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DE L’AIRE PLANE BALAYEE PAR UN VECTEUR VARIABLE. 443

De Uaire plane balayée par un vecteur variable,

Par M. Ervxest DUPORCQ,

Eléve-Ingénieur des Télégraphes.

Les principales questions dont je me suis occupé dans cette étude
avaient déja, pour la plupart, été abordées a diverses reprises par
différents auteurs : dans le Bulletin des Sciences mathématiques
de 1878, M. Liguine a fait de leurs travaux un historique trés complet
qu'il me suffira de résumer en quelques lignes.

Steiner, dans un Mémoire publié en 1840 dans le Journal de
Crelle, étudie, entre autres questions, les relations qui ont lieu entre
les aires décrites par les vecteurs qui joignent les différents points
d'un plan mobile & son centre instantané de rotation : il trouve que,
pour un mouvement donné, les points de ce plan mobile auxquels
correspondent ainsi des aires équivalentes sont les points d’une cir-
conférence; il suppose d’ailleurs convexes les deux arcs () et (')
formés par les centres instantanés dans le plan fixe et dans le plan
mobile. Dans le cas particulier o tous les points du plan mobile dé-
crivent des courbes fermées, il trouve que le centre de la circonfé-
rence obtenue coincide avec le centre de gravité de la courbe (), &
la condition d’attribuer aux divers éléments de cette courbe une masse
proportionnelle & la somme des courbures correspondantes des arcs
(w) et (o). '

Journ. de Math. (5° série), tome I — Fasc. IV, 18g5. 58
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Indépendamment de ce travail de Steiner, M. Holditch énonce,
en 1858, le théoréme suivant :

Lorsqu’une corde d’une longueur donnée et invariable se meut
dans une courbe fermée en parcourant la circonférence totale de
la courbe par ses extrémités A, B, et si l’on considére la courbe
décrite par un point P de cetie corde qui la divise en deux parties,
AP = G, BP = G,, Uaire comprise entre les deux courbes fermées
est égale a =C, C,.

En 1877, M. Williamson généralise ce théoréme et obtient, sous
une autre forme, le résultat que j’énonce au n° 18.

D’un autre c6té, M. Leudesdorf établit entre les aires A, B, C et P
des courbes fermées (a), (), (¢) et (p) décrites par quatre points
liés invariablement, a, b, c ct p, la relation

P=Az+ By + Cz +=t?,

z, ¥ et z désignant les coordonnées triangulaires du point p par rap-
port au triangle abe, et ¢* le carré de la tangente menée du point p
au cercle abe. v

De ce théoréme M. Kempe en déduit un autre, équivalent, dont
Pénoncé, rectifié par M. Liguine, revient a celui que j’énonce au
n° 13.

Sur les mémes sujets, il faut encore citer cet énoncé de M. Zeuthen,
proposé en 1870 dans les Nouvelles Annales de Mathématiques :

Les aires engendrées par quatre segments de droites qui font
partie d’une méme figure plane et invariable qui se meut dans son
plan satisferont toujours & une équation linéaire et homogéne.

Enfin, M. Darboux, & la suite du travail de M. Liguine, expose
aussi ses recherches personnelles sur ces questions : c'est par le calcul
qu'il étudie le premier les relations entre les aires balayées par les vec-
teurs qui joignent & un point fixe les points d’un plan mobile : il
trouve que ceux de ces points, auxquels correspondent des aires équi-
valentes, sont sur une circonférence, dont il définit géométriquement
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le centre dans le cas particulier oit le point fixe choisi est le centre
de la rotation finie par laquelle on pourrait amener le plan mobile de
sa position initiale & sa position finale.

Comme on va le voir, c’est par ’application d’'une méme méthode
géométrique générale que j’ai été conduit & retrouver la plupart de
ces résultats, qui se trouvent, par la méme, exposés didactiquement,
en méme temps que complétés de propriétés nouvelles, et méme gé-
néralisés dans la derniére partie de ce travail.

Ernest Durorco.
Fontainebleau, 19 décembre 18g4.

L

1. Définissons d’abord avec précision 'aire balayée par un vecteur
qui se deplace d'une maniére quelconque dans le plan, et dont la lon-
gueur méme est variable.

Dans le cas ot I'origine, o, du vecteur considéré, oa, reste fixe dans
le plan, la valeur de l'aire, que balaye ce vecteur dans un déplace-

ment élémentaire, devra évidemment étre représentée par la différen-
tielle

-

%o_(zz. dy,

dy désignant I'angle élémentaire dont tourne le sens du vecteur,
angle dont la valeur pourra é&tre positive ou négative, quand on aura
choisi un sens positif de rotation.

Dans le cas ot le vecteur ab se déplace d’une maniére quelconque
dans le plan, soit o le point ol la droite @b touche son enveloppe,
dans un déplacement élémentaire, I'origine, o, des vecteurs oa et 0b
peut étre considérée comme fixe : par définition, l'aire balayée par le
vecteur ab dans ce déplacement élémentaire sera égale 4 la différence
des aires balayées dans le méme deplacement par les vecteurs ob
et oa.

