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DEVELOPPEMENT DE LA FONCTION PERTURBATRICE. 359

Sur les expressions approchées des termes d’ordre élevé
dans le développement de la fonction perturbatrice;

Par M. N. COCULESCO.

INTRODUCTION.

Il arrive souvent que, les moyens mouvements étant presque com-
mensurables, certains termes de la fonction perturbatrice acquiérent,
malgré leur rang élevé, une importance considérable par suite de la
présence de petits diviseurs. Il peut é&tre nécessaire de les calculer,
sans connaitre les termes qui précédent; mais le plus souvent on n'a
besoin que d’une valeur approchée, parce qu’il nes’agit que de recon-
naitre si ces termes sont négligeables. :

La question de trouver I'expression approchée de ces termes a
déja a plusieurs reprises occupé les géométres. Cauchy s’en est
occupé. Dans une série de Mémoires, insérés dans les Comptes rendus
de I’ Académie des Sciences ('), I'lllustre géométre fit connaitre de
remarquables expressions approchées, qui lui permirent de retrouver
les résultats du grand Mémoire de Le Verrier : Sur la grande iné-
galité de Pallas (*).

Puiseux, Sur le développement en série des coordonnées des pla-

() Voir Comptes rendus, t. XIX et XX.
(?) Annales-de I’Qbservatoire de Paris, t. 1.

Journ. de Math. (5° série), tome 1. — Fasc. IV, 18g5. 47
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nétes et de la fonction perturbatrice (') et Bourget, Sur le dévelop-
pement algébrique de la fonction perturbatrice (*), s’en occupérenl
également.

Dans son beau Mémoire Sur les perturbations de Pallas par
Jupiter (*), M. Tisserand fit entrevoir (p. 30-31) les conséquences
fécondes auxquelles on serait conduit dans cet ordre d’idées, en pre-
nant pour base le remarquable Mémoire de M. Darboux : Sur l’ap-
proximation des fonctions de trés grands nombres (*). « La re-
cherche de la partie principale d'un coefficient de rang élevé dans la
série dépend, uniquement, des singularités que présente la fonction
sur les circonférences qui limitent la convergence. »

C'est le principe fondamental de ce beau Mémoire.

C'est M. Flamme qui, le premier 4 notre connaissance, utilisa la
remarque de M. Tisserand. En prenant pour base de ses recherches
le Mémoire de M. Darboux, M. Flamme obtint de remarquables
expressions approchées et donna méme une extension du théoréme de
M. Darboux (®).

Mais pour pouvoir appliquer ce théoréme, qui n’était applicable
quaux fonctions d'une seule variable, tandis que la fonction pertur-
batrice doit étre développée en fonction de deux variables (les deux
anomalies moyennes), M. Flamme fit la remarque qu'il suftisait d’¢-
valuer par approximation les coefficients des termes généraux dans
le développement de la fonction '

’Jte(lf-wne v—nt)i.

ry [, € et { désignent, respectivement, le rayon vecteur, l'anomalic
vraie, I'anomalie excentrique et 'anomalie moyenne d'une des pla-
nétes. En d'autres mots, il fallait évaluer par approximation I'expres-

-

(1) Journal de Liouville, 1860.

(?) Journal de Liouville, 1873, et Annales de U’ Qbservatoire, t. VII.

(3) Annales de I’Observatoire, t. XV, et Mécanique céleste, t. I, Chap.
XXVIIL ’

(*) Journal de Mathématiques, 1878.

(*) Framug, Thése inaugurale. Gauthier-Villars, 1887.
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sion de
,J: e(lf +me)i .

Dans ces conditions la fonction sous le signe f dans ’expression
suivante du coefficient de ",

+1
1 . R
P” e = f Pk lf+me)i p-nli dﬁ,
-7

pouvant s’exprimer en fonction d’une seule variable, M. Flamme
applique le théoréme de M. Darboux et arrive & I’expression cherchée
(votr p. 66). '

Clest dans ses remarquables recherches sur la non-existence des
intégrales uniformes, dans les problémes de la Dynamique (‘), que
M. Poincaré fut amené a s'occuper de la question des expressions
approchées des termes trés éloignés dans le développement de la fonc-
tion perturbatrice.

11 s’agissait de vérifier son important théoréme : « qu'il n’existe pas
de relation, dans le probléme des trois corps, entre 2n — 4 (n =6,
2n — 4 =8 pour le cas général) quelconques des expressions sui-
vantes

(a) (Czn,m)"'(cr.;n',cn')-” ) (n$ n= o, =+ I *= 2y ‘);

en désignant par G}, ., le terme principal, terme d’ordreé |m + m’ [y

de C,, ' dans son développement en série procédant suivant les puis-
sances croissantes des excentricités et des inclinaisons; le terme prin-
cipal de G, , ¢tant C; . :

Cnm est le coefficient général du développement de la fonction
perturbatrice sous la forme

(b) F‘ =3 Cm n eJ—'—'? L (@4-g-+8) +m" '+g'+ o

c .
(m = an, m’ = cn, — —voisin du rapport des moyens mouvements) .

(*) Voir les Nouvelles Méthodes .de la Mécanique céleste, t. 1, Chap. V, et
aussi le célébre Mémoire du tome XIII.des Acta mathematica.
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M. Poincaré montre (p. 265) qu'il suffira de vérifier que les déter-
minants A, = o, A, étant formé avec neuf lignes quelconques, prises
dans le Tableau (a) correspondant aux diverses valeurs de 7.

C’est pour faire cette vérification, dans le cas surtout de coefficients
appartenant & une classe singuliére, qu'il fallait avoir des expressions
approchées des coefficients. Les expressions obtenues par M. Flamme
auraient suffi, si I'on n’avait été obligé de les appliquer au développe-
ment (b)de F,. ,

M. Poincaré reprit alors le probléme du développement approché
de la fonction perturbatrice et montra (*), d’une maniére ingénieuse,
comment on pouvait appliquer directement a la fonction perturbatrice
le théoréme de M. Darboux.

L’étude de la fonction d’une seule variable @(z), & laquelle
M. Poincaré raméne la fonction perturbatrice, et les conséquences
qui en découlent sont d’une grande importance pour la théorie des
perturbations.

Clest dans ce but surtout, et pour compléter quelques-unes des
recherches, sommairement indiquées, de I'illustre géométre, que nous
avons entrepris le présent travail. La difficulté, cependant, du pro-
bléme, difficulté qui provient d’'une part de la résolution des équa-
tions (de degré trés élevé en général), donmnant les singularités
de ®(z), d’autre part de la discussion trés délicate pour reconnaitre
quel est, parmi les points singuliers, celui qui convient au probléme,
nous a obligé & ne considérer, dans un premier travail, que quelques
cas particuliers.

Aprés avoir ‘repris et développé le cas plus simple oi l'une des
excentricités était supposée nulle et I'autre petite, nous avons consi-
déré le cas ou aucune des excentricités n’était nulle. Une discussion
irés délicate, que nous espérons avoir faite complétement, nous a
amené & reconnaitre que, sauf dans des cas limites qui n’auront pas
lieu dans le systéme solaire, on n’aura qu'un seul point singulier sur
le contour de convergence.

Ce point sera, suivant les cas, le point appelé p. ou bien le pomt o.

(1) Pomcum Comptes rendus, t. CXII, et les Méthodes nouvelles de la Mé-
canique céleste, t. 1. Chap." VL
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Clest donc l'affixe du point . et de son réciproque p’, ou bien les
affixes respectifs de a et de «’ qui vont définir le domaine de conver-
gence de @ (z) et permettront d’obtenir la partie principale du coef-
ficient général de ®(z), dans son développement en série de Laurent.

Pour terminer nous citerons, dans le méme ordre d'idées, les
recherches de M. Hamy, inspirc'es également par le Mémoire de
M. Poincaré. M. Hamy est arrivé a des résultats extrémement inté-
ressants, dont il a fait plusieurs applications ('). Tout récemment un
Mémoire, Surle développement approché de la forction perturba- -
irice, du i 'éminent astronome, a paru dans le Journal de Mathé-
matiques, t. 11, 1894.

Enfin, quoxque dans un autre ordre d’idées, le Mémoire de M. Ra-
dau : Sur les inégalités planétaires du mouvement de la Lune (*)
et le Mémoire de M Hadamard : Sur les fonctions données par leur
développement de Taylor (*), dans lequel I’éminent auteur se pro-
pose le probléme, inverse de celui de M. Darboux, de « déterminer les
points critiques situés sur le contour de convergence ».

L.

1. Les équations de la Dynamique, mises sous la forme canoni-
que, sont

(1) doy _ OF - dy,__ OF,
at — ay;’ dt — oz’

Pindice ¢ prendra les valeurs 1, 2, 3, ..., 6 dans le cas du Probléme
des trois corps; F est une foncuon uniforme des six pau‘es de varia-
bles conjuguées x;, y;.

Dans ce cas, les équations (1) admettent une intégrale paruculzere
(entendue dans le sens de M. Pomcare) qui- est la fonction F elle-
méme; c'est l'intégrale des forces vives; ensulte, trois autres inté-
grales, les intégrales des aires.

(') Hamy, Comptes rendus, t. CXV et CXVIIL; Bull. astr., t. X.
(*) Annales de I’Observatoire de Paris, t. XXI.
(?) Annales de I’Ecole Normale supérieure, 1893.
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.M. Poincaré a démontré, dans ses remarquables recherches sur la
non-cxistence des intégrales uniformes, qu'il n'existe pas dans le
probléme des trois corps, d’autre intégrale analytique et uniforme,
en dehors des quatre intégrales précédentes.

La fonction I est, en faisant usage des notations de M. Poincaré,
la suivante

(2) F= yi+yi+o: " Yioityi  mamy  mgmy  mgmy
2p af’ pa pb ®e

a, b, c désignant les cotés du triangle formé par les trois corps, m,,
my, mg, les masses respectives; quant aux autres quantités, elles sonl
~définies comme il suit

ﬁ . mym, p, _ (my 4 my) ms
(a) = my+my T Mg+ g+ g
a
dx,. , dxy k=1,2,3
yi=8 yi=Wg ("Zese)

le systtme d’axes adopté étant celui de M. Tisserand (Mécanique
céleste, t. 1, Chap. I'V), qui permet de pouvoir obtenir des équations
différentielles ne contenant plus, dans le second membre, que les dé-
rivées partielles d'une seule et méme fonction.

Les variables qui figurent dans I'expression (2) de F, pouvant
s’exprimer en fonction d’autres nouvelles variables, les variables
képlériennes

BL’ BG, 393 B/Lla BlG'7 B'@I§

. ’ ’
l, 8 0, r, F4) v,

()

la fonction F dépendra des quantités m,, m,, m,, | et des varia-
bles (). '

Les masses m,, m, étant, en général, trés petites par rapport a la
masse 71,, on pourra poser

(¢) S My ==y, Mgy = O, |
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ct l'on regardera a., a, et aussi B, B comme des quantités finies et
trés petit.

Cela étant, F deviendra, finalement, une fonction de m,, a,, a,,
des variables képlériennes (b) et du paramétre trés petit g et pourra
alors se développer en série, suivant les puissances de ., sous la
forme

(3) F=F,+pF +.....

Le probléme général de la Dynamique se raméne a I'étude des équa-
tions (1), en supposant pour F un développement de la forme (3),
IF étant une fonction périodique des y, F, fonction des x seulement.

Remarque. — Si dans I'expression de I' on fait ' =o0 ou bien
8 = o, le mouvement devient képlérien.

Pour f#' = o, par exemple, on aura le mouvement képlérien d’une
massc Bu., autour d'une masse m, + m, placée a 'origine.

2. Proposons-nous, maintenant, de développer la fonction pertur-
batrice F¥,. Mais avant, nous allons envisager ses différents termes et
n'en relenir que ceux qui nous seront utiles pour notre sujet.

Pour avoir I'expression de F,, nous n’aurons qu’é ramener |’expres-
sion (2) de IV & la forme (3) en développant en série de g chacun de
ses termes qui sont fonctions de ce paramétre.

Examinons donc chacun de ces termes séparément, en tenant
compte du systéme d'axes choisi.

D’abord, les quantités (¥} +y; + ;) et (¥ +y% +52) ne con-
tiennent, évidemment, pas le paramétre ; le cOté ¢ = Vo? + 22 +
non plus. Les quantités «,, @, en dépendent, au contraire, en vertu
des relations (a) qui donnent, en ayant égard aux relations (),

a, =f +-—y.+...,

oy =3 +?:p.+....
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Il en est de méme des quantités %, ; on a, en effet,

I
a
— 1 _ 1

\/1_3_51-4— r*— arBDeosw  V(r—AD)'-+r2—3r'(r —AD) cosw

I

p—t — —=
\/r’-f- r'*—arr'cosw +AD — 2AD (7 — 7' cosw)

Q-

)

les quantités r, 7', © sont bien indépendantes de w, mais la quan-
tit¢ AD en dépend, car on a évidemment

(d) AD= " _,p=_"%F .
)nl+ mz "y + a,p.
[ 1 ' , e
Pexpression de — pourra, par conséquent, se développer en série de g,
le terme indépendant de p. étant

I

Vit r't*—rr' cosw

Si nous remplagons de méme AD par son expression (d), dans
1

) 11; deviendra aussi une fonction de . et le pre-

\/1’2+ AD +2r'AD cosw
. . r_» I i3

mier terme de la série sera évidemment -;; quant au second, il nous
sera donné par

I d o

d(— - (——-’L——>rr’ cosw
b) _  dp\my+aop
dp. —

E
(r"+ K_ﬁ2+ 2r'AD cos«n)1

(oulon a négligé un terme qui n’aurait rien donné, quand on aura
fait o = o).
Le coefficient cherché sera donc
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On aura finalement les deux développements suivants :

I 1 .
&= Vs LR

arr! cosw

1

_ B rcoso
;=

Lo el e

N . s I I '
Sil'on remplace, maintenant,a,, ., - + par leur développement en
’ 929 %39 a b

série de ., dans'expression ( 2)de I et sil’on compare ensuiteavec(3),
on aura l'expression cherchée de la fonction perturbatrice F,. Cette
expression est la suivante

(4) F,=— E___ B g B8 reosw

3
1'2+ Pt —ory cosw /

Remarquons tout de suite que les deux premiers termes ne donne-
ront pas, dans le développement de F, suivant les deux anomalies

cos )
moyennes, des termes en _ ' (ml+ m'l’). Nous n'avons pas a en

tenir compte. Quant au dernier terme, il peut s’écrire de la maniére
suivante : Appelons y l'inclinaison des deux orbites, v, v’ les longi-

tudes vraies comptées & partir du neeud,  I'angle des rayons vecteurs
r et 7', on aura

COS == COSY COSY' + sinv sinv’ cosYy,

ct, par conséquent,
r cosm s'mv'
9@ = B’ (r cosy 2% 4 cosyr sinv )

On n'aura plus, de cette fagon, que des facteurs dépendant chacun
d'une des seules variables [ ou . Nous n'en tiendrons pas compte
non plus. Du reste, on peut démontrer (*) que la présence de ces
termes ne modifiera pas sensiblement le résultat final. \

(1) Poincark, Les méthodes nouvelles de la Mécanigue céleste, t. 1, p. 324,
Journ. de Math. (5* série), lome I, — Fasc. 1V, 18g5. 48
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Il ne reste plus que l¢ terme

o= et

124 r't— a2 cosw

. ' , cos
qui donnera, dans le développement, des termes en  “(ml+ m'l').

Ce terme est ce qu'on appelle la partie principale dela fonclion
perturbatrice; c’est de son développement que nous allons nous oc-
cuper.

Remarque 1. — En général, c’est la fonction R, =% ("), que

I'on désigne de ce nom. Mais il est clair qu'en passant de l'une &
‘I’autre, on n’aura qu’une légére modification des éléments des orbites.
La différence tient a ce qu’on a négligé des termes en (* dans I'expres-
sion de F,. D'ailleurs, dans les applications qui vont suivre, c’est R,
(uia été considéré.

Remarque Il. — T s’annule pour § ou ' =o. Cela devait étre
ainsi, car nous avens vu que le mouvement devenait, alors, képlérien.

3. On exprime généralement, dans les applications, les coordonnées
d’'une planéte par des séries de cosinus et de sinus de multiples de
l'anomalie moyenne.

Il en résulte que, si 'on substitue, a la place de ces coordonnées,
leur développement dans la fonction perturbatrice F,, elle deviendra
une fonction périodique des deux anomalies et pourra, par conséquent,
se développer en série de la forme suivante :

~ cos 3 ]
(5) | F,= E’K"'""'sin (ml+m'l +me +m's'),
l, I' désignant les deux anomalies moyennes; s =g + 6, o’'=g'+ 0’
les longitudes des périhélies (8, # étant les longitudes des nceuds);
enfin, m, m’ deux nombres entiers quelconques.

