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DÉVELOPPEMENT DE LA FONCTION PERTURBATRICE. 359 

Sur les expressions approchées des termes d'ordre élevé 
dans le développement de la Jonction perturbatrice ; 

PAR M. N. COCULESCO. 

INTRODUCTION. 

Il arrive souvent que, les moyens mouvements étant presque com-
mensurables, certains termes de la fonction perturbatrice acquièrent, 
malgré leur rang élevé, une importance considérable par suite de la 
présence de petits diviseurs. Il peut être nécessaire de les calculer, 
sans connaître les termes qui précèdent ; mais le plus souvent on n'a 
besoin que d'une valeur approchée, parce qu'il ne s'agit que de recon-
naître si ces termes sont négligeables. 

La question de trouver l'expression approchée de ces termes a 
déjà à plusieurs reprises occupé les géomètres. Cauchy s'en est 
occupé. Dans une série de Mémoires, insérés dans les Comptes rendus 
de VAcadémie des Sciences ('), l'illustre géomètre fit connaître de 
remarquables expressions approchées, qui lui permirent de retrouver 
les résultats du grand Mémoire de Le Verrier : Sur la grande iné-
galité de Pallas (2). 

Puiseux, Sur le développement en série des coordonnées des pla-

(') Voir Comptes rendus, t. XIX et XX. 
(*) Annales de l'Observatoire de Paris, 1.1; 

Journ. de Math. (5' série), tome I. — Fasc. IV, 1895. 47 
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nètes et de la fonction perturbatrice (') et Bourget, Sur le dévelop-
pement algébrique de la fonction perturbatrice (2), s'en occupèrent 
également. 

Dans son beau Mémoire Sur les perturbations de Pallas par 
Jupiter (3), M. Tisserand fit entrevoir (p. 3o-3i) les conséquences 
fécondes auxquelles on serait conduit dans cet ordre d'idées, en pre-
nant pour base le remarquable Mémoire de M. Darboux : Sur Vap-
proximation des fonctions de très grands nombres (*). « La re-
cherche de la partie principale d'un coefficient de rang élevé dans la 
série dépend, uniquement, des singularités que présente la fonction 
sur les circonférences qui limitent la convergence. » 

C'est le principe fondamental de ce beau Mémoire. 
C'est M. Flamme qui, le premier à notre connaissance, utilisa la 

remarque de M. Tisserand. En prenant pour base de ses recherches 
le Mémoire de M. Darboux, M. Flamme obtint de remarquables 
expressions approchées et donna même une extension du théorème de 
M. Darboux (5). 

Mais pour pouvoir appliquer ce théorème, qui n'était applicable 
qu'aux fonctions d'une seule variable, tandis que la fonction pertur-
batrice doit être développée en fonction de deux variables (les deux 
anomalies moyennes), M. Flamme fit la remarque qu'il suffisait d'é-
valuer par approximation les coefficients des termes généraux dans 
le développement de la fonction 

rkç(lf+mZ\-nX,)i ^ 

/·, /, ε et ζ désignent, respectivement, le rayon vecteur, l'anomalie 
vraie, l'anomalie excentrique et l'anomalie moyenne d'une des pla-
nètes. En d'autres mots, il fallait évaluer par approximation l'expres-

(*) Journal de Liouville, i860. 
(*) Journal de Liouville, 1873, et Annales de l'Observatoire, t. VII. 
(3) Annales de l'Observatoire, t. XV, et Mécanique céleste, t. I, Chap. 

XXVIII. 
(*) Journal de Mathématiques, 1878. 
(S) FLAMME, Thèse inaugurale. Gauthïer-Villars, 1887. 
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sion de 
rke(lf + me) 

Dans ces conditions la fonction sous le signe J dans l'expression 
suivante du coefficient de β"ζ, 

Ρ
Λ
 = i lrke(lf + me)i e - ncidC, 

pouvant s'exprimer en fonction d'une seule variable, M. Flamme 
applique le théorème de M. Darboux et arrive à l'expression cherchée 
(voir p. 66). 

C'est dans ses remarquables recherches sur la non-existence des 
intégrales uniformes, dans les problèmes de la Dynamique ('), que 
M. Poincaré fut amené à s'occuper de la question des expressions 
approchées des termes très éloignés dans le développement de la fonc-
tion perturbatrice. 

Il s'agissait de vérifier son important théorème : « qu'il n'existe pas 
de relation, dans le problème des trois corps, entre m — (\ (η = 6, 
2n — 4 = 6 pour le cas général) quelconques des expressions sui-
vantes 

(a) (Can cn)n'Can',cn')-n» (η, η' = o, ± I, ± 2,...); 

en désignant par C°„
)C

„ le terme principal, terme d'ordre | tn -f- m' |, 
de dans son développement en série procédant suivant les puis-
sances croissantes des excentricités et des inclinaisons le terme prin-
cipal de C

0)0
 étant CJ

 0
. 

C
m,m' est Ie coefficient général du développement de la fonction 

perturbatrice sous la forme 

w F, = Σ C
m

,
;
 » [m(l+g+fy +m7(?+g'-f β') ] 

^m = an, m! = cn, — ~ voisin du rapport des moyens mouvements^. 

(' ) Voir as Nouvelles Méthodes-de la Mécanique céleste, 1.1, Chap. Y, et 
aussi le célèbre Mémoire du tome XIII des Acta mathematica. 
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M. Poincaré montre (p. 265) qu'il suffira de vérifier que les déter-
minants Δ0 φ ο, Δ0 étant formé avec neuf lignes quelconques, prises 
dans le Tableau (a) correspondant aux diverses valeurs de n. 

C'est pour faire cette vérification, dans le cas surtout de coefficients 
appartenant à une classe singulière, qu'il fallait avoir des expressions 
approchées des coefficients. Les expressions obtenues par M. Flamme 
auraient suffi, si l'on n'avait été obligé de les appliquer au développe-
ment (b)de F,. 

M. Poincaré reprit alors le problème du développement approché 
de la fonction perturbatrice et montra (' ), d'une manière ingénieuse, 
comment on pouvait appliquer directement à la fonction perturbatrice 
le théorème de M. Darboux. 

L'étude de la fonction d'une seule variable Φ(^), à laquelle 
M. Poincaré ramène la fonction perturbatrice, et les conséquences 
qui en découlent sont d'une grande importance pour la théorie des 
perturbations. 

C'est dans ce but surtout, et pour compléter quelques-unes des 
recherches, sommairement indiquées, de l'illustre géomètre, que nous 
avons entrepris le présent travail. La difficulté, cependant, du pro-
blème, difficulté qui provient d'une part de la résolution des équa-
tions (de degré très élevé en général), donnant les singularités 
de Φ (s), d'autre part de la discussion très délicate pour reconnaître 
quel est, parmi les points singuliers, celui qui convient au problème, 
nous a obligé à ne considérer, dans un premier travail, que quelques 
cas particuliers. 

Après avoir 'repris et développé le cas plus simple où l'une des 
excentricités était supposée nulle et l'autre petite, nous avons consi-
déré le cas où aucune des excentricités n'était nulle. Une discussion 
très délicate, que nous espérons avoir faite complètement, nous a 
amené à reconnaître que, sauf dans des cas limites qui n'auront pas 
lieu dans le système solaire, on n'aura qu'un seul point singulier sur 
le contour de convergence. 

Ce point sera, suivant les cas, le point appelé (JL OU bien le point a. 

(*) POINCARÉ, Comptes rendus, t. GXII, et les Méthodes nouvelles de la Mé-
canique céleste, T. I. Chap. VI. 
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C'est donc l'affixe du point μ. et de son réciproque μ/, ou bien les 

affixes respectifs de α et de a' qui vont définir le domaine de conver-
gence de Φ (,s) et permettront d'obtenir la partie principale du coef-
ficient général de Φ (s), dans son développement en série de Laurent. 

Pour terminer nous citerons, dans le même ordre d'idées, les 
recherches de M. Hamy, inspirées également par le Mémoire de 
M. Poincaré. M. Hamy est arrivé à des résultats extrêmement inté-
ressants, dont il a fait plusieurs applications ('). Tout récemment un 
Mémoire, Sur le développement approché de la fonction perturba-
trice, dù à l'éminent astronome, a paru dans le Journal de Mathé-
matiques, t. II, 1894. 

Enfin, quoique dans un autre ordre d'idées, le Mémoire de M. Ra-
dau : Sur les inégalités planétaires du mouvement de la Lune (2) 
et le Mémoire de M. Hadamard : Sur les fonctions données par leur 
développement de Taylor (3), dans lequel l'éminent auteur se pro-
pose le problème, inverse de celui de M. Darboux, de « déterminer les 
points critiques situés sur le contour de convergence ». 

I. 

1. Les équations de la Dynamique, mises sous la forme canoni-
que, sont 

(>) 
dxi <3F dYi âF m 

a'c àyj dt dxj 

l'indice i prendra les valeurs 1, 2, 3, ..., 6 dans le cas du Problème 
des trois corps; F est une fonction uniforme des six paires de varia-
bles conjuguées xh yt. 

Dans ce cas, tes équations (r) admettent une intégrale particulière 
(entendue dans le sens de M. Poincaré) qui est la fonction F elle-
même; c'est l'intégrale des forces vives; ensuite, trois autres inté-
grales, les intégrales des aires. 

(*) HXMT, Comptés rendus, t. CXV et CXVIII; Bull, astr., t. X. 

(') Annales de l'Observatoire de Paris, t. XXI. 

(3) Annates de l'École Normale supérieure, i8g3. 
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. M. Poincaré a démontré, dans ses remarquables recherches sur la 
non-existence des intégrales uniformes, qu'il n'existe pas dans le 
problème des trois corps, d'autre intégrale analytique et uniforme, 
en dehors des quatre intégrales précédentes. 

La fonction F est, en faisant usage des notations de M. Poincaré, 
la suivante 

^ 2 β 2 β' μα μΰ [xc ' 

α, b, c désignant les côtés du triangle formé par les trois corps, mn 

m
3

, ms, les masses respectives; quant aux autres quantités, elles sont 
définies comme il suit 

(a) 
Buyniw3 Q/ (wi + m

2
)/n

3> 

?*=?1ϊΓ) yj = r-dT \y=4,5,6> 

le système d'axes adopté étant celui de M. Tisserand (Mécanique 
céleste, t. I, Chap. IV), qui permet de pouvoir obtenir des équations 
différentielles ne contenant plus, dans le second membre, que les dé-
rivées partielles d'une seule et même fonction. 

Les variables qui figurent dans l'expression (2) de F, pouvant 
s'exprimer en fonction d'autres nouvelles variables, les variables 
képlériennes 

(*) 
PL, PG, βθ; p'L', p'G', β'Θ'; 

11 g, ®; r, g% 0', 

la fonction F dépendra des quantités m,, tn
2
, m

3) μ et des varia-
bles (6). 

Les masses m
2

, m3 étant, en général, très petites par rapport à la 
masse m{, on pourra poser 

(<0 m2 = α2μ, m3 = α3μ 
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et Ton regardera «

a
, a

3 et aussi β, β' comme des quantités finies et p. 
très petit. 

Cela étant, F deviendra, finalement, une fonction de m
n

 α
2

, a
3

, 
des variables képlériennes (δ) et du paramètre très petit p. et pourra 
alors se développer en série, suivant les puissances de pi, sous la 
forme 

(3) F = F»-+- |*.F, +-

Le problème général de la Dynamique se ramène à l'étude des équa-
tions (i), en supposant pour F un développement de la forme (3), 
F étant une fonction périodique des y, F9 fonction des χ seulement. 

Remarque. — Si dans l'expression de F on fait β' = ο ou bien 
β = o, le mouvement devient kcpléricn. 

Pour β' = ο, par exemple, on aura le mouvement képlérien d'une 
masse (3p., autour d'une masse m, ■+■ m

2
 placée à l'origine. 

2. Proposons-nous, maintenant, de développer la fonction pertur-
batrice F,. Mais avant, nous allons envisager ses différents termes et 
n'en retenir que ceux qui nous seront utiles pour notre sujet. 

Pour avoir l'expression de F,, nous n'aurons qu'à ramener l'expres-
sion (a) de F à la forme (3) en développant en série de p. chacun de 
ses termes qui sont fonctions de ce paramètre. 

Examinons donc chacun de ces termes séparément, en tenant 
compte du système d'axes choisi. 

D'abord, les quantités (y\ -*-y\ -hy5) et (y\ ~+~yl) ne con_ 

tiennent, évidemment, pas le paramètre pi; le côté c = \jx\ ■+· x\ -f-x²3 
non plus. Les quantités α

2
, a3

 en dépendent, au contraire, en vertu 
des relations (a) qui donnent, en ayant égard aux relations (c.), 

"'-β +^ΐί+···> 

&" = B' + B'² / m1u + .....μ+···· 
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Il en est de même des quantités on a, en effet, 

I Ι I 

° V^BS'+^-a^BDcosco >/('* — Âï5)2-f- r/a — 2 /''(/*— AD) COS ω 

I 

\/rs-f- r'2 — 2 rr' cosio + AD —2 AD (/· — /·' cos ω) 

les quantités r, ω sont bien indépendantes de p., mais la quan-
tité AD en dépend, car on a évidemment 

(d) AD = ——— /· = ———r; 
I 

l'expression de ^ pourra, par conséquent, se développer en série de μ, 

le terme indépendant de μ étant 
I 

\Jr2 + r'* — rr' cos ω 

Si nous remplaçons de même AD par son expression (d), dans 
. ^ deviendra aussi une fonction de μ et le pre-

V/r24-ÂD2+2r'AD cos ω 

mier terme de la série sera évidemment p\ quant au second, il nous 

sera donné par 

d (7^ ( ———Vr' costo 

du(r/a AD2+ 2/''AD cos ω)* 

(où l'on a négligé un terme qui n'aurait rien donné, quand on aura 
fait μ == ο). 

Le coefficient cherché sera donc 

p(j)l ^,-'cosm 
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On aura finalement les deux développements suivants : 

-= .
 1

 + {*( ■)+···» 

I / b = I / r' - uB / m1 rcosw / r'² 

Si l'on remplace, maintenant,α
2
,α

3
, | par leur développement en 

série de p., dans l'expression ( 2 ) de F et si l'on compare ensuite avec (3 ), 
on aura l'expression cherchée de la fonction perturbatrice F,. Cette 
expression est la suivante 

(4) F
l=g

_g-Ç + pp' ' +g^. 

Remarquons tout de suite que les deux premiers termes ne donne-
ront pas, dans le développement de F, suivant les deux anomalies 

moyennes, des termes en ^ (mZ+ m'I'). Nous n'avons pas à en 

tenir compte. Quant au dernier terme, il peut s'écrire de la manière 
suivante : Appelons γ l'inclinaison des deux orbites, ν, v' les longi-
tudes vraies comptées à partir du nœud, ω l'angle des rayons vecteurs 
r et /·', on aura 

cos ω = cos ν cosv' Η- sinv sinv' cosy, 

et, par conséquent, 

BB'rcos— = (ψ (r cosv — + cos γ r sinv -ρ-J. 

On n'aura plus, de cette façon, que des facteurs dépendant chacun 
d'une des seules variables / ou /'. Nous n'en tiendrons pas compte 
non plus. Du reste, on peut démontrer (r) que la présence de ces 
termes ne modifiera pas sensiblement le résultat final. 

(*) POINCARÉ, Les méthodes nouvelles de la Mécanique céleste, 1.1, p. 3^4. 

Journ. de Math. (5· série), lome I. — Fasc. IV, 1895. 48 
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Il ne reste plus que le terme 

F0 = 33' 1 

Vr² + r'² - 2rr'cosw 

qui donnera, dans le développement, des termes en ̂  (ml-+- m'I'). 

Ce terme est ce qu'on appelle la partie principale de la fonction 
perturbatrice; c'est de son développement que nous allons nous oc-
cuper. 

Remarque 1. — En général, c'est la fonction R, = ^ ('), que 

l'on désigne de ce nom. Mais il est clair qu'en passant de l'une à 
l'autre, on n'aura qu'une légère modification des éléments des orbites. 
La différence tient à ce qu'on a négligé des termes en p.3 dans l'expres-
sion de F,. D'ailleurs, dans les applications qui vont suivre, c'est R, 
qui a été considéré. 

Remarque II. — FJ s'annule pour β ou β' = o. Cela devait être 
ainsi, car nous avons vu que le mouvement devenait, alors, képlérien. 

5. On exprime généralement, dans les applications, les coordonnées 
d'une planète par des séries de cosinus et de sinus de multiples de 
l'anomalie moyenne. 

Il en résulte que, si l'on substitue, à la place de ces coordonnées, 
leur développement dans la fonction perturbatrice F,, elle deviendra 
une fonction périodique des deux anomalies et pourra, par conséquent, 
se développer en série de la forme suivante : 

<5) 
F, = 2K

/w>w
'^°

n

S (ml -t- m't ■+■ ma ■+■ m'a'), 

1, l' désignant les deux anomalies moyennes; σ = g -t- θ, π — g' 4- Θ' 
les longitudes des périhélies (θ, Θ' étant les longitudes des nœuds); 
enfin, m, m' deux nombres entiers quelconques. 