. La définition de cette aire élémentaire suffit 3 déterminer la valeur
de l'aire balayée par le vecteur ab dans un déplacement fini.
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Nous représenterons, désormais, cette aire par la notation
(ab).

2. Soit o un point fixe : si un point a décrit une courbe fermée, on

voit que, en grandeur et en signe, I'aire balayée par le vecteur oa est
indépendante du point o : sa valeur est, par définition, celle de laire
de la courbe fermée considérée.

3. On peut se rendre compte également que :

Si les deux extrémités, a et b, d’un vecteur ab décrivent des

courbes fermées (a) et (b), Paire balayée par le vecteur ab est, en
grandeur et en signe, égale a l'excés de Uaire de la courbe (a)
sur Uaire de la courbe (b).

4. Si, en particulier, la courbe (@) est 'enveloppe de la droite ab,
I'aire balayée par le vecteur ab sera, d’aprés sa définition méme (1),
égale 4 l'aire de la courbe (m), lieu des extrémités des vecteurs om,

identiques ayx vecteurs ab, et issus d’un point fixe, o.
On obtient, par exemple, ainsi la propriété suivante :

Soient (p) la podaire, relative a un point o, d’une courbe fer-
mée (a), el(q ) la podaire, relative au méme point, de la développée
de (a) : Uaire de la courbe (p) est égale a la somme des aires des

courbes (a) et (g).

8. De la définition, ou plutét des conventions de signes qui pré-

cédent, résulte immédiatement que, si un vecteur ab, de grandeur

fixe, tourne d'un angle ¢ autour d'un point fixe o, pris dans le plan,
on aura

(ab) =4(wb" ~wa’)s.
6. Si ¢ représente un point invariablement lié au segment ab, on
voit ainsi que . . _ '
(ab) + (be) + (ca) = o.
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Cette propriété, vraie pour une rotation infiniment petite, sera
vraie encore, par suite, pour un déplacement quelconque du triangle
abc, car on peut considérer ce déplacement comme résultant de la
succession d'une infinité de rotations élémentaires autour de centres
instantanés de rotation : nous pouvons donc énoncer la proposition
suivante :

Si un polygone fermé quelconque, abe. ..la, de grandeur inva-
riable, se déplace d’une maniére quelconque dans le plan, la

somme des aires balayées par les vecteurs ab, be, ..., la est nulle.

Plus généralément :

Un contour fermé quelconque balaye toujours une aire nulle.

6 bis. Les expressions des aires balayées par les trois vecteurs aa’,
bb et cc’, qui tournent d’un angle ¢ autour d’un point fixe v, peuvent
encore s’écrire ‘

(aa’) = ad’.x. 9,
(FE’) = 57;7 B.q),

(c—c-;) = ’C‘C—;.:{‘.?,

o, B et y désignant les distances respectives du centre w aux perpen-
diculaires élevées aux milieux des segments considérés. Comme ces
distances sont liées par une relation linéaire, indépendante du centre
w, on voit qu'il en est de méme des aires en question. En considérant
une suite de rotations élémentaires, on trouve donc ainsi que :

Les aires balayées par trois vecteurs qui font partic d’une
méme figure planc et invariable qui se meut dans son plan satis-
Jferont toujours a une équation linéaire.

1L

7. Supposons qu’un plan P se meuve sur un plan fixe Q. Soit @ un
point du plan P : nous nous proposons de chercher quels sont les
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points 7 du plan P, tels que, dans un déplacement donné de ce plan; les

vecteurs am balayent dans le plan fixe des aires équivalentes & une
aire donnée.

8. Un cas particuliérement simple est celui ou le déplacement
considéré du plan P est une rotation autour d'un point w :le lieu cher-
ché est alors une circonférence de centre v, pulsque (8), sil’on désigne
par ¢ I’angle dont tourne le plan P,

(am) = 4w’ — Ga’)s.

Cela posé, supposons que le plan P tourne successivement des
.angles ¢, ¢, ... autour des centres respectifs w,, ®,, ... pris dans

ce plan P : 'aire balayée par le vecteur am dans le déplacement total
du plan P aura pour valeur

.iz(o:,m%.rp,+w2m2.<,92+...\)——(<;—; qa,+07;¢—zl P+ )

ou, si Pon désigne par Y» le centre de gravité du systéme des points
®,, Oy, ... du plan P, considérés comme de masses proportionnelles
aux angles o, ¢,, ..., et par ¢ I'angle total de rotation du plan P,

2

(am) = 3(Fam’ — 7o ).

9. Or, un déplacement quelconque du plan P peut généralement
étre considéré comme formé par la succession d’une infinité de rota-
tions élémentaires : le point y,, devient alors le centre de gravité de
I'arc de courbe (©) formé dans le plan P par les centres instantanés
de rotation, & la condition d’attribuer & un arc quelconque de cette
courbe une masse proportionnelle & I’angle correspondant dont tourne
le plan P.