(') Tisserano, Mécanique céleste, t. 1, p. 292.
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Il nous sera avantageux, pour ce qui va suivre, de prendre pour va-
riables, au lieu des anomalies elles-mémes, les exponentielles imagi-
naires dont elles sont I’'argument et écrire

? = 1 (ml+m'l —
F,= ZAm,m’C‘/ Timd+mt' e+l e )y .
on pourra méme poser

iy 1 oral
Am,m’ eJ—l(mm’ ) = Bm,m')

ct 'expression deviendra finalement
' (6 ) Fl = )X Bm,m’ gV~ tumben )’

les coefficients B, étant des fonctions du rapport des grands
axes, des deux excentricités, de I'inclinaison des orbites, des longi-
tudes des périhélies et des nceuds.

4. Revenons, maintenant, & la partie principale F! de la fonction
perturbatrice. Son expression sera, évidemment, cette partie de I'ex-

pression (6), pour laquelle le rapport g—, est fini. On aura donc

0 = '
( 7) F‘ =X Cm,,,,'es/ t{rml-m ;')’

et, par conséquent,
' M 2T . ’
( 8) C‘m.m’ = Xy f f F? e V-imbem'd) I gfr
0 0 .

Voici, maintenant, les hypothéses que nous allons faire. Il s'agit de
calculer une expression approchée du coefficient G,,,; en supposant
que le terme correspondant est de rang irés élevé. Il en résulte que
m, m’ devront étre des entiers trés grands et, comme leur rapport est
fini, on pourra toujours écrire

- om __an+b

—

! cn+d’

8
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a, b, ¢, d étant des entiers finis et » un entier trés grand. De plus,
nous nous placons dans le cas des inégalités & longue période. Clest
le cas pour lequel, avons-nous dit, ce genre de recherches offre parti-
culiérement un grand intérét. Nous aurons donc, si nous désignons
parv et v’ les moyens mouvements des planéies, la relation approxima-
tive

av +cv=o.

I1 faudra, par conséquent, que les entiers @ et ¢ n'aient pas le méme
signe. Nous supposerons, par exemple, ¢ > o et ¢ < o.

Ces hypothéses faites, reprenons I'exponentielle qui figure dans(7)
et écrivons-la comme il suit :

cﬁ (mlsmery e\/—_c (@+el'in e e\/:a'(bl+dl') .
Posons, avec M. Poincaré,
. V1! — &, N — g ZE,
Pexpression (7) de F| deviendra

d
¢ sbe—d
(7’) F‘: = 2Can+b,cn+d znz‘ tbc a’

et, si nous posons encore
d

(e) F?tafl-bc-«z_&':l?(z, 1),

on aura pour cxpression de C,.p opea :

) Cossorea= —e [ srds—t [ F
(8) Can+6,cn+rt"' 2\/—:“.[‘“:‘ d 2\/-—[‘“‘/‘:‘=11 (Z, [)dlj

les intégrales étant, cette fois, prises le long des circonférences |3] =1
et l t|=1.
L’intégrale le long du contour |¢| = 1 deviendra, une fois effectuée,
une fonction de z seulement. Soit ®(z) cette fonction

0 . ®(z) = Ni——_:—m [ _F(z0)dy
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et, par conséquent,

(fi) Can-w,cn+d = - ~/|‘.] ~IZ-"~‘ i) (z ) dz.

2y —IT7

Supposons, maintenant, que ®(z) puisse se développer en une
double série, sous la forme

(D) ®(z)=ZLa,3"+ Za_,z7".

En remplacant son développement dans (g) et en remarquant que
toutes les intégrales telles que

f "2V dz

sont nulles, sauf celle qui correspond & v = n, quiest égaled 2y/— 17,
on trouve

( I 0) Can+6,cn+d = Q,.

Le probléme se raméne ainsi & la recherche de I'expression appro-
chée de a,, c’est-a-dire & la recherche des singularités de ®(z);
'expression approchée de @, dépendant uniquement de la nature des
points singuliers de ®(z) sur les contours de convergence.

5. Supposons, en effet, que nous ayons trouvé les points singuliers
de ®(z) et soient « et &’ deux de ces points situés sur la circonfé-
rence R et B, " deux autres points situés sur la circonférence
r(r<R).

Voici quel est, maintenant, le théoréme de M. Darboux ('), géné-
ralis¢ par M. Flamme (?).

Le développement de ®(z) dans le voisinage des points a, &' étant

(') Danvouvx, Mémoire sur Uapproximation des fonctions de trés grands
nombres (Journal de Mathématiques, 1898). -
(®) Framuz, Thése inaugurale; Gauthier-Villars, 1887,
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connu; appelons ®,(z), ®,(z) les parties non holomorphes de cc
développement, correspondant aux deux points singuliers.

Soient .
®,(z)=2a,s", P®y(z)==Ia,s",

les développements de ces fonctions 4 lintérieur du contour R el
méme sur le contour, sauf respectivement aux points «, &', Il est
clair que la différence '

¥ (s) = 0(5) — Bu(5)— Bu(3) = 2(a,— @, — @}) "+ Za_p5 "

sera holomorphe méme aux points « et «’. Dans ces conditions
M. Darboux démontre que
. K
’ "
}iﬂ(a’l - aIL - an): Re pp+1 ’
p étant Pordre de la derniére dérivée de W(z), qui reste finie aux
points a, «’ et K désigne une quantité finie.

On pourra donc prendre, pour n trés grand, la somme a,, + a,,
des coefficients de z" dans ®,, Oy, pour valeur approchée de a,.

. 1
L’erreur commise sera de ’ordre de Pyl

Par un raisonnement enti¢rement analogue, on verra que

lim(a_,— 0 ,—0",)= 'k

P —n -n e’
en désignant par 0/, b”, les coefficients du terme d'ordre r, dans deux
fonctions ®g(z), ®y(z) holomorphes & I'extérieur du contour r et
méme sur le contour, sauf respectivement aux points 3, #'.

Remarque I. — Nous avons supposé qu’il n'y avait que deux points
singuliers sur chacune des circonférences R et 7. 1l est clair que, s'il y
en avait plusieurs, on obtiendrait pour valeur approchée de a, et
de a_, des sommes telles que 2a,, Zb’, respectivement.

Si, au contraire, les points et {3 étaient les seuls points situés sur
les contours de convergence, a, sera la valeur approximative de a,

et b, la valeur approchée de a_,.
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Remarque IT1. — 11 serait intéressant de connaitre a@ priort le
nombre r’ des points singuliers, situés sur le contour limite de con-
vergence. Il est évident que la méthode précédente ne serait réelle-
ment avantageuse que si l'on avait 7’ < n (c'est ce qui a effective-
ment lieu en général). Peut-étre pourrait-on y arriver en partant
des théorémes de M. Hadamard (Mémoire déja cité).

6. Voyons maintenant comment nous allons chercher les points
singuliers de ®(z). Rappelons-nous que nous avons appelé ® (z) l'in-
tégrale

I
Y I“=‘F(z, ¢)dt,
prise le long de la circonférence || =1.

F(z,1) sera, en général, une fonction multiforme; on I'étudiera
donc sur une surface X de Riemann, ayant un nombre de feuillets
¢gal au nombre des déterminations, ce nombre pouvant, d'ailleurs,
étre quelconque. Sur chacun des feuillets, on aura un certain nombre
de points singuliers de la détermination correspondante.

Considérons une de ces déterminations et soit ¢ le feuillet qui lui
correspond. Tragons le cercle [ #| = 1 sur ce feuillet. Tout le long de
ce contour F'(z, 2) sera holomorphe. En effet, prendre [¢| =1, c’est’
considérer réelle 'anomalie /, qui définit un point réel sur orbite.
Quel que soit alors z, c'est-d-dire /', la fonction F(z,?) ne cessera
¢videmment pas d’étre holomorphe. Tl n’y a qu’un cas ot elle pourrait
devenir infinie : c’est celui ol I'on aurait & la fois |¢| =1, | 2] =1. Les
anomalies moyennes / et ' seraient toutes les deux réelles, elles défi-
niraient alors deux points réels dont la distance pourrait &tre nulle et,
par suite, F} ou, ce qui revient au méme, F(z, t) infinie. Mais ce cas
ne peut pas avoir lieu dans le mouvement des planétes, les orbites ne
se coupant pas (sauf, bien entendu, le cas  d'une planéte et d’une co-
mete). ,

F (3, t) étant holomorphe pour cette valeur de 7, et quel que soit z;
®(z) sera une fonction holomorphe en z. Mais il est clair que cela ne
peut pas avoir lieu, en général, quel que soit ¢.

F(z,1) aura, en général, un certain nombre de points singuliers
dans le plan de la variable ¢.
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Allons maintenant & la rencontre de ces points en déformant le con-
tour d'intégration |¢|=71. La valeur de 'intégrale sera, comme on
sait, ]a méme et continuera & définir une fonction holomorphe de
z,®(z), tant qu’on n'aura pas rencontré en son chemin un point sin-
gulier. Si I'on en rencontre, on pourra les éviter, sauf, cependant,
dans un cas.

Supposons, en effet, que nous fassions maintenant varier z, les
points singuliers de tout a I'heure se déplaceront; il pourrait se faire
alors que deux quelconques de ces points, se trouvant 'un & I'intérieur,
l'autre & I'extérieur du contour d’intégration, vinssent & coincider pour
une certaine valeur de z. Il ne nous sera plus possible alors d’éviter
un pareil point, en déformant le contour, et la fonction ®(z) cessera
d’étre holomorphe. Or, comme ce point, pour cette valeur particu-
liére de z, est double pour F(z, ), on aura donc tous les points cri-
ligues de ®(z) en résoleant le systéme suivant d'équations:

1

F(s

L
0 [F(s) l)]
._T =o,

~
o~
~

ou bien le suivant :

: A=o,

(1) d_
e — 7

1

puissance entiére en %, qui figure déja dans A.

ne différant de A (le carré de la distance des planétes) que par une

7. Tous les points doubles, obtenus par la résolution du systéme
(1), ne sont évidemment pas singuliers pour ®(z). Il y en a, en effet,
qui ont pu devenir doubles par la rencontre de deux des points singu-
liers de F(z,¢), qui se seraient trouvés primitivement d'un méme
coté du contour. Or, nous venons de voir que de pareils pointsne
sont pas singuliers pour ®(z).

Voici, par conséquent, comment il faudra procéder pour reconnaitre
les points singuliers qui doivent répondre & la question.
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Supposons que nous ayons trouvé tous les points satisfaisant au
systéme d’équations (1). Soient {, v les coordonnées d'un de ces points.
Faisons varier { d'une facon quelconque, le long d’une droite, par
exemple, dans un sens convenable, afin que nous arrivions sur le con-
tour | 5| = 1 (auquel correspond le contour |¢| =t dans le plan de la
variable ¢). Quand |{| variera, les deux points primitivement con-
fondus se sépareront, et lorsque | {| aura atteint la valeur 1, les deux
points auront pris leur position finale dans le plan de la variable ¢.
Suivant que ces deux positions finales se trouveront d’un cété et de
Pautre du contour, ou bien toutes les deux du méme cété, le poirt
(¢, %) sera ou non singulier pour 9(z).

De tous les points singuliers ainsi obtenus, celui, parmi ceux qui ont
le module plus grand que 1, qui aura le module minimum, donnera le
rayon R de la circonférence limite de convergence et, par conséquent,
en vertu du théoréme de M. Darboux, la valeur approchée de a,.

Le rayon 7 du cercle intérieur sera donné par le module de l'affixc
le plus éloigné de I'origine & I'intérieur du cercle |#] =1.

Remarque. — Y'il y avait plusieurs points singuliers également
éloignés de l'origine, ils se trouveront sur une méme circonférence
de convergence, et le théoréme de M. Darboux restera applicable
(1, &4, Remarque). '

8. Nous appliquerons le raisonnement précédent surtout dans.le
cas (et nous en verrons un exemple) ol nous aurions, par un change-
ment convenable de variables, réduit 4 deux le nombre de détermina-
tions de la fonction F(3, ). Mais il sera légérement modifié dans le
cas général ou, F(z,¢) étant multiforme, on fera varier ¢ sur la sur-
face de Riemann correspondante. Dans ce dernier cas, c'est sur cette
surface X que nous tracerons le contour I'. En faisant varier z, la sur-
face X variera, et, lorsque z aura atteint la valeur de module ¢gal 4

(en suivant, par exemple, toujours la droite D), le contour I de-
viendra le cercle '

lZIZI, Ill.:l

sur une surface Z,, et les positions finales des points primitivement
confondus devront se trouver non pas toutes dans la méme région, mais
Journ, de Math. (5¢ séric), tome I, — Fasé. 1V, 1895, 49
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dans les deux régions que séparent sur la surface Z, le cercle|z| =1,
l=1. ' '

On aura, par exemple, une sphére pour surface de Riemann si
F(3, 1) est uniforme. Les deux régions seront : la petite calotte sphé-
rique, obtenue par le petit cercle polaire [ 5] =1, |¢| =1, tracé autour
d’un point qui servira 4 la fois d’origine au plan primitivement consi-
déré, et I'autre calotte. On voit bien ici que, non seulement les posi-
tions finales d’un point singulier, pour ®(z), se trouveront dans les
deux régions de la sphére, mais, comme nous avons déja vu dans le cas
du plan, elles auront leur module correspondant respectivement plus
petit et plus grand que I'unité. Cela n’arrivera pas ainsi, en général,
avec une surface de Riemann quelconque, si les points singuliers n’ap-
partiennent pas au méme feuillet. Nous y reviendrons, du reste, plus
loin.

II.

9. Les difficultés que I'on rencontre dans ce genre de recherches,
difficultés provenant, d'une part, de la résolution des équations

. dA
(I) A:th;—_o’

dont le degré est trés élevé dans le cas général, d’autre part, de la dis-
cussion trés délicate pour reconnaitre quels sont, parmi tous les points
singuliers, ceux qui répondent & la question, empéchent d’aborder le
probléme dans toute sa généralité. Cest en examinant ce qui se passe
dans les cas les plus simples que I'on pourra surmonter quelques-unes
des difficultés qui surgissent dans le cas général.

Nous sornmes donc naturellement conduits & considérer le mouve-
ment des trois corps dans le plan. L’inclinaison nulle abaisse de beau-
coup le degré des équations (1). On supposera, de plus, que l'orbite
d'une des planétes est circulaire et I'excentricité de ’autre petite.

Clest le cas déja considéré par M. Poincaré que nous allons reprendre
et compléter, en y apportant aussi quelques légéres modifications. Les
notations employées seront, autant que possible, celles de M. Poin-
caré,’
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Soient :

X, Y les coordonnées de P par rapport au grand axe de son orbite
et 4 une perpendiculaire passant par le foyer; {, u, ¢ =sing, L?, res-
pectivement : anomalie moyenne, I'anomalie excentrique, 'excentri-
cité de l'orbite et le demi grand axe;

X,Y, l,u,¢ =sing’, L' des quantités analogues pour la planéte
P'; X', Y' les coordonnées de la méme planéte par rapport au premier
systéme d’axes.

Ona
(* |=u—singsiny,
(P) - { X=L(cosu — sing),
' Y = L*cosgsinu,
. S I'=u' — sing’sinu',
(P X'=L*(cosu’ — sing’),
l Y'=L'%cosg’sinu'.

On en déduit

( 3 X+yV—=1Y =12 (cosu —sing + y—1 cosgsinu),
a _—
X, +V=1Y,=L2(cost ~ sing’ + y—1 cosg’sina).

On regardera, par conséquent, les coordonnées comme les parties
réelle et imaginaire dans L2g, L'?v, en posant

) | E=cosu —sing +y—1cospsinu,

t n=cosu’ —sing’ + y— 1cosg’sinu'.

Et comme il nous faudra avoir pour P’ I'expression non pas de X,
et Y,, mais de X', Y, onn'aura qu’a faire une transformation connue,
en introduisant I'angle o' — @, différence des longitudes des deux pé-
rihélies. ‘ ' ‘

On arrivera facilement a

(¢) X +iY = Lrge/~ @-m = Laygf,
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Formons maintenant les équations (1) [I, 5].
Ona )
A=(X=X)»2+(Y-Y)
=X+ Y24+ X2 Y — o(XX' + YY),
ou hien

A= (X +iY)X = iY) -+ (X 4+ iY)(X = iY)
(X0 (X = Y)Y + (X = i Y) (X i Y).

