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SUR LES FONCTIONS ABÉLIENNES. 2*9 

Remarques diverses sur les fonctions abéliennes; 

PAR M. H. POINCAKÉ 

* 1. — Définitions. 

Je considère un système de fonctions abéliennes de genre ρ dépen-
dant des ρ variables 

M,, U2, . . ., Up 

et admettant 2ρ périodes. 
J'écrirai souvent pour abréger 

F ( «,·) ou F (Ui-e/);, 
au lieu de 

F (unu,,..., up) ou F (u, - en u2 - eit.. -, up— cp), 

e,
 y
 e

2
, ..., ep étant des constantes quelconques. 

Si F(tt
<
) est une des fonctions abéliennes considérées et si l'on a 

F(ui) = F(ui+al)1 

on dit que 

a1, a%) ···»ap 

est une période; on sait qu'on peut toujours supposer que l'on a choisi 
les variables normales et les périodes normales de sorte que le Ta-
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blcau complet dies ip périodes s'écrive 

/ 2JTC, Ο, .. ·, Ο, 

ο, 2ί'π, .ο, 
, ...., ...j ··, 

Ο, Ο, ..., 2Ί®, 

(') ι α,
)Π ®ι,2> · · ·ι «I,j>* 

I #2(|, ®2,25 ' '.., a2, p, 
| .... j ..., ....

 t 

I ap,i1 αρ,21 ···>a p p, 
avec la condition 

β/,Α = ^A,/'· 

Les /? premières périodes du Tableau (i) seront les périodes de 
première espèce et les ρ dernières les périodes de seconde espèce. 

Une fonction θ d'ordre η est une fonction entière qui jouit des pro-
priétés suivantes : 

i° Quand on augmente les ut de la 7cièine période de première espèce 
(c'est-à-dire quand on change m* par exemple en uk-\- 2 ιπ, les autres «

4
· 

ne changeant pas), la fonction 0 est multipliée par un facteur constant, 
que j'appelle aA; 

20 Quand on augmente les ui de la /rième période de seconde espèce, 
la fonction θ est multipliée par un facteur exponentiel de la forme 

enuk + yk, 
de sorte que 

0(ui-haik) = eJ,u^ B(Ui): 
Les facteurs 

cck etenuk + yA 

s'appelleront les multiplicateurs. 
Si deux fonctions 0 ont les mêmes multiplicateurs, on dira qu'elles 

appartiennent au même faisceau. 
11 est bien connu que, dans un faisceau d'ordre η et de genre ρ, il 

ya 4 

n? 
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fonctions G linéairement indépendantes dont toutes les autres fonc-
tions G du faisceau sont des combinaisons linéaires. 

Parmi les fonctions G il .y en a une qui est particulièrement remar-
quable et que j'appellerai Θ. 

C'est la fonction bien connue 

ν ι"ι''ι-Η»ί«ί+···+'«,.»
/
ι— JEnaikmmk, 

qui est une fonction G du premier ordre. 

Le cas le plus simple est celui que j'appelleiBWcas singulier 
elliptique; c'est celui où dans le Tableau (i)des périodes normales 
tous les aih sont nuls si i\ k. 

La fonction Θ est alors le produit de ρ fonctions Θ elliptiques. 
Vient ensuite le cas que j'appellerai cas singulier abèlien. Il se 

présentera dans les circonstances suivantes. 
Soit 

p = p1 + p2 + ...+ pq. 

Prenons les ρ dernières lignes du Tableau (i), nous obtiendrons 
ainsi un Tableau à ρ lignes et ρ colonnes. Je suppose que tous les élé-
ments de ce Tableau soient nuls, sauf : 

i° Ceux qui appartiennent à la fois aux p1 premières lignes et aux 
p

{
 premières colonnes; 
2° Ceux qui appartiennent à la fois aux p

2
 lignes suivantes et auxp

3 

colonnes suivantes; 
.................................................................................................... 

Et enfin ceux qui appartiennent à la fois aux pq dernières lignes et 
aux pq dernières colonnes. 

S'il en est ainsi la fonction Θ k ρ variables sera le produit de q 
fonctions Θ admettant respectivement ρ{)ρ^ ... et pq variables. 