410. On peut obtenir le mouvement du plan P en faisant rouler sans
glissement l'arc (w) sur I'arc de méme longueur (w'), formé par les
centres instantanés dans le plan fixe Q; soient r et ' les rayons de
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courbure respectifs de ces deux courbes aux deux points correspon-
dants © et o' : il est bien facile de voir que la densité & attribuer a
Parc (@) autour du point w devra étre proportionnelle & la somme

l l L) ._0 . ’
s+ 4 la condition de considérer les rayons r et /' comme de

méme signe lorsque les cercles osculateurs correspondants deviennent
tangents extérieurement, et comme de signes différents dans le cas
contraire; on pourra, évidemment, avoir & considérer ainsi des arcs
de masse négative : d'une maniére générale, la densité en un point,

proportionnelle & la -somme% + ,—f;, devra changer de signe quand la

rotation du plan P changera de sens.

11. Sl arrive, par exemple, que P'angle total de rotation du
plan P soit nul, la masse totale de I'arc (w) le sera également, et le
point y, sera rejeté & l'infini, dans la direction de la droite qui joint
le centre de gravité des éléments de masses positives a celui des élé-
ments de masses négatives.

12. Notre raisonnement suppose que le plan P ne subit pas, pen-
dant son déplacement, de translation finie..

Supposons donc que le plan P, aprés avoir subi un déplacement-A,
constitué par une suite de rotations, subisse une translation. Soit ¢
I'angle total de rotation du plan P, et soit y, le point de ce plan tel
que l'aire balayée, pendant le déplacement A, par un vecteur quel-

conque, Y,m, issu de ce point, ait pour valeur

%ywmz.q).

Soient m, et m, les positions occupées par le point m au début et &
la fin de la translation : désignons par /la longueur m,m,; et par «
I'angle, positif ou négatif, que fait avec la direction m, m, le vecteur

Y, pendant la translation : 1'aire (7, 7) correspondant 2 la transla-
tion aura évidemment pour valeur

l.y,msina.
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L’aire totale balayée par y,m sera donc

2 7 .
YoM .¢ + L.y,msina,

L]
En égalant cette expression & une constante, on trouve pour le lieu

du point m une circonférence : son centre, O, est tel que le vecteur v, 0
ait pour longueur

=

et, quand ce vecteur occupe sa position finale, la direction m, m, fail
avec lui un angle droit positif.
L’aire totale balayée par le vecteur om aura pour valeur

—_—2

zom .9.

13. Les résultats précédents nous permettent d’énoncer le théo-
reme suivant :

Quand un plan P se déplace d’une manitre quelconque sur un
plan fixe, il existe toujours dans ce plan P un point o, tel que tout
vecteur du plan P balaye une aire équivalente  celle qu’il balaye-
rait si le plan P tournait autour du point o d’un angle égal & son
angle total de rotation pendant le déplacement considéré.

Ce point o est généralement le centre de gravité v, de Uarc (»)
Jormé dans le plan P par les centres instantanés de rotation w, en
supposant la masse d’un élément quelconque de cette courbe pro-
portionnelle a 'angle de la rotation correspondante du plan P.

14. Comme application immédiate de ce théoréme, nous nous
bornerons & énoncer la proposition suivante :

Une courbe fermée admettant un centre o roule sans glisser
sur une droite, jusqu’a ce qu’elle ait accompli une révolution :
Vaire balayée par un vecteur om entrainé dans le mo uvement est
égale @ Uaire du cercle de rayon om.
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En particulier :

Laire balayée par un rayon d’un cercle qui accomplit une révo-
lution en roulant sur une droite est égale & l’aire de ce cercle.

15. Un cas particulitrement intéressant est celui ou le plan P
revient, & la fin du déplacement, & sa position initiale, de sorte que
tous ses points décrivent dans le plan Q des courbes fermées : car,
alors (3), I'aire balayée par un vecteur om a pour valeur la différence
des aires des courbes fermées (m) et (o) décrites par ses extrémités.
Nous obtenons donc le théoréme suivant :

Si un plan P se déplace sur un plan Q, de sorte que tous ses
points décrivent des courbes fermées, tous les poinis de ce plan qui
décrivent des courbes d’aires équivalentes sont les poinis d’une
circonférence de cenire o : si le plan P a accompli n révolutions,
dans le sens positif, Uaire de la courbe décrite par un de ses
points, m, est équivalente a-Uaire de la courbe décrite par le centre
0, augmentée de la somme des aires de n cercles de rayon om.

Le centre osera généralement le centrede gravitéy, de la courbe
() formée dans le planP par les centres instantanés, pourvu que la
masse d’un arc quelconque de cette courbe soit proportionnelle a
Uangle correspondant de rotation du plan P.