Appelons %, n,, B, les conjuguées de §, n,'B, i savoir :
E = cosu —sing — — 1 cosysinu
0 Y ’
d = cosi# —sino’ — \—1 cosg' siny’
"o ? ¢ )

By = L2L2 eV @),

B désignant V'expression L/2L-2 ¢V='@'-m,

D’on

X et iY = I_sta,
(¢) ‘

| X/ — Y= L2,V -0 = L2, B,
Par conséquent,

A=1L" (Ezo —+ Bpo"l"]u - (-710 Bo - Eo"]B)’
et finalement
(2) A=L"(& — Bn)(&— Bon).
Les points singuliers de I'(z, ) seront d’abord les racines de I'équa-
tion

A=o,

ensuite les points communs aux équations

dA
A_Z[? =0,
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ct cnfin les points pour lesquels &, 0, §,, 0, cesseront d’étre des fone-
lions uniformes en z et £ Ces derniers points étant précisément ceux
pour lesquels u et u’ cessent d’étre uniformes en [ et I’ seront donnés
par les équations

dt"‘l SINQ COSU = 0
di ¢ =

ar sy ’
El,—‘?—’-‘:l — sing cosu = o.

(3)

Quant aux autres points singuliers, on les obtiendra en remplacant
le systéme d’équations (1) par le suivant, qui lui est équivalent :

D

=

=cosu — sing + icosgsinu — B(cosz’ — sing’+ icosy’sinu’) = o,

E, = cosu— sing — icospsinu — B,(cosu’ — sing’ — [ cos¢’sinu’') = o,

1l

0,

dE _ i[e¢(—sinu +icospcosu) a(—sinu'+ fcos¢’ cosu')] -
Fal + B

1 — sing cos 1— sing' cos '’

dEy i[c(sin it -+ cos¢ cos i) +p a(sinw/+ icose’ cosu')]
-3 0

> : =0
dt ¢ 1—singcosu 1—sing’ cosu’ ’

E, E, désignant les facteurs qui entrent dans A.
En combinant deux & deux les équations (3) et les deux premiéres
de (4), nous aurons une premiére série de points singuliers de ®(z),

que nous appellerons, avec M. Poincaré, de premiére espéce. La com-
binaison des équations
L]

E=o, ‘-:l—:: =0
et aussi celle de
dE, _
- =

donneront les points singuliers de deuxiéme espéce.

Remarque. — Les équations (3) et (4) montrent que les points de
deuxiéme espece seuls dépendent des entiers a et c.

10. Pour résoudre les équations précédentes, nous allons les rendre

algébriques; il suffit, pour cela, de remplacer les ::): u ou u' par les
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exponentielles. En posant alors

eiu — w, B‘-“ — y’

et, par suite,

{ 2+ 1 21
f) cosu = > cosu =L L,
3z 2y
. L | " , y:—1
SN = —> SINY = ~——>
Aty 2ly

les équations (3) et (4) deviendront

2z —sing (2* +1) = o,
- 2y — sing'(y* +1) = o,
| y[(x*+1) — 225ing + cosp(z* —1)]
— Bal(y ) ~ aysing -+ cosy (= ] =0,
(5) {r[(@"+1)—2zsing —cosp(z*—1)]

- Bo“’[(yz—}-l)—-2ysingo’——cos<p'(y2__1)];_0,

¢[cos p(2*+ ) + (2*—1)] afcos ' (y*-+1) + (y*—1)]
22— sing(2*+1) p 2y —sing’(yt+1)

e[—cos o (x+1) + (2?—1)] p a[—cosg’ (¥ +1)+(y*—1)] _ o
22 — sin ¢ (2?4 1) + Po 2y —sing (y*+1) -

=0,

, 1 ¥ 3
Remarque. — Si P'on change = en = y en la premiere et la

deuxiéme des équations (5) ne changent pas; la troisiéme se permute
avec la quatriéme et la cinquiéme avec la sixi¢me. Il en résulte que, si.

. ] . ) s ) I § .
x, y est un point singulier, son réciproque - 7 le sera aussi, et les

rayons des cercles limites de convergence seront réciproques.
Nous aurons donc autant de points singuliers de module plus petit
que 1, qu'il y en aura, ayant le module plus grand que 1.
Commencons maintenant par le cas ou 'une des orbites est circu-
laire. Soit ¢’=sing’=o0 et, en supposant petite I'excentricité de
'autre, posons

‘ tangg =T.
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Pour simplifier, nous pourrons supposer, de plus, @ — @ =o. En
effet, Porbite de P’ étant maintenant circulaire, on prendra pour son
grand axe le diamétre de méme direction avec le grand axe de I'autre
orbite. @ — @ étant nul, B sera égal & B, = L*L.-2= «, en désignant
par « le rapport des grands axes, @ > 1 dans notre hypothése.

Les équations (5) deviendront alors

(6) :v([+¢2)—-fr(1+'c’)=(x-¢)(t—-a:‘r)=o‘,
(7) | y—;%fﬁ%’

(8) y=3E0

() G+ any=o,

(10) 5%—'_":?-)—% “—; =o0.

Résolvons ces équations pour avoir les coordonnées de tous les
points singuliers. D’abord :

Potints singuliers de premiére espéce. — Ces points nous seront
donnés (II, 9) par la combinaison deux & deux des équations(6), (7)
et (8). On négligera les carrés de 7. On aura

(6) | (w—71)(1—2x7)=0, ‘ =1 z= -
oy | (®)

0 | Y= t =0 Y=o

©6) | (m=m)(1—a7)=0, o (o= o z=1,
{ a,

® | yoyds PR P

I

(—3)
™) |y =7

y
@) |y=7"00

= {—x)?
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- On en déduit les équations suivantes :
(11) (x—c)(r«w%):iaz‘,

I[—a

. , I+a
dont les racines approchées sont : & = » & == —— et comme ces

v ot 1 .
équations ne changent pas, quand on change x en -, on aura aussi les

racines inverses des précédentes: x = ——» x = ——> qui donneront
1—2 1+ 2
les points singuliers réciproques des premiers.
Sil'on substitue ces quatre valeurs de # dans ’'une ou l'autre des

équations (7) et (8), nous obtenons les points singuliers suivants :

< { {1 — 2%
o=t o=122
! ¢
(Y) o (Y) ( 1=
, Y= V= =
. 1+
: ‘.’L:: 1-{-1’ X = ——
) < | O )
ORI () e
Y= \ Y=
Points singuliers de deuxiéme espéce. — On les obtient par la

combinaison des équations (7) et (9), (8) et (10).
Des deux premiéres, on déduit I'équation

el 4+~ a(xr—=)?
(12) (2 +7) ( = ) =0;
1 — &3 (1 + =)

des deux derniéres, on tire

c(i+x7) | a(l— zr)?
(13> z—< (+ )

Considérons I’équation (12) et cherchons & y satisfaire par des va-
leurs de z de la forme o = At. L’équation (12) se réduira & la sui-
vante : ‘

(14) at*N — [(c+ a) + (¢ + 2a)=*|2®
—[(c~2a)+ (c—a)x*]h—a=o0;
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les valeurs petites de 2 et par conséquent finies de A seront données
par I'équation

(15) (¢ +a)M+ (e — 2a)\ +a=o,

dont les racines sont

y — — (¢ —2a) = \c(c— 8a)
- a(c+a) ’

On aura, en outre, une racine approchée trés grande

c+a
A=2t2,

ct, par conséquent, les valeurs de z qui satisferont & I'équation (12)
scront

— (¢ —2a) = \c(c —8a) ot p= e
2(¢c + a) az

r =T

1l est inutile de résoudre I'équation (13) réciproque de (12). Il suf-
fira de considérer la réciproque de (15), & savoir :

(16) ak*+ (¢ — 2a)h+ (c+a)=o,

dont les racines et, par suite, les valeurs de &, satisfaisant & I'équa-
tion (13), seront

X =

—(c — +\/c(c —8a)
(¢ —2a) £ /c(c — 8a) ot = )
2ar c+a

En substituant dans les valeurs correspondantes de y, nous oblien-
drons, finalement, les points singuliers suivants :

= 0%
= ’
c+a
g
(&) o
Y=
. r=+a
= [)
. at
(&) o  eta . -
y= xazt

Journ. de Math. (5 série), tame I, — Fasc. III, 18g5. ‘ 5o
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~¢—2a+\c(c—8a)
v ’

== 2(c+a)
(1) Uy S
-t ¢+ fa—ye(c—8a)
y= 2a 2(¢ +a)
! — (¢ —2a) +\c(c—8a)
= s
) 2ar
() c+4a+\/c(c 8a)
y=—« 8c= ’
; ;L=T~—(c—-2a)+vc(c-——8a)’
2(c + a)
(v) S
(( o _c_c+[|a+\/c(c-—-8a)
,)’—-v aa 2(c+a)
[ (c—-—za)+\/c(c~—-8a)
r=- 2a1 ’
(‘l') ¢+ha—yc(c—8a)
y=—« 8cz ’

Nous avons ainsi le Tableau suivant de tous les poinls singuliers
trouvés :

TasLrav A,
=~, , S.I‘::)
(0 ] () -
- . (}—:w’
\.Z‘:‘—’
=T . <
(®) 3 . & ¢
|7==
" 1— 2
X = 2 X = —
- (r) "
1) . v . 1—a
. y=-— =
< 142
s 1+ =
8!
w U
(‘7_1-*-«’ =
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TaBLEAU A (suite).

‘ _c+a
- xr = z H

! “c+a )
’ ) _c+a

=T Y=ac

o (c-—-za)«l—\/c(c—Sa) x_-—(c—za)+\/c(c——8_-¢w)
r=- 2(c+a) ’ , - aat ’

(@ — =) *) 2(1+ e

AR TrEs vy (y =z’

y— ——(c—~2a)+\/c(c—~8a) p—— (¢ —aa) +yc(c—8a).
r=s a(c+a) ) - aarc ’
( _ (x—=)? ’ ,_a(i+Me

Y= air ==z

Pour simplifier I'écriture, ¢t en vue de la discussion qui va suivre,
on a gardé 1'y des derniers points, exprimé en fonction de .

Remarque. — Tous les points sont réels avec les hypotheses faites
(voir1, 4 ct 11, 10).

On a désigné par a, B3, v, 8, €, et v les pomts singuliers de module
< 1; par les mémes lcttres accentuees, les points respectivement réci-
procues des précédents.

11. 11 s'agit, maintcnant, de faire ladiscussion du § I, 7. Reprenons
la fonction F(z,1). Cette fonction, avons-nous dit, n’est pas uni-
forme; elle peut méme avoir un nombre infini de déterminations. En

cllet, considérons son expression :

_d
lad—bc—-l; ¢

Va

et examinons comment elle va se comporter, quand on-exprimera 4 en
fonction de z et de ¢.

Regardée comme fonction de x et y, A est uniforme. Cela est évi-
dent d aprés son expression’(2) (II, 9). Mais il n’en sera plus ainsi, si
on 'exprime en fonction de z et 7.
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On a, en effet, pour ¢ et z exprimées en x et y, les expressions sui-
vantes :
1 ‘A
— i A
1=ua"€" * ),

b4 =.’I}“e‘+"(‘ >)’¢ I+t" "\)

(qui montrent bien qu’a chaque systéime de valeursde Z et 5 correspond
une infinité de valeurs pour x et y.

II en résultera une infinité de déterminations pour A et par consé-
quent une double infinité pour F(z, ?).

Mais voyons si, dans le cas parucuher que nous traltons, ilya
moyen deréduire & un plus-petit nombre les déterminations qui se pré-
sentent dans le cas général.

Remarquons que, dans ce dernier cas, les relations (g) sc réduisent
aux suivantes :

1 T/
s (=gt et \F ) .
(h)
( 3 =y‘x"eu(;—x).

La premiére des équations (%) montre encore que x est fonction

multiforme de £. Nous n'introduirons donc pas la variable ¢ dans A, et
1

nous garderons x ou micux z°, dont elle est fonction uniforme. Mais
1

nous pourrons introduire a la place de y I'autre variable z ou bien 3
dont elle est fonction uniforme. La deuxiéme équation (A) montre

bien que

(_]) yzz’x e

est uniforme en z° et z°. Nous aurons ainsi exprimé A en fonction uni-
1 1 )
forme de z° et z°. D'autre part, le numérateur de F(z, ¢) est évidem-

ment fonction uniforme par rapport aux mémes variables.
Nous avons donc ramené la fonction F(z,¢) ayant une infinité de

1 1
déterminations a une fonction F ,'(z‘, &’ ) n’ayant plus que deux déter-
minations, celles du radical.
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La surface de Riemann & une infinité de feuillets se raméne 4 une
autre, n'ayant plus que deux feuillets et définie au moyen de la rela-

tion (7).

Nous pourrons méme nous dlspenser de la considération de cette
l

surface, car si I'on regarde un moment z° comme constante, comme
1

a chaque valeur de z* ne correspondent plus. que deux valeurs égales
1 i

et de sens contraires pour I, (z“, a;“), nous n’aurons qu’a tracer les

. 1
contours d'intégration dans le plan de la variable 2*. Ce contour était

le cercle | 2] =1 dans le plan de la variable #; il sera par conséquent le
i

cercle |x =1 et cela quand la variable 5° aura attemt une valeur de
module égal & 1.

Pour des valeurs de z de module autre que 1, les contours d’inté-

1
gration par rapport a #° s'obtiendront, comme nous I'avons déja dit,

. 1
en déformant la circonférence lx“l = I, Sans passer par un point singu-
lier. :

12. Cela étant, voyons quels sont maintenant, parmi les points sin-
guliers du Tableau A, ceux qui répondent & la question (I, 7).

D’abord, le module du point « est évidemment nul.

Il ne donnera rien et nousn’aurons pas 4 nous en occuper. Il en sera
de méme de o',

Quant au point B, il est facile de voir, a prior:, qu'il ne sera pas sin-

gulier pour ®(z). Ona, en effet, I’expression suivante de ®(z), par
B 1

rapport aux variables z°, z°,

z?

1 1 1
0= sy e [ )bty

ae] =1

qui montre bien que x =1, z = - et par conséquent les pomts B; ¢

ne sont pas critiques pour cette foncuon.
Il ne nous reste plus que cinq points singuliers & discuter. Des cing
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points, il y en a deux, & savoir : v et & (et leur réciproque), dont les
sont positifs et parsuite leur z est réel et positif. De plus, 'z dev est in-
féricur aceluide &5 ces deux pointsse trouveront, par conséquent, dans
le premier quadrant et 'affixe de v sera plus rapproché de l'origine
que celui de 3.

Comunengons par le pointv. Je dis que le module de 5 est maximum
en cc point. On a, en effet, pour 5, 'expression

LA
3 =y¢‘.1;(le|+f X 7y

ou bicn, sil'on y substitue la valeur de y correspondante au pointv, la
suivante :

T /1
(2 —n)? .,I’ﬂcl-':-’-" $—1)

a(1+7)a !

P
pg—l

. . ds ,
en formant I'équation = = o, an verra qu'on retombe sur U'équa-

tion (14) (11, n° 10), dont les racines sont précisément les x des
points v, w ct €. Dong non seulement le | 5| de v, mais celui de p ct
de ¢ aussi, sera un maximum ou bien un minimum. Il est clair qu'il
c¢n sera de méme de | z| aux points v, @’ et €. Cela était d'ailleurs évi-
dent, car tous ces points de deuxi¢me espéce sont des poinls de con-
tact entre la famille de courbes

—_——

at
5) s=y‘z"e'*" (=) = const.

(x—=)? a(l-—i-':)md ,
' thes ¢ = ——2— et y == ————donnant leur ordonnde.
¢l les courbes ) sy s BV = [y donnantlen be

Nous venons de voir que | z| est maximum ou minimum. Pour voir
qu'il est maximum et non minimum, il suffira de faire varier z d'une
facon continue a partir d’une valeur inféricure a celle du point v, &
partir de la valeur zéro, par exemple. Pour 2 = o, on a évidemment
| z| = 0; en faisant croitre x, | z| croitra aussi et comme (d’apres ce
qu'il a été dit plus haut) on n’aura plus & craindre la rencontre d’un
autre. point singulier, on sera certain d’arriver en v avec une valeur
maxima de | z[. - '
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Ces préliminaires faits, faisons maintenant varier s le long de la
droite D(I, n° 7). Cette droite sera ici la partie positive de 'axe des z,

« et 3 étant réels et positifs.
1

Lorsque z° variera en partant de la valeur correspondante au
1 1

point v, les deux points singuliers de F(zz, x° ), confondus en ce

1 l<l

z° z
jusqu'd | 5°| =1, les 5 des deux points, primitivement confondus en v,
croissent, et comme |z | est maximum en v, il en résulte qu'ils ne
pourront plus, en se séparant, rester réels, mais ils deviendront ima-
ginaires et conjugués; ils auront donc le méme module, et par consé-

quent les deux affixes correspondants se trouveront d’'un méme coté
1 1

x| =1, quand | z°| aura atteint la valeur 1.

Le point v ne convient par conséquent pas a la question. Le module
commun des deux positions finales reste, comme M.’ Poincaré I'a
montré, inférieur a P'unité.