(') TISSERAND, Mécanique céleste, t. I, p. 292. 
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Il nous sera avantageux, pour ce qui va suivre, de prendre pour va-

riables, au lieu des anomalies elles-mêmes, les exponentielles imagi-
naires dont elles sont l'argument et écrire 

Ïp , y A , /V-1 λ-m'vs'). 

on pourra même poser 

■^-ιη,ιη u — "mjn > 

et l'expression deviendra finalement 

(6) 1 , — ÎdUm)lnO* , 

les coefficients B
/rt)

,„' étant des fonctions du rapport des grands 
axes, des deux excentricités, de l'inclinaison des orbites, des longi-
tudes des périhélies et des nœuds. 

4. Revenons, maintenant, à la partie principale FJ de la fonction 
perturbatrice. Son expression sera, évidemment, cette partie de l'ex-
pression (6); pour laquelle le rapport ~ est fini. On aura donc 

(7) 
■po — Vp (ml+mW) 

et, par conséquent, 

(8) C«*=■£?/ f dldt. 

Voici, maintenant, les hypothèses que nous allons faire. Il s'agit de 
calculer une expression approchée du coefficient Cmtm' en supposant 
que le terme correspondant est de rang très élevé. Il en résulte que 
m, m' devront être des entiers très grands et, comme leur rapport est 
fini, on pourra toujours écrire 
m an + b 

m' en cC 
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α, by c, d étant des entiers finis et η un entier très grand. De plus, 
nous nous plaçons dans le cas des inégalités à longue période. C'est 
le cas pour lequel, avons-nous dit, ce genre de recherches offre parti-
culièrement un grand intérêt. Nous aurons donc, si nous désignons 
par ν et v' les moyens mouvements des planètes, la relation approxima-
tive 

«v -f- cv' == 0. 

Il faudra, par conséquent, que les entiers a et c n'aient pas le même 
signe. Nous supposerons, par exemple, c>oet«<o. 

Ces hypothèses faites, reprenons l'exponentielle qui figure dans (7) 
et écrivons-la comme il suit : 

eV-1(ml+m'l') _ ç\f^i{al+cl')n ç\f-\ (bl+dP) ^ 

Posons, avec M. Poincaré, 
» 

e^~il= t% Γαζ% 

l'expression ( 7 ) de FJ deviendra 

(70 
ri 

F0 — Vf1 -nT~fbc-da 

et, si nous posons encore 

(«) po pid-bc-i z c_p^^ 

on aura pour expression de C
an+bfCn

+d : 

(8') C
an+

b,c,Hd= f s~n-' dz L· f F (z, t) dlj 

les intégrales étant, cette fois, prises le long des circonférences |-| = 1 
et |ί| = 1. 

L'intégrale le long du contour |ί| = τ deviendra, une fois effectuée, 
une fonction de ζ seulement. Soit Φ(ζ) cette fonction 

ω . *(*)=-=.[ F (z,t)dt, 
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et, par conséquent, 

(9) C-a^i,c^d= f Ζ-"-'Φ(ζ)άζ. 

Supposons, maintenant, que Φ (s) puisse se développer en une 
double série, sous la forme 

(0 Φ(«) = Σα
η
ζη + Σα^

η
ζ~η. 

En remplaçant son développement dans (g) et en remarquant que 
toutes les intégrales telles que 

J z~n~K i* dz 

sont nulles, sauf celle qui correspond à ν == η, qui est égale à 2 1 π, 
on trouve 

(10) Can + b, cn + d = an 

Le problème se ramène ainsi à la recherche de l'expression appro-
chée de <z

rt
, c'est-à-dire à la recherche des singularités de Φ (z); 

l'expression approchée de a
n
 dépendant uniquement de la nature des 

points singuliers de Φ(^) sur les contours de convergence. 

5. Supposons, en effet, que nous ayons trouvé les points singuliers 
de Φ (ζ) et soient α et 9! deux de ces points situés sur la circonfé-
rence R et β, βΛ deux autres points situés sur la circonférence 
>·(/·< R). 

Voici quel est, maintenant, le théorème de M. Darboux ('), géné-
ralisé par M. Flamme (*). 

Le développement de Φ(^) dans le voisinage des points α, a' étant 

(') DARBOUX, Mémoire sur l'approximation des fondions de très grands 
nombres ( Journal de Mathématiques, 1878). 

(*) FLAMME, Thèse inaugurale; Gauthier-Villars, 1887. 
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connu', appelons Φα(*)> Φ« (^) les parties non holomorphes de ce 
développement, correspondant aux deux points singuliers. 

Soient 
Φ

β
(*) = ΦΛ·(δ) =Za"zk, 

les développements de ces fonctions à l'intérieur du contour R et 
même sur le contour, sauf respectivement aux points α, a'. Il est 
clair que la différence 

ψ(3) = Φ (s) — Φ«(*) — Φβ«(5) = 2(a
tl
—a

lt
 - a

Jt
)z" -hla^z~n 

sera holomorphe même aux points α et a'. Dans ces conditions 
M. Darboux démontre que 

lira («» - a, - a"„ )= , 

p étant l'ordre de la dernière dérivée de Ψ(ζ), cjui reste finie aux 
points α, a' et Κ désigne une quantité finie. 

On pourra donc prendre, pour η très grand, la somme a'
n

 -+- a"
n

, 
des coefficients de 2" dans Φ

α
, Φ

α
·, pour valeur approchée de a

n
. 

L'erreur commise sera de l'ordre de -^ΓΪ· 
Par un raisonnement entièrement analogue, on verra que 

lim(a_„ - h'_,- b'_.) =rnK / nP + 1 

en désignant par h'_
ni

 h"_
n
 les coefficients du terme d'ordre η, dans deux 

fonctions Φβ(-ζ), Φβ'(*) holomorphes à l'extérieur du contour r et 
même sur le contour, sauf respectivement aux points β, β'. 

Remarque I. — Nous avons supposé qu'il n'y avait que deux points 
singuliers sur chacune des circonférences Ret/1. Il est clair que, s'il y 
en avait plusieurs, on obtiendrait pour valeur approchée de a

n
 et 

de a_
n
 des sommes telles que la

lt1
 Σ61

;ι
 respectivement. 

Si, au contraire, les points α et β étaient les seuls points situés sur 
les contours de convergence, a

n
 sera la valeur approximative de a

n 

et b'_
H
 la valeur approchée dea-n. 
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Remarque II. — II serait intéressant de connaître a priori le 
nombre ri des points singuliers, situés sur le contour limite de con-
vergence. Il est évident que la méthode précédente ne serait réelle-
ment avantageuse que si l'on avait ri < η (c'est ce qui a effective-
ment lieu en général). Peut-être pourrait-on y arriver en partant 
des théorèmes de M. Hadamard (Mémoire déjà cité). 

6. Voyons maintenant comment nous allons chercher les points 
singuliers de Φ(^). Rappelons-nous que nous avons appelé Φ(^) l'in-
tégrale 

TinfF(z,t)dt, 

prise le long de la circonférence | /1 = ι. 
F(*,/) sera, en général, une fonction multiforme; on l'étudiera 

donc sur une surface Σ de Riemann, ayant un nombre de feuillets 
égal au nombre des déterminations, ce nombre pouvant, d'ailleurs, 
être quelconque. Sur chacun des feuillets, on aura un certain nombre 
de points singuliers de la détermination correspondante. 

Considérons une de ces déterminations et soit σ le feuillet qui lui 
correspond. Traçons le cercle \t \ = ι sur ce feuillet. Tout le long de 
ce contour F(s, t) sera holomorphe. En effet, prendre 111 = i, c'est 
considérer réelle l'anomalie l, qui définit un point réel sur l'orbite. 
Quel que soit alors ζ, c'est-à-dire la fonction F(^, t) ne cessera 
évidemment pas d'être holomorphe. Π n'y a qu'un cas où elle pourrait 
devenir infinie : c'est celui où l'on aurait à la fois | /1 = ι, | * | = ι. Les 
anomalies moyennes l et ΐ seraient toutes les deux réelles, elles défi-
niraient alors deux points réels dont la distance pourrait être nulle et, 
par suite, FJ ou, ce qui revient au même, F(*, t) infinie. Mais ce cas 
ne peut pas avoir lieu dans le mouvement des planètes, les orbites ne 
se coupant pas (sauf, bien entendu, le cas d'une planète et d'une co-
mète). 

F (ζ, t) étant holomorphe pour cette valeur de t, et quel que soit z, 
Φ (ζ) sera une fonction holomorphe en z. Mais il est clair que cela ne 
peut pas avoir lieu, en général, quel que soit t. 

F(.z, t) aura, en général, un certain nombre de points singuliers 
dans le plan de la variable t. 



3
7

4 Ν. COCULESCO. 

Allons maintenant à la rencontre de ces points en déformant le con-
tour d'intégration 1t1 = ι. La valeur de l'intégrale sera, comme on 
sait, la même et continuera à définir une fonction holomorphe de 
ζ, Φ (ζ), tant qu'on n'aura pas rencontré en son chemin un point sin-
gulier. Si l'on en rencontre, on pourra les éviter, sauf, cependant, 
dans un cas. 

Supposons, en effet, que nous fassions maintenant varier ζ, les 
points singuliers de tout à l'heure se déplaceront; il pourrait se faire 
alors que deux quelconques de ces points, se trouvant l'un à l'intérieur, 
l'autre à l'extérieur du contour d'intégration, vinssent à coïncider pour 
une certaine valeur de ζ. Il ne nous sera plus possible alors d'éviter 
un pareil point, en déformant le contour, et la fonction Φ(ζ) cessera 
d'être holomorphe. Or, comme ce point, pour cette valeur particu-
lière de z

y
 est double pour F(s, /), on aura donc tous les points cri-

tiques de Φ (s) en résolvant le système suivant d'équations : 

F (M)
- 0

' 

Ι d
 [F (»,<)] _ 
dt = 0, 

ou bien le suivant : 
A = 0, 

(I) dA 
dt ' 

ψ ne différant de A (le carré de la distance des planètes) que par une 

puissance entière en qui figure déjà dans A. 

7. Tous les points doubles, obtenus par la résolution du système 
(i), ne sont évidemment pas singuliers pour Φ (ζ). Il y en a, en effet, 
qui ont pu devenir doubles par la rencontre de deux des points singu-
liers de F(z, t), qui se seraient trouvés primitivement d'un même 
côté du contour. Or, nous venons de voir que de pareils points ne 
sont pas singuliers pour Φ(*). 

Yoici, par conséquent, comment il faudra procéder pour reconnaître 
les points singuliers qui doivent répondre à la question. 
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Supposons que nous ayons trouvé tous les points satisfaisant au 
système d'équations (i). Soient ζ, τ les coordonnées d'un de ces points. 
Faisons varier ζ d'une façon quelconque, le long d'une droite, par 
exemple, dans un sens convenable, afin que nous arrivions sur le con-
tour | ζ | = ι (auquel correspond le contour 111 = L dans le plan de la 
variable /). Quand | ζ | variera, les deux points primitivement con-
fondus se sépareront, et lorsque I ζ | aura atteint la valeur ι, les deux 
points auront pris leur position finale dans le plan de la variable /. 
Suivant que ces deux positions finales se trouveront d'un côté et de 
Vautre du contour, ou bien toutes les deux du même côté, le point 
(ζ, τ) sera ou non singulier pour Φ(*). 

De tousles points singuliers ainsi obtenus, celui, parmi ceux qui ont 
le module plus grand que ι, qui aura le module minimum, donnera le 
rayon R de la circonférence limite de convergence et, par conséquent, 
en vertu du théorème de M. Darboux, la valeur approchée de a

n
. 

Le rayon r du cercle intérieur sera donné par le module de l'affixe 
le plus éloigné de l'origine à l'intérieur du cercle 111 = ι. 

Remarque. — S'il y avait plusieurs points singuliers également 
éloignés de l'origine, ils se trouveront sur une même circonférence 
de convergence, et le théorème de M. Darboux restera applicable 
(1,4, Remarque). 

8. Nous appliquerons le raisonnement précédent surtout dans le 
cas (et nous en verrons un exemple) où nous aurions, par un change-
ment convenable de variables, réduit à deux le nombre de détermina-
tions de la fonction F (s, t). Mais il sera légèrement modifié dans le 
cas général où, F(s, t) étant multiforme, on fera varier t sur la sur-
face de Riemann correspondante. Dans ce dernier cas, c'est sur cette 
surface Σ que nous tracerons le contour Γ. En faisant varier s,· la sur-
face Σ variera, et, lorsque s aura atteint la valeur de module égal à ι 
(en suivant, par exemple, toujours la droite D), le contour Γ de-
viendra le cercle 

l*'| = i, 1*1 = ï 

sur une surface Σ0, et les positions finales des points primitivement 
confondus devront se trouver non pas toutes dans la même région, mais 

Journ. de Math. (5* série), tome I, -r Fa^c. iy, i8g5. 49 
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dans les deux régions que séparent sur la surface Σ0
 le cercle | ζ | = ι, 

'1 = «· 
On aura, par exemple, une sphère pour surface de Riemann si 

F (a, l) est uniforme. Les deux régions seront : la petite calotte sphé-
rique, obtenue par le petit cercle polaire U| = i,|f| = i, tracé autour 
d'un point qui servira à la fois d'origine au plan primitivement consi-
déré, et l'autre calotte. On voit bien ici que, non seulement les posi-
tions finales d'un point singulier, pour Φ(^), se trouveront dans les 
deux régions de la sphère, mais, comme nous avons déjà vu dans le cas 
du plan, elles auront leur module correspondant respectivement plus 
petit et plus grand que l'unité. Gela n'arrivera pas ainsi, en général, 
avec une surface de Riemann quelconque, si les points singuliers n'ap-
partiennent pas au même feuillet. Nous y reviendrons, du reste, plus 
loin. 

II. 

9. Les difficultés que l'on rencontre dans ce genre de recherches, 
difficultés provenant, d'une part, de la résolution des équations 

(0 Δ = Λ =0' 

dont le degré est très élevé dans le cas général, d'autre part, de la dis-
cussion très délicate pour reconnaître quels sont, parmi tous les points 
singuliers, ceux qui répondent à la question, empêchent d'aborder le 
problème dans toute sa généralité. C'est en examinant ce qui se passe 
dans les cas les plus simples que l'on pourra surmonter quelques-unes 
des difficultés qui surgissent dans le cas général. 

Nous sommes donc naturellement conduits à considérer le mouve-
ment des trois corps dans le plan. L'inclinaison nulle abaisse de beau-
coup le degré des équations (i). On supposera, déplus, que l'orbite 
d'une des planètes est circulaire et l'excentricité de l'autre petite. 

C'est le cas déjà considéré par M. Poincaréque nous allons reprendre 
et compléter, en y apportant aussi quelques légères modifications. Les 
notations employées seront, autant que possible, celles de M. Poin-
caré. 
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Soient : 

X, Y les coordonnées de Ρ par rapport au grand axe de son orbite 
et à une perpendiculaire passant par le foyer; l,u,e = sinç, L2, res-
pectivement : l'anomalie moyenne, l'anomalie excentrique, l'excentri-
cité de l'orbite et le demi grand axe ; 

X,, Y,, l\ u\ e' = sin φ', L'2 des quantités analogues pour la planète 
Ρ' ; X', Y' les coordonnées de la même planète par rapport au premier 
système d'axes. 

On a 
ί * l—u — sin φ sin u, 

(Ρ) J Χ == L2(cosw — sincp), 

\ Y = Lscos<psinw, 

l' = u' - siny'sinu', 

(P')X' = L/2 ( cos u' — sin φ' ), 
( Y'= L'2 cos©'sin w'. 

On en déduit 

(a) X + V-1 Y = L²(cos u - sin y V-I cosy sin u), 

Χι -+■ 1 Y « = L'2(cos iï ~ sin<p'H- \J— 1 cos φ' sin M'). 

On regardera, par conséquent, les coordonnées comme les parties 
réelle et imaginaire dans L2?, L/2yj, en posant 

w 
£ = cosm — sin<p — 1 cos φ sin w, 

η = cos u' — sin <p' -+- yj— 1 cos φ' sin u'. 

Et comme il nous faudra avoir pour P' l'expression non pas de X, 
et Y

n
 mais de X', Y', on n'aura qu'à faire une transformation connue, 

en introduisant l'angle σ'— σ, différence des longitudes des deux pé-
rihélies. 

On arrivera facilement à 

(c) X'-wY'=L'2rçé^^'-w>=:LaY|g. 
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Formons maintenant les équations (τ) [î, 5]. 
On a 

A = (X-X')24-( Y-Y')2 

r=Xa-H Y'2 — 2(XX' 4* YY'), 
ou bien 

Δ = (X 4- îY)(X - iY) 4- (X'+ ίΎ'χΧ' - iY') 
- [(X -+- ÎY)(X'- iY') 4- (X - ι Y)(X'4- ίΥ')|. 

Appelons ξ
0

, V)0? β ο ^es conjuguées de ξ, η, β, à savoir : 

(d) 

î
9
~ cosu — sin φ — \j— ι cosçsinw, 

η
0
 = cosu' — sin φ' — ^— ι cos φ'sin w', 

Bo = L'²L-2eV-i 

β désignant l'expression L'2L~2eV-1(w' - w) 
D'où 

\ X-iY=LeÇ
e

, 

(e)j X' - ίΥ' = υ»η
β
6'-ν"^-°)= L2 γ]

0
β„. 