16. Considérons le cas particulier d’une courbe fermée C’, qui
roule sans glisser sur une courbe identique, C, de sorte que ces deux
courbes soient constamment symétriques par rapport & leur tangente
commune au point de contact : le point o sera dans ce cas le centre
de gravité de la courbe €' si 'on suppose en chacun de ses points la
densité proportionnelle & la courbure, ou inversement proportion-
nelle & la longueur du rayon de courbure ; le point o est appelé le
centre de gravité des courbures de la courbe C.

Drailleurs, m’ étant un point lié invariablement & la courbe C’, soit
m le point correspondant lié¢ & la courbe C, avec lequel m’ coincide
lorsque C’ coincide avec C : ces points m et m' restent constamment
symétriques par rapport 4 la tangente au point de contact, de sorte

Journ. de Math. (5° série), tome I. — Fasc. IV, 1895. 59 '
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que la trajectoire (/') a une aire égale au quadruple de I'aire dela
podaire du point 2 relativement & la courbe C. Il résulte de 1a que :

Le licu des points m dont les podaires, relatives @ une méme
courbe fermée C, ont des aires équivalentes, est une circonfe-
rence, dont le centre est le centre de gravité des courbures de la
courbe C.

Remargque. — De cette propriété combinée au théoréme obtenu
au n° 4 résulte immédiatement la propriété suivante :

Une courbe fermée a le méme centre de gravité des courbures
que sa développée.

On voit donc que :

Des courbes fermées paralléles enire elles ont le méme centre de
gravité des courbures.

17. Nous signalerons encore le cas particulier suivant :

St le plan P est entrainé par le mouvement d’une courbe a
centre, qui roule sans glisser sur une courbe a centre de méme
longueur, le point o sera le centre de la courbe mobile.

On voit, par exemple, ainsi que :
L’aire de Uépicycloide a n rebroussements, décrit par un point
d’un cercle de rayon r, qui roule sur un cercle de rayon nr, a pour

valeur
(n+1)(n+2)nr.

L’aire de Uhypocycloide analogue sera de méme
* (r—1)(n—2)Tr.

18. Considérons, en particulier, dans le plan P, une droite A : si
'on connait les aires A et B des courbes fermées (a) et (b) décrites
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par deux de ses points, @ et b, il sera facile d’en déduire 'aire C de
la courbe (¢) décrite par I'un quelconque de ses points c.

Supposons,-en effet, que la droite A ait accompli n révolutions
dans le sens positif, et désignons par O I'aire de la courbe fermée dé-
crite parle point 0 (15). On a

A=0+n=n .—(En’
B=0O+nn —o—bn,
C=0 +nr.oc.
Grice 4 la relation de Stewart, on déduit de ces égalités que :

Les aires A, B et C des courbes fermées décrites par trots points
a, b et ¢ d’une droite qui se déplace dans le plan, et revient ¢ sa
position initiale aprés avoir accompli n révolutions, sont lies par
la relation

A.bc+B.ca+ C.ab+ nr.bec.ca.ab =o.

19. En particulier :

Si les exirémités a et b d’un segment de grandeur fixe décrivent
des courbes fermées d’aires équivalentes (par exemple, la méme
courbe) Uaire de la courbe décrite par un point ¢ de ab sera égale
a la valeur commune de ces aires équivalentes, augmentée de
Uaire

nw.ca.ch.
Si les points @ et b décrivent des courbes d'aire nulle, I'aire de la

trajectoire du point ¢ aura pour valeur : nx.ca.ch. On en déduit la
propriété suivante :

On suppose que les deux extrémités a et b.d’un segment ab, au
lieu de se déplacer sur deux droites, de sorte quun point quel-
congue du segment décrive une ellipse, se déplacent, dans des con-
ditions analogues, sur deux courbes quelconques : Uaire de la
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courbe fermée, décrite par un point quelconque du scgment ab,
sera égale a Uaire de Uellipse correspondante.

I1I.

20. Soit @ un point d’'un-plan Q, sur lequel se meut un plan P.
Proposons-nous de chercher quels sont les points 7 du plan P tels
que, dans un déplacement donné de ce plan, les aires balayées par les

vecteurs am soient équivalentes & une aire donnée.

21. Considérons d’abord le cas d'une rotation élémentaire : soit w
le centre de rotation du plan P, et dy I'angle élémentaire dont il
tourne. Désignons par p la projection du point a sur la perpendicu-
laire mp & wm, etpar A le point du plan P qui coincide avec le milicu
du segment aw : P'aire élémentaire balayée par am a évidemment pour
valeur

S
som.ap.dp,

les vecteurs wm et ap étant pris de méme signe, s'ils sont de méme
sens. Or, on a alors, en grandeur et en signe, 'égalité

— — —_—2 —2 _—2 —12
om.ap=hmn — ha =hm — ;a0 .
La valeur de 'aire élémentaire balayée par am peut donc s’écrire
T2 2
shm .dy — jaw .dy.