Le point v n’étant pas admissible, il en sera de méme de v'. Cela -
est ¢vident.

point, s¢ sépareront. Comme |z°| varie en croissant & partir de

1

€
-~

du contour

Passons au point 8. — Ce point est commun aux courbes (7)
1

z°

cl (8). Par conséquent, en faisant varier
1 1

-C
-

positivement a partir de

3<<1 jusqu’a z"l =1, les points confondus en ¢ se séparéront et

suivront : I'un la courbe (7) en se rapprochant de v (c"est bien le sens
1

z° l), I'autre la courbe (8) tou-

croissant car v est un maximum pour

1
jours dans le sens indiqué par la variation de Iz‘ ou bien de z.
Il arrivera alors que le premier de ces deux points finira par se
confondre avec le point v, et ses positions finales, au nombre de deux,

seront, d’aprés ce que nous venons de voir, 4 I'intérieur du cercle
1 .

xc

L’autre point aura encore sa position finale a Pintérieur du cercle
1

z°

=IO

1
x"l =1, quand

aura atteint la valeur 1. En effet, si'on la suppo-
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_sait non pas & I'intérieur, mais sur le contour méme, c'est-a-dire si 'on
prenait la position finale suivante

lz|=1,
a1+ t2)
' !
on trouverait pour | z°| la valeur

1

1
Par conséquent, quand lz‘ l aura atteint la valeur 1, la position finale
1

de ce dernier point se trouvera encore & l'intérieur du cercle {2°|= r.

Nous avons ainsi trois positions finales des points primitivement
confondus en ¢ et toutes trois du méme cdté du contour d’intégra-
tion. Le poirit & et son réciproque ne repondent pas non plus & la
question.

43. 1l nous reste maintenant a discuter les points v, ¢ et p. Ces
derniers points ont, toujours en vertu des hypothéses déja faites,

x < o et par suite y < o. Il en résulte qu'ils se trouveront situés dans
1

le troisiéme quadrant, 3¢ sera imaginaire et son argument égal a

(l + Z—)‘n, qui sera aussi Pargument de la_droite D, le long de la-
° 1
quelle on fera varier z°. Quant aux affixes respectifs de ces trois

points, ils seront, par rapport a lorigine (x = o, ¥ = 0), situés dans
'ordre suivant

(h) le| <Iy[<[wl;

donné par l'inégalité

|| < |2y < | @y ).

Nous commencerons donc péu} le point le plus rapproché de I'ori-
gine, par le point e. Ce point est de deuxiéme espéce; son module
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sera, comme nous 'avons déja vu, un maximum ou un minimum. Je
dis qu'il est minimum. En effet, d’aprés I'inégalité (A), il est clair que
ce module ne pourra qu 'augmenter lorsqu’on cheminera vers le
point y, 4 partir du point ¢.

D’autre part il croftra aussi, si.l'on s’approchait de 1'origine ; car il
1

z°

=, quand on marche
l

est facile de s’assurer qu’a I'origine on a

dans le sens dont il s'agit (*). Il en résulte que |3°| est bien un mi-

nimum pour le point €. ‘
1 .

Cela étant, si nous faisons maintenant décrire 4 z° la droite D,

1 1 Lo B

partir de la valeur | z°|, <1 jusqu'a | 3° | =1, les points confondus én ¢

se sépareront et resteront réels, parce que les modules des points infi-

niment voisins de ¢ sont précisément supérieurs au module de e. Nous

aurons alors des couples de valeurs pour z et y satisfaisant toujours &
a(s+)z

(=z%)* —z)?

I'équation y = - Un de ces points qui se trouvait déja & I'in-

1
térieur de | °| =1, au moment ou il se trouvait confondu en ¢ avec

l'autre, continuera @ fortiori & y rester, quand il s'approchera: de
Porigine.

L’autre point cheminant dans le sens contraire finira, 4 un moment
donné, par se confondre avec le point y, qui se trouve en son chemin

en vertu de I'inégalité (%), et ses posmons finales seront celles de ce
1

dernier. Il est clair que cela arrivera avant que lz”

ait atteint la

(') Ona
1 a art i a 1
5 = yas de (3-%) = “(('“-*“C’))” x3e1+"( =)
1— @t
ou encore

1 e 1

a2 sty )
(1—az)? :

Si l'on y fait #=—n et si I'on remarque que 21

<1 et que, de plus
(1 . Coall

. . . l
x N S S-S P e . =
e (" ) reste fini, quand 4 tend. vers zéro, on.aura |.5°

e pour 3= 08
Journ. de Math. (5* série), tome I. — Fasc. IV, 18g5. 51
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valeur 1. Contmuons donc A faire varier | z°| dans le méme sens. Les
pomts confondus en y se sépareront en deux autres, satisfaisant respec-
tivement aux équations (7) et (8), et le sens des deux mouvements
sera le suivant :

Le point qui, comme celui qui arrivait de ¢, satisfait 4 1'équation (8)
continuera comme ce dernier a s'éloigner de ¢, car c’est bien 13 le sens

.
z°| croit. Mais je dis que, tout en s'éloignant ainsi de ¢ et,
par conséquent, de l'origine, il se trouvera encore a l'intérieur du

1 1
cercle \z“ =1, quand ]z“ sera arrivé a la valeur finale 1. En effet, si
nous faisons # = — 1 dans
tl+¢ (17 1
lzcl — a([—i—'c’) x — el+‘r' (x r)

(1—z7)? !

on trouve
. v . .
bt 1 + T
zc —
(l (C+r) >

Donc, la valeur finale de « sera inférieure & — 1 et le point corres-

1
pondant sera a l'intérieur du cercle l "\ =1,
L’autre point, qui se trouvait primitivement eny, sat1sfa1t al’equatlon

— 2
y= ;((_?::‘c’—;x Pour que son module augmente,
'unité, il faut que & = — 7 tende vers zéro avec v. Nous aurons donc

1
pour x une valeur trés petite, tendant vers zéro, quand |z l °‘ tendra vers
Punité; il en résulte que la position finale de ce dernier pomt sera en-

core a l'intérieur du cercle 'm

En résumé, nous avons : deux positions finales pour y et toutes deux
du méme coté du contour d’intégration;le point y et son réciproque
ne sont pas admissibles; nous avons, en outre, une troisiéme position
finale appartenant & ¢, qui, avec les deux précédentes, constitue les po-
sitions ﬁnales des pomts prlmmvement confondus en ¢ et toutes &

llntérleur du cercle l | =1.
Le point ¢ et son réciproque sont aussi inadmissibles.
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Il nous reste un dernier pbint, le point p. Rema.rquons que si l'on
l

faisait continuer |3
l

, comime nous I'avons faut pour g, en partaft d’une
‘1

des valeurs |z°| ou blen‘ yy IIOUS ne tombemons pas sur le pomt [

Cela résulte de la discussion, que nous venons de faire, sur le. sens
du mouvement des points. primitivement confondus en ¢ ou bien en y.
I en résulte que les positions finales, que nous allons trouver pour le
point ., n’appartiendront pas, 4 la fois, & un autre point, comme:
c’était le cas pour y et ¢. Ces positions finales décideront donc de
'admissibilité ou de la non-admissibilité du point @ seulement.

Cette remarque préliminaire faite, voyons, maintenant, quelles sont
ces positions finales.

Le point p. de deuxiéme espéce est encore un minimum pour son

module. Il est facile de s’en rendre compte. Si nous faisons alors
& ;

i]. . . .
varier a partir de la valeur |3°|, <1 jusqu’a les points
confondus en ce point se sépareront, en restant réels. Ils continueront
donc a veérifier I'équation (7), en s'éloignant d’un coté et de l'autre

du point w. L’un des points ( ) ira, évi~
demment, se confondre avec le point y; il aura alors deux positions

finales a lmterleur du cercle lxl—-r. L’autre point, dont le |z|

augmente, finira par avoir une position finale extérieure au cercle
1 .

En effet, faisons x = — 1 dans

1 G A, et (1
I Gt S L €2
a1+ %) '

‘z%’\=§<l.

L

1
Par conséquent, wal aura dépassé la valeur 1 aura &
peine atteint cette méme valeur. La position finale de ce dernier point
se trouvera ainsi 4 l'extérieur du contour d'intégration, et comme la
positioh finale de l'autre point est 4 l'intérieur, il en résulte que le
point u et.son reclproque répondent i la question. o
Les points et i’ sont donc les véritables points smguhers de D).
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En désignant par |p| et par || = ———lles modules respectifs des

deux affixes, | 4| scra le rayon du cercle intérieur de convergence et ||
le rayon limite du cercle extérieur. La fonction @(z) sera holomorphe
dans toute la couronne limitée par les deux cercles et se développera
en série de Laurent (T).

Les valeurs des rayons || et [w'| se.déduiront de I'expression, bien
connue, de z

at(d—x
z=y°$a8t(‘r ),

dans laquelle on aura remplacé x et y par les valeurs respectives aux
points p. et &’ (Tableau A).

Remarque. — En réalité, le pomt i n’est pas le seul point singulier

de ®(z) al'intérieur du cercle

autres et de méme module que le precedent.
1

1
En effet, la fonction F(wﬁz‘) est regardée comme fonction, non
. .

pas de z, mais de z° et comme telle elle sera multipliée par une racine
. .

cme de I'unité, quand z° sera multiplié par une méme racine. Elle
admettra donc non seulement le point g, comme singulier, mais tous
les points contenus dans le cycle suivant :

ki

X'=Xe* [k=o0,1,2,...,(c—1)],
{
X désignant la valeur de ¢, au point 11, dont g est I’argument (1'argu-

ment de x étant ™ en ce point).
Cette relation nous conduit, évidemment, & I'égalité suivante

!hﬂ

|X’[ =|Xe*®

=|X] [k=°’l7_2"”,(c"l>]’

qui montre bien que les modules respectifs des positions finales des
points- prlmmvement confondus en un point quelconque du cycle
sont respectivement égaux aux modules correspondant aux positions
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finales des points primitivement confondus en . Il en résulte que les
¢ — t points du cycle seront, avec le point ., admissibles.

De plus, il est clair que tous ces ¢ — 1 points auront, en vertu de
I'égalité précédente, un module commun, le module du point . Nous
aurons, par conséquent, ¢ points situés sur la circonférence intérieure
et il en sera évidemment de méme de leurs réciproques.

III.

14. Pour appliquer le théoréme de M. Darboux, généralisé par
M. Flamme, il nous reste & chercher la forme des foncnons D, (z) et
®,(z)[I,n°7].

‘I)( ) est défini par I'expression suivante :

TR AN SO S Z VR PN
M @)=z, T(w)x( JEEETE O
! 1

et si 'on y remplace F( ¢ 7“) par son expression

d ad—be ad—be %
( ) F( 1 ‘) (ad—be—1g" c .‘D— " ¢ 1+1 (x ) ¢
2 .’L‘ z° = y
VA xLec H—t’(.r » )ﬁ

on trouve
ad—be ad— b

1 - d
(3) (I)(z) = 2in (w_tz‘f;z— zt) zx ¢ e ¢ "”'( ) _E-‘-iﬁ-
l.‘l‘z’=1 ‘/K

Le seul facteur qui cesse d’étre holomorphe aux points " ou . est

. I . . .
la fonction 7 Pour avoir sa forme en ce point, dont nous désignerons

par «,, 2, les coordonnées, il suffira de se rappeler comment le point
' a été obtenu.

Le point @’ est de deuxiéme espéce, et satisfait aux équations
A'= 0’

dA dA
'd—z" —_ O’ d'—z' # 0.
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Ilen resulte ‘que le développement de A en série de z ~ x,, 5 — 3,
commencera par un terme én (z — &, )? indépendant de z — z, et par
le terme z — z,, quand on fera = x, dans ce méme développement.
Dans ces conditions, A pourra toujours se mettre sous la forme sui-
vante :

(4) ‘ A=[(z —v)*+ w]llf(x; z),

ou I'on a désigné par ¢ et w respectivement deux séries en s — 3, de
la forme .

=z, +20‘"’(z — 3,)"
(%) LT |
w =Y w(z—z,)",

n=1

v se réduisant & , pour 3 = z,, et w s’annulant pour la méme valeur.
Quant & ¥(x, z), cest une fonction finie méme au point x = x,,

z = Z,.
Si nous posons alors

1(2y3) = =
. \/‘F(w 2)
6
( > mi be ml-bc t ( )" 4

9(z,2) =7y (@ 2 )M——‘L:“‘:Lﬂ 4

Yexpression (3) de ®(z) deviendra la suivante :

i _ 1 ¢(2,z)dz
(7) Q(z)—‘a/——:?ncfi_ \/(-ﬁ'—~v)=+w’

‘ ¢(=, z) étant holomorphe au point # = z,, 5 = z,.

1

15. Cela posé, remplacons le contour |#°| =
grand, obtenu en déformant le premier. Le premier point singulier
que nous rencontrerons dans notre chemin sera le point

W (=243 =135,).
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Quand z aura une valeur trés voisine de z,, x aura deux -valeurs
1 1 1

* et « voisines de o et le nouveau contour d'intégration passera
cwdemment entre les deux points qui iront se confondre en ', quand
3 prendra la valeur z,.

Le contour passera de méme, en vertu de laremarque établle plus
haut (II, 13), entre les points des ¢ — 1 couples suivants

1 1 1 1 ]
jo et jai, ot et jaf, ..., ' et je'ad,
ﬂlri'tr
oul'onaposé ¥ =e .
La fonction <I>(z) sera alors définie par 1 mtegrale précedente pmse
le long'de ce nouveau contour I.
Nous pouvons méme séparer le contourI" enc ares T, T',, Ty, ...,

T, passant respectivement entre les points des couples précédents.
X i

1
Si nous désignons alors, pour abréger, par H (w", z") la fonction sous

- - ) ] . . . N
le signe f ) 0N aura, pour ® (), 'expression qui suit :

(I)(z)—-————l;;[ FoH(w 7 dw+fH 7,5 jdn
—i—fH z'J z> *dx+-.. +f .z;f" zﬂ)f"dx].

i )t

la somme précédente deviendra donc une sommede ¢ intégrales égales
ct, par suite,

Or, ona

L [ _dende
P& = = e

Le contour T, ayant une longueur finie, I'intégrale sera holomorphe
le long de cet arc, sauf dans le voisinage du point z = x,, z = z,. Nous
pouvons alors séparer,.dans-cette intégrale, la partie non holomorphe
de la partie holomorphe, en décomposant & son tour P'arc-T, en:trois’
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autres : af, Py et y8. Nous aurons ainsi une somme de trois intégrales
dont deux, la premiére et la troisiéme, seront holomorphes dans tout
le plan et méme au point (aco, %,). En appelant i (3) leur somme, on
aura pour ®(z), I'expression

8)  ®(z)=0,(3)+ QV_l_Tng /?(w,»z)dz

B V(e —9o)+ w’

B et y étant supposées assez petites pour que 1'intégrale, une fois effec-
tuée, nous donne une fonction qui converge pour ces valeurs de x;
nous les supposerons cependant finies par rapport & z — z, (z étant
trés voisin de.z,) et indépendantes de la variation de cette derniére.

16. Par sa définition (6), la fonction ¢(%,x) est évidemment ho-
lomorphe au point '; elle sera donc développable en une série de la
forme

(9) 9(#,2) =@+ 9. (£ —0) + @(x —0)* +... + g, (x —0)" +

les coefficients ¢,, 9,, -.., ¢, étant des fonctions de 3.
Si nous remplagons son développement dans I'expression de @(z),
on obtient

Y (z—v)rdz
(10) D(z)=9,(3)+ 2 m
Y
. . T (z —v)*dx -
Remarquons que, si n est impair, 'intégrale A \/—-—-—————(m se ra

méne 3 la suivante :

f TAz—vdz [V(x = ¢)*+ w]} = fonct. holomorphe en z
] \/ (z—v)it+w

Nous ne considérerons donc que les termes d’ordre pair, les seuls
qui conduisent & une fonction non holomorphe en z et c’est précisé-
ment cette partie dans (I)(z), que nous avons desxgnee par (I)p. (z),
que'nous cherchons. . : 5
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En supposant n pair, on a les relations suivantes :

u— n( ) "&: Jn—n

n—3

n-z '—gn—z (" - —iw']n-s’

Ju—4 = gn—s (z) - :"LE'ZWJn-sa

en désignant par J; l'intégrale dans X de ®(3), qu1 correspond au
terme d’ordre k dans le développement de ¢(z, 2).
Des relations précédentes, on tire

Jn=gn+(— Ign-z
—1)(n—3 n 3
A (e tetlde,

exprimée en fonction de J,.
Oron a

= 2\/__wf \/(x_v = i [log(w—o)+\/(x—-a)*+w]ﬁ,

ou bien

y—9+Y(y—¢)+w

2y/— 11\:J°=logp__v+\/m

’expression précédente de J, contient encore une partie finie et la
partie non holomorphe. Pour les séparer remarquons que, 8 étant la
limite inférieure d'intégration, le dénominateur s'annule pour z = z,.
On pourra alors multiplier les deux termes par la conjuguée de

Journ. de Math. (5 série), tome I, — 'Fasc. 1V, 1895. ) 5a
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celui-ci et les deux parties seront séparées. On a ainsi

log[y — ¢+ V(Y=0)"+ ][ (B — o) + V(B — )"+ w] — logw,

dont le premier terme reste fini, logw cessant au contrairc d’étre
holomorphe en z pour z = z,.

