Par 
exemple : 

Par chaque point a d'une courbe fermée (a) on mène deux 
droites, ah et am, faisant avec (a) des angles donnés; on suppose 
que l'extrémité b du vecteur ab décrit une courbe fermée (b) de 
même aire que a. Soit m le point où am coupe la circonférence qui 
touche {a) en a et qui passe par b : la courbe {m) a la même aire 
que les courbes (a) et (b). 

On peut pour (b) choisir la courbe (a) elle-même. Quand l'angle 
de ab avec (a) tend vers zéro, le cercle considéré tend vers le cercle 
osculateur en a. On obtient alors, à la limite, le théorème suivant : 

Par chaque point a d'une courbe (a) on mène une droite am, 
faisant avec elle un angle donné, qui coupe au point m le cercle 
osculateur en a : les courbes (a) et (m) ont des aires équivalentes. 