92. Dans le cas d’'un déplacement quelconque, soit w le point du
plan P qui devient son centre instantané de rotation & un instant
donné, soit o’ le point du plan Q, avec lequel w coincide & cet instant;
enfin, soit & le point du plan P qui coincide alors avec le milieu du
segmentaw'. De la méme maniére que plus haut (9), on déduit du
résultat précédent que le lieu cherché (20) pour le point m est une
circonférence : son centre, A, est le centre de gravité de l'arc de
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courbe (k), formé dans le plan P par les points %, pourvu qu'on
attribue aux différents arcs de cette courbe une masse proportionnelle
a I'angle de la rotation correspondante du plan P. :
Désignons, comme précédemment (10), par » et 7 les rayons de
courbure des arcs (®) et (w’) aux points correspondants w et «’.
Soit v, le centre de gravité de I’arc (v), dont on suppose la densité,

. : . 1 I s
au point ©, proportionnelle & la somme - + —- Considérons la courbe

(«) du plan P, dont les points a viennent successivement coincider
avec a, et attribuons & chaque arc de cette courbe une masse égale a
celle de I’arc correspondant de la courbe (w); soit y, le centre de gra-
vité de la courbe hétérogéne ainsi déterminée : le point A est évidem-
ment le milieu du segment ¥, Y.

La courbe («) n’est d’ailleurs autre que la trajectoire du point &
dans le plan P, supposé fixe, lorsque, dans un mouvement inverse de
celui que nous considérons, le plan Q est entrainé par le roulement
sans glissement de I'arc (') sur I'arc (w).

23. En désignant par ¢ 'angle total de rotation du plan P, on voit,

en intégrant I'expression de I'aire élémentaire balayée par am (21),
que, pour un déplacement fini du plan P,

(am)—tAm. . ¢ = const.,

la constante ne dépendant que de la position du point @ dans le
plan Q.

24. On peut donc énoncer le théoréme suivant :

Un plan P se déplace sur un plan Q : a désignant un point fixe

du plan Q, le licu des points m, du plan P, tels que les vecteurs am
balayent des aires équivalentes a une aire donnée, est une circon-
férence de centre A. .

Si ¢ désigne Uangle total de rotation du plan P, Uaire (am)
équivaut & Uaire (aA), augmentée de aire

%A—n—zz;q:.
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Le point A est géndralement le milieu du segment v,v,, déter-
miné comme il suit : on considére, dans le plan P, la courbe (v)
Sformée par les centres instantands de rotation, et la courbe («)
Jformée par les points a qui viennent coincider successivement avec
le point @ : les points v, et y, sont les centres de gravité de ces
courbes, pourvu gu’on suppose que la masse d’un arc quelcongque
sott proportionnelle & Uangle dont tourne le plan P dans le dépla-
cement correspondant. '

25. Dans le cas ou I'angle ¢ sera nul, le point A sera rejeté i I'in-
fini, et les circonférences concentriques, obtenues dans le cas général,
se réduiront 4 des droites paralléles.

26. Parmi les cas particuliers, le plus simple est celui ot le plan P
est entrainé par le mouvement d’une circonférence qui roule sans
glisser & Dintérieur d'une circonférence de rayon double, le point
¢étant au centre de cette circonférence fixe : car le point 2 (21) reste
fixe dans le plan P, et coincide constamment avec le centre de la cir-
conférence mobile. On déduit de la que, m étant un point quelconque
du plan P, le secteur d’ellipse balayé par le vecteur am est propor-
tionnel & 'angle de rotation du plan P.

27. Un autre cas simple est celui ot le plan P tourne d’un angle ¢
autour d’un point fixe, w : le point A est alors le centre de gravité de
'arc de cercle homogéne du plan P dont les points viennent successi-

vement coincider avecle milieu du segment wa.

28. On obtiendra d’ailleurs le point A en prenant le centre de gra-
vité d’un arc homogeéne, toutes les fois que le plan P sera entrainé par
le mouvement épicycloidal d’un cercle roulant sans glisser sur un
cercle fixe du plan Q admettant le point a pour centre.

29. Des résultats généraux obtenus, on déduit, comme nous avons
fait déja dans un cas analogue (18) que:

Les aires(ap), (ag) et (ar) balayées par les vecteurs ap, aq et
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ary qui joignent un point fixe, a, d trois poinis, p, q et r, d’une
droite mobile dans le plan, sont lides par la relation

(ap).qr+(ag) p +(ar) pg +59-qr-7p-Pg =0,

¢ représentant Pangle dont tourne la droite pgr dans son déplace-
ment.