Par conséquent, 

Δ = Ι^(ξξ
0

4- ββ
0
ηη„ —ζη

0
β

0
 - ξ

β
ηβ), 

et finalement 

(^) A = Ls<;? — βη)(ξ
0
 —Bono). 

Les points singuliers de F (s, l) seront d'abord les racines de l'équa-
tion 

Δ = ο, 

ensuite les points communs aux équations 

dA 
A=3t ~ °' 
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et enfin les points pour lesquels ξ, η, ξ0, ή, cesseront d'être des fonc-
lions uniformes en ζ el t. Ces derniers points étant précisément ceux 
pour lesquels u et υ! cessent d^être uniformes en l et /' seront donnés 
par les équations 

(3) 

dl — = ι — sin<p cos u .== o, 

^7 = ι — sin<p cos u = o. 

Quant aux autres points singuliers, on les obtiendra en remplaçant 
le système d'équations (i) par le suivant, qui lui est équivalent : 

(4) 

Ε = cos w— sin 9 -h «"cosçsinw — (3(cos&/ — sin φ'H- icosip'sini/') = ο, 

E
fl
 = cos u — sin φ — icosipsin# — ($

0
(C'OSM'— sin<p' — ÎCOS^'SUIM') = o, 

dïï, I|~c(— sin u -+- i cosep COSM) r,a(—SINM'-H «cos<p'cos«')~| ' 
dt 11_ ι — sin φ cos « ' . ι — sin φ' cos u' J — > 

dE0 ιΤe(sina -+- icos<p COSM) q a(sinu'-+· i'cosœ'COSÎ«')"1 
dt ~t L ι — sin cp cos α ι — sin <p' cos u' J ' 

Ε, Ε0 désignant les facteurs qui entrent dans Δ. 
En combinant deux à deux les équations (3) et les deux premières 

de (4), nous aurons une première série de points singuliers de Φ (s), 
que nous appellerons, avec M. Poincaré, de première espèce. La com-
binaison des équations 

dE 
E = 0' Tt=° 

et aussi celle de 

E«=°> 1ΐ=° 

donneront les points singuliers de deuxième espèce. 
Remarque. — Les équations (3) et (4) montrent que les points de 

deuxième espèce seuls dépendent des entiers a et c. 

10. Pour résoudre les équations précédentes, nous allons les rendre 

algébriques; il suffit, pour cela, de remplacer les ̂  u ou u' par les 
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exponentielles. En posant alors 

eiu = x, eiu = y, 

et, par suite, 

( f )A?2 + 1 , Y2 4-1 

I 2 a? a/ 

f . d?2—I . . Y2—1 
\ 2 ta? 21 f 

les équations (3) et (4) deviendront 

(5) 

2.x — sinφ (a·2 -h i) = o, 

ay — sinç'(y2 -h ι) = o, 

y[(ar2-i- ι) — 2a?sin<p -+- cos^(a?2 — i)] 
— ι) — iy sin φ' -+- cos^'(y2 — ι)] = o, 

y[(a?2-h ι) — 2#sinç — cos<p(#2 — i)] 

— M ΚX" + 0 - ajsinç' - cos<p'(j/2 - ι)] = o, 
c[cos tp(a?24-i) 4- (a?'--i)} Λ a[cos y'(j24- ι) -4- (y2— Q] Q 

2a?—sintp(a?t-f· ι) ^ 2y—sin cf'(j2-+-1) ' 

c[— cosy(a?2+i)4-(a?2— i)] g a[— cos<f)'(/2-n)-H(y2 — ι)] 0 
2a? — sin <p(a?2-f-1) 2y — sin cp'( y2-+-1) 

Remarque. — Si l'on change χ en ̂  y en-Ma première et la 

deuxième des équations (5) ne changent pas ; la troisième se permute 
avec la quatrième et la cinquième avec la sixième. Il en résulte que, si 

χ, y est un point singulier, son réciproque - > — le sera aussi, et les 

rayons des cercles limites de convergence seront réciproques. 
Nous aurons donc autant de points singuliers de module plus petit 

que ι, qu'il y en aura, ayant le module plus grand que i. 
Commençons maintenant par le cas où l'une des orbites est circu-

laire. Soit e'=sinç'=o et, en supposant petite l'excentricité de 
l'autre, posons 

tang | = τ. 
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Pour simplifier, nous pourrons supposer, de plus, GT' — m = o. En 

effet, l'orbite de P' étant maintenant circulaire, on prendra pour son 
grand axe le diamètre de même direction avec Je grand axe de l'autre 
orbite, GT'~ ter étant nul, β sera égal à β

0
 = L/aL~a = a, en désignant 

par α le rapport des grands axes, α > ι dans notre hypothèse. 
Les équations (5) deviendront alors 

(6) &·(ι H- τ2) —τ(ϊ 4- χ'1) = {χ — τ)(ι — χτ) = ο, 

il) ^ «(ι τ*)Λ: * 

(8) 
α('ι -Ητ1)# 

y = (I - x) 

(9) 
c(aH-t) 
Ι-Γ^Γ+a&y = 0, 

(ίο) — 4- — = Ο. 
χ —τ y 

Résolvons ces équations pour avoir les coordonnées de tous les 
points singuliers. D'abord : 

Points singuliers de première espèce. — Ces points nous seront 
donnés (II, 9) par la combinaison deux à deux des équations(6), (7) 

et (8). On négligera les carrés de τ. On aura 

(G) ί {χ — τ)(ι — #τ) = ο, ί ^ = τ, ί χ = - , 
(&) B') 

(7) ( r=.(l+,.)x' (r=«, (r=^, 

(6) ( (χ — τ)(ι — #τ) = ο, ί # =. τ, ί χ = -, 
(B) (&') 

w ( y=jr^f (/=«, (/=«, 

(7) =(x- t)/ (&(I + r²)x) 

<»> (r-^· 
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On en déduit les équations suivantes : 

(■>) (χ — τ)(ι — χτ) ■= ± αχ·, 

dont les racines approchées sont : χ = ® > et comme ces 

équations ne changent pas, quand on change χ en on aura aussi les 

racines inverses des précédentes : χ == x = 77^» qui donneront 

les points singuliers réciproques des premiers. 
Si l'on substitue ces quatre valeurs de χ dans l'une ou l'autre des 

équations (7) et (8), nous obtenons les points singuliers suivants : 

(T) 
χ = —— » 1 — α 

ατ 
y— —» 

(Y) 
I — Ί 

X = —— I 

1 — a 
y— 

(S) 
X = —i—, 

• ] -f- % 

ατ y — > 
(SO 

l -h a 
X — ——> 

^ l+ï 

Points singuliers de deuxième espèce. — Ο11 les obtient par la 
combinaison des équations (7) et (9), (8) et (10). 

Des deux premières, on déduit l'équation 

(12) 
c(.r+T)c(x+r) a(x-r)² 

ι — χ- (1 τ2)./· ' 

des deux dernières, on tire 

03) 
c(i -+- χτ) a( 1 — χτ)2 

x — τ ( ι -f- τ4 ) χ 

Considérons l'équation (12) et cherchons à y satisfaire par des va-
leurs de χ de la forme χ = λτ. L'équation (12) se réduira à la sui-
vante : 

('4) ατ2λ* — [(c -(- β) + (c + 2α)τ2]λ3 

— [(c — ia) -h (c — α)τ2] X — a — o; 
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les valeurs petites de x et par conséquent finies de λ seront données 
par l'équation 

(«5) (c 4- α)λ24- (e — 2«)λ -h a = o, 

dont les racines sont 

— (c — 2a) ±\fc(c — 8a) 
y =a(c-f-a) 

On aura, en outre, une racine approchée très grande 

A. — > ar² 

et, par conséquent, les valeurs de χ qui satisferont à l'équation (12) 
seront 

χ = τ — τ— et χ — 
2(c4-a) αχ 

Il est inutile de résoudre l'équation (i3) réciproque de (12). Il suf-
fira de considérer la réciproque de (i5), à savoir : 

(tC,) αλ2 4- (c — ia)\ 4- (c 4- CL) = o, 

dont les racines et, par suite, les valeurs de x, satisfaisant à l'équa-
tion (i3), seront 

x=— (c — 2a) ± s/c(c — 8α) ai 
2ατ c -h a 

En substituant dans les valeurs correspondantes de nous obtien-
drons, finalement, les points singuliers suivants : 

(0 
ai 

X = , c + a 

ax 
y — α—;—> 

(O 
χ — , ax 

c 4-a 
u αατ 

Journ. de Math. (5· série), tome I. — Fasc. III, 1895. &0 
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(^) 
m

c — ία ~\~^c(c>— 8α) 
2 (c + α) 

J α a 2 {c ■+■ a) 1 

(ν·') 

— (c-2«)-t-\/c(c — 8σ) 
ΊΟ,Ί 

y~~α 8cï ' 

W 
Χ —— Τ» ; : > 

y = -tc/2a c+ Aa + V 

(V) 

^ (c—2«) -+- \/c(c 8a) 
2 ατ 

/ = -« 8cr ' 

Nous avons ainsi le Tableau suivant de tous les points singuliers 
trouvés : 

TABLEAU A. 

(*) 
χ = τ, 

y = o, (»') 

ι 
X — -, 

γτ=. oo, 

(β) 
A' — τ, 
,y = «. 

(?') 

ι 
Χ =z -, 

" at' 

(Τ) 

a? = —-—» 
ι — « 

urc 
J' — 5 

(T') 

ι — « 
X ~ —— ) 

] — tt 
y — > J x-

<*) 

τ χ — ) 
I + « 

«τ 
J ι -+- α 

(8') 

1 -4- Α 
a? = , τ 

J -+- * 
y — —} 



DÉVELOPPEMENT DE LA FONCTION PERTURBATRICE. 385 

TABLEAU A (suite). 

(0 

a-
X — , c H- a 

α-
ν = * , 

C -+- « 

(O 

c -+- a 
x — ) 

a-

c ■+■ a 
J α ατ 

( !A) 

x = -t(c — 2a) -4- \/c(c — 8a) 
2(c + a) 

{x — ")* 

y = &(1 + r²)x 

(ΙΟ 

-(C-2«)+^C(C — 8FL) 

2 ατ 

&(I + r²) x 
^ (ι — #τ)2 ' 

(V) 

x— (c — 2α) -ι- t/c(c — Sa) 
2(c α) 

(x - t)² 
^ ï(i~t-T3).r' 

(ν') 

(c — sa) -h ψ'c(c — 8α). 
2ατ 

&(I + r²) x 
^ (ι — #τ)-

Pour simplifier l'écriture, et en vue de la discussion qui va suivre, 
on a gardé Vy des derniers points, exprimé en fonction de x. 

Remarque. — Tousles points sont réels avec les hypothèses faites 
(voir I, 4 et II, 10). 

On a designé par α, β, γ, δ, ε, p. et ν les points singuliers de module 
< ι ; par les mêmes lettres accentuées, les points respectivement réci-
proques des précédents. 

11. Il s'a git, maintenant, de faire la discussion du § ï, 7. Reprenons 
la fonction F(z,l). Cette fonction, avons-nous dit, n'est pas uni-
forme; elle peut même avoir un nombre infini de déterminations. En 
clfet, considérons son expression : 

_ '(«.o-'-Tr-

et examinons comment elle va se comporter, quand on exprimera Δ en 
fonction de ζ et de t. 

Regardée comme fonction de x et γ, Δ est uniforme. Cela est évi-
dent d'après son expression (2) (II, 0). Mais il n'en sera plus ainsi, si 
on l'exprime en fonction de ζ et /. 
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On a, en effet, pour t et ζ exprimées en χ et y, les expressions sui-
vantes : 

ι * v ('* - l\ 
t = xe(1 + r²) 

(g) 

( s =z a?el+*\* ''Ve1+tl,i ·, 

qui montrent bien qu'à chaque système de valeurs de t et z correspond 
une infinité de valeurs pour χ et y. 

Il en résultera une infinité de déterminations pour A et par consé-
quent une double infinité pour F(2, t). 

Mais voyons si, dans le cas particulier que nous traitons, il y a 
moyen de réduire à un plus petit nombre les déterminations qui se pré-
sentent dans le cas général. 

Remarquons que, dans ce dernier cas, les relations (g) se réduisent 
aux suivantes : 

j t = afA~*\ 

{h) ( z =ycxae Λ 

La première des équations (h) montre encore que a; est fonction 
multiforme de i. Nous n'introduirons donc pas la variable l dans A, et 

1 
nous garderons χ ou mieux of, dont elle est fonction uniforme. Mais 

nous pourrons introduire à la place dey l'autre variable ζ ou bien z1' 

dont elle est fonction uniforme. La deuxième équation (h) montre 
bien que 

O") y = zl'x ce c ' 

est uniforme en zc et xl\ Nous aurons ainsi exprimé A en fonction uni-
1 

forme de of et zc. D'autre part, le numérateur de F(z, t) est évidem-
ment fonction uniforme par rapport aux mêmes variables. 

Nous avons donc ramené la fonction Fayant une infinité de 

déterminations à une fonction F, (zc, a·6') n'ayant plus que deux déter-
minations, celles du radical. 
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La surface de Riemann à une infinité de feuillets se ramène à une 
autre, n'ayant plus que deux feuillets et définie au moyen de la rela-
tion (j). 

Nous pourrons même nous dispenser de la considération de cette 
1 

surface, car si l'on regarde un moment zc comme constante, comme 
1 

a chaque valeur de xc ne correspondent plus que deux valeurs égales 

et de sens contraires pour F, nous n'aurons qu'à traceries 
l 

contours d'intégration dans le plan de la variable xc. Ce contour était 
le cercle \l | = 1 dans le plan de la variable il sera par conséquent le 

t 1 
cercle xc = 1 et cela quand la variable z1' aura atteint une valeur de 
module égal à 1. 

Pour des valeurs de ζ de module autre que 1, les contours d'inté-
1 

gration par rapporta af s'obtiendront, comme,nous l'avons déjà dit, 
1 

en déformant la circonférence xc = 1, sans passer par un point singu-
lier. 

12. Cela étant, voyons quels sont maintenant, parmi les points sin-
guliers du Tableau A, ceux qui répondent à la question (I, 7). 

D'abord, le module du point α est évidemment nul. 
Il ne donnera rien et nous n'aurons pas à nous en occuper. Il en sera 

de même de a'. 
Quant au point β, il est facile devoir, a priori, qu'il ne sera pas sin-

gulier pour Φ(^). On a, en effet, l'expression suivante de Φ(*), par 
il 

rapport aux variables xc, zc, 

φ(*) = ~r, f F(iU) Jes**(H <«■—X'-««)
dx

. 
1 A·® I = 1 

qui montre bien que χ =.τ, χ = ^ et par conséquent les points β, β' 
ne sont pas critiques pour cette fonction. 

Il ne nous reste plus que cinq points singuliers à discuter. Dés cinq 
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points, il y on a deux, à savoir : ν et δ (et leur réciproque), dont les χ 
sont positifs et par s-uite leur ζ est réel et positif. De plus, l'a? de ν est in-
férieur à celui de δ; ces deux points se trouveront, par conséquent, dans 
le premier quadrant etl'aflixe de ν sera plus rapproché de l'origine 
que celui de δ. 

Commençons par le point v. Je dis que le module de ζ est maximum 
en ce point. On a, en effet, pour s, l'expression 

ζ=γϋα/ιαι+τΛχ-r 

ou bien, si l'on y substitue la valeur de y correspondante au point v, la 
suivante : 

-Ιΐζ1Λ^(Η. 
&(I + r²) x 

en formant l'équation ~ = o, on verra qu'on retombe sur l'équa-

tion («4) (H» ή° ^ont ^es racines s°nt précisément les χ clos 
points v, p. et ε'. Donc non seulement le \z \ de v, mais celui de p. et 
de ε' aussi, sera un maximum ou bien un minimum. Il est clair qu'il 
en sera de même de | ζ | aux points v', IA' et ε. Cela était d'ailleurs évi-
dent, car tous ces points de deuxième espèce sont des points de con-
tact entre la famille de courbes 

ik) z =ycxacx+xi^* ' = const. 

cl les courbes y — et y = ~ donnant leur ordonnée. 

Nous venons de voir que | ζ | est maximum ou minimum. Pour voir 
qu'il est maximum et non minimum, il suffira de faire varier χ d'une 
façon continue à partir d'une valeur inférieure à celle du point v, à 
partir de la valeur zéro, par exemple. Pour χ — ο, on a évidemment 
\z\ = 0; en faisant croître χ, |z\ croîtra aussi et comme (d'après ce 
qu'il a été dit plus haut) on n'aura plus à craindre la rencontre d'un 
autre point singulier, on sera certain d'arriver en v avec une valeur 
maxima de \z\. 
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Ces préliminaires faits, faisons maintenant varier ζ le long de la 
droite D(I, n° 7). Cette droite sera ici la partie positive de Taxe des#, 
χ et ζ étant réels et positifs. 