On peut écrire encore, comme il suit, le second terme, en vertu de
'expression (5) de w, '

logw =log(z — z,)|we+ w,(3 — 5,) +...]
=log(z—z,) + log[w,+w,(z — 3,) +...],

R ' . . . ’
le second logarithme étant fini pour z = z,, car w, 5 o au point W'
I’expression finale de J, sera par conséquent

Jo=g.(3) — 2fl.»log(z ~ 3,).

(23

On en déduira 'expression finale de J, et par conséquent celle de
®(3), qui sera la suivante

(ny ®(z) =W (3) + G(3)log(z — 3,),

W(z) deésignant la somme de toutes les fonctions telles que g4(3)
finies pour z — 3, et G(z) désignant ce qui suit

— —1)(n—3)...3. :
() 6(n) =Y P HR (wya(a);

¥'(z) et G(z) seront, par conséquent, holomorphes en s méme aun
point .

Quant & la partie non holomorphe cherchée @, (z), son expression
sera

(12) , O, (2) =G(z)log(z — 3,).

C’est le coefficient du terme d'ordre @, dans ce dernier développe-
ment, qui nous donnera, d’aprés le théoréme de M. Darboux, la
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valeur approchée du coefficient a, dans le développement de ®(z) et,
» par conséquent, la valeur de C,, v dans le développement de la fonc-
tion perturbatrice (1, 4).
Formons ce coefficient. On a d’abord

‘ - 3 .
G(s)= = [90+ 5 (= W+ E5 (= w)igi+-..],
et '
?0(5) = ?0,0 + ?0.!(5 - 50) -+ ?o)g(z - 20>2+‘ . .;

il en résulte pour G(z) une série de la forme

G(z) = —-2o0 Z v
()= 7. ¥ &P
y=i

D’autre part, log(z — 3,) se développera, en série convergente
de 3, a 'intérieur du cercle de rayon | @' |, sous la forme

log(s — 50) = D¢,

§=0

ct le coefficient de 2" dans ce développement est évidemment — —-
]
On aura finalement, pour valeur approchée de C,,, I’expression
sulvante :

(‘3) Cmm'=‘_l—m'-{-<l+e),

¢ étant trés petit pour des valeurs trés grandes de n. Dans les applica-
tions, le premier terme de la série i%f sera grandement suffisant. En
effet, ce qu'on veut savoir, c’est seulement de se rendre compte du
degré d'importance de C,,, ., c'est-d-dire de I'inégalité 4 longue période
correspondante.

17. 1l nous faut maintenant calculer @o,0- C'est la valeur que I'on
obtient, en remplacant x et z par les coordonnées x, et y, de ' dans
I’expression (6) de ¢(x, 3).
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On tire des relatlons (6) et (4)

arl—lc ad—be T _nd T (1 T Y2t (v
_ (@) g S S (i) oy () [t
?010_ x2 0 \/'& 00
ou bien

_ (=0 (=) b a,mra(m) [VEB= e ]
?u,u— wg Ty yo \/X 00

. N . ' s ¢ O
Le dernier facteur se présente sous la forme indéterminée - au
point (y, ¥,). Or, on a

z—y
lim Viz—e)l4+wl lim V(z — v)5+ W
VK 0'0— E‘LA.
2\/A 0,0
=2lim(£=Y) lim- d >
i ( D.a >o.ohm ‘-\/(x — 0)2 4w
Va 0,0
On en tire 4
lim \/ﬁ_—_")_tf.] _
] [ va o0 ViDzdgo
et 'expression (13) deviendra
(]4) Co = 1+¢ (xo--':)(l-—-xow:) I

" 2V:T“n izt yme ("'""o) ViD o,o.
Nous avons vu (II, 9) que I'on a pour A
A = L*EE,.

Le point p'(z = z,, ¥ = ¥, ) satisfaisant aux équations

E-"d

=0
Iz 2

il en résulte
D4 = L*(EDZE,)
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et, par conséquent,

¥ ' '
amy/~1n xgwg‘y:)’"emt(?o—n) Ls\/(ED;Eo)o,n ‘

(15) Cpp= ikt (@=9—a7) V3

Calcul de (ED2E,),,. — Ona

E, = cosu — sing — i cospsinu — a(cosu'—i sinu’),
dF,

9 sinu® Zicosocosu®’ — af —sinw'® — icosu ZY
dr — dx ? dzr dr ! dz

. . du o, e add
= — | (sinu + icosg cosu) - — a(sinu’ + reosu’) - |

du't
dx?

. . du2 1 b4 !

T =—| (cosu—icosgsinu)_— — a(cosy’ —isinu’)
. L du . d*u’

~+ (sinu + i cosg cosu) 5 — a(sinu’ + icosu’) ]

En vertu des relations

1 1 ro 1 I
COSU—-;((B -+ -'w-)a CoOSU = 5(}’4‘ ‘7)’ 1 a at ;

l( 1 e .o, 1/ 1
2 w—;, lSlI'IU—;(y—;)’

on frouve

du 1 du’ 1 du! a [sing

—_—— e— —_— e~ —_— —_— 2 — 22
dz ~— iz’ - dy iy dx icw*[ 2 (x =+ I) .’L‘],
du 1 du 1 d*u’ _ sing aa

dz* —  iz®’ dyt = T iy? de* — = T2 ciz®

dy ay [sinp, ,.

792=?5§[T(“' +')—w’]’

d'y _ay( a [sino ]2
—_—, W )T T 2

dz+ cx\cw“[ 2 (2*+1) "wz]'

2 [ sin ’ s
~ &[T @+ -]+ (R )]
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ct, par conséquent,

‘f:‘, =— g;'xl, [(m +'5> - cosqa(m— ';)] + c:;;.[ﬂi (z?+1)—z? ]

1 .—__]_' _ 1 asmq; _ac |
+w,[<a. w) coszp<w+w>]+  ay

ou hien
%%=—$v%w*oo +3%) = (2= 1)
+ - 2u) ['c(.z -+-|)—a:2(1+fr)]'

+Kv~u0+ y = (@t + 1)) + fon 3L
On a, d’autre part
E = cosu — sing + i cosgsinu — a(cosu'+ isinu’)
ou bien
E= = [(@+1)(1+7") — 412 + (2* = 1) — 20(1 +tH)ay].

Posons

v : et (L — 2otz e """(1—0—’0)
(16) oy 1) = Bz W= 220"

[(@r+1)(14~72)— brazg+ (22—~1) — 22(14+ %) 20y o]
— [(z3+ 1) (1 +*) — (2§ —1)]

2aal

T Tzoy, 0Yo

2 __ 2) — 2 T Eﬂ

+[(xo 1)(1+4-1%) (xo+l)]+4 aa,)’o

(z5+1)7— (1425 ]

en désignant toujours par z,, ¥, les coordonnées du point y’, & savoir

—(c—28)+ye(c—8a)
2av

Zy =

(17) I /
' _ c+4a+\/c(c——8a) ()
Yo=—2 Scc




. DEVELOPPEMENT DE LA FONCTION PERTURBATRICE. 4o5

I'expression cherchée de C,, s deviendra finalement

(1) Cot = 1 LP (4, 7o) (1 + ),

L? étant le demi-grand axe de la planéte intérieure et a le rapport
L/2L~2> 1 des demi-grands axes.

18. L'expression (III) de Cy, .,y se présente avec un double signe &
cause des deux déterminations du radical. Il s’agit de voir quel est le
signe qu'il faudra prendre.

Pour cela, examinons ce qui va se passer pour des valeurs particu-
liéres de et de y. Prenons, par exemple, z =1 et y = 1; cela veut
dire que les deux anomalies excentriques sont supposées réelles; elles
définiront alors deux points réels, deux planétes P et P, situées dans
les orbites respectives. Le radlcal représentera la distance des deux
planétes, quantité réelle et posztwe

En faisant maintenant varier = et y d'une facon continue jusqu’aux
valeurs x,, ¥,, qui correspondent au point W, le radical restera fini
dans Pintervalle et variera d'une facon continue. Donc, on arrivera au
pomt 1" avec la détermination posmve avec laquelle on était parti. Le
signe, qu’il faudra prendre, sera le signe +. :

Remarque I. — On a, pour préciser, supposé ¢ >0, @ < 0, & >1.
Les conclusions seront encore les mémes avec d’autres hypothéses sur
ces nombres. Les points singuliers admissibles seront encore . et ' et

' ’ 4 . .
leurs coordonnées seront réelles pourvu que - < 0: c’est ce qui a lieu

dans le cas des inégalités & longue période.
Le cas de © = o, 7' 5 o et petit se déduira du précédent en permu-
tant entre elles, dans I'expression (III) de C,, », les quantités < et v,

ceta, aets, z, et ¥,
Remarque II. — Pour passer de la valeur de Gy, ,; aux valeurs des

coefficients de cos(ml +m'l’) et de sin(ml + m'l' ) dansle développe-
ment de F{ sous la forme habituelle .

1= 2 Ay cos(ml+m'l') + 2 Bom sin(ml + m'l'),

m,m' ) m,m’
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on a les relations évidentes

-

Am,m' - \/"‘ 1 Bm,m': 2Cm,m; '

Am,m’ + \/_ I Bm,m’ = _2 C—m,-—m':

C_,,-.w ¢tant le coefficient de l'exponentielle conjuguée.

IVv.

19. Nous allons aborder maintenant le cas plus général ot aucune
des excentricités, toujours supposées petites, n’est nulle.

On restera encore dans le plan.

Les équations algébriques & résoudre sont données par le sys-
téme (5) (n° 10); d’autres points singuliers, outre ceux déja trouvés,
s'introduiront et les calculs deviendront plus longs. Mais, ce n’est la
qu’une difficulté secondaire.

La vraie difficulté, qui surgit dans le cas présent, tient a ce que z
¢tant donné par la relation

() smane T G )yeg T G)

ot ¢’ n'est plus nul, y et, par conséquent, F(z,¢) ne sera plus uni-
1 1
JSorme en z° et z°, comme cela arrivait dans le cas précédent [ II, n° 11].

La discussion de l'admissibilité des points singuliers trouvés, ne

1

pourra plus se faire dans un plan (le plan des z°, dans le cas traité),
mais sur une surface, composée de feuillets en nombre égal au nombre
de déterminations de F(z, ) et telle que chacun de ses points soit dé-
fini par un systéme de valeurs x et y, déduit de 1'équation («), dans
laquelle on aura regardé z comme constant.

On est ainsi conduit & la considération de la surface de Riemann,
correspondante & F(z, t), sur laquelle il faudra varier ¢. La discussion
devient ainsi bien plus difficile que dans le cas précédemment traité.

20. Les 'équations algébriques (5) [II, n° 10], qu'il s'agit de ré-
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soudre, peuvent s'écrire comme il suit : .

(1) (@—t)(—at)=o,

(2) (y =) —y)=o,

(3) 2ot gy U3 o,
(4) HrEt —pet T =,
< 122D ap 250,
(6) ) 1 ap, <';_jg> =o.

En combinant deux & deux ces équations, comme on I'a fait dans le
cas précédent, on aura deux sortes de points singuliers, savoir :

Points singuliers de premiére espéce, obtenus par les combinai-
sons suivantes :

(l) ' ((m—r) (1—x7) =o,

(2) Ly =) =yv) =0,

(1) S(x —-’c)([—~.’L‘T)=O,

: Y(x—r) (y——'l:’)2

(3) ( l+1:‘ [+t = )7
(2) ((r- w')(n —y)=o,

(5) E .l)’(lx_*_::)' - Bw'(%:—:ﬂ)— =0,

. [ y(z—n)? (y—r')2

(3) \ ) *"‘Bw Lt O
@ (25T e =

Remarque. — Les combinaisons (1) et (4), (2) et (4) donneront
évidemment les points réciprogues des points déduits respectivement
des groupes (1) et (3), (2) et (3), et ol 'on aura changé f en §,.

Journ. de Math. (5° série), tome I. — Fase. IV, 1895, 53
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Points smgulwrs de deuwiéme espéce. — Ils sont définis par les
groupes réciproques suivants : '

(3) R
SR = T
) |~ Bt =
(6) | ( E%—'Efg—l + aB, ':_'_Y:,' =o.

Ici aussi, les points du second groupe seront respectivement réci-
" proques & ceux du premier, & la condition de changer 3 en §, dans
ces derniers.

21. Les équations (1) et (2) donnent les points suivants

=" . ‘ :;a
(a) el son réciproque
y=x 2 =
1
‘"L'——-’T ( ="7
(o) »
I
7= 7 s

le premier correspondant au point (a) du Tableau Aj; le second (o)
¢tant un point singulier nouveau.

Considérons le groupe (1, 3). 11 est d’abord satisfait par le point
a(x =1, y =1'), quiest double pour (3).

En prenant 'autre valeur de z, . = ; et en substituant dans (3),
on obtient I’équation

Br(1 -+ 1)y
(@)  § —[G+72)(—21)+ 20t (1+7%)]y

+Brr2(1+ 1) =0
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qui est satisfaite, d'une fagon approchée, par la racine trés grande

14+t —att4-afw

— L
Y= fr =&

d’abord, et ensuite par la racine trés petite

Pz’

Y= + tv'i— a7 -2 fr

== B’t:’t:'2

(si 'on néglige les trés petites quantités).
Nous aurons donc deux points singuliers : I'un

L
X = -~y
T

'
(F‘) 1+t — 27?4 3 Bt 1

(y=. Be Tk

correspondant au point 8’ du Tableau A ; 'autre

k]

L
X = ->
T

B

Ve 1+ 12— 272+ 2 Pt

©
(

= @’W”,

ne figurant pas dans le Tableau A, est un nouveau point singulier.
Le groupe (i, [;) COIl’dl.lil‘a & D'équation réciproque de (a) et par
conséquent aux points réciproques des précédents ; savoir

x =,
(@) — Box
Y= I+ 72— 2724 o fyr =0t
et
x=r,
(€) : I R et o1
Y Bow® g

Quant aux points singuliers définis par les groupes (2, 3) et (2,4), |
on les déduit des précédents en y permutant, tout simplement, les
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coordonnées x et y entre elles et aussi les quantités et 7’3 on pren-
dra, en outre, Pinverse des quantités {3 et §3,.

La raison en est simple. On aura de cette fagon les points singuliers
suivants

]

IR

I

3

(d'unc fagon approchée),

—

I

g
(3

(¢) Sy‘
[

BO+?—2) 4o’ B
<

) |
o

| ¥
(w) 5

o t

(.z‘: B+ —27?) a2t B

et les réciproques respectifs

s
(W) L Bt =27t a2t By
r = o =
(7=

(V) ( . %! _1’
s r= By(14rt—2v2) 42’ T B,

Les combinaisons d’équations (1, 3), (1, 4), (2, 3) et (2, 4) intro-
duisent donc dans le cas présent trois points singuliers nouveaux :
(0), (») et (w) et leurs réciproques respectifs. Ces trois points ont été
obtenus de la méme facon que (8) et nous avons vu (II, n° 12) que
ce dernier n'est singulier qu'en apparence pour ®(z). Il en est de
méme des points ¢, v et w. D’abord le point { est évidemment, pour la
méme raison que 3, singulier apparent seulement.

Cela résulte de la forme de ’expression @ (=) (loc. cit.).

Si nous changeons maintenant x en y, 7 en 7’ dans cette méme
expression de ®(z), nous prouverons par cela méme que y =<

l | { - . . .
ou - et par conséquent les points eux-mémes ¢, w, ¢, @' ne s'intro-

duisent qu’en apparence comme points singul.ers de ®(z).
- Nous n’avons donc pas 4 en tenir compte.
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11 ne nous reste plus, comme points singuliers de premiére espéce,
que ceux qui résultent des équations (3) et (4).
Ces équations devant étre satisfaites 4 la fois, il en sera de méme de
I'équation
Yz =) —z) B8 2y =P (t—y)
0

ey 7

ou hien des deux suivantes :

(()) ,7’(-7/"—"5)("““"‘)____;_a“‘(.}”"'"')(l_‘}"t')
1+ - 14t

en posant toujours

(¢) a = L?L-2= /BB,.

La systéme d’équations (3, 4) se réduira alors aux deux suivants :

(. — =) — )2 '
(3> ¥ ,x_*_.t:) __Bx(;}’—'_tﬂ) =0,
yE——as)  a(y—v)a—y) _
(7) ~ 1+ 2 —e 1+ =0
ou
) r@—a—ey) | ely=—y¢) _

\ 1+ 7 ©o1+4x

On en aura, ensuite, deux systémes analogues : (4, 7) et (4, 8).
Mais il est clair qu’on aura les solutions des trois derniers systémes
d’équations, des solutions communes aux équations (3) et (7).