30. En particulier, si r est le milieu du segment [—;—é, ona

(ar)=3[(ap) + (ag)]+39.7p.7g-
On déduit de 14, par exemple, la propriété suivante :

Soient C et C' deux branches de courbe indéfinies, limitées d
leur point commun, a, et telles que C coincide avec C' aprés avoir

tourné de I'angle ¢ autour du point a. Un vecleur pq, de grandeur
fixe, se déplace de sorte que ses extrémilés p et g resient respecti-
vement sur les courbes C et C' : le point a est a la fois la position
initiale du point q sur C’ et la position finale du point p sur C. Soit
r le milieu de pq : U’aire balayée par le vecteur ar est indépendante
de la courbe C, et a la méme valeur absolue que Pexpression

o

s(n—9)pg -

31. Considérons spécialement le cas ol le déplacement du plan P
sur le plan Q est tel que tous ses points m décrivent des courbes fer-

mées : dans ce cas, l'aire balayée par le vecteuram, égale & l'aire de
la courbe fermée décrite par le point m, est indépendante du point a.
La position du point A ne dépendra donc pas du point &, et ce point
coincidera oujours, d’aprés ce que nous avons vu précédemment (13)
avec le point Y.

On déduit de 14 le théoréme suivant :

Un plan Q se déplace sur un plan P, de sorte que tous ses points
décrivent des courbes fermées. Si l'on suppose que la masse d’un
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arc quelconque de ces courbes soit proportionnelle & ’angle corres-
pondant dont tourne le plan Q, toutes ces trajectoires hétérogénes
ont le méme centre de gravite.

Ce point coincide, en général, avec le centre de gravité de la
courbe formée dans le planP par les centres instantanés de rotation,
pourvu qu’on suppose encore la masse de tout arc de cetle courbe
proportionnelle & U’angle correspondant de rotation du plan Q.

Iv.

32. Quand I'angle ¢, dont tourne le plan P dans son déplacement,
n’est pas multiple de 2, il existe toujours dans le plan P un point s,
quirevient, & la fin du déplacement, & sa position initiale. Ce point,
décrivant une courbe fermée, I'aire balayée par le vecteur as, issu
d’un point quelconque, a, du plan Q, est indépendante du choix de
ce point @. Soit, dans le plan P, A le centre correspondant au
- point @ (24);0na

(as) = (aA)+1As.0
et
(am) = (@) + L Am "o,
En posant
(as) — (am) = ;K9
on a donc

-2 —2
As — Am =Kz
On voit, par suite, que :
Toutes les circonférences (m)du plan P qui correspondent (24)
aux différents points a du plan Q et & une aire donnde coupent
orthogonalement le cercle de centre s, dont le rayon K, réel ou

imaginaire, est tel que $K*9 représente I’excés sur Uaire donnée
de Uaire dé la courbe fermée décrite par le point s.

33. Pour obtenir le cercle correspondant au point a et & une aire
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donnée, il suffira donc de connattre son centre A. Nous allons étu-
dier comment les points A du plan P correspondent aux points @ du

plan Q.

34. Nous ferons d’abord la remarque suivante.
Le plan P subissant un déplacement donné, soient, dans le plan Q,
m, et m, les positions initiale et finale d'un point m du plan P. Le

lieu des points @ du plan Q, tels que les aires (@m) soient équiva-
lentes, est visiblement une parall¢le a la droite m,m,.

38. Soit @ un point quelconque de cette parallele (@), et soit A le
point correspondant du plan P. La différence

(as) ~ (am)
étant constante, il en est de méme (24) de la différence
As — Am,
ce qui prouve que les points A ont la méme projection sur la

droite sm.

Ainsi, quand le point a se déplace, dans le plan Q, sur une paral-
léle (@) & m, mi;, le point A se déplace, dans le plan P, sur une per-
pendieulaire (A) & sm.

36. Soit, dans le plan Q, s, la position initiale et finale du point s ;
comme I'angle m, s, m, est précisément égal & I'angle ¢, on voit que,
si l'on fait tourner le plan P de 'angle g & partir de sa position initiale,

la droite (A) deviendra paralléle & sa correspondante (a). Par suite :

La conespondance des pomts a et A donne lzeu, dans les plans
Q et P, ades figures semblables.

-

37. Soient (a) et (b) deux droites du plan Q paralléles & m, m,,
- (A) et (B) leurs correspondantes dansle plan P, « et 8 les points ot
Journ. de Math. (5 série), tome I. — Fasc. IV, 1894, 6o

<
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ces derniéres coupent sm. Soit g la distance des paralléles (a) et (),
soit p celle des paralléles (A) et (B). On a évidemment

(am)—(bm)={q.m,my=q.m,s,.sin z-

D’ailleurs

(am)—(as)=14.¢(Am — As') = L. . ms(mu — as),
(bm) - (Bs) = 3. 4(Bum’ — Bs") = 1. g.ms(mf — Bs).
On a donc encore
(am) — (bm) = p.ms.af = g.ms.p.
On voit donc que

g.sinjp==p.q.
Par suite :