1 

Lorsque zc variera en partant de la valeur correspondante au 

point v, les deux points singuliers de F(s% #*), confondus en ce 
l 

point, se sépareront. Comme zc varie en croissant à partir de js$ < ι 
il 

jusqu'à zc\ = i, les ζ des deux points, primitivement confondus en v, 
croissent, et comme \ z\ est maximum en v, il en résulte qu'ils ne 
pourront plus, en se séparant, rester réels, mais ils deviendront ima-
ginaires et conjugués; ils auront donc le même module, et par consé-
quent les deux affixes correspondants se trouveront d'un même côté 

i l 
du contour xc = ι, quand zc aura atteint la valeur ι. 

Le point ν ne convient par conséquent pas à la question. Le module 
commun des deux positions finales reste, comme M.' Poincaré l'a 
montré, inférieur à l'unité. 

Le point v n'étant pas admissible, il en sera de même de V. Cela 
est évident. 

Passons au point δ. — Ce point est commun aux courbes (7) 

cl (8). Par conséquent, en faisant varier zc positivement à partir de 
11 

ze ι jusqu'à zc — 1, les points confondus en δ se sépareront et 

suivront : l'un la courbe (7) en se rapprochant de ν (c'est bien le sens 

croissant car ν est un maximum pour s*|), l'autre la courbe (8) tou-

jours dans le sens indiqué par la variation de | £ ou bien de x. 
Il arrivera alors que le premier de ces deux points finira par se 

confondre avec le point v, et ses positions finales, au nombre de deux, 
seront, d'après ce que nous venons de voir, à l'intérieur du cercle 1 
xc = 1. 

L'autre point aura encore sa position finale à l'intérieur du cercle 

_ af | = 1, quand zc aura atteint la valeur 1. En effet, sidn la suppo-
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sait non pas à l'intérieur, mais sur le contour même, c'est-à-dire si l'on 
prenait la position finale suivante 

M = ·, 
y — Δ > — α > I, 

ι 
on trouverait pour zc la valeur 

1 

zc = α > ι. 

1 

Par conséquent, quand z° aura atteint la valeur ι, la position finale 
1 

de ce dernier point se trouvera encore à l'intérieur du cercle zc = r. 
Nous avons ainsi trois positions finales des points primitivement 

confondus en δ et toutes trois du même côté du contour d'intégra-
tion. Le poiiit S et son réciproque ne répondent pas non plus à la 
question. 

15. Il nous reste maintenant à discuter les points γ, ε et p. Ces 
derniers points ont, toujours en vertu des hypothèses déjà faites, 
χ < ο et par suite JK < H en résulte qu'ils se trouveront situés dans 

_1 

le troisième quadrant, zc sera imaginaire et son argument égal à 

(' ^)π' *IU* sera auss^ l'argument de la. droite D, le long de la-
\ 

quelle on fera varier zc. Quant aux affixes respectifs de ces trois 
points, ils seront, par rapport à l'origine (x = o, y = o), situés dans 
l'ordre suivant 

(h) M<lrl<lf4 
donné par l'inégalité 

ΚΙ<Ι®γΙ<|*ιι|· 

Nous commencerons donc par le point le plus rapproché de l'ori-
gine, par le point ε. Ce point est de deuxième espèce; son module 
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sera, comme nous l'avons déjà vu, un maximum ou un minimum. Je 
dis qu'il est minimum. En effet, d'après l'inégalité (A), il est clair que 
ce module ne pourra qu'augmenter lorsqu'on cheminera vers le 
point γ, à partir du point ε. 

D'autre part il croîtra aussi, si l'on s'approchait de l'origine; car il 
1 

est facile de s'assurer qu'à l'origine on a zc = 00, quand on marche 

dans le sens dont il s'agit ('). Il en résulte que zc \ est bien un mi-
nimum pour le point ε. 

Cela étant, si nous faisons maintenant décrire à zc la droite D, à 

partir de la valeur zc |
6
< 1 jusqu'à zc =1, les points confondus en έ 

se sépareront et resteront réels, parce que les modules des points infi-
niment voisins de ε sont précisément supérieurs au module de ε. Nous 
aurons alors des couples de valeurs pour χ et y satisfaisant toujours à 
l'équation y = Un de ces points qui se trouvait déjà à l'in-

1 
térieur de xc = ι, au moment où il se trouvait confondu en ε avec 
l'autre, continuera a fortiori à y rester, quand il s'approchera de 
l'origine. 

L'autre point cheminant dans le sens contraire finira, à un moment 
donné, par se confondre avec le point γ, qui se trouve en son chemin 
en vertu de l'inégalité (h), et ses positions finales seront celles de ce 

dernier. Il est clair que cela arrivera avant que zc ait atteint la 

(l) On a 

z = yoôc el+Tl (χ ' = α(ι + τ a?ce1+TÏ ' 

ou encore 
<r-f-c 

' ζύ=ζχ—± -e V* Λ 

Si l'on y fait x=—η et si l'on remarque que —-—<1 et que, de plue 

q \x j reste fini, quand η tend vers zéro, ouaiira \.s
à
'\oopour. ή.c=iô£··-'· 

Jour η. de Math. (5· série), tome I. — Fasc. IV, i8g5. 6I 
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valeur ι. Continuons donc à faire varier z° dans le même sens. Les 
points confondus en γ se sépareront en deux autres, satisfaisant respec-
tivement aux équations (7) et (8), et le sens des deux mouvements 
sera le suivant : 

Le point qui, comme celui qui arrivait de ε, satisfait à l'équation (8) 
continuera comme ce dernier à s'éloigner de ε, car c'est bien là le sens 

1 
pour lequel zc croît. Mais je dis que, tout en s'éloignant ainsi de ε et, 
par conséquent, de l'origine, il se trouvera encore à l'intérieur du 

cercle \zc = 1, quand zc sera arrivé àja valeur finale 1. En effet, si 
nous faisons χ = — ι dans 

1/c = &(I + r²) a + c / a 
1 1 (1 — xiy 7 

on trouve 

Zc = α ; τ; > I . 

Donc, la valeur finale de χ sera inférieure à — 1 et le point corres-
I 

pondant sera à l'intérieur du cercle af = 1:. 
L'autre point, qui se trouvait primitivement en γ, satisfait à l'équation 

y = Ρ°υΓ que son module augmente, quand zc tend vers 
l'unité, il faut que χ = — η tende vers zéro avec Y). NOUS aurons donc 

1 
pour χ une valeur très petite, tendant vers zéro, quand zc tendra vers 
l'unité ; il en résulte que la position finale de ce dernier point sera en-

core à l'intérieur du cercle \xc. 
En résumé, nous avons : deux positions finales pour γ et toutes deux 

du même côté du contour d'intégration; le point γ et son réciproque 
11e sont pas admissibles; nous avons, en outre, une troisième position 
finale appartenant à ε, qui, avec les deux précédentes, constitue les po-
sitions finales des points primitivement confondus en ε et toutes à 

l'intérieur du cercle \xc = 1. 
Le point ε et son réciproque sont aussi inadmissibles. 
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Il nous reste un dernier point, le point μ. Remarquons que si l'on 

1 

faisait continuer zc, comme nous l'avons fait pour ε, en partant d'une 

des valeurs za

 6
 ou bien \zc

 γ, nous ne tomberions pas sûr le point μ. 
Cela résulte de k discussion, que nous venons de faire, sur ie.sens 

du mouvement des points,primitivement confondus en ε ou bien en γ. 
Il en résulte que les positions finales, que nous allons trouver pour le 
point μ, n'appartiendront pas, à la fois, à un autre point, comme 
c'était le cas pour γ et ε^ Ces positions finales décideront donc de 
l'admissibilité ou de la non-admissibilité du point μ seulement. 

Cette remarque préliminaire faite, voyons, maintenant, quelles sont 
ces positions finales. 

Le point μ de deuxième espèce est encore un minimum pour son 
module. Il est facile de s'en rendre compte. Si nous faisons alors 

varier zc à partir de la valeur r jusqu'à zc == r, les points 
confondus en ce point se sépareront, en restant réels. Ils continueront 
donc à vérifier l'équation (7), en s'éloignant d'un côté et de l'autre 

du point μ. L'un des points (celui pour lequel xc diminue) ira, évi-
demment, se confondre avec le point γ; il aura alors deux positions 

l 
finales à l'intérieur du cercle xv =1, L'autre point, dont le |#| 
augmente, finira par avoir une position finale extérieure au cercle 

1 
xc = ι. En effet, faisons χ = — ι dans 

1 j \a fl flt / 1 \ 
. α(ι-|-τ*ΐ 

D'où : 
1 

Zc = - < I. 

Par conséquent, xc\ aura dépassé la valeur 1, quand zc aura à 
peine atteint cette même valeur. La position finale de ce dernier point 
se trouvera ainsi à l'extérieur du contour d'intégration, et comme la 
position finale de l'autre point est à l'intérieur, il en résulte que le 
point μ et son réciproque répondent à la question. 

Les points μ et μ' sont donc lés véritables points singuliers de Φ (a?). 
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En désignant par |(λ| et par |p/| = j~jles modules respectifs des 

deux affixes, | p; | sera le rayon du cercle intérieur de convergence et | p/1 
le rayon limite du cercle extérieur. La fonction Φ(ζ) sera holomorphe 
dans toute la couronne limitée par les deux cercles et se développera 
en série de Laurent (I). 

Les valeurs des rayons |p.[ et [p/| se. déduiront de l'expression, bien 
connue, de ζ 

z =.ycafe ', 

dans laquelle on aura remplacé χ et y par les valeurs respectives aux 
points p. et p' (Tableau A). 

Remarque. — En réalité, le point p. n'est pas le seul point singulier 
11 

de Φ(*) à l'intérieur du cercle xc | = i. Je dis qu'il y en a encore c — ι 
autres et de même module que le précédent. 

En effet, la fonction F(a?c, Z*) est regardée comme fonction, non 
1 

pas de x
)
 mais de xc et comme telle elle sera multipliée par une racine 

1 

cîème l'unité, quand xc sera multiplié par une même racine. Elle 
admettra donc non seulement le point p., comme singulier, mais tous 
les points contenus dans le cycle suivant : 

tkin 
X' = Xe c [k = ο, i, 2, ...,(c — i)], 

1 

X désignant la valeur de xc

i au point μ, dont - est l'argument (l'argu-
C 

ment de χ étant π en ce point). 
Cette relation nous conduit, évidemment, à l'égalité suivante 

W π 
|X'| = Xe " =|X| [fc = o,i,a,...,(c-i)], 

qui montre bien que les modules respectifs des positions finales des 
points primitivement confondus en un point quelconque du cycle 
sont respectivement égaux aux modules correspondant aux positions 
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5 

finales des points primitivement confondus en μ. II en résulte que les 
c — χ points du cycle seront, avec le point μι, admissibles. 

De plus, il est clair que tous ces c — 1 points auront, en vertu dé 
l'égalité précédente, un module commun, le module du point μι. Nous 
aurons, par conséquent, c points situés sur la circonférence intérieure 
et il en sera évidemment de même de leurs réciproques. 

III. 

14. Pour appliquer le théorème de M. Darboux, généralisé par 
M. Flamme, il nous reste à chercher la forme des fonctions Φμ(^) et 
4yO)[I,n°7]. 

Φ (s) est défini par l'expression suivante : 

(I) p(af,z1/e, x r 1 / x (x - r)()-xt 
Ml=i 

et si l'on y remplace f(#c, ZC

) par son expression 

d ttd—bç ad—bc τ /1 __ \ rt 
(2) F[??,*>) = -J, = , , ■, · 

xc ec 1+c1 

on trouve 

(3) Φ(ζ) = ~ί(x - t)(En désignant par |(λ|) ad - bc r(10) 

|xc| = 1 

Le seul facteur qui cesse d'être holomorphe aux points μι' ou μι est 
la fonction -L. Pour avoir sa forme en ce point, dont nous désignerons 

par £P
0

, z
0
 les coordonnées, il suffira de se rappeler comment le point 

μι' a été obtenu. 
Le point μι' est de deuxième espèce, et satisfait aux équations 

ί Δ — ο, 

[d£ — °> dï^0. 
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Il en résulte que le développement de Δ en série de χ — x
01
 s — z

0 

commencera par un terme en (a? — x
0
)a indépendant de ζ — ζ

ΰ
 et par 

le terme ζ — z
0
, quand on fera χ = x

0
 dans ce même développement. 

Dans ces conditions, Δ pourra toujours se mettre sous la forme sui-
vante : 

(4) Δ = [{χ — ν)- + <Ρ]Ψ(Λ7, S), 

où l'on a désigné par Ρ et w respectivement deux séries en ζ — «
0
 de 

la forme . oo j ç = x
0
-h^

i
ç^(z - z

0
)% 

(5) n = 

Ι w=2<v
(n,
(s-so)

,

v 

Ρ se réduisant à x
0
 pour ζ — z

0
, et w s'annulant pour la même valeur. 

Quant à Ψ(χ,ζ), c'est une fonction finie même au point x = x
0

, 
ζ — z0. 

Si nous posons alors 

X(x,z) = 1 / Vy(x,z) 

(6) I ψ(χ,ζ) = χ(χ,ζ)( ̂ }χ c e c ,+t't h'% 

l'expression (3)deO(s) deviendra la suivante : 

(7) φ/,) = f . 
W =i 

ç(a?, ζ) étant holomorphe au point χ = #
0

, ζ = ζ
ϋ

. 
1 

15. Cela posé, remplaçons le contour #c = ι par un autre plus 
grand, obtenu en déformant le premier. Le premier point singulier 
que nous rencontrerons dans notre chemin sera le point 

p'(a?==a?e
 ,* = s

0
). 
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Quand s aùra une valeur très voisine de z

0>
 χ aura deux valeurs 

x\ et x\ voisines de x\ et le nouveau contour d'intégration passera 
évidemment entre les deux points qui iront se confondre en |A', quand 
ζ prendra la valeur zQ. 

Le contour passera de même, en vertu de la remarque établie plus 
haut (II, 13), entre les points des c — ι couples suivants 

jx] et jx\, j*x\ et f2xl, ..., jc~*xc

{
 et f-xx\, 

i kilt 
où l'on a posé jh = e a . 

La fonction Φ (ζ) sera alors définie par l'intégrale précédente prise 
le long de ce nouveau contour Γ. 

Nous pouvons même séparer le contour Γ en c arcs Γ
0

, Γ,, Γ2, ..., 
IV, passant respectivement entre les points des couples précédents. 

Si nous désignons alors, pour abréger, par H (a?c, z°) la fonction sous 

le signe y, on aura, pour Φ(*), l'expression qui suit : 

Φ(ζ)= ' [ f H{af,4°)dx+f n{xcj,zc)jdx 

+/H(xcj*,zc)j2dx-h...4-h(j?c/- 1,zc). 

Or, on a 

H (a?/,/) =r*H (afc, /) ; 

la somme précédente deviendra donc une somme de c intégrales égales 
et, par suite, 

φΛ;)= f . 

Le contour Γ0 ayant une longueur finie, l'intégrale sera holomorphe 
le long de cet arc, sauf dans le voisinage du point χ = χοίζ = z9. Nous 
pouvons alors séparer, dans cette intégrale, la partie non holomorphe 
de la partie holomorphe, en décomposant à son tour Fare' Γ;β en-trois 



398 Ν. COCULESCO. 

autres : α β, βγ et γδ. Nous aurons ainsi une somme de trois intégrales 
dont deux, la première et la troisième, seront holomorphes dans tout 
le plan et même au point (x0, z0). En appelant φ1(^) leur somme, on 
aura pour Φ (s), l'expression 

(8) Q(z) = Q1(z) + 1 / 2V-1r 

β et γ étant supposées assez petites pour que l'intégrale, une fois effec-
tuée, nous donne une fonction qui converge pour ces valeurs de x; 
nous les supposerons cependant finies par rapportkz — z0 (s étant 
très voisin de.s0) et indépendantes de la variation de cette dernière. 

16. Par sa définition (6), la fonction φ (ζ, χ) est évidemment ho-
lomorphe au point [/.' ; elle sera donc développable en une série de la 
forme 

(9) s) = φ„ -H 9, (a? — p) -t-<p
a
(a7 — ρ)2-H... -f- _ p)« -h ..., 

les coefficients φ0» Çn · · ·> 9» étant des fonctions de s. 
Si nous remplaçons son développement dans l'expression de Φ (s), 

on obtient 

(10) Φ(.) = Φ,(Ζ) + V _£=- f , 

Remarquons que, si η est impair, l'intégrale j* se ra-

mène à la suivante : 

J = [\/(oc — p)
2
 -h = fonct. holomorphe en z. 

Nous ne considérerons donc que les termes d'ordre pair, les seuls 
qui conduisent à une fonction non holomorphe en ζ et c'est précisé-
ment cette partie dans Φ (z), que nous avons désignée par Φ[Χ'(*);, 

que'nous cherchons. η 
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En supposant η pair, on a les relations suivantes : 

J»= gn{s)- n-1 / n wJn-1 

n - 3 
Jn-2= gn—i(z) - / n-2 w Jn-3 

J»-« = gn-i (*) ~n-5/n-4 wJn-5, 

9 

h = gk{z) -3/4wJ2, 

J2=g»(*) -{why 

en désignant par JA l'intégrale dans Σ de Φ(ζ), qui correspond au 
terme d'ordre k dans le développement de Φ (a?, z). 