On peut écrire ces derniéres de la fagon suivante :

(9) ‘ 1 ylz—=) B _;;—'t’_ @ 1—yx
9 1+ g(y—=<) 14+t x—t T4 1—at’

on n'aura alors qu’a considérer I'équation (3) avec I'une de celles-ci,
avec la derniére, par exemple,

(10) By —v)(1=2%) —a(z—5)(1 —y¥) =o.
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On en tire
_ w(x — )+ Be'( (1— =)
(II) - Y= ﬁ(l—.v'r)-i-m'(w—@)
D’ou
(d) . a(1—t?)(z—r1)

y-—v= B(l— 1) +av (@ —x)
et.si I'on substitue ces valeurs dans (3), on arrive & 'équation

[e*7 + B27'7® — afr (1 — 72)]a?
(1) | — [a( + B)e — a1+ 2 )+ fu (1= 7)o
‘ + o212+ P21 — afr(1 — 1) =0,
qui sera satlsfalte, d’une facon approchée, par la racine de I’équation

plus simple
—a(a —1)x +Bt'—at =0,

c’est-a-dire la racine trés petite suivante :

(13) p= =i

a(1—a)

Elle sera, en outre, satisfaite par la racine trés grande

(1— u)
(14) z = ot — ﬁ [ ( )
Les racines (13) et (14) étant réciproques seront évidemment aussi
les solutions des équations (4) et (7).
On aura les solutions communes ‘des équations (3) et (8) et, par

(1) En réalité, cette derniére racine, déduite de I'équation (12), est la sui-
vante :
. B(l—d)

T Br—ad

Mais cette différence n’est qu'apparente et disparait dés qu’on remplace « par

sa valeur y83§,.
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conséquent, de (4) et (8) en changeant a en — a dans les précédentes.
On obtient ainsi

o ax + B/
(1) = iw )
el

. __a(1+412)
(lb) -’l)—-—m;;'

En substituant (£3) dans (11), on obtient les coordonnées sui-
vantes

_ at —

&= a(i—a)’
(Y) __zar—(i'r'
y_'{; 1— 2

du point singulier, correspondant au point (y) du Tableau A.
On voit, en effet, que si ' = o et si, comme nous le supposions alors,
w — @ =0, que, par conséquent, = f3, = «, on retombe sur les va-

. lcurs~—— et — dexetdey.

En subsmu.mt de méme, (14) dans la réciproque de( 11) et de
méme (15) et (16) respectivement dans les mémes valeurs de y, mais
ou l'on aurait changé « en — a, on obtiendra les coordonnées sui- .

vantes, qui se déduisent lmmedlatement de celles du point 7, a sa-
voir

g= 20—
, at — By’
() b e
\y_.;a-.—ﬁn':”
‘x::a't-l—@-;!’ xzw,,
(8) 2(E+ 2) , (8') at + By
? Rl & Bp 1+
y_ﬁ Tt y“?wc_-i—_ﬁr

Remarque. — L'inspection des coordonnées précédentes montre
que I’'on passe d’un quelconque aI'y correspondant et ihversement,

en permutant les quantités 7 et «' et en prenant les inverses reclproques
des quantités a, § et B,. '
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Cette symétrie était évidente, a priori, car x et y, n'édtant autre
chose que les exponentielles qui ont pour argument respectif les ano-
malies excentriques des deux planétes P et P’, déterminent dans l'or-
hite les positions respectives de ces planétes, et 'on passe d’une planéte
4 'autre, en permutant les excentricités, les longitudes des périhélies
et le rapport des grands axes.

22. Passons maintenant aux points singuliers de deuxiéme espéce.
On tire de l'équation (5)

__tlz+1)+ap(1 — )
(17) T et(@+1) —aB(1—ar)’

* d’ou

, v c(1—vN(x 4+ 1) +2af' (1 —27)
(e) yoT= (@) —ap(1—xzy

En portant ces valeurs dans I’équation (3), mise sous la forme
@) y—=Ba(y Y+ y(@ -2~ fPz(y —=)"=o,

on a

(x — 7)*[c* ' (% + 7)2 — d,‘sc(l — 7 +7) (1 —27)
— a3 (1—27)*]
— B[t (1 —=7%)(x + 1)
(18) +4afes’ (1—1*) (% +7)(1 — 27)
+ 4a*3*7* (1 — w1)?]
+ 7'*(# — 7)* X premier crochet
— 1*f4 x second crochet = o.

En faisant, dans les deux premiers crochets, les développements in-
~ diqués, en ordonnant suivant les puissances décroissantes de = et fi-
nalement ne gardant que les termes du premier ordre en 7 et ¢’ dansle
coefficient de z*, du second ordre, au plus, dans le coefficient de z*
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et ainsi de suite, on arrive & ce qui suit :
2__ '3\ _ opn2Rant
c(aBr + ev)at — B 3 ac:;(_:_(zc%z _)_ 4;@62,&?1
—2¢*' 1+ afer(1 — 11— 7?) — a*P7 (1 + 41?) .
—2Be?1(1 — 27%) — 4aficv (1 — 12 - v*) + 84?71 g
act*(1+ 1 —1?) +2aBr1 (1 +1*)

+B — (1 — 2v?) —4afer (1 —1%) — [;a’(ﬁ’w'”(
+ it — afer?(1 = §'t) —a?Biv et

3

Dans chacun de ces coefficients, la premiére ligne se rapporte au
premicr crochet, la seconde ligne au second crochet de 'équation (18).

La seule inspection des cocfficients précédents montre que les seuls
termes en z, qu'il faudra garder des deux derniers crochets de I'équa-
tion (18), seront les suivants :

— act’?) act’? — a? P
3+ 2
B c*r? g ﬁ{ — 20 — fafcr's?
3 actit’? + 24 frr? acw®t’?
XL —
- — 7' — faBer®r’ — fa?BPrir?) ? + a*Brie?,

et, par conséquent, 'équation finale sera

c(afr +cv)x' + B[— e(a +c) — c(a+ c)r?
+ 2af(a + 2¢)wt’ + 2¢27% | 2?
-+ [ﬂc(a - 20)1' — apz(a + 46)7'
- pc(a -+ 20)13 — 2(03 4+ 2a? 32)’52'&"

(19) {  +4B(e+ 2028 — af?(a — ho)7a?
+Blc(a —c)r*+ 2aB(a — 2¢)17 — 4a2f21?

+é(a—c)t'+ 2aB(a—2¢)*7

-+ 2(02 —_ 2a2p2)~c2¢/2 + 2a @(a + 2c)¢¢fa]x

—aBer® — BP0 + P — a2t = o,

Cette équation sera satisfaite, d'une fagon approchée, par la racine
Journ. de Math. (5 série), tome I. — Fasc. IV, 18g5. 54
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trés grande
(20) v =+B g
et par les racines de 'équation suivante

‘ c(c+ a)x* + [¢(2¢c — a)T + aB(a+ fec)v']x?
(21) | +[e(e~a)m?+ 2aB(2¢ — a)tv + 4aPrrt]x
l + a(ct’ + afrt’) =o,

équation homogeéne en z, 7 et 7'. Les racines seront trés petites et de
I'ordre de 7 et de 7', '

Remargue. — La racine (20) nous donnera un point singulier
a-+c
correspondant & € du Tableau A, car on a, pour ¥'=0, # = ——-

Quant & '"équation (21) elle doit se réduire, pour 7' =o, & I'é¢qua-
tion (15) du n° 10.
On a, en effet, sil’on y fait ©' = o, I'équation

(c+a)z’+ (2c—a)r*+ (c—a)i’zr +ar’=o,

ou bien la suivante
(z +2)[(c+ a)x*+ (¢ — 2a)1% + ar®] = o.

Le second facteur égalé a zéro est bien I'équation dont il s’agit.

L’¢quation (19) donnera, par conséquent, trois points singuliers
correspondant, respectivement, aux points ¢/, i et v du Tableau A et
un quatriéme point ), se réduisant 4 = — 1, ¥ = o pour 7' = 0. Ce
dernier point est nouveau.

23. L'équation (21) pourra toujours étre résolue dans les applica-
tions numériques. On aura donc sans difficulté le point singulier qui
convient au probléme. Mais il n’en est pas ainsi dauns le cas général et
une discussion des racines de cette équation est nécessaire pour dé-
cider dans les différents cas les points singuliers qu'’il faudra considérer.

Pour cela, nous allons discuter la courbe représentée par 1'équa-

tion (21).
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Supposons, pour simplifier, @' — @ = 0; on aura alors § = a. De

x a r ’ . [ M
plus, posons —=Xet -:— =Y ; I'équation précédente deviendra ce

qui suit
() (55 —) (i)
c (c

| felem) e ar] e g e

a\a

(21')

y y e N (4
La forme de la courbe dépend, évidemment, du parametre -- Ce

rapport est, avons-nous dit, négatif dans le cas des inégalités & longue

période; il est lié au rapport & des distances des deux planétes par la
relation
4

£ = — (a).
Plagons-nous d’abord dans I'hypothése :

(4] .
11 <L — Zz < o, qui entraine & > 1. La forme de la courbe sera la
suivante :

En désignant par X, X, et X, les trois racines de I’équation (21’),
on verrait qu’elles seront réelles et inégales, X, étant la plus grande
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en valeur absolue, pour toutes les valeurs du rapport — -:f;- prises dans
’ . » ! .
Pintervalle considéré et tant que Y = = restera plus petit que un.
) T

.o . . . ¢
En effet, voici ce qui se passe quand on fait varier le rapport — =-

Faisons-le, par exemple, décroitre d’une facon continue & partir d’une
certaine valeur trés grande jusqu'd une valeur voisine de l'unité.
Dans ces conditions, X, s’éloignera, d'une facon continue, d'une va-
leur trés voisine de X, cette derniére étant constamment égale &4 — 1,
jusqu'a ', sur V'axe des x négatifs; le maximum de la courbe cor-
respondra ericore 4 Y =1, tandis que les ordonnées respectives des
points A’ et A” diminueront. Il en résultera le rapprochement de bl
avec aa’, et il en sera de méme des droites cc’ et dd’, aussi bien qu’au
" cas limite, il n'y aurait plus que des valeurs réelles des racines. II est
donc clair que les trois racines seront réelles, X, étant en valeur ab-
solue la plus grande, tant que Y <1; de plus, X, est Pabscissc du
point i, comme il est aisé de s’en assurer, en supposant 1’ = o, c’esl-
d-dire Y = o.

Pour Y =1, les deux racines négatives deviendront ¢gales. Pour
Y > 1, mais inférieur & 'ordonnée de A’, I'équation (21") aura deux
racines imaginaires conjuguces, et unc troisicme réelle toujours plus
petite que I'unité.

24. 11 est intéressant, pour ce qui va suivre, de voir si le module
commun de X, et de X, est plus petit ou plus grand que l'unité. Cela

c
-(; +Y
revient & chercher la valeur du rapport — ——-
| )
. a\a
Or, il est clair que lorsqu’on fera varier Y & partir de la valeur un,
pour laquelle le module commun |X,|=|X,| =1, jusqu'a la valeur

correspondante au point A’, le numérateur du rapport considéré di-
minuera; il en sera, par suite, de méme du rapport lui-mé¢me. Comme
d’autre part la racine X, croit dans I'intervalle, le module commun
'|X,|=]X,| ne pourra que diminuer et, par conséquent, il sera plus
petit que l'unité.

25. Continuons & faire varier Y. On aura de nouveau une racine
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double au point A’; elles se sépareront ensuite : X, diminuera pour
redevenir négative, tandis que X, ira atteindre la valeur X, =1 pour

Y=-— g et finalement croitra au dela de toute limite avec Y, pour les,

at! c
valecurs de Y = .:_ >— =

Remarque. — 1l est facile de s'assurer que c’est X, qui deviendra,
finalement, trés petite et négative, tandis que X, croitra vers -+ oo,
parla forme méme de la courbe (1) dans le cas limite, par exemple,

de — -ca- =1. On verrait que I'une des branches de I'hyperbole, &
laquelle se réduit la courbe (21°) dans ce cas, passe par X, =—1 et
est asymptote & I'axe des y positifs, tandis que X, est situé & l'co sur
la droite Y =1.

26. Considérons maintenant le cas de : 2° 0 < — f—l <1, Clest-

a-dire de « < 1. La courbe est représentée par la fig. 2. Elle montre
que c’est, au contraire, au-dessous d’un certain maximum de Y <1,

Fig. a.

Y

b

que, les racines étant toutes trois réelles, deux sont posmves et com-
prises respectwement entre o et 1, 1 et ; une troisiéme racine néga-
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tive comprise entre o et — 1, et c’est toujours X, la plus grande des
trois.

Pour des valeurs de Y supérieures i I'ordonnée de A’, on retombe,
comme dans I'hypothése précédente, sur deux racines imaginaires
conjuguées qui vont redevenir réelles ct égales pour Y =1; enfin,
trois racines réelles et inégales dont deux négatives pour Y >1. De
ces derniéres, X, se rapprochera indéfiniment de l'origine, tandis que
X, et X; croitront au dela de toute limite.

. . c :
Lorsqu’on fera varier, d'une fagon continue, le rapport — ~deo &

I’unité, les trois racines varieront de la fagon suivante : X, restera
constamment = — 1 ; X, variera entre + 1 et o, en se rapprochant de
l'origine, tandis que X, cheminera dans le sens contraire sur 'axe

des X positifs & partir de + 1 pour devenir % quand — —2 aura atteint

la valeur 1.

Remarque. — Les conclusions sont les mémes que dans le cas pré-
cédent; seulement, pour passer de la fig. 1 & la fig. 2, il faudrait
changer aussi le nom des axes des coordonnées. En effet, la fig. 2 doit
répondre & une courbe analogue 4 (21’), quis’obtiendrait en éliminant
non pas y mais x entre les équations (3) et (15).

Or, on passe de la valeur (17) de y 4 la valeur de « correspondante
en y permutant entre eux les éléments y etx, T et 7/, @ et o et les

1 ¢ a N .
rapports a et -» = et - en un mot en permutant les planétes; ce qui
o a ¢ !

rameéne aux mémes conclusions.

27. 1l reste enfin la derniére hypothése, a savoir: 3° — f—l =1;elle

répond au cas intermédiaire entre les deux précédemment considérés.
Dans ce cas, la courbe (21") se décompose en une droite Y =1, et
une hyperbole 4XY — 3X?— 2X + 1=o.

Cette hypothése n’est pas réalisée dans le systéme solaire. Elle cor-
respondrait, en effet, au cas ou les deux planétes décriraient une
méme orbite. Sa considération, cependant, rend mieux compte de la
variation des points singuliers 7, wu et v.
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28. Nous arrivons donc & la conclusion suivante :
X, X,, X, étant respectivement les abscisses des points singuliers

N, petv:
a. Ces points seront réels et Pabscisse de y sera la plus grande en

! : c
valeur ahsolue pour toutes les valeurs de i:— < toubien > —=;le
rapport — f—; étant supposé > 1;

b. X,=X,=—1 pour °i:-l=t <0u1 =i) et X,=X,<1 pour

at! .« .
— = au minim. de la courbe;

e. Xo=X,= +1pour—l=—~(oub1cn~ \/oc)

d. X,, X, imaginaires conjuguées et leur module commun plus
petlt que I'unité. :

Des conclusions analogues pour les ordonnées respecuves D’ailleurs,
il n’y a méme paslieu d’en tenir compte, ayant a étudier complétement,
plus loin, la courbe (3).

On verra alors comment, en partant des conclusions auxquelles
nous venons d'arriver, on pourra décider de I'admissibilité ou de la
non-admissibilité des points singuliers.

Mais, avant, réunissons dans un Tableau tousles points singuliers de
premiére et de deuxiéme espéce, de ®(z), y compris les points ¢, w’,
7 et v/ réciproques de ces derniers.

Nous avons ainsi '’ensemble des points singuliers suivants :

TasLesv B.
‘ r=r, ( X = ia
T
(%) ¢ (a')
( )’2“'» ? )'Z ',,
) $:T, $$: 1,
. T
(o) ) (¢')
Y= (y::'c’,
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Tasreav B (suite).

I

r== ‘w:;,

(® (8" ) '
J’—"po"r ' y= 3’

(.T:T, gx:i—:

() , SO )
? yzﬁo‘“"’ (.)':p'“'g;
‘a‘:l’, ‘x:g,

(v) ' (v ]
?’2* ?f=?’

x:%, x:%’.,
(W) . (wr)
.y:;r’ (}':1’,
ar — B’ [ a1 —a)
a{1—a) sx ar — Byt

(0 , )

_a aﬂ:-—-ﬁr, ( Bo 1—a
B 1—a 4 a at — Bot’
at —+ pv’ xza(l—{-a)

5 a(1-4-a) @) at + Bt

( __a:a'c-}—p-:’ ( _ B 14«

'qu 1+« ‘y_:at-i—p'r’
_ 1 aBr4-cer’ _p C+a
w‘_m z+a ‘(I x—'pafitq—ct'

) __afyr+cr ‘) t __ ¢+a

~Tc¢+a V= afrre

et les points p(x, = 1X,, ¥,), V(@ =1X;, ), n(z, =X, ) el

les réciproques respectifs @', v/, .