Le rapport de similitude de deux figures correspondantes (A)
el (a) e pour valeur
é sin z
38. Ces résultats, bien évidents quand le déplacement du plan P
est une rotation, peuvent d’ailleurs étre déduits de ce cas particulier.
Soit, en effet, D un déplacement quelconque du plan P, dans
lequel il tourne de I'angle ¢; soit s le point de ce plan qui revient, &
la fin du déplacement, & sa position initiale, s,; désignons par P,
et P, les positions initiale et finale du plan P sur le plan Q. Considé-
rons les rotations R, et R, du plan P autour du point s,, qui améne-
raient ce plan, la premiére, de la position P, & la position P, en le
faisant tourner de l'angle ¢; la seconde, de la position P, & la posi-
tion P,, en le faisant tourner de I'angle (2w — ¢). Soit, enfin, pour
le déplacement D, v, le centre de gravité de I’arc hétérogéne (w) (24).
Désignons par A, A, et A, les centres qui, dans le plan P, corres-
pondent (24) au point @ du plan Q pour les déplacements D, R,
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et R,. Supposons les masses des deux premiers proportionnelles a
I'angle ¢, la masse du troisiéme, proportionnelle & I'angle (27 — ¢).

Si le plan P subit successivement les rotations R, et R,, le point o
(15) correspondant & son déplacement total coincide avec ¢; s'il subit
successivement le déplacement D et la rotation R,, le point o corres-
pondant de méme au nouveau déplacement total devient le centre de
gravité v des points ¥, et s, supposés de masses proportionnelles aux
angles 9 et (2% — ¢). Par suite (31) le point s est le centre de gra-
vité des masses A, et A,; le point v, celui des masses A et A,.

On déduit de la que le vecteur AL A est identique au vecteur Eﬂr—w,
ce qui redonne les résultats précédents. On voit, de plus, que le
point y,, est le point du plan P qui correspond au point s, du plan Q.

39. Comme le point A est (24) le milieu du segment y,y,, on
obtient donc le théoréme suivant :

Un plan Q se mouvant sur un plan P, soit (a) la trajectoire deé-
crite par Uun quelconque, a, de ses points. En supposant la masse
de tout arc de cette courbe proportionnelle a l’angle correspondant
dont tourne le plan Q, on fait, dans le plan P, correspondre au
point a, le centre de gravité, v,, de cetle trajectoire hétérogéne.

Deux figures correspondantes, (a) et (Y,), sont semblables; de
plus, la figure (v,) devient homothétique de la figure (a), le rap-
port d’homothétie élant

sin 2
2

2

ore]

st le plan Q iourne, & partir de sa position initiale, de l’azwle -'-,

o désignant son angle total de rotation pendant le deplacement
conszdere :

De plus, au point du plan Q, qui décrit une trajectoire fermée,
correspond le centre de gravité de la courbe Sformée dans le plan P
par les cenires instantanés de rotation, supposés de masses propor-
tionnelles aux rotations élémentaires correspondantes.
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V.

40. Pour compléter cette étude, nous indiquerons rapidement une
généralisation des résultats précédents : nous ne développerons pas
les démonstrations, & cause de leur analogie avec celles que nous avons
données jusqu'ici. :

41. Soient P et Q deux plans mobiles qui éprouvent sur un plan
Jize des déplacements simultanés. Soil a un point quelconque du

plan Q : le lieu des points m du plan P, tels que les vecteurs am ba-
layent sur le plan fixe des aires équivalentes @ une aire donnde, est
géncralement une circonférence, de cenire A.

Soit ¢ l'angle total de rotation du plan P : Uaire balayce par le
vecteur am équivaut ¢ Uaire balayée par le vecteur aA , augmentée
de Uaire
(Amg.

(AR

A un instant quelconque du déplacement, on considére, dans le
plan P, son cenire instantané de rotation, v, le point <, qui coincide
avec le centre instantané de rotation, 0, du plan Q, enfin, le
point a, qui coincide avec le point a. St Uon attribue a tout arc de
la courbe (w) une masse proportionnelle a Uangle correspondant
Ay dont tourne le plan P, @ tout arc de la courbe (¢), une masse
proportionnelle & l’angle correspondant, Ay, dont tourne le plan Q,
enfin, & tout arc de la courbe («), une masse proportionnelle é la
différence correspondante (Ap — AY), le centre A scra le centre de
gravité de I’ensemble des arcs hétérogénes (w), () et (a).