Des relations précédentes, on tire 

J n=gn + (-w)?~^1g«-2 

""Κ ») n{n — 2 ) e»-«+ —+Λ w) n(n-2)...2 J°' 

exprimée en fonction de J
0

. 
Or on a 

J
0
 = '—. f dx - = -4- [log(a? — ρ) 4- \J(x — p)2 ■+· «p]L 

ou bien 

2V-IrJo=Logif —" + ν/<Ιζ!^. 

L'expression précédente de J0 contient encore une partie finie et la 
partie non holomorphe. Pour les séparer remarquons que, β étant la 
limite inférieure d'intégration, le dénominateur s'annule pour ζ = zQ. 
On pourra alors multiplier les deux termes par la conjuguée de 

Journ. de Math. (5· série), tome I. — Fasc. IV, 1895. 5a 
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celui-ci et les deux parties seront séparées. On a ainsi 

^°δ [γ — p-+- \Ι(Ί ~ p)2 w] (β ~ p)-+" Vr(P — p)a + w] —log w, 

dont le premier terme reste fini, logw cessant au contraire d'êtr< 
holomorphe en ζ pour ζ — z

0
. 

On peut écrire encore, comme il suit, le second terme, en vertu d< 
l'expression (5) de w, 

logiv = log(z - Î
0
)[PP

0
 + 10,(2 - *,) + .] 

= logO — «, ) + log[«'
0
 4- w, (ζ - z

0
) +...], 

le second logarithme étant fini pour ζ — z0, car w
0
 φ ο au point p.'. 

L'expression finale de J0 sera par conséquent 

^=£•.0) - î7ïlogO-Ό· 

On en déduira l'expression finale de J
H
 et par conséquent celle di 

Φ(ζ), qui sera la suivante 

("). •(.) = V(«) + G(i)log(«-ao), 

Ψ(^) désignant la somme de toutes les fonctions telles que gk{z 
finies pour ζ — z

0
 et G(^) désignant ce qui suit 

oo π/„\ _ V —1 (» —1)(« — 3). ..3.i , /»\. 

Ψ(ζ) et G(z) seront, par conséquent, holomorphes en ζ même ai 
point p/. 

Quant à la partie non holomorphe cherchée Φ^>(ζ), son expressioi 
sera 

(ra) Op.(z) = G(z)log(z-2„). 

C'est le coefficient du terme d'ordre η, dans ce dernier développe-
ment, qui nous donnera, d'après le théorème de M. Darboux, h 
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valeur approchée du coefficient aA dans le développement de Φ (s) et, 

* par conséquent, la valeur de Cmtm> dans le développement de la fonc-
tion perturbatrice (I, 4). 

Formons ce coefficient. On a d'abord 

G(^_ ï(~t")ï*+ îff C— «O*?.+ ···]> 
et 

?oO) ■= 9o,o + ~ 3 9) ■+" <Ρβ,i(* — *0)'"+'· · · 5 

il eu résulte pour G(s) une série de la forme 

G(»>=-^Èî- + yp»iv. 
v v=i 

D'autre part, log(z — z0) se développera, en série convergente 
de ζ

}
 à l'intérieur du cercle de rayon | [*'|, SOUS la forme 

OE 

log(3-z„)=2slV, 
8 = 0 

et le coefficient de zn dans ce développement est évidemment — ~·^ 

On aura finalement, pour valeur approchée de C
OT)m

', l'expression 
suivante: 

("3) Γ — 1 ?0,° l(t ι Λ 

ε étant très petit pour des valeurs très grandes de n. Dans les applica-
• « J | __ G ^ 

tions, le premier terme de la série —sera grandement suffisant. En 

effet, ce qu'on veut savoir, c'est seulement de se rendre compte du 
degré d'importance de C,c'est-à-dire de l'inégalité à longue période 
correspondante. 

17. Il nous faut maintenant calculer φ
0)0

. C'est la valeur que l'on 
obtient, en remplaçant χ et ζ par les coordonnées a?

0
 et y

0
 de p/ dans 

l'expression (6) de φ (a;, z). 
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On tire des relations (6) et (4) 

(xo - r)(1 - xo ad le ad bc r (1) ad) 
?»■»- e «Ό . e

 L v'i -L 

ou bien 

(*,- t) (I - g.t)
 t

 . -r^ (£-*.) [fe- ")' + «■] . 
Poo x²o V 

Le dernier facteur se présente sous la forme indéterminée ^ au 
point (#o> /<>)♦ Or, on a 

lim [V(x - v)²] + w/A =Jidgkil 
L 2\fi. _Jo,0 

= 2 lim (lim . . 1 » 

VAJ 0,0 

On en tire 

lim ΓνΕΞ^Ξ5Ί = —!— 

e t l'expression ( 13 ) deviendra 

<
eîeWr

 «&-«·) mz.' 

Nous avons vu (II» 9) que l'on a pour Δ 

Δ = L4EEe. 

Le point p'(# = a?
0

, y = y
9
) satisfaisant aux équations 

Ε — — = ο 

il en résulte 
D*A = L4(ED*E

0
) 
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et, par conséquent, 

(.S) Γ1 — 1 + £ (ά?ο""τ)(1 ~ χ·τ) y/a 

a»ν/ΤΙΛ LV(ED1Eo)o; 

Calcul de (EDJE0)0>0. — On a 

E
0
 = cosu — sin φ — i cosçsinw — a(cos&'—i sin m'), 

dE„ . du du f .du' . ,du'\ 
dx dx T dx \ dx dx ) 

= — (sinw+ tcosç COSM)^ — «(smi/ + ÎCOSM > 

d² Eo / dx²= (cosw — ι cos φ si nu)-^ — a(cos« — ι smw)^-

H- (sinw + îcos<pcosm)^ — a(sinw -f- icosiï)-^ · 

En vertu des relations 

COM«=:i(« + l), cos«'=i(
r

 + 1), X 

î sin m = ^sc — i sintt'= ^(y - 1 / y), 

on trouve 

dx ~~ ix' dy Ty' die ~ icâ?5
 [

 2 0 ® > 
d* i__ diu' _ _ ι d2 u' sin φ ία 
dx1 ~~ ix2' dyx ~ T/2' dx% ~~ 2~ ci χ2 ' 

%-], 

a -$,-5. [*?<*■+■>—·]· 

- 2/x² [sinY / 2 (x² + 1) - x²] + 2 (sin&/2 - 1) 
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et, par conséquent, 

d²Eo / dx² = - { -1 / 2x² [x + 1 + x= 

+ I/2 x² [ (x - I / x) - cos y (x + I / x) 

ou bien 

a? = - ά !
Γ

 [(x
'
5+,)(I+

'
ï}

 ~~
 (x

'
2_ l)] 

+ ̂ Κ**+')-*20 + ^)? 

+ [Os- ')(' +'s) - (x' + 0] + 4ατ5 j\; 

On a, d'autre part 

Ε = cos u — sinq> -+· «cosçsinw — α (cos#'H- ζ sin#') 

ou bien 

Ε = — [(x~ -+-1)(ι H- τ2) — ί\τχ -h (χ* — ι) — 2α(ι -+-τ2)#/]. 

lisons 

/
t
(j\ ρ/,,. Κ--'l)('-f.'),;V'-mr(1/xo - xo) 

V /-[(«; + ,)(,+,«)_(«;-ι)] ι 

X + 2&a² [(x² + 1 ) t - (I + t²) x²o 

+ Κ«5-·)(>+^)-(®ί + 0] + 4«^ 

en désignant toujours par #0,y0 les coordonnées du point p/, à savoir 

07) 

_ —(c — 2a) + v/c(c — 8a) 
xo = 2 ar 

_
 w

.cH-4eH-y'c(c--8g)(u') 
yo = -& 8cr 
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l'expression cherchée de deviendra finalement 

(III) C
m
,rt=l£, jP(®.,r.)(l + E)

t 

La étant le demi-grand axe de la planète intérieure et α le rapport 
L,aL~2> ι des demi-grands axes. 

18. L'expression (III) de C
m>m

' se présente avec un double signe à 
cause des deux déterminations du radical. Il s'agit de voir quel est le 
signe qu'il faudra prendre. 

Pour cela, examinons ce qui va se passer pour des valeurs particu-
lières de χ et de y. Prenons, par exemple, χ = ι et y = i; cela veut 
dire que les deux anomalies excentriques sont supposées réelles ; elles 
définiront alors deux points réels, deux planètes Ρ et Ρ', situées dans 
les orbites respectives. Le radical représentera la distance des deux 
planètes, quantité réelle et positive. 

En faisant maintenant varier χ et y d'une façon continue jusqu'aux 
valeurs a?o, qui correspondent au point μ', le radical restera fini 
dans l'intervalle et variera d'une façon continue. Donc, on arrivera au 
point μ' avec la détermination positive avec laquelle on était parti. Le 
signe, qu'il faudra prendre, sera le signe -K 

Remarque /. — On a, pour préciser, supposé c > ο, a < ο, α > r. 
Les conclusions seront encore les mêmes avec d'autres hypothèses sur 
ces nombres. Les points singuliers admissibles seront encore μ et μ' et 

leurs coordonnées seront réelles pourvu que - < ο : c'est ce qui a lieu 
dans le cas des inégalités à longue période. 

Le cas de τ = ο, τ' φ ο et petit se déduira du précédent en permu-
tant entre elles, dans l'expression (III) de les quantités τ et τ', 

c et α, α et x9 et y0. 

Remarque IL —. Pour passer de la valeur de C
mt

,
n

> aux valeurs des 
coefficients de cos (ml h- rn'l') et de sin(/wZ ■+■ m'Î) dans le développe-
ment de FJ sous la forme habituelle 

F®(/, l ) = 2 ^m,m cos(/iiI'-H m'I') 4- 2 sin (m/ 4- m'I'), 
m,m' m, m' 
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on a les relations évidentes 

Am,m' - V-IBmm' = 2Cm,m, 

Am,m' + S/ I Ο/η,/η' = 2C -m, m', 

C
m' étant le coefficient de l'exponentielle conjuguée. 

IV. 

19. Nous allons aborder maintenant le cas plus général où aucune 
des excentricités, toujours supposées petites, n'est nulle. 

On restera encore dans le plan. 
Les équations algébriques à résoudre sont données par le sys-

tème (5) (n° 10) ; d'autres points singuliers, outre ceux déjà trouvés, 
s'introduiront et les calculs deviendront plus longs. Mais, ce n'est là 
qu'une difficulté secondaire. 

La vraie difficulté, qui surgit dans le cas présent, tient à ce que ζ 
étant donné par la relation 

<«) ζ — xne 1 ^ 'yee 1 * , 

où φ' n'est plus nul, y et, par conséquent, F(^, t) ne sera plus uni-
1 1 

forme en xc et z% comme cela arrivait dans le cas précédent [ II, n° 11 j. 
La discussion de Y admissibilité des points singuliers trouvés, ne 

pourra plus se faire dans un plan (le plan des dans le cas traité), 
mais sur une surface, composée de feuillets en nombre égal au nombre 
de déterminations de F(s,'i) et telle que chacun de ses points soit dé-
fini par un système de valeurs a? et/, déduit de l'équation (a), dans 
laquelle on aura regardé ζ comme constant. 

On est ainsi conduit à la considération de la surface de Riemann, 
correspondante à F(ζ, *), sur laquelle il faudra varier t. La discussion 
devient ainsi bien plus difficile que dans le cas précédemment traité. 

20. Les équations algébriques (5) [II, n° 10], qu'il s'agit de ré-
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soudre, peuvent s'écrire comme il suit : » 

(') (a? — τ )(i — χτ ) = ο, 

(*) Ο-τ'Χ1 -y<) = 0, 

(3) y(x - t)² / 1 + r² - Bx12l=^!=o,' 

(4) yι + τ» P»a ,+,'t — °> 

(5) £Î2±l> +αΆ HL±Q =0, 

03) c(I + xr) / (x - r)+- «Ρ» -yzr^r - o-

En combinant deux à deux ces équations, comme on l'a fait dans le 
cas précédent, on aura deux sortes de points singuliers, savoir : 

Points singuliers de première espèce, obtenus par les combinai-
sons suivantes : 

(') j (tf-t) (i- œt) =0, 

l.a) I (y-t'X
1 -yt') = o, 

(1) ( (ζ — t)(i — .rt) = o, 

(3) (fcI!_
?ÎC

<Z^
 = 0) 

(2) | (y-t')(i-yt') = o, 

(3){ y (x - r)² / I + r² - Bx(y - r')² / 1 + r'² 

(3) (Ζ^-^ίΐ^ο, 

(4) = . 

Remarque. — Lès combinaisons (1) et (4), (2) et (4) donneront 
évidemment les points réciproques des points déduits respectivement 
des groupes (1) et (3), (2) et (3), et où l'on aura changé β en β0. 

Joum. de Math. (5* série), tome I. — Fasc. IV, i8g5. 53 
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Points singuliers de deuxième espèce. — Ils sont définis par les 
groupes réciproques suivants : 

(3) = 

(5) =0, 

(4) y(I - xr)² - Box (I - yt') 

(6) |£^)
+e

p.i±^
=

o. 

Ici aussi, les points du second groupe seront respectivement réci-
" proques à ceux du premier, à la condition de changer β en β„ dans 

ces derniers. 

21. Les équations (i) et (2) donnent les points suivants 

x = r 

(&) et son reciproque 

y = r' y = 1/r' 

I χ = τ [χ = 7» 
Ο) < , » (»') ι 

y = 1/r' y = r' 

le premier correspondant au point (a) du Tableau A; le second (σ) 
étant un point singulier nouveau. 

Considérons le groupe (1, 3). Il est d'abord satisfait parle point 
a.(x — τ, y τ'), qui est double pour (3). 

En prenant l'autre valeur de χ, χ = ' et en substituant dans (3), 

011 obtient l'équation 

/ βτ(ι + τ2)/3 

(®) V — [(ι+ τ'2)(ι ~ 2τ2) + 2βττ'(ι-H':2)]y 
+ Brr'²(I+r²) = 0 
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qui est satisfaite, d'une façon approchée, par la racine très grande 

l+t'!—2Χ3-ί-2β-τ' ^ I 
y = Br Br 

d'abord, et ensuite par la racine très petite 

Brr'² 
y- =Brr'² 

(si l'on néglige les très petites quantités). 
No-us aurons donc deux points singuliers : l'un 

(PO 

t χ — —> τ 
i + t'!—2τ2-|-2βττ' ι 

y = Br Br 

correspondant au point (3' du Tableau A; l'autre 

(f) 

I X = -> τ 

Y — " βττ^> 

ne'figurant pas dans le Tableau A, est un nouveau point singulier. 
Le groupe (1, 4) conduira à l'équation réciproque de (a) et par 

conséquent aux points réciproques des précédents ; savoir 

ί τ» —» /r 

(B) Bor Bor 
Χ' i-h τ'2 — 2 τ2-h 2 β„ττ' 

et 

( χ = τ, 
(C) I + r'² - 2t² + 2t² + 2Borr' 

[y ~~ β
0

ττ'2 : ~~~ βοττ'8' 

Quant aux points singuliers définis par les groupes ( 2, 3) et (2, 4,)> 
on les déduit des précédents en y permutant, tout simplement, les 
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coordonnées x et y entre elles et aussi les quantités τ et τ'; on pren-
dra, en outre, l'inverse des quantités β et β„. 

La raison en est simple. On aura de cette façon les points singuliers 
suivants 

(Ό 

I 
y = ?> 

χ — - -,—-—1— = ^ (d une façon approchée), 

<«o 
7=?> 

r' r' 
X ~ β(ΐ -+~τ2- 2τ'2)+ 2ττ' ~ β" 

et les réciproques respectifs 

(«0 
7 = 7, 

βο(ΐ ^â — 2τ'2)-)- _ β
0 x = r' r' 

<"> 
7 = 7, 

t τ 
^ ~ β

0
(ΐ + τ2 —

 2
τ'2)+2ττ' ~ {Ç* 

Les combinaisons d'équations (i, 3), (i, 4)> (2, 3) et (2, 4) intro-
duisent donc dans le cas présent trois points singuliers nouveaux : 
(ζ), (ρ) et (w) et leurs réciproques respectifs. Ces trois points ont été 
obtenus de la même façon que (β) et nous avons vu (II, n° 12) que 
ce dernier n'est singulier qu'en apparence pour Φ(^). Il en est de 
même des points ζ, ρ et w. D'abord le point ζ est évidemment, pour la 
même raison que β, singulier apparent seulement. 

Cela résulte de la forme de l'expression Φ (s) (loc. cit.). 
Si nous changeons maintenant x en y, 1 en t' dans cette même 

expression de Φ (s), nous prouverons par cela même que y = τ' 

ou ^ et par conséquent les points eux-mêmes ρ, PP, P', w' ne s'intro-

duisent qu'en apparence comme points singul.ers de Φ (s). 
Nous n'avons donc pas à en tenir compte. 
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Il ne nous reste plus, comme points singuliers de première espèce, 
que ceux qui résultent des équations (3) et (4). 

Ces équations devant être satisfaites à la fois, il en sera de même de 
l'équation 

.y2(œ—Ό2(' — _ ολ — — 
(ι H- τ2)2 (ΙΗ-Ί")2 ' 

ou bien des deux suivantes ί 

e>) r+^î ±Λ r+73 ' 

en posant toujours 

(0 « = L'3L-2=VPP„. 