Remarque. — Pour @ — @’'= o, on aura 3 = §,=a et les points
singuliers deviendront tous réels.
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V.

29. Il nous reste maintenant & examiner quels sont, parmi les points
singuliers du Tableau précédent, ceux qui conviennent au probléme.
Mais une nouvelle difficulté surgit dans le cas présent.

1
Clest que, 7" n’étant plus nul, la relation entre z ou plutdt z° et les
coordonnées des points singuliers devient

1 aa T (40 T (1
(1 zz__xzczm(r“)ye—ms(y 7).
- ?
‘ 1
elle montre que, pour chaque valeur de z°, on aura une infinité de
valeurs de z et de y. En particulier, ¥ ne s’exprimant plus uniformé-
1 1 .

ment en fonction de x° et de z°, comme on a vu au n° 44, mais ayant
au contraire une infinité de déterminations, la fonction

_d
tad—be—1 5 ¢

Va
en aura une double infinité. Il faudrait alors, dans la discussion, con-

sidérer pour chacune des déterminations de F(z, ¢) les points singuliers

qui lui appartiennent et s’assurer qu'ils resteront bien sur la détermi-
1

nation considérée, lorsqu’on fera varier z° le long de la droite D par
exemple.

On est ainsi ramené & la considération de la surface de Riemann
correspondante.

(2) F(z, 1) =

- 30. En faisant correspondre & chaque détermination un feuillet,
nous aurions ainsi une infinité de feuillets, une infinité de plans sur
lesquels il faudrait faire la méme discussion. En reliant tous ces feuil-
lets convenablement par les bords correspondants des points singuliers
qui se trouvent sur chaque feuillet, on aura la surface de Riemann
correspondant a notre fonction F(z, ¢). Il est clair que, sur une sur-

Journ. de Math. (5 série), tome I. — Fasc. 1V, 1895. 55
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face ainsi formée, la fonction F(z, ¢) restera uniforme. A chaque point
de cette surface correspondra maintenant un seul systéme de valeurs
de x et de y pour F(z, t) (exprimée en fonctions de ces derniéres va-
riables). ‘

En faisant alors varier 5°, les points singuliers se sépareront, la sur-
face de Riemann variera évidemment aussi et les positions finales sur

. i
la surface de Riemann correspondant i z:l = t montreront si le point
singulier considéré est ou non admissible. Il faudra, pour qu’un point
singulier soit admissible, que ses positions finales se trouvent dans
les deux domaines séparées par le cercle |« | =|y| =1 sur cette der-
niére surface (*).
. Or, une pareille discussion est excessivement délicate : c’est cc qui -

" fait la grande difficulté du probléme.

31. Je dis qu'on peut cependant tourner encore cette difficulté
dans le cas ou nous nous plagons et ramener au plan la discussion sur
une surface de Riemann.

Rapportons-nous, pour le montrer,  I'équation de Képler relative &
la planéte P’. Cette équation montre que I'anomalie moyenne est bien
une fonction uniforme de l'anomalie excentrique, mais qu'il n'en
est pas de méme de cette derni¢re regardée comme fonction de la
premiére. A une valeur donnée de l’anomalie moyenne peuvent
correspondre une infinité de valeur de I'anomalie excentrique. Clest
précisément cette relation entre les deux anomalies qu’exprime I'équa-
tion (1) et qui conduit a la considération de la surface de Riemann.

- Or, dans le cas présenl, I'excentricité de P’ est supposée trés petite.
On pourra donc la négliger, dans une premiére approximation, dans
I'équation de Képler; 'anomalie excentrique deviendra alors fonction
uniforme de l'autre anomalie. C’est le cas qui a déja été considéré et
pour lequel nous avons vu que y s’exprimait uniformément en fonction

de z° et de z 7‘ Il en résultait pour F(z,¢), exprimée en fonction de
ces mémes variables, deux déterminations égales ct de sens contraire.

(1) Voir PoiNcark, Mécanique céleste, 1. 1, p. 307.
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32. Revenons maintenant au cas présent. On suppose 7’ = 0, mais
petit. On pourra alors remplacer, dans le second terme de I'équation
de Képler, l'anomalie excentrique par sa premiére valeur approchée
en fonction de I'anomalie moyenne. Sous cette nouvelle forme I'équa-
tion de Képler fournira pour I'anomalie excentrique une fonction uni-
forme de 'anomalie moyenne. Cela rewent a remplacer la relauon (1)
par la suivante :

(l ') z;! =)/w{l}"e_c-(:l: ) ,T'[ :1‘:6‘: == %x—‘;‘gg(x‘é)].

1 1
On en tirera y, fonction uniforme de z* et z* et, en remplagant
. 1
dans (2), il en résultera pour F(z, ¢) une fonction de z° et 2° n’ayant
plus que deux déterminations, celles du radical. La discussion est de

cette facon ramenée, comme celle du cas simple, au plan de la va-
1

riable x°.

33. Pour faire cette discussion nous allons tracer les courbes (3)
et (4) (n° 20) sur lesquelles se trouvent situés tous les points sin-
guliers.

Une seule des courbes, la courbe (3) par exemple, sera suffisante ;
car les conclusions sur ses points seront évidemment les mémes pour
les points singuliers appartenant 4 la courbe (4).

Considérons donc I'équation

(3) .7(‘”"‘")2__“ (y —<')

[+ [—i—’t'z =0

On a une courbe composée de trois branches, dont une passe par
I'origine, la tangente en ce point étant

(a) y="%a.

2

Les asymptotes sont : = o, y =0 et & = ay + 2(7—at’). Le
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point a(x = 7, ¥ = 7') est double et les deux déterminations ont pour
tangentes respectives en ce point les droites '

@) y—c'=i\/§(x-¢).

On pourra donc, dans le voisinage de a, les représenter par les deux
développements suivants :

Y=+ \/%(w—':)—f-a,(x—'r)ﬁ-{—...,

(¢) _
. - .
Y= — \/;(z —)+b(r—1)+....
!

La forme de la courbe dépendra du paramétre = . Commengons par

supposer : v
o3 . e
I. aT < 1; 'asymptote coupera alors I’axe des y négatifs; les bran-

ches passant & I'origine ct au point « tournent leur concavité vers les y
positifs.

Entre le coefficient angulaire de la tangente & I'origine et celui de
la tangente correspondante en «, il y a I'inégalité évidente

lrl

!

at'?
= <

R

T

Le point « est le seul point double; en outre, la courbe, étant algé-
brique, n’aura pas des points d’arrét ou anguleux.

La forme sera, par conséquent, celle que montre la fig. [.

Les points singuliers satisfaisant a I'équation (3)sont : ¢, @, 4, v,
w, o, o', B’ et {'. Sil'on se rapporte au Tableau B, on verra qu'ils sont
bien dans I’'ordre indiqué sur la fig. .

Les abscisses des points 7, & et v sont les racines de 'équation (21")
(voir fig. 1); quant a ¢’ il correspond & la racine Lrés grande de 1'équa-



DEVELOPPEMENT DE LA FONCTION PERTURBATRICE. 427

tion (19); il satisfait & la fois & la courbe I" et & 'asymptote, comme
il est aisé de le voir par ses.coordonnées.

Fig. 1.
JIE
E p':///A
AW ¢ V/fls
. (AR
H (AR
: [
v ! SO
B H ’ H
H i / H
‘: «' /’ [
: H 4 1 :v ’
@u/ g
0 /+T xs
g

34. Avant de commencer la discussion pour chacun de ces points,
éliminons ceux qui ne sont singuliers qu'en apparence. Tels sont les
points f et §', comme on a vu au n” 12.

Une démonstration analogue, et qui se déduirait de celle du n° 12
par la permutation des quantités = et y, © et 7', prouverait que les

points ¢ et ¢’ sont aussi singuliers apparents pour ®(z). De plus, il en
cst de méme des points w et ',

i
z

Quant aux points {’ et {, remarquons qu'ils feront correspondre &
deux valeurs respectivement voisines de o et de I'infini. On n’aura
donc pas 4 en tenir compte.

Les seuls points qu’il nous reste & discuter seront les suivants :

¢, 1y, v, gela.

Discussion du point p. — Ce point appartient & la branche de
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courbe

(FI) yg = (fl/’— t)2+ gm"w + (:z;'t)\/(x _— T)"*; [;w:’-’ﬂ,

ol & devra prendre des valeurs négatives.
X .
Etudions la variation de lz"l le long de cette branche. Au point &

]
l'infini sur la courbe et trés voisin de P’axe des y, on aura lz"l = ®;
1
5

décroit ensuite d’une facon continue quand on suit la branche I
pour devenir o au point & l'infini sur la droite A.
Il a donc passé dans l'intervalle par un minimum, et ce minimum

correspoud évidemment au point de deuxi¢me espéce ., point de con-
1

tact de la courbe (3) avec I'une des courbes zzl = const.; ensuite, par
un maximum qui correspond au point ¢ également de deuxiéme
espéce.

o=

Le point p. étant un minimum pour
1

zt‘

, faisons-le varier & partir de

3z

1
sa valeur |z°|,< 1, au point &, jusqu’a lz" =1. [Cela revient a

1
faire varier z° le long de la droite d’argument (1 + S)TC.] Les deux

points confondus en u se sépareront et continueront & rester sur I,
1

car pour des points infiniment voisins | z° | croit effectivement, comme
nous venons de le voir. Il s’agit de chercher, maintenant, les positions

1
z°

finales de ces points par rapport au cercle
de cette variable.
L’un des points, celui qui suitla partie py deI”, restera évidlemment

al’intérieur de ce cercle, 'z correspondant continuant 4 diminuer quand
1

| z¢

=1 lracé dans le plan

s’approchera de l'unité.
1
Le second point, au contraire, sera déja sorti de ce cercle quand | z°
: . ’ . . I .
sera devenu égal 4 1. En effet, pour = —1, |, | devient  environ,

1
z¢

quantité <1; il en résulte pour

une valeur plus petite que un
aussi. - '
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Par conséquent, quand |z°|aura atteint la valeur limite uzn, 'z du

pointen question sera devenu > 1; donc, sa position finale se trouvera
) _ _

en dehors du cercle l °

Le point p, ayant des positions finales situées de part et d’autre de
ce contour, est un point singulier véritable de ®(z). Il est, par consé-
quent, comme son analogue du Tableau A, admissible.

=1I.

385. On aurait méme pu se dispenser de la discussion que nous ve-
nons de faire, en s’appuyant sur le théoréme suivant de M. Poincaré :

Si Pon fait varier d’unc facon continue les éléments des deux
orbites, les points primitivement admissibles ne pourront pas, en
genéral, devenir inadmissibles et inversement ().

Cela tient & ce que les coordonnées x et y d’un point singulier
quelconque ne sont autre chose que les exponentielles ayant pour
arguments respectifs les deux anomalies excentriques. Supposons

. 1 1
alors tracés les cercles lx”\ =1 et iz‘" =1 ou bien |y|=1, et ad-

mettons que pour 7' =0 les valeurs finales d'un point singulier,
: : L
de p par exemple, soient toutes les deux & l'intérieur de |«

Je dis que cela n’est pas possible. En effet, supposons que «’ tende
1
zc

vers zéro, il faudra, étant supposé égal & 1 et par suite [y|=r

aussi, qu'une des valeurs finales se trouve & l'extérieur et l'autre
1

a P'intérieur de \wc =1. Or on les a supposées, au début, toutes

deux & l'intérieur; donc il a fallu que I'une d’elles franchit le con-
1

tour |2°| =1. Or cela est évidemment impossible, car |z|=1 et
|| =1 entrainent des valeurs réelles pour les anomalies excen-
triques et par suite pour les positions des deux planttes dans les
orbites respectives. Il faudrait alors, pour que le point p fit singu-
lier, que les planétes P et P’ se confondissent; or, cela n'est pas pos--

(') Poixcare;, Mécanique céleste, t. 1, p. 307,
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sible, les orbites des planétes ne se coupant pas. Donc aucune des

1
valeurs finales de g n’a pu franchir le contour l x| =1, et I'hypothése
faite au début est a rejeter. I reste alors a supposer les valeurs

1
x"l =1, et par conséquent

finales de . situées des deux c6tés du cercle
 admissible dans le cas présent.

Ce que nous venons de démontrer s’appliquera aussi a tous les points
ayant leur analogue dans le Tableau A. Il sera donc inutile de répéter
la discussion pour les points ¢ et v; ils seront tnadmissibles.

36. 11 nous reste les points 7, « et o.

Discussion du point . — 1] appartient & la branche de courbe

" (=) +2at'r — (2 —3) (2 —)+4ui'x
(T) Yi= 222 :

C’est encore un point singulier de deuxiéme espéce et de contact
avec 'une des courbes de la famille

1

¢ = const.

Quand on suit la branche I, a partir de I'origine vers les x néga-
1
5

tifs, part de la valeur o, croit jusqu'a un certain maximum qu’il
atteint au point v, décroit de nouveau pour redevenir nul pour

Xr = — 0.

3
-0
<

En faisant varier maintenant
1

-C
~

a partir de sa valeur en v jusqu’a

=1, les points confondus en v] se sépareront en devenant imagi-
1
=

naires conjugués, parce que | 5°| < 1 croit dans cet intervalle et,d’autre
part, il est maximum en v quand on reste sur I".

On pourrait démontrer, en construisant par exemple avec les parties
réelles des coordonnées une courbe dont chacun des points représente
'ensemble des deux points conjugués, que les deux points imaginaires
conjugués primitivement confondus en » iront & un moment donné se
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confondre avec le point .. Les valeurs finales seront celles de w et par
consequcnt v sera admissible.

Mais il n’est méme pas besoin de’ falre cette déinonstration. En effet,
on a vu (fig. 1) que, dans le cas ot nous nous plagons, I'abscisse de
sera toujours plus grande que celle de v et, comme il en est de méme
des y respectifs, il en résulte que 'affixe de w sera plus éloigné de
Porigine que celui de y. On n’aura donc pas 4 tenir compte de 7 dans
ce cas, le point . étant admissible.

Le point a sera admissible. En effet, on a en ce point

1

a
e

1

A étant fini, | &

¢ est évidemment plus grand que 1.
1

Faisons décroitre |zZ jusqu’a la valeur 1, les deux points confondus
en 6 se séparent : I'un ¢,(x =, y) restera sur la droite x =1 et

. . e N oy 1 .
son x restera toujours inférieur & I'unité, I'autre o, (w, y= ?) suivra
. 1 - .«
la droite y = - dans le sens croissant des « et sortira du contour

1
bt I
|x|=1,carona,pourz =r, |z‘~\ =5>L Les points o et ¢’ seront,

par conséquent, admissibles.
1

Discussion du point a. — On a, pour ce dernier point, z°< 1. En
i

faisant varier z° & partir de sa valeur en &, quatre points confondus en
« se séparent et, dés ce moment, continueront & cheminer respective-

ment sur les droites # =1, y =1’ et.sur les branches I' et I, et cela
dans le sens croissant des . '

Le point a,(x =r,y) ne sortira pas du contour |xz|=1. Pour
a,(w,y:m’)?

1 .a a_(1% (1 ) a e (1 _
F=rvare G ) C g 1 (5)
L
et pour la valeur finale de z°, on aura

- -
1=A7'ze e ) .
Journ. de Math. (5* séric), tome I — Fasc. [y, 1895. 56



432 N. COCULESCO.

Si nous négligeons 7 dans une premiére approximation pour fixer la
détermination avec laquelle nous portons, il est clair que x restera

plus petit que un, g étant < o. Ilen sera de méme lorsque, dans I'ex-

ponentielle, on remplacera « par une premiére valeur approchée, et
ainsi de suite.

Pour a,, y décroit & partir de la valeur y =<'. Or, nous venons
1

de voir pour a, que z était plus petit que I'unité pour z° =1, y étant
constamment égal & 7'. 1l en résulte qu'a fortiori 'z de a, sera plus
petit que 'unité. :

Pour a, la valeur finale de z sera supérieure i un. En effet, ce point
appartient & la branche I et I'on a, d’une fagon approchée pourz =1,

y:i <[.

Il . } -7 (%"“) : «l .
en résulte z=ye <1 et, par conséquent, quand z° at-
teindra la valeur limite,  aura déja dépassé cette méme valeur, et le
point a, se trouvera & I'extérieur du contour considéré.