42. On retrouve, comme cas particuliers, les résultats obtenus
précédemment, d’abord, en faisant coincider constamment les plans
P et Q, puis en supposant le plan Q fixe.

v | :

43. A un point, @, du plan Q, correspond, dans le plan P, le
centre de gravité ¥, de I'arc hétérogéne (a) : le théoréme du n° 39
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montre que, & une figure, (a), du plan Q, correspond ainsi dans le
plan P une figure semblable (v,) : ces deux figures deviennent homo-

thétiques, si les plans P et Q tournent seulement, & partir de leurs
positions initiales, des angles g et %’ le rapport d’homothétie étant

—?_-i Sin?-—q”
¢—v 2

On déduit de la que :

La correspondance des points a et A donne lieu, dans les plans
Q et P, a des figures semblables. Sig et § désignent les angles dont
tournent respectivement les plans P et Q dans leurs déplacements
simultanés, ces figures deviennent homothétiques, quand on fait

\J . . .
tourner les plansP et Q des angles ¥ et X & partir de leurs positions
P gles, et ap P

initiales; enfin, le rapport d’homothétie des figures (A) et (a) a
pour valeur
1 . o—4
S sin

VI

44. Dans la derniére Partie de ce Mémoire je vais exposer une
généralisation fortintéressante des propriétés que j'ai obtenues dans la
deuxiéme Partie : je vais supposer maintenant que la figure mobile P
n’est plus assujettie a garder une grandeur invariable, mais qu’elle est
astreinte seulement & rester semblable & une figure donnée, II.

43. A un tel déplacement correspond une nolion analogue & celle
du centre instantané de rotation : le point o qui permet d’amener par
une rotation une figure P, de grandeur invariable, d'une position P,
4 une position P, est-tel que, si @, et. b, désignent les positions ini-
tiales, a, et b, les positions finales de deux points quelconques a et &
de la figure P, les triangles oa, b, et 0a, b, sont égaux; on peut remar-
quer en outre que, si p désigne le point de rencontre des droites a, b,
el @, b,, les quadrilatéres pa,a,0 et pb, byo sont tous deux inscripti-
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bles & des circonférences. Supposons maintenant que les figures P,
et P, sont simplement semblables entre elles; soient a, et a,, b, et b,
deux couples de points homalogues : le second point d’intersection, o,
des circonférences circonscrites aux triangles pa, a, et pb, b, est visi-
blement tel que les triangles oa, b, et 0a, b, sont semblables. On peut
done, par une rotation autour de o, amener P, 4 &tre homothétique
a P, par rapport 4 o.

SiP, et P, sont deux positions infiniment voisines de la figure II,
dans le déplacement que nous avons envisagé, p devient le point ou ab
touche son enveloppe, et le point o est le second point d'interscction
des circonférences qui passent par p et qui touchent respectivement
en a et b les trajectoires (a) et (b).

La considération de ce point, qu’on peut appeler le centre instan-
tan¢ d’homothétie rotatoire, va nous permettre d'appliquer au cas
d’une figure de forme invariable les méthodes employées dans ce qui
précede.

46. 11 est bien évident, en effet, que I'aire décrite par un vec-
teur am pendant un déplacement élémentaire de la figure P, différe
d’infiniment petits d'ordre supérieur de I'aire que décrirait le méme
secteur, si, sans varier de grandeur, il ne faisait que tourner du méme
angle autour du point o. Soit dp cet angle de rotation élémentaire;
on aura (3)

-—

d(am)= '(5;1- - oa-> dgp.

Soit, dans la figure II, @ '’homologue du point de P qui coincide
avec o; soient a et p les homologues de @ et m; enfin soit K le rap-
port de similitude des figures P et II. On aura

9

d(am)=3(op"— wa’ K2 d.

47.; Doit y le centre de gravité de l'arc (w) de la figure II, corres-
pendant & un déplacement fini de la figure P, chaque élément de
Tarc (w)-ayant unie masse proportionnelle a la différentielle corres-
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pondante K2dg. On aura

(@m) =41 -7 [ " Keds.

48. Nous ne considérerons que le cas particulier ou toutes les tra-
jectoires (m) sont des courbes fermées. On obtient alors le théoréme
suivant :

Si une figure P se déplace dans le plan en restant semblable a
une figure donnée Il, le lieu des points p. de la figure 1L, dont les
homologues m décrivent des trajectoires d’aires équivalentes, est
une circonférence, de centre Y.

La différence des aires (a) et (b), correspondant & deux potnis a
et 3, est proportionnelle a la différence des carrés des longueurs
Yo el yp.

49. On peut obtenir ainsi un grand nombre de théorémes. Par
exemple :

Par chaque point a d’une courbe fermée (a) on méne deux
droiies, ab et am, faisant avec (a) des angles donnés; on suppose
que Uextrémité b du vecteur ab déerit une courbe Sfermée (b) de
méme aire que a. Soit m le point oz am coupe la circonférence qui

louche (a) en a et qui passe par b : la courbe (m) a la méme aire
que les courbes (a) et ().

On peut pour (&) choisir la courbe (@) elle-méme. Quand I'angle
de @b avec (a) tend vers zéro, le cercle considéré tend vers le cercle
osculateur en @. On obtient alors, 4 la limite, le théoréme suivant :

Par chaque point a d’une courbe (a) on méne une droite am,
Sfaisant avec elle un .angle donné, qui coupe au point m le cercle
osculateur en a : les courbes (a) et (m) ont des aires équivalentes.