La système d'équations (3, 4) se réduira alors aux deux suivants : 

(3) y(x - t)² / 1+r² - Bx(y-t')/ 1+t'² = 0, 

(7) ( ^ « ΓΤ7* =°> 

OU 

(8) \ Γ+5 +ct - ι + τ'2 = °· 

On en aura, ensuite, deux systèmes analogues : (4, 7) et (4, 8). 
Mais il est clair qu'on aura les solutions des trois derniers systèmes 
d'équations, des solutions communes aux équations (3) et (7). 

On peut écrire ces dernières de la façon suivante : 

(9) 
1 y (a? —τ) β y — t' α ι — yx\ 

1 + x (y — x) ι τ'8 se — τ ι -ί- τ* ι — sex * 

on n'aura alors qu'à considérer l'équation (3) avec l'urte de celles-ci, 
avec la dernière, par exemple, 

(10) (3(y — τ')(ι — χτ) — a(x — t)(i — y,') — o. 
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On en tire 

ου 
_ »(g — τ) + βτ'(ι — art) 

* β(ΐ —■ xx) -f- ατ'(#—τ) 

D'où 

(d) ν — τ' = a^ — T'2)(a? — τ) 
^ β(ΐ— Λ?τ)4-ατ'(Α'—τ)' 

et si l'on substitue ces valeurs dans (3), on arrive à l'équation 

( [α2τ'Η- β2τ'τ8 — αβτ(ι — τ'2)]#2 

(ΐ2) | — [2(α2Η-β2)ττ'— αβ(ι-μ τ2—τ/2) + βα2(ι — τ'2)]# 

f -+-α2τ2τ'-ΐ-β2τ'—αβτ(ι — τ'2) =ο, 

qui sera satisfaite, d'une façon approchée, par la racine de l'équation 
plus simple 

— α(« — ι)χ βτ' — ατ = ο, 

c'est-à-dire la racine très petite suivante : 

(,3) ατ — βτ' 
x =α(ΐ-α) 

Elle sera, en outre, satisfaite par la racine très grande 

04) 
& (I - &) 

X — ατ-β0τ' W' 

Les racines (i3) et (14) étant réciproques seront évidemment aussi 
les solutions des équations (4) et (7). 

On aura les solutions communes des équations (3) et (8) et, par 

(') En réalité, cette dernière racine, déduite de l'équation (12), est la sui-
vante : 

• · J=:
 ΙΗ1-") 
βτ — ατ' 

Mais.cette différence n'est qu'apparente et disparaît dès qu'on remplace α par 

sa valeur ^/ββο · 
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conséquent, de (4) et (8) en changeant α en — α dans les précédentes. 
On obtient ainsi 

os) x = xr + Br' / x(1+ &) 

et 

^ ' ατ + β
0
τ' 

En substituant (i3) dans (u), on obtient les coordonnées sui-
vantes 

Χ = —, — 

( y )α ατ — βτ' 
y = B I - x 

du point singulier, correspondant au point (γ) du Tableau A. 
On voit, en effet, que si τ' = ο et si, comme nous le supposions alors, 

ισ' — gt = o, que, par conséquent, β = β
0
 = α, on retombe sur les va-

leurs —— et de χ et de y, 

En substituant, de même, (i4) dans la réciproque de (ι i) et de 
même (i5) et (16) respectivement dans les mêmes valeurs dey, mais 
où l'on aurait changé α en — a, on obtiendra les .coordonnées sui-
vantes, qui se déduisent immédiatement de celles du point γ, à sa-
voir 

x = &(1 - &)/ ar - Bo r' 
(y) 

y = Bo / & I - & / &r - Bot 

x = &r + Br' / x(1 + & ) x = & (1 + x) / &r + Bor' 
(d) (d) 

y = & / b xt + Br' / 1 + & 

Remarque, — L'inspection des coordonnées précédentes montre 
que l'on passe d'un χ quelconque à l'y correspondant et inversement, 
en permutant les quantités τ et τ' et en prenant les inverses réciproques 
des quantités α, β et β0. 
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Cette symétrie était évidente, a priori, car χ et y, n'étant autre 
chose que les exponentielles qui ont pour argument respectif les ano-
malies excentriques des deux planètes Ρ et P', déterminent dans l'or-
bite les positions respectives de ces planètes, et l'on passe d'une planète 
à l'autre, en permutant les excentricités, les longitudes des périhélies 
et le rapport des grands axes. 

22. Passons maintenant aux points singuliers de deuxième espèce. 
On tire de l'équation (5) 

ο(χ + τ)+α$τ'(ι-χτ) 
^ J ct'(x -h t) — αβ(ι — χ·ζγ 

d'où 

(p\ V — τ — Φ —+ — ·κτ) 
cx'(a?4-O— αβ(ι — χ-) 

En portant ces valeurs dans l'équation (3), mise sous la forme 

(3') y{χ — τ)2 - β x{y - τ')2+τ'2 y (ρ - τ)2 - βτ2®(/ —τ')2 = ο. 

on a 

<·») 

(χ — t)2[C2τ'(.χ -h τ)2 — αβc(i — τ'2)(.χ 4- τ)(ι — ./;τ) 

— «2β2 τ'(ι —,χτ)2] 
— j3.r[c2(i — τ'2)2(χ 4- τ)2 

4- — ζ'")(χ 4- τ)(ι — #τ) 

4- 4«"β2τ'2(ι — χτ)2] 
4- τ'2(χ — τ)2 χ premier crochet 

— τ2 β χ χ second crochet = ο. 

En faisant, dans les deux premiers crochets, les développements in-
diqués, en ordonnant suivant les puissances décroissantes de χ et fi-
nalement ne gardant que les termes du premier ordre en τ et τ' dans le 
coefficient de a?4, du second ordre, au plus, dans le coefficient de χ3 
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et ainsi de suite, on arrive à ce qui suit : 

ο(αβτ 4- cz )x* — β J '
 0 # 37 

+— 2c
2
tV4-αβ<?τ(ι — τ8 — τ'2) — α2β8τ'(ι 4-4τ2) j

 ο 

2βο2τ(ι — 2τ'2) — 4^β2οτ'(ι — τ8 — τ'8) 4- 8α2β3τ'2τ 1Χ 

+B— c2t2(i — 2τ/2) — 4«Pctt'(i — τ'2) — 4α
8
β

8
τ'

2 j37 

•4- c't't' — αβοτ3(ι i2) — α2β2τ'τ2. 

Dans chacun de ces coefficients, la première ligne se rapporte au 
premier crochet, la seconde ligne au second crochet de l'équation (i 8). 

La seule inspection des coefficients précédents montre que les seuls 
termes en χ, qu'il faudra garder des deux derniers crochets de l'équa-
tion (18), seront les suivants ; 

0
 ( — acτ'21

 β
 ( #<5ττ'2 — α2βτ'3 ) 

-c² r² Γ M -2C2T8-4apcT:Vr 

+ I — c2t* — [\α$0Ί*τ' — 4α
2

β
2
τ

2
τ'

2
 )

Χ
 j 4- α

2
βί'

3
τ

2
, 

et, par conséquent, l'équation finale sera 

09) 

c(afrt 4- οτ')χ* + β[— c(a 4-c) — c(a 4- c)x2 

4-2αβ(α 4-2C)TT'4-2C2'T'2]#3 

4- [(3c(<as — 2C)T — α β2(« -ι- 4^)τ' 
— ββ(α 4- 2c)t3 — 2(c24- 2α8β2)τ2τ' 
+ 4β(^24- 2α2β2)ττ'2 — α β2 (α — 4^)τ'3]#2 

4- β[ο(α — ο)τ24- 2αβ(α — 2θ)ττ'~ 4α2β2τ'2 

4-c(a — c)u*4- 2αβ(<2 — 2ο)τ3τ' 

4- 2(c2 — 2α2β2)τ2τ/24- ι«β(α 4- 2c)W*]x 

— αβοτ3 —α2β2τ2τ'4- c2tV — α2β2τ2τ'3 = ο. 

Cette équation sera satisfaite, d'une façon approchée, par. la racine 
Journ. de Math. (5· série), tomel. — Faso.IV, i8g5. 54 
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très grande 

(20) 3/ = + Ρ —β—; jy 

et par les racines de l'équation suivante 

(21) 

c(c -+- à)x3 -+- [c(2c — α)τ + a §(a -h (\ο)τ'\χ' 
H- [c(c — α)τ2+ 2αβ(20 — α)ττ'+ 4&2β2τ'2]# 

-+- α(οτ3 4- αβτ2τ') = ο, 

équation homogène, en χ, τ et τ'. Les racines seront très petites et de 
l'ordre de τ et de τ'. 

Remarque. — La racine (20) nous donnera un point singulier 

correspondant à € du Tableau A, car on a, pour τ — ο, χ = 

Quant à l'équation (21) elle doit se réduire, pour τ' = ο, à l'équa-
tion (i5) du n° 10. 

On a, en effet, si l'on y fait τ' = ο, l'équation 

(c 4- a.)x9 -+- (2c — a)Ta?2-h (c — α)τ·χ -H ατ:ι = ο, 

ou bien la suivante 

(χ -h t)[(c H- a)x2 -h (c — 2#)τα? h- ατ2] = ο. 

Le second facteur égalé à zéro est bien l'équation dont il s'agit. 
L'équation (19) donnera, par conséquent, trois points singuliers 

correspondant, respectivement, aux points ε', p. et ν du Tableau A et 
un quatrième point η, se réduisant kx = — τ, y = ο pour τ' = ο. Ce 
dernier point est nouveau. 

23. L'équation (21) pourra toujours être résolue dans les applica-
tions numériques. On aura donc sans difficulté le point singulier qui 
convient au problème. Mais il n'en est pas ainsi dans le cas général et 
une discussion des racines de cette équation est nécessaire pour dé-
cider dans les différents cas les points singuliers qu'il faudra considérer. 

Pour cela, nous allons discuter la courbe représentée par l'équa-
tion (21). 
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Supposons, pour simplifier, ©' — « = o; on aura alors β = α. De 

plus, posons ς = Xet= Y; l'équation précédente deviendra ce 
qui suit : 

00 s (=+0X" [1 (a 5 - 0 x* 
+ iiG-') + 2(25-,)Y + 4YI]X + 5+Y = <>· 

La forme de la courbe dépend, évidemment, du paramètre^· Ce 

rapport est, avons-nous dit, négatif dans le cas des inégalités à longue 
période; il est lié au rapport α des distances des deux planètes par la 
relation 

- = - («)l 

Plaçons-nous d'abord dans l'hypothèse : 

10 1 < — - < 00, qui entraîne α > 1. La forme de la courbe sera la 
suivante : 

Fig. I. ' 

En désignant par X,, Xa et X3 les trois racines de l'équation (21'), 
on verrait qu'elles seront réelles et inégales, X2 étant la plus grande 
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en valeur absolue, pour toutes les valeurs du rapport — ^ prises dans 
<XXf 

l'intervalle considéré et tant que Y = — restera plus petit que un. 

En effet, voici ce qui se passe quand on fait varier le rapport —c / a 

Faisons-le, par exemple, décroître d'une façon continue à partir d'une 
certaine valeur très grande jusqu'à.une valeur voisine de l'unité. 
Dans ces conditions, X

2 s'éloignera, d'une façon continue, d'une va-
leur très voisine de X,, cette dernière étant constamment égale à — r, 
jusqu'à l'oo, sur l'axe des χ négatifs; le maximum de la courbe cor-
respondra encore à Y = ι, tandis que les ordonnées respectives des 
points A' et A" diminueront. Il en résultera le rapprochement de bh' 
avec aa', et il en sera de même des droites ce' et dd!, aussi bien qu'au 
cas limite, il n'y aurait plus que des valeurs réelles des racines. Il est 
donc clair que les trois racines seront réelles, X

2
 étant en valeur ab-

solue la plus grande, tant que Y < ι ; de plus, X2
 est l'abscisse du 

point [A, comme il est aisé de s'en assurer, en supposant τ' = ο, c'est-
à-dire Y = ο. 

Pour Y = i, les deux racines négatives deviendront égales. Pour 
Y > ι, mais inférieur à l'ordonnée de A', l'équation (21') aura deux 
racines imaginaires conjuguées, et une troisième réelle toujours plus 
petite que l'unité. 

24. Il est intéressant, pour ce qui va suivre, de voir si le module 
commun de X, et de X

2
 est plus petit ou plus grand que l'unité. Cela 

revient à chercher la valeur du rapport r·· 

Or, il est clair que lorsqu'on fera varier Y à partir de la valeur un, 
pour laquelle le module commun |X, | = |X

2
1 = 1, jusqu'à la valeur 

correspondante au point A', le numérateur du rapport considéré di-
minuera; il en sera, par suite, de même du rapport lui-même. Comme 
d'autre part la racine X

3
 croît dans l'intervalle, le module commun 

| X, | = | X
2

1 ne pourra que diminuer et, par conséquent, il sera plus 
petit que l'unité. 

2o. Continuons à faire varier Y. On aura de nouveau une racine 
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double au point A'; elles se sépareront ensuite : X, diminuera pour 
redevenir négative, tandis que X

2
 ira atteindre la valeur X

3
 = 1 pour 

Y = — ^ et finalement croîtra au delà de toute limite avec Y, pour les. 

valeurs de Y = —> - c / a. 

Remarque. — 11 est facile de s'assurer que c'est X, qui deviendra, 
finalement, très petite et négative, tandis que X

2
 croîtra vers ·+- 00, 

parla forme même de la courbe (1) dans le cas limite, par exemple, 

de — î =1. On verrait que l'une des branches de l'hyperbole, à 

laquelle se réduit la courbe (21') dans ce cas, passe par X, = — 1 et 
est asymptote à l'axe des y positifs, tandis que X, est situé à l'oo sur 
la droite Y = 1. 

26. Considérons maintenant le cas de : 20 o<— - <Li, c'est-

à-dire de α < ι. La courbe est représentée par la fig. 2. Elle montre 
que c'est, au contraire, au-dessous d'un certain maximum de Y < 1, 

Fig. 2. 

Y 

χ 

que, les racines étant toutes trois réelles, deux sont positives et com-
prises respectivement entre ο et 1, 1 et 00; une troisième racine néga-
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live comprise entre ο et — ι, et c'est toujours X
2
 la plus grande des 

trois. 
Pour des valeurs de Y supérieures à l'ordonnée de A', on retombe, 

comme dans l'hypothèse précédente, sur deux racines imaginaires 
conjuguées qui vont redevenir réelles et égales pour Y = ι ; enfin, 
trois racines réelles et inégales dont deux négatives pour Y > ι. De 
ces dernières, X, se rapprochera indéfiniment de l'origine, tandis que 
Xa

 et X
3
 croîtront au delà de toute limite. 

Lorsqu'on fera varier, d'une façon continue, le rapport — ^ de ο à 

l'unité, les trois racines varieront de la façon suivante : X, restera 
constamment =— ι ; X

3
 variera entre -4-1 et o, en se rapprochant de 

l'origine, tandis que X
a
 cheminera dans le sens contraire sur l'axe 

des X positifs à partir de 4-1 pour devenir 00 quand — - aura atteint 

la valeur 1. 

Remarque. — Les conclusions sont les mêmes que dans le cas pré-
cédent; seulement, pour passer de la fig. 1 à la fig. 2, il faudrait 
changer aussi le nom des axes des coordonnées. En effet, la fig. 2 doit 
répondre à une courbe analogue à (21'), qui s'obtiendrait en éliminant 
non pas y mais χ entre les équations (3) et (i5). 

Or, on passe de la valeur (17) de y à la valeur de χ correspondante 
en y permutant entre eux les éléments y et χ, τ et τ', xs et σ' et les 

rapports α et ^ et en un mot en permutant les planètes; ce qui 

ramène aux mêmes conclusions. 

27. Il reste enfin la dernière hypothèse, à savoir : 3° — c- = 1 ; elle 

répond au cas intermédiaire entre les deux précédemment considérés. 
Dans ce cas, la courbe (21') se décompose en une droite Y = 1, et 
une hyperbole 4XY — 3Xa—2X4-1 = 0. 

Cette hypothèse n'est pas réalisée dans le système solaire. Elle cor-
respondrait, en effet, au cas où les deux planètes décriraient une 
même orbite. Sa considération, cependant, rend mieux compte de la 
variation des points singuliers η, ρ et ν. 
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28. Nous arrivons donc à la conclusion suivante : 
X,, X

2
, X

3
 étant respectivement les abscisses des points singuliers 

η, (x et ν : 
а. Ces points seront réels et l'abscisse de p. sera la plus grande en 

valeur absolue pour toutes les valeurs de < 1 ou bien > — le 

rapport — - étant supposé > 1; 

б. X, = X
2
 = — 1 pour γ = 1 ^ou ^ ^ et X, = X

2
< 1 pour 

~ = au minim, de la courbe; 

c. X
2
 = X

3
 = -h 1 pour ~ ^ou bien ~ = ^/a^ ; 

d. X,, X
2
 imaginaires conjuguées et leur module commun plus 

petit que l'unité. 
Des conclusions analogues pour les ordonnées respectives. D'ailleurs, 

il n'y a même pas lieu d'en tenir compte, ayant à étudier complètement, 
plus loin, la courbe (3). 

On verra alors comment, en partant des conclusions auxquelles 
nous venons d'arriver, on pourra décider de l'admissibilité ou de la 
non-admissibilité des points singuliers. 