Les points « et &’ sont donc admissibles. Les points admissibles

seront ainsi @, 1, ¢’ et o. Mais il est aisé de s’assurer, d’aprés ce qui
1

précéde, que cest au point w que le module de ¢ sera le plus grand.
C’est donc le point p. qui convient au probléme, dans le cas présent.

37. En continuant a rester dans I’hypothése de la fig. 1, nous

. . at’ .
allons considérer maintenant le casde : II° — = 1. — La courbe (3) se

décompose, dans ce cas, en une droite y = ix passant par le point e,
<2 ;
et en 'hyperbole zy = —-
La situation des points singuliers importants est celle que 1’on voit
sur la fig. II. En effet, le tableau B montre que les coordonnées de ¢’
satisfont bien a la droite I et la _fig. 1 que les abscisses z, et x, des
points v et p» sont égales & — 7; il en résulte que 7 et wse confondent,
dans le cas présent, au point commun a I' et IV,

Remarque. — On aurait pu voirautrement que les points v et .
devaient se confondre en un seul point dans le cas considéré : c'est en

3
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1
z°|le long de T” et de I'" respectivement. On verrait
facilement qu'il ne peut y avoir qu'un nombre pair de points singu-

faisant varier

Fig. If.
¥

I\u

x D=, P
T 0ay +T )

@

™
[

4

liers sur I et un nombre impair sur la droite I'"; donc, les points n

et g devaient nécessairement se confondre avec le point commun & la
branche I' et & la droite I'".

38. Il resterait maintenant 4 faire la discussion des points singuliers

az' . e c
pour les valeurs de — comprises entre I'unité et — -, et cela dansle

1
cas de la fig. 2; °—f— étant, dans ces conditions, toujours plus petit

que 1, on resterait encore sur la fig. I. Mais nous préférons faire
cette discussion en restant sur la £ig. 1 déji considérée. On aura donc

. s . . . . . at'
& suivre la situation des points singuliers pour les valeurs de — plus

grandes que I'unité. On est ainsi amené & remplacerla fig. I par la
suivante :
II° 5:—I >1. — La courbe (3) a, dans cette nouvelle hypothése, la

forme indiquée sur la fig. III.
Remarquons tout de suite la réciprocité entre les fig. I et IIL. Cela
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tient & ce que, en permutant le nom des axes dans cette derniére, on
aura, par la méme, permuté les planétes P et P’, quand on passe de
I’hypothése I° 4 'hypothése ITI°.

Fig. 11T,

0" ‘y
at’ .

Nousavons vu ( fig. 1) que pour des valeurs de — >>1 les racines z,

et x, sont d’abord imaginaires conjuguées; elles redeviennent réelles

, , . at! c )
et egales, se separent ensuite et, pour =T8S annule, z, et z,

he ] Y w.l ,
deviennent égales 4 + t; finalement, pour des valeurs de — supé-
N [y [ . . 13
rieures & — =» la racine x, redevient <o, z, et x, se séparent de nou-
veau, z, croissant plus rapidement que z, jusqu'a I'infini.

39. Voyons, maintenant, comment nous allons en déduire les po-
sitions correspondantes des points singuliers sur la courbe précédente

(Jig. T1I).

1
Pour cela, il faudra commencer par discuter [a variation de ‘z"l sur
cette méme courbe.
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Voici cette discussion sur chacune des branches.

L a e
C

! (Lo
Variation de z°* = x°y ¢ G=2)G), _ me dépendra évidem-

. a
ment du signe de I'exposant : 7'+ = 7.

a+c

1 a
. . . X == 00 = — \T+IT)r .
Discussion surT'. — Aupoint R,y____ w,‘z‘ =|x| e( &) ; sl
1 .
a b
a. T+ E'\:<o, on trouve 3| =o0,
1
r A 7| —
b. T+ ST=0, » | =,
1
)@ 7 —
c. ':—I-E'r).o, » 3 =0,

1
¢
¥4

Au point R, =7 %; on trouve |z¢| = o, et cela indépendamment
J’ =t

des hypothéses précédentes.
Il en résulte qu'il y aura un point singulier et un seul situé sur I”

1
ct avec I'hypothése a seulement. Ce point sera évidemment ¢’ et l:‘ y
est maximum. Avec les deux autres hypothéses, il y aura zéro ou un
nombre pair de points singuliers; or, la discussion des racines de
I’équation (21) a montré que les autres points singuliers devaient se
trouver dans le premier quadrant. Donc, pas de points singuliers

sur IV dans les hypothéses b et c.
1

. r=—=t -
Sur I”. — Aupoint O”, y = — o z°| est oo,
. r=0 .
Au pomtO,y__o; si
1
a v+ 2r<o z° est o
. P ) ?
1
b ‘ 3°
. T + -T= 0’ 3 » 0,
1
c. T+ -1>0, 3" » .
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. T=-+00 .
Au point O', ; si
) Yy =+
a 1
a. '+ i <o, 3¢ est 0,
a !
b. T+ 1=0, z* » =,
a 1
c. 7+ E’r>o, 3¢ » 0.

Il en résulte qu’il n’y aura pas de points singuliers, dans les deux
premiéres hypothéses, sur la premiére partie de la branche I (celle
qui se trouve dans le troisitme quadrant) et il y en aura un nombre
pair sur 'autre.

Dans ’hypothése ¢ il y aura un seul point singulier sur la premiére
partie de I'" et toujours un nombre pair sur la deuxiéme.

: i
. rT—=-+4¢c -
SurT : Au point Q,y=+w; on trouve 3| =o,
1
. x=-+c -
Aupoth’,y=+E ; » |:°l = o,

et cela indépendamment des hypothéses précédentes.

Donc, un nombre pair de points singuliers appartenant a ceLte
derniére branche. Il est aisé de voir tout de suite que ce sont les
points v et {".

40. Nous avons vu plus haut que le point ¢, se trouvant tout
d’abord placé sur I", disparaissait dans les deux autres hypothéses.
Suivons-le un peu dans son mouvement.

Cela aurait pu se faire en construisant non pas la courbe repré-
sentée par I'équation (21), mais la courbe (19). Mais il est plus
commode de suivre son déplacement par ses coordonnées. On verra
ainsi que si

a . . 0y

@. 7+a-7t<o, lepointe setrouve dansle treisitme quadrant,
a 1 .

V. v+a v=o, » »  alinfini,

a .
¢. T+a-1>0, » »  dans le premier quadrant, .
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et comme il ne pourra pas se trouver sur la branche T, il sera donc
venu sur I dans la derniére hypothése.
Avant d'aller plus loin une remarque est nécessaire. Il nous faut la

situation sur la fig. 3 des points singuliers dans les trois cas suivants,
& savoir, si

~

=3 c . . . <!

a’. = <—%  etcecirevienta = <y
<! ¢ Ly —

” .

). _—=— - » n e .

[. = a’ z \/d
a- I} .:/

¢’ —>—— 2 » » = >\/E,

tandis que nous venons de trouver deux autres groupes d’hypothéses,
différents entre eux et avec ce dernier.

Il s’agit de savoir quel est le rapport qui existe entre eux ; en d’autres
mots, 4 quoi tient cette différence.

Mais il n’est pas difficile de s’assurer que la différence n’est qu’appa-
rente et qu'au fond on n'a qu'un seul groupe d’hypothéses, qui est le
dernier. Pour le voir il suffira de remarquer qu'on passera, par
exemple, de (&) & (b") en permutant 7 et 7 entre eux; cela tient & ce

, at/ . , C
que, a ¢tant plus grand que un, lorsque — a varié de un & — -, le
’ T - a

rapportli~ a passé par I'unité; et que I'on passera de la limite b 2 la

limite &” en divisant celle-ci par «, aprés avoir permuté 7 et 7. Cela
tient & ce que I'on a construitla courbe (3) avec le paramétre variable

a—:-’, tandis qu’on aurait pu la construire en prenant %: pour paramétre
et rester dans le cas de la fig. 1, c’est-a-dire avec & > 1.

Nous n’aurons plus & considérer, pour ce qui va suivre, que les trois
derniéres hypothéses qui, & I'aide de la fig. 1, vont nous permettre de
suivre sur la fig. 3 le mouvement des points singuliers.

Les positions des points singuliers, dans les trois cas, seront figurées
sur la courbe par le nom des points, accompagné d'indices.

41. Cela étant, voyons comment les points singuliers de deux1eme
espéce vont se déplacer sur la courbe.
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Si I'on se rapporte  la courbe (21’), fig. 1, on voit que les racines z,
et x, sont confondues en A’ & un moment donné; 4 ce moment-la les

points n et . seront confondus surla méme branche I' de la courbe (3)

')
en "My 5:— continue a croitre en restant < — % ; les points ) et &,

dont les abscisses respectives s'approchent de I'origine et de la valear
+ 1, se séparent, v chemine vers ’origine tandis que w et v s’ap-
prochent du point «. Dans tout cetintervalle on a bien un nombre pair
de points singuliers aussi hien sur I (seconde partie) que sur T,
comme on a vu plus haut; le point ¢’ se trouve en &"" sur I'.

at! c . = —
Pour — =—~ (ou bien - = \/a> la fig. 1 montre que I'on a z,=o,

Zy=2,=+ 7. Les points singuliers correspondants se trouveront
donc en n®, 1 et v sur I' et ¢’ sera 4 I'infini.
at’ c [ . sy s s
Enfin, pour —>— (? > ﬁ), le point v a franchi 'origine pour

/

venir en v sur I', w et v confondus en p, v® avec a se séparent
pour suivre respectivement les branches I'” et T' en méme temps que ¢’
est venu sur la branche I'. A partir de ce moment, on aura bien : un
nombre pair de points sur I (premier quadrant), un nombre pair

aussi sur I, un point seul, le point 7, sur I (troisitme quadrant) et
pas de point sur I", parfaitement d’accord avec la variation de lz“

sur chacune de ces branches.

Remarque I. — On n'a pas tenu compte du point « quand on a

1
fait varier z° le long de I' ou de I séparément. Cela tient & ce que «
n’est pas de méme nature que v, @, v et ¢’. Mais il faudra en tenir
compte quand on.le considérera comme un point anguleux de la

branche Qa O’ ou bien de O« Q’.
1

Dans ces conditions, z° part de o pour croitre jusqu’a l'infini sur
chacune des branches précédentes et cela dans les deux premiéres
hypothéses. On aura, par conséquent, un nombre pair de points sin-
guliers pour chacune des branches QaO’ et O« Q’. Ces points sont v

et o pour la premiére, « et ' pour la seconde.
. _ .

Avec la derniére hypothése on trouve que z° varie de O pour revenir
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4 O sur QaO’, donc un nombre impair de points singuliers ; ce sont
1

%, i et ¢/, tandis que sur OaQ’, z° part de l'infini pour revenir 4 I'in-
fini; encore un nombre impair de points singuliers qui seront «, v
et C'. .
Clest li une vérification de la discussion faite plus haut.
1
Remarque 1. — Dans toute celle variation\ z*
* point . ct un maximum aux points v et €.

est un minimum au

42. Comme en vertu d'un théoréme énoncé ailleurs (n° 35 ), les
points v ct ¢ resteront inadmissibles et . admissible, ce sera ou bien l¢
point p.ou bien « qui conviendra au probléme. La discussion précédente

. [] . b} . c b " i . 90 .
a montré que, si 'on supposait — = > 1, c'¢lait Je point y qu'il fallait
¢34 ‘ az! .
considérer pour toutes les valeurs de — plus petites que un ou plus
(4 ' . ) .
grandes que — —» le module de w étant dans ce dernier cas supéricur
g q a

R . uz! . .
& celul de . Dans le cas de — =1, trois points v}, 4 et & s¢ trouveront
sur le contour de convergence et deux seulement, & savoir p. et o, dans
o eox c at! .
Pautre cas limite — = — =- Enfin, pour des valeurs de — comprises
- -

entre ces deux limites le module de y étant évidemment inférieur 4
celui de a, ce sera ce dernier qui conviendra au probléme.

On obticndra exactement les mémes résultats en restant sur la
Jig. 1 et en suivant sur la fig. 2 la marche des abscisses des points
singuliers.

Remarquons encore que les cas limites n’auront jamais lieu dans le
systéme solaire; il en résulte qu'il n'y aura qu’un seul point singlier
sur la circonférence limite de convergence. ‘

Cela simplifiera beaucoup les calculs dans les applications,

Nous arrivons donc & la conclusion finale suivante :

Si les excentricités des deux planétes sont petites sans étre
nulles, Iinclinaison élant supposée nulle, si, de plus, le produit du
rapport des distances par celui des excentricités est inférieur

Journ. de Math. (5 série), tome I. — Fasc. 1V, 18¢5. . 57
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o, ., , e ’ c .
Dunité ou supéricur au rapport — =, c’est encore le point p. et son
a

réciproque ' qui vont définir le domaine de convergence de ®(z)
et permetiront d’obienir la partic principale du coefficient général,
dans le développement en série de Laurent. .

Pour des valeurs du méme produit comprises entre les deux limites
préccdentes ce sera, au contraire, le point « u'il faudra prendre.

43. 1l nous reste maintenant i donner les formules qui serviront an
calcul de la valeur approchée du terme général de ®(s). On n'aura
pas & répéter ce qui a été fait au § I1I. Nous nous bornerons & donner
simplement les résultats; disons seulement qu'il sera préférable de
. prendre ici la variable ¢ pour variable indépendante, quitte & intro-
duire les variables 2 ct y dans les formules finales.

On tire de

A =L'ELE,,

E et E, étant les mémes expressions que précédemment,

(12A . 5 n don
(;/_‘{>0.o =L (E aet )0‘0,

eh supposant, par exemple, que c’est le point g’ qui convient au pro-
bléme.

d*E
Calcul de (F Q") . — On trouve

ae 0,0
Phy CoSu — i COoS%P sin u)E + a(cosu’ — icosg’ sinu' du
7z = ( ? ar 9'sine’) 7

aru’
dt?

.

. . A*u fe, , , ,
—~ (sinw + tcosgcosu) —; + x(sinu’ + icosg’cosu’)
Des relations suivantes

l= u— singsinu, l'=u —sing'sine/,
|

il __ 4c iwo___ —-a.,E
et =1, e’ =

~
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on déduit

du c 1 du' a 1

—_ = — =, 7"
dt it 1 —sinpcost dt it 1—sing’ cosa'
d*u c ¢ singsinu
a6 O —si 3 Ry —“+ 1],
142 (2 (1 — sing cosu) { 1—singcosu
o’ a a sing'sinu’ 0
det T a(1—sing cosew')? { 1—sing’ cos ' !

ct, st 'on introduit les variables z ct y, on obtient finalement

d*E 1

dF T aB(r = (1= 25 (y — ) —r7)

(t+)a(y =P —yP I+ )0+ ) = (=)
— 2@ (1 + )y (v — =) (1 =23 [(r*+ ) +37) = (P —1)]
—e( +:3);y(‘z’——) (=) [ — 1)(r+752)— (@2 1)

< T —r7)
x [ = %) (1 = w7) = (= 1)]
(i =)y Gy (= D07 = ()

><[<y~?)(l—' )+ a? (Y —1)]

On a, en outre,

b = s DI 6 ) s =]
—axz[(y+ )1 +72) — 47y + (P — )]k

]<

et si I’on appelle, pour abréger, f, le crochet dans I’ expressmn de —3*

et fl'expression, changée de signe, de E, on aura
, L dE
. (h dt’o)z_f s

expression qui entre dans le calcul du coefficient C,, .




442 N. COCULESCO. — DEVELOPPEMENT DE LA FONCTION PERTURBATRICE.

On aura ainsti les formules sutvantes :

I. F‘: = 2 le'n,c‘/_’—a(mlwn'l’)’
n C ! (:z:—-'c)(l—x-:)(y—:')(l——y-.’),
e mm T 12 n xm y”"e"’ \/E
. o= (1 , .m's [ ,
(@) =TTelz %) T iEel; )
o . , ¢ s .
T= tang;, sy = e, = tang;, sy =c,
’ 9 o in
( )> B — leL-—zc\/-l(m —m), 60 — LraL—zc--J—l(m -n),
o=L"%L"2>1.

L2, L%, e, ¢, &, @ désignant respectivement les demi-grands axes, les
excentricités et les longitudes des périhélies des planétes P et P,
L’expression de C,,, -, symétrique par rapport aux éléments des deux

) [ ) ® : .
planctes, estde 'ordre de —+ n désignant lerang dans la série; clle sera,

par conséquent, d'autant plus approchée que » sera élevé.

On prendra le radical avec le signe + (voirn® 17).

Pour passer maintenant de la valeur précédente de C,, ,» aux valeurs
approchées des coefficients de cos(ml + m'l') et de sin(ml + m'l'),

dans le développement de I} en série de la forme :ions(ml +m'l'), on

n'aura qu’'a prendre respectivement le double de la partie réelle et du
coefficient de — y'— 1 dans I’expression (IT).