Mais, avant, réunissons dans un Tableau tous les points singuliers de 
première et de deuxième espèce, de Φ (s), y compris les points ε, u', 
η' et ν' réciproques de ces derniers. 

Nous avons ainsi l'ensemble des points singuliers suivants : 

TABLEAU B. 

(x = t x = t / t 
(*) \ («') \ 

y = t', (&') 

( ® = τ, ί X~ i, 
(σ)

 ι
 (»') 

y = / t', y = t', 
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m 

TABLEAU Β (suite). 

Λ? = τ. 

/=βοτ, 
(β') 

ι 
Χ—-·, Τ 

y = I / Bt, 

(ζ) 
χ = τ, 

(?') 

I 
a? = -» 

t 

y — βττ'2> 

(Ο 

τ' 
* = Κ' 

y = *'t 
(<>') 

χ=1„ 

y = 1 / t', 

(«') 

τ' 
*=|> 

·7=ψ 
(«ο 

x-h> 

y — x\ 

(γ) 

ατ — βτ' 
x =α (1 α) 

α ατ — βτ' 
^Trr" 

(γ') 

α(ι —α) 
x =ατ — β0τ 

y = Bo I - & 
α ατ — β0τ' 

(δ) 

ατ -+- βτ' 
37 α(ΐΗ-α)' 

•^Firr' 

(«ί 

x =ai + α) 
ατ + βυτ 

βο ι Η- α 
y =α ατ Η- β0τ' ' 

(0 

ι αβ0τ Η- cir 

x =βο C -jr α 

„__a%x + cx' 
J c + a 

(«') 
x =^ αβτ-Η(?τ'' 

^ αβτ-Ί-οτ'' 

et les points μ<>2 = τΧ2, y2), v(ar. = τΧ3, y3), ηΟ, = τΧ,,^) et 
les réciproques respectifs μ', ν', η'. 

Remarque. — Pour cr — t»'= o, on aura β = β0 = α et les points 
singuliers deviendront tous réels. 
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V. 

29. Il nous reste maintenant à examiner quels sont, parmi les points 
singuliers du Tableau précédent, ceux qui conviennent au problème. 
Mais une nouvelle difficulté surgit dans le cas présent. 

1 

C'est que, τ' n'étant plus nul, la relation entre ζ ou plutôt zv et les 
coordonnées des points singuliers devient 

(■) 
l a a x r\ \ r /1 \ 

Ze = x e1 + t² ye 

1 

elle montre que, pour chaque valeur de zc, on aura une infinité de 
valeurs de χ et de y. En particulier, y ne s1 exprimant plus uniformé-

1 1 

ment en fonction de of et de z{\ comme on a vu au n° 11 , mais ayant 
au contraire une infinité de déterminations, la fonction 

(^) 
_d 

F(3' *> = —z 

en aura une double infinité. Il faudrait alors, dans la discussion, con-
sidérer pour chacune des déterminations de F(^, /) les points singuliers 
qui lui appartiennent et s'assurer qu'ils resteront bien sur la détermi-

1 

nation considérée, lorsqu'on fera varier zc le long de la droite D par 
exemple. 

On est ainsi ramené à la considération de la surface de Riemann 
correspondante. 

50. En faisant correspondre à chaque détermination un feuillet, 
nous aurions ainsi une infinité de feuillets, une infinité de plans sur 
lesquels il faudrait faire la même discussion. En reliant tous ces feuil-
lets convenablement par les bords correspondants des points singuliers 
qui se trouvent sur chaque feuillet, on aura la surface de Riemann 
correspondant à notre fonction F(a, l). Il est clair que, sur une sur-

Journ. de Math. (5* série), tome I. — Fasc. IV, 1895. 55 



4a4 Ν. COCULESCO. 

face ainsi formée, la fonction F(s, l) restera uniforme. A chaque point 
de cette surface correspondra maintenant un seul système de valeurs 
de χ et de y pour F(s, t) (exprimée en fonctions de ces dernières va-
riables). 

En faisant alors varier z% les points singuliers se sépareront, la sur-
face de Riemann variera évidemment aussi et les positions finales sur 

1 

la surface de Riemann correspondant à ζ1' — ι montreront si le point 
singulier considéré est ou non admissible. Il faudra, pour qu'un point 
singulier soit admissible, que ses positions finales se trouvent dans 
les deux, domaines séparées par le cercle \x\ = \y | = ι sur cette der-
nière surface ('). 

Or, une pareille discussion est excessivement délicate : c'est ce qui 
fait la grande difficulté du problème. 

51. Je dis qu'on peut cependant tourner encore cette difficulté 
dans le cas où nous nous plaçons et ramener au plan la discussion sur 
une surface de Riemann. 

Rapportons-nous, pour le montrer, à l'équation de Képler relative à 
la planète P'. Cette équation montre que l'anomalie moyenne est bien 
une fonction uniforme de l'anomalie excentrique, mais qu'il n'en 
est pas de même de cette dernière regardée comme fonction de la 
première. A une valeur donnée de l'anomalie moyenne peuvent 
correspondre une infinité de valeur de l'anomalie excentrique. C'est 
précisément cette relation entre les deux anomalies qu'exprime l'équa-
tion (i) et qui conduit à la considération de la surface de Riemann. 

Or, dans le cas présent, l'excentricité de P' est supposée très petite. 
On pourra donc la négliger, dans une première approximation, dans 
l'équation de Képler; l'anomalie excentrique deviendra alors fonction 
uniforme de l'autre anomalie. C'est le cas qui a déjà été considéré et 
pour lequel nous avons vu que y s'exprimait uniformément en fonction 

l 1 
de x" et de za. Il en résultait pour F(s, t)

)
 exprimée en fonction de 

ces mêmes variables, deux déterminations égales et de sens contraire. 

(*) Voir POINCARÉ, Mécanique céleste, t. I, p. 3oy. 
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52. Revenons maintenant au cas présent. On suppose τ'^ ο, mais 
petit. On pourra alors remplacer, dans le second terme de l'équation 
de Kepler, l'anomalie excentrique par sa première valeur approchée 
en fonction de l'anomalie moyenne. Sous cette nouvelle forme l'équa-
tion de Képler fournira pour l'anomalie excentrique une fonction uni-
forme de l'anomalie moyenne. Gela revient à remplacer la relation (i) 
par la suivante : 

(O z =yxvÇ c ' Β
 S o&e0^* '—zcx «KcV *'J 

1 l 
On en tirera y, fonction uniforme de zc et af et, en remplaçant 

11 
dans (2), il en résultera pour F(s, t) une fonction de zc et xc n'ayant 
plus que deux déterminations, celles du radical. La discussion est de 
cette façon ramenée, comme celle du cas simple, au plan de la va-

1 
riahle xr. 

55. Pour faire cette discussion nous allons tracer les courbes (3) 
et (4) (n° 20) sur lesquelles se trouvent situés tous les points sin-
guliers. 

Une seule des courbes, la courbe (3) par exemple, sera suffisante ; 
car les conclusions sur ses points seront évidemment les mêmes pour 
les points singuliers appartenant à la courbe (4). 

Considérons donc l'équation 

(3) y(x - r)² - ax (y - r' = 0) 
1 -f- τ i-i-r2 

On a une courbe composée de trois branches, dont une passe par 
Γ origine, la tangente en ce point étant 

(a) ατΜ 

r=~Tx-

Les asymptotes sont : χ = ο, y = ο et χ = α,γ 4- 2(τ — ατ'). Le 
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point a(x = τ, y = τ') est double et les deux déterminations ont pour 
tangentes respectives en ce point les droites 

(!>) y - t' = +- Vr' / &t (x - t) 

On pourra donc, dans le voisinage de a, les représenter par les deux 
développements suivants : 

(O 

y, = τ' + y/l(χ - + a,(œ - τ)2 +.. 

y² = r' - Vr' / 2t (x - t) + b1 

La forme de la courbe dépendra du paramètre ~ · Commençons par 

supposer : 

I. < ι; l'asymptote coupera alors Taxe des y négatifs; les bran-

ches passant à l'origine et au point α tournent leur concavité vers les^y 
positifs. 

Entre le coefficient angulaire de la tangente à l'origine et celui de 
la tangente correspondante en a, il y a l'inégalité évidente 

— s- !t 
t² Vxt 

Le point α est le seul point double; en outre, la courbe, étant algé-
brique, n'aura pas des points d'arrêt ou anguleux. 

La forme sera, par conséquent, celle que montre la fig. I. 
Les points singuliers satisfaisant à l'équation (3) sont : ε', μ., η, ν, 

w, σ, t>', β' et ζ'. Si l'on se rapporte au Tableau B, on verra qu'ils sont 
bien dans l'ordre indiqué sur la fig. I. 

Les abscisses des points η, p. et ν sont les racines de l'équation (ai,v) 
(voir fig. ι ); quant à ε' il correspond à la racine très grande de l'équa-
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tion (19); il satisfait à la fois à la courbe Γ' et à l'asymptote, comme 
il est aisé de le voir par ses coordonnées. 

Fig. 1. 

i 
:· 
| 

34. Avant de commencer la discussion pour chacun de ces points, 
éliminons ceux qui ne sont singuliers qu'en apparence. Tels sont les 
points β et β', comme on a vu au η® 12. 

Une démonstration analogue, et qui se déduirait de celle du n° 12 
par la permutation des quantités χ et τ et τ', prouverait que les 
points ρ et p' sont aussi singuliers apparents pour Φ(^). De plus, il en 
est de même des points w et «Λ 

Quant aux points ζ'et ζ, remarquons qu'ils feront correspondre à \ ζ''\ 
deux valeurs respectivement voisines de ο et de l'infini. On n'aura 
donc pas à en tenir compte. 

Les seuls points qu'il nous reste à discuter seront les suivants : 

ε', ρ, ν, σ et α. 

Discussion du point p.. — Ce point appartient à la branche de 
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courbe 

(Γ) y* ' 

où χ devra prendre des valeurs négatives. 
1 

Étudions la variation de zc le long de cette branche. Au point à 

l'infini sur la courbe et très voisin de l'axe des y, on aura s' = ce ; 
1 

zc décroît ensuite d'une façon continue quand on suit la branche Γ' 
pour devenir ο au point à l'infini sur la droite Δ. 

Il a donc passé dans l'intervalle par un minimum, et ce minimum 
correspond évidemment au point de deuxième espèce μ., point de con-

1 

tact de la courbe (3) avec l'une des courbes ze = const.; ensuite, par 
un maximum qui correspond au point ε' également de deuxième 
espèce. 

Le point μ. étant un minimum pour zc , faisons-le varier à partir do 

sa valeur sc^<]î, au point μ., jusqu'à JS® =i. Cela revient à 

faire varier zc le long delà droite d'argument Les deux 

points confondus en μι se sépareront et continueront à rester sur Γ', 

car pour des points infiniment voisins zc croît effectivement, comme 
nous venons de le voir. Il s'agit de chercher, maintenant, les positions 

1 

finales de ces points par rapport au cercle xc = ι tracé dans le plan 
de cette variable. 

L'un des points, celui qui suit la partie [t.y de Γ', restera évidemment 
à l'intérieur de ce cercle, l'a? correspondant continuant à diminuer quand 

1 

zc s'approchera de l'unité. 

Le second point, au contraire, sera déjà sorti de ce cercle quand zc 

sera devenu égal à ι. En effet, pour χ = — ι, \y
2

1 devient ^ environ, 

quantité < ι ; il en résulte pour z° une valeur plus petite que un 
aussi. 
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1 

Par conséquent, quand zc aura atteint la valeur limite un, Fa? du 
point en question sera devenu > 1 ; donc, sa position finale se trouvera 

1 
en dehors du cercle xc = 1. 

Le point (A, ayant des positions finales situées de part et d'autre de 
ce contour, est un point singulier véritable de Φ (s). Il est, par consé-
quent, comme son analogue du Tableau A, admissible. 

33. On aurait même pu se dispenser de la discussion que nous ve-
nons de faire, en s'appuyant sur le théorème suivant de M. Poincaré : 

Si l'on fait varier d'une façon continue les éléments des deux 
orbites, les points primitivement admissibles ne pourront pas, en 
général, devenir inadmissibles et inversement ('). 

Cela tient à ce que les coordonnées χ et y d'un point singulier 
quelconque ne sont autre chose que les exponentielles ayant pour 
arguments respectifs les deux anomalies excentriques. Supposons 

alors tracés les cercles X° \ = 1 et zc \ = 1 ou bien \y | = 1, et ad-
mettons que pour 1' φ ο les valeurs finales d'un point singulier, 

1_ 

de [A par exemple, soient toutes les deux à l'intérieur de xc =1. 
Je dis que cela n'est pas possible. En effet, supposons que τ' tende 

1 

vers zéro, il faudra, zc étant supposé égal à 1 et par suite \y\ = τ 
aussi, qu'une des valeurs finales se trouve à l'extérieur et l'autre 

à l'intérieur de |a?c =1. Or on les a supposées, au début, toutes 
deux à l'intérieur; donc il a fallu que l'une d'elles franchît le con-

tourxc =1. Or cela est évidemment impossible, car |ÎC| = I et 
|/| = i entraînent des valeurs réelles pour les anomalies excen-
triques et par suite pour les positions des deux planètes dans les 
orbites respectives. Il faudrait alors, pour que le point μ fût singu-
lier, que les planètes Ρ et P' se confondissent; or, cela n'est pas pos-

(') POINCARÉ, Mécanique céleste, t. I, p. 307. 
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sible, les orbites des planètes ne se coupant pas. Donc aucune des 
1 

valeurs finales de μ n'a pu franchir le contour af = ι, et l'hypothèse 
faite au début est à rejeter. Il reste alors à supposer les valeurs 

1 

finales de μ situées des deux côtés du cercle xc = ι, et par conséquent 
μ admissible dans le cas présent. 

Ce que nous venons de démontrer s'appliquera aussi à tous les points 
ayant leur analogue dans le Tableau A. Il sera donc inutile de répéter 
la discussion pour les points ε' et v; ils seront inadmissibles. 

36. Il nous reste les points*/], α et σ. 

Discussion du point η. — Il appartient à la branche de courbe 

(Γ) ( λ· — τ )*-t- 2 ατ'a? — (a? — τ) — τ)4-)-4a'x 
y1 2ax 

C'est encore un point singulier de deuxième espèce et de contact 
avec l'une des courbes de la famille 

1 

zc = const. 

Quand on suit la branche Γ", à partir de l'origine vers les χ néga-
1 

tifs, z° part de la valeur o, croît jusqu'à un certain maximum qu'il 
atteint au point η, décroît de nouveau pour redevenir nul pour 
χ — — GO. 

t_ 

En faisant varier maintenant zc à partir de sa valeur en η jusqu'à 
1 

zc = ι, les points confondus en η se sépareront en devenant imagi-
1_ 

naires conjugués, parce que zc < ι croît dans cet intervalle et, d'autre 
part, il est maximum en η quand on reste sur Γ". 

On pourrait démontrer, en construisant par exemple avec les parties 
réelles des coordonnées une courbe dont chacun des points représente 
l'ensemble des deux points conjugués, que les deux points imaginaires 
conjugués primitivement confondus en η iront à un moment donné se 
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confondre avec le point [A. Les valeurs finales seront celles de [A et par 
conséquent y) sera admissible. 

Mais il n'est même pas besoin de faire cette démonstration. En effet, 
on a vu {fig. ι) que, dans le cas où nous nous plaçons, l'abscisse de (A 

sera toujours plus grande que celle de η et, comme il en est de même 
des y respectifs, il en résulte que l'affixe de JA sera plus éloigné de 
l'origine que celui de η. On n'aura donc pas à tenir compte de η dans 
ce cas, le point [A étant admissible. 

Le point σ sera admissible. En effet, on a en ce point 

z
wi,

e
HH

e
''(*-f)

 = A
iî, 

A etant finizc ς est évidemment plus grand que ι. 
1 

Faisons décroître zc jusqu'à la valeur ι, les deux points confondus 
en s se séparent : l'un σ, (# = T,y) restera sur la droite χ = τ et 

son χ restera toujours inférieur à l'unité, l'autre σ2 suivra 

la droite y = L dans le sens croissant des χ et sortira du contour 

|a?| = i, car on a, pour# = r, |zcl= ς, >i. Les points σ et σ' seront, 
par conséquent, admissibles. 

1 

Discussion du point CL. — On a, pour ce dernier point, zc < ι. En 
1 

faisant varier zc à partir de sa valeur en a, quatre points confondus en 
α se séparent et, dès ce moment, continueront à cheminer respective-
ment sur les droites χ = τ, y = τ' et.sur les branches Γ et Γ", et cela 
dans le sens croissant des x. 

Le point α,(£Ρ = τ,/) ne sortira pas du contour |a?| = i. Pour 
«2 =r'), 

zc = afec (x) 
1 

et pour la valeur finale de zc, on aura 

i — Af:'xcec x *K 
Journ. de Math. (5· série), tome I. — Fasc. IV, i8g5. 56 
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Si nous négligeons τ dans une première approximation pour fixer la 
détermination avec laquelle nous portons, il est clair que χ restera 

plus petit que un, ^ étant < ο. Il en sera de même lorsque, dans l'ex-

ponentielle, on remplacera χ par line première valeur approchée, et 
ainsi de suite. 

Pour α
3

, y décroît à partir de la .valeur y = τ'. Or, nous venons 
I 

de voir pour a
2
 que χ était plus petit que l'unité pour zc = i, y étant 

constamment égal à τ'. 11 en résulte qu'a fortiori l'a? de a
3
 sera plus 

petit que l'unité. 
Pour&

4
 la valeur finale dea? sera supérieure à un. En effet, ce point 

appartient à la branche Γ" et l'on a, d'une façon approchée pour χ = ι, 

y=\<«· 

Il en résulte zc—ye ' < ι et, par conséquent, quand z<: at-
teindra la valeur limite, χ aura déjà dépassé cette même valeur, et le 
point a, se trouvera à l'extérieur du contour considéré. 

Les points α et a' sont donc admissibles. Les points admissibles 
seront ainsi p., η, σ' et α. Mais il est aisé de s'assurer, d'après ce qui 

1 

précède, que c'est au point p. que le module de zc sera le plus grand. 
C'est donc le point p. qui convient au problème, dans le cas présent. 

57. En continuant à rester dans l'hypothèse de la fig. ι, nous 

allons considérer maintenant le cas de : II0 — = ι. — La courbe (3) se 

décompose, dans ce cas, en une droite y = ~χ passant par le point a, 

et en l'hyperbole xy = — · 

La situation des points singuliers importants est celle que l'on voit 
sur la fig. II. En effet, le tableau Β montre que les coordonnées de ε' 
satisfont bien à la droite Γ" et la fig. ι que les abscisses x

{
 et x

2
 des 

points η et p. sont égales à — τ ; il en résulte que η et p. se confondent, 
dans le cas présent, au point commun à Γ' et P. 

Remarque. — On aurait pu voir-autrement que les points η et p. 
devaient se confondre en un seul point dans le cas considéré : c'est en 
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faisant varier zc le long de Γ' et de Γ" respectivement. On verrait 
facilement qu'il ne peut y avoir qu'un nombre pair de points singu-

Fig. II. 

liers sur Γ' et un nombre impair sur la droite Γ"; donc, les points η 
et p. devaient nécessairement se confondre avec le point commun à la 
branche Γ' et à la droite Γ". 

58.11 resterait maintenant à faire la discussion des points singuliers 

pour les valeurs de comprises entre l'unité et — c- > et cela dans le 

cas de la fig. i \ — étant, dans ces conditions, toujours plus petit 

que i, on resterait encore sur la fig. I. Mais nous préférons faire 
cette discussion en restant sur la fig. ι déjà considérée. On aura donc 

à suivre la situation des points singuliers pour les valeurs de — plus 

grandes que l'unité. On est ainsi amené à remplacer la fig. I par la 
suivante : 

111° — >i. — La courbe (3) a, dans cette nouvelle hypothèse, la 

forme indiquée sur la fig. III. 
Remarquons tout de suite la réciprocité entre les fig. I et III. Cela 



434 Ν. COCULESCO. 

tient à ce que, en permutant le nom des axes dans cette dernière, on 
aura, par là même, permuté les planètes Ρ et P', quand on passe de 
l'hypothèse 1° à l'hypothèse IIP. 

Fig. lit. 

Nous avons vu {fig. ι) que pour des valeurs de ~ > ι les racines xK 

et x2
 sont d'abord imaginaires conjuguées; elles redeviennent réelles 

et égales, se séparent ensuite et, pour ~ x
{ s'annule, x2 et x3 

a~' deviennent égales à -ht; finalement, pour des valeurs de ~ supé-

neures à — -j la racine x
{
 redevient <o, x

2
 et x

3
 se séparent de nou-

veau, x.
2
 croissant plus rapidement que χ

Λ jusqu'à l'infini. 

59. Voyons, maintenant, comment nous allons en déduire les po-
sitions correspondantes des points singuliers sur la courbe précédente 
(fig. III). 

1 
Pour cela, il faudra commencer par discuter la variation de zc sur 

cette même courbe. 
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Voici cette discussion sur chacune des branches. 

Variation de ztl=xvyec ' e — Elle dépendra évidem-

ment du signe de l'exposant : τ'-h ^τ. 

discussion sut t' Au point R^ zc \ = \x\ c e\ e ' r; si 

t 
a. τ' h- - τ < ο, on trouve zc = o, 

I 

b. τ'H—τ = ο, » zc — oo, c 
II 

c. τ h—τ>ο, » zc\ = oo. 

1 

Au point R', ; on trouve = ο, et cela indépendamment 

des hypothèses précédentes. 
Il en résulte qu'il y aura un point singulier et un seul situé sur Γ' 

1 

et avec l'hypothèse a seulement. Ce point sera évidemment ε' et jse y 
est maximum. Avec les deux autres hypothèses, il y aura zéro ou un 
nombre pair de points singuliers; or, la discussion des racines de 
l'équation (21) a montré que les autres points singuliers devaient se 
trouver dans le premier quadrant. Donc, pas de points singuliers 
sur V dans les hypothèses b et c. 

Sur Γ". — Au point O", x ~ zc est oc. 

Au point 0, si 

a. τ'Η-^τ<ο, zc est o, 

b. ΤΗ— τ = o, zc » o, 
1 

c. τ'4--:τ>ο, zv » oc. 
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Au point Ο', si 

a. τ'4-^τ<ο, | zc est oo, 

b. r' + a / c t = 0,zc » oc, 

1 

C. T+-T>0| *c » o. 

Il en résulte qu'il n'y aura pas de points singuliers, dans les deux 
premières hypothèses, sur la première partie de la branche Y" (celle 
qui se trouve dans le troisième quadrant) et il y en aura un nombre 
pair sur l'autre. 

Dans l'hypothèse c il y aura un seul point singulier sur la première 
partie de Γ" et toujours un nombre pair sur la deuxième. 

SUÎ' Y : Au point Q, + on trouve zc = o, 

AupointQ',®"^®; » M =oo, 

et cela indépendamment des hypothèses précédentes. 
Donc, un nombre pair de points singuliers appartenant à cette 

dernière branche. Il est àisé de voir tout de suite que ce sont les 
points ν et ζ'. 

40. Nous avons vu plus haut que le point ε', se trouvant tout 
d'abord placé sur F, disparaissait dans les deux autres hypothèses. 
Suivons-le un peu dans son mouvement. 

Cela aurait pu se faire en construisant non pas la courbe repré-
sentée par l'équation (21), mais la courbe (19). Mais il est plus 
commode de suivre son déplacement par ses coordonnées. On verra 
ainsi que si 

a!, τ' 4- α ^ τ < o, le point ε' se trouve dans le troisième quadrant, 

b'. τ'+α-τ = o, » » à l'infini, 

c'. τ'-ι-α^τ>ο, » » dans le premier quadrant, 
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et comme il 11e pourra pas se trouver sur la branche Γ, il sera donc 
venu sur Ρ dans la dernière hypothèse. 

Avant d'aller plus loin une remarque est nécessaire. Il nous faut la 
situation sur la fig. 3 des points singuliers dans les trois cas suivants, 
à savoir, si 

a". — < — -y et ceci revient à - < Ja. 

h". — = , » » — = va. 

c"=:>-£. » »t' / t > V& 

tandis que nous venons de trouver deux autres groupes d'hypothèses, 
différents entre eux et avec ce dernier. 

Il s'agit de savoir quel est le rapport qui existe entre eux ; en d'autres 
mots, à quoi tient cette différence. 

Mais il n'est pas difficile de s'assurer que la différence n'est qu'appa-
rente et qu'au fond on n'a qu'un seul groupe d'hypothèses, qui est le 
dernier. Pour le voir il suffira de remarquer qu'on passera, par 
exemple, de (b') à (b") en permutant τ et τ entre eux; cela tient à ce 

que, α étant plus grand que un, lorsque — a varié de un à —-, le 
9 

rapport^ a passé par l'unité; et que l'on passera de la limite b à la 

limite b" en divisant celle-ci par a, après avoir permuté τ et τ'. Cela 
tient à ce que l'on a construit la courbe (3) avec le paramètre variable 

—, tandis qu'on aurait pu la construire en prenant - pour paramètre 

et rester dans le cas de la fig, 1, c'est-à-dire avec α > ι. 
Nous n'aurons plus à considérer, pour ce qui va suivre, que les trois 

dernières hypothèses qui, à l'aide de la fig. 1, vont nous permettre de 
suivre sur la fig. 3 le mouvement des points singuliers. 

Les positions des points singuliers, dans les trois cas, seront figurées 
sur la courbe par le nom des points, accompagné d'indices. 

41. Cela étant, voyons comment les points singuliers de deuxième 
espèce vont se déplacer sur la courbe. 
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Si l'on se rapporte à la courbe (ai'), fig> ι, on voit que les racines x
K 

et a?2
 sont confondues en A' à un moment donné ; à ce moment-là les 

points η et μ. seront confondus sur la même branche Γ" de la courbe (3) 

en η(,)ρ(,); ~ continue à croître en restant < — les points η et p, 

dont les abscisses respectives s'approchent de l'origine et de la valeur 
4-τ, se séparent, η chemine vers l'origine tandis que μι et ν s'ap-
prochent du point a. Dans tout cet intervalle on a bien un nombre pair 
de points singuliers aussi bien sur Γ" (seconde partie) que sur Γ, 
comme on a vu plus haut ; le point ε' se trouve en ε/(,) sur Γ'. 

Pour ~ = — £ ^ou bien^ = \/cij la fig. ι montre que l'on a x
t
 = o, 

,v
2
= x:i= h- τ. Les points singuliers correspondants se trouveront 

donc en η(ΐ°, p(2) et v(2) sur Γ" et ε' sera à l'infini. 

Enfin, pour le point η a franchi l'origine pour 

venir en η(3) sur Γ", μ et ν confondus en p(2), v(2) avec α se séparent 
pour suivre respectivement les branches Γ" et Γ en même temps que ε' 
est venu sur la branche Γ". A partir de ce moment, on aura bien : un 
nombre pair de points sur Γ" (premier quadrant), un nombre pair 
aussi sur Γ, un point seul, le point η, sur Γ" (troisième quadrant) et 

1 

pas de point sur Γ', parfaitement d'accord avec la variation de zc 

sur chacune de ces branches. 

Remarque I. — On n'a pas tenu compte du point α quand on a 
1 

fait varier zc le long de Γ ou de Γ" séparément. Cela tient à ce que α 
n'est pas de même nature que η, p., ν et ε'. Mais il faudra en tenir 
compte quand on le considérera comme un point anguleux de la 
branche QaO' ou bien de OaQ'. 

Dans ces conditions, zc part de ο pour croître jusqu'à l'infini sur 
chacune des branches précédentes et cela dans les deux premières 
hypothèses. On aura, par conséquent, un nombre pair de points sin-
guliers pour chacune des branches QaO' et OaQ'. Ces points sont ν 
et a pour la première, α et ζ' pour la seconde. 

1 

Avec la dernière hypothèse on trouve que zc varie de Ο pour revenir 
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à Ο sur QaO', donc un nombre impair de points singuliers ; ce sont 
i 

κ» [x et ε', tandis que sur OaQ', 5''part de l'infini pour revenir à l'in-
fini; encore un nombre impair de points singuliers qui seront α, ν 
et ζ'. 

C'est là une vérification de la discussion faite plus liaut. 

I 1 
Remarque II. — Dans toute cette variation | zc est un minimum au 

point ρ et un maximum aux points ν et ε'. 

42. Comme en vertu d'un théorème énoncé ailleurs (n° 55), les 
points ν et ε' resteront inadmissibles et (a admissible, ce sera ou bien le 
point (a ou bien α qui conviendra au problème. La discussion précédente 

a montré que, si l'on supposait — ^ > 1, c'était le point [a qu'il fallait 

considérer pour toutes les valeurs de — plus petites que un ou plus 

grandes que — le module de (A étant dans ce dernier cas supérieur 

à celui de a. Dans le cas de = 1, trois points η, (Aeta se trouveront 

sur le contour de convergence et deux seulement, à savoir [A et a, dans 

l'autre cas limite = — c-· Enfin, pour des valeurs de — comprises 

entre ces deux limites le module de [A étant évidemment inférieur à 
celui de a, ce sera ce dernier qui conviendra au problème. 

On obtiendra exactement les mêmes résultats en restant sur la 
Jig. I et en suivant sur la fig. 1 la marche des abscisses des points 
singuliers. 

Remarquons encore que les cas limites n'auront j amais lieu dans le 
système solaire; il en résulte qu'il n'y aura qu'un seul point singulier 
sur la circonférence limite de convergence. 

Gela simplifiera beaucoup les calculs dans les applications, 
Nous arrivons donc à la conclusion finale suivante : 

Si les excentricités des deux planètes sont petites sans être 
nulles, l'inclinaison étant supposée nulle, si, de plus, le produit du 
rapport des distances par celui des excentricités est inférieur à 

Joum. de Math. (S* série), tome I. — Fasc. IV, 1895. 5^ 



44ο Ν. C0CULESC0. 

Γ unité ou supérieur au rapport — c'est encore le point ρ et son 

réciproque p' qui vont définir le domaine de convergence de Φ (s) 
et permettront d'obtenir la partie principale du coefficient général, 
dans le développement en série de Laurent. . 

Pour des valeurs du même produit comprises entre les deux limites 
précédentes ce sera, au contraire, le point « qu'il faudra prendre. 

45. Il nous reste maintenant à donner les formules qui serviront au 
calcul de la valeur approchée du terme général de Φ(^). On n'aura 
pas à répéter ce qui a été fail au § III. Nous nous bornerons à donner 
simplement les résultats; disons seulement qu'il sera préférable de 

. prendre ici la variable t pour variable indépendante, quitte à intro-
duire les variables χ cl y dans les formules finales. 

On tire de 
Δ = L1 EE„, 

Ε et E„ étant les mêmes expressions que précédemment, 

U*v®.· ν d? Λ,ο' 

eli supposant, par exemple, que c'est le point p' qui convient au pro-
blème. 

Calcul de (Ε · — On trouve 

-j~- = — (cos u — ι cosç smu)·^· -h a(cos& — ι cos<p s mu )du'² / dt² 

— (sin u -h i cos φ cos u) ̂  + α( sin u' -h i cos φ' cos u') ̂  · 

Des relations suivantes 

/=-- u — sin φ sin u, l'—u'—sinç'sinw', 
1 

ea~ tc, eu'=raz% 
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on déduit 

du c î du' a ι 
dt it ι — sin φ cos m' dt it ι — sin cp' cos u' 

d%u c Γc sin φ sin u ^ ^ 1 
dti c72(i — sintpcosrt)2 |_ί i — sin<pcos« J' 

d2fi' α Γ a sincp7 sîn it' 1 
dt2 ά2(ι — sin cp' cos u')2 [ i ι — sin/cosw' J' 

et, si l'on introduit les variables χ et y, on obtient finalement 

d2E r 
dt- 2t2(.v —· t)(i — #-)()' — τ')(ι — y-J) 

c°(i + x(y - -:γο ~/-γ\(.ν· +.)(. + τ») - (.χ·2 - οι 
- ««"(n-T'O/O -Ό2(ι -x-y\{y' + i)(t +t") — (y1—1)\ 

-<■(,+τ2).χ· κ·'-·2 - ο(1+- ο·3 +·1 >1 
Χ

 Χ |(.Λ· — ")(>— -ι·-) — — ι)| 

-aa(i + -:2)y Ζ7J'} [Ο
3
 ~

 1
Χ ' + '') ~ »

3

+
1
 )1 

ι χ [(/-*')(>-^') + ""'(/2-0]· 

On a, en outre, 

E = a^. + T'K. + t"^^' + 1 )(' + ̂ ) - 4τ® + (Χ- - ι)| 

- «403+ 'Χ' + τ'3) - 4<y + (/' — ')]!; 

et si l'on appelle, pour abréger,/, le crochet dans l'expression de ~~· 

et/l'expression, changée de signe, de E, on aura 

·. (E^)=-//» 

expression qui entre dans le calcul du coefficientCm,m' 
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On aura ainsi les formules suivantes : 

I. F = E CmmeV-1(ml + m'l') 

11 Γ — 1 (g —0(1 — a?O(
t

r — O(i —.yO 
m,m [ircn x'" y,n'| ' 

1«) ω = TT7.U - V+
 tttKj- ~yr 

r = tang y/2, siny = e, t' = tang y'/2 

(b)β = L'2Lβ„ = L'2L-sc-^'n'-'", 

« = L'sL-2>i. 

L2, h -, e, e', ta, w' désignant respectivement les demi-grands axes, les 
excentricités et les longitudes des périhélies des planètes Ρ et P'. 

L'expression de symétrique par rapport aux éléments des deux 

planètes, est de l'ordre de η désignant le rang dans la série; elle sera, 

par conséquent, d'autant plus approchée que /? sera élevé. 
On prendra le radical avec le signe 4- (voi,rn° 17). 
Pour passer maintenant de la valeur précédente de C

mtln
> aux valeurs 

approchées des coefficients de cos (ml 4- m't) et de sin (ml 4- m'l')y 

dans le développement de FJ en série de la forme 011 

n'aura qu'à prendre respectivement le double de la partie réelle et du 
coefficient de — y/— ι dans l'expression (IT). 