On sait comment les fonctions abéliennes ont été imaginées ; on a 
considéré une courbe algébrique quelconque de genre ρ et les ρ inté-
grales abéliennes de première espèce correspondantes que j'appellerai 
p,, p

2
, ..., vp\ supposons alors qu'on prenne sur la courbe ρ points 

quelconques, qu'on considère une des intégrales abéliennes Ρ,·, et qu'on 
fasse la somme ΣΡ,· des valeurs de cette intégrale en ces ρ points. 
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Alors toute fonction symétrique des coordonnées de nos ρ points 

sera une fonction abélienne de 

Ev1,Σν2, ..., Σνρ. 

Mais on sait également que toutes les fonctions abéliennes ne peu-
vent pas être obtenues de cette manière. 

Un système S de fonctions abéliennes de genre ρ dépend de 

p(p + 0 
2 

constantes qui sont les périodes normales a
ik

. 
Une courbe algébrique de genre jo, si l'on ne regarde pas comme 

distinctes deux courbes dérivées l'une de l'autre par une transforma-
tion birationnelle, ne dépend que de 3ρ — 3 constantes. 

Ces deux nombres sont égaux pour ρ = ι et pour ρ = 3 ; mais, 
pour/?>3, le premier est plus grand; il existe donc des fonctions 
abéliennes qui n'ont pas pour origine une courbe algébrique de 
genre p. 

J'appellerai fonctions abéliennes spéciales celles qui admettent cette 
origine. 

2. — Zéros des B. 

Après ces préliminaires sur lesquels j'ai peut-être un peu longue-
ment insisté, j'arrive à l'objet de mon travail qui est l'étude des zéros 
des fonctions Θ. Cette question a été abordée par deux voies très 
différentes; et par l'une comme par l'autre on a pénétré assez loin 
à l'intérieur du domaine inconnu qu'il s'agissait d'explorer ; mais ces 
deux voies ne se sont pas encore rejointes, pour ainsi dire; c'est là le 
résultat que je voudrais atteindre, car je crois qu'il ne doit plus nous 
coûter qu'un léger effort. 

Dans le Tome X du Bulletin de la Société mathématique de 
France, j'ai démontré le théorème suivant : 

Soit ρ fonctions 0 qui soient respectivement d'ordre 

Λ|, /ijj ··.) np\ 
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le nombre de leurs zéros communs sera 

Λ, n
2
...np(pl). 

Bien entendu, je ne considère pas comme distincts deux zéros qui 
ne diffèrent que par des multiples des périodes. 

Si en particulier l'on considère ρ fonctions 0 d'ordre η appartenant , 
à un même faisceau, le nombre de leurs zéros communs sera 

nppl 

Il en résulte que la relation algébrique qui existe entre ρ -h 2 fonc-
tions θ d'ordre η, appartenant à un même faisceau, est d'ordre 

npp\ 

ou d'ordre moindre; et il est aisé de vérifier ensuite qu'en général 
elle n'est pas d'ordre moindre. 

Mais il ne sera peut-être pas sans intérêt de montrer comment on 
peut arriver au même résultat par un chemin entièrement différent. 

Considérons donc ρ -h 2 fonctions θ d'ordre η appartenant à un 
même faisceau ; soient θ,, θ

2
, ..., θ^

2
 ces fonctions. 

Considérons un polynome homogène et d'ordre m par rapport à 

ces ρ -h 2 fonctions Θ. 
Les coefficients arbitraires de ce polynome sont au nombre de 

(m + p +1) ! 
(m)! (/>4-1)!' 

Mais ce polynome sera une fonction θ d'ordre 

mn, 

et tous les polynômes ainsi obtenus seront des fonctions θ apparte-

nant au même faisceau. 
Or un faisceau de genre ρ et d'ordre mn ne peut contenir que 

mpnp 

fonctions θ linéairement indépendantes. 



224 H. POINCÀRÉ, 

H y a donc au moins 

?<"»>=ëτ^-οό"" 

de nos polynômes qui s'annulent et qui d'ailleurs sont linéairement 
indépendants. 

Il y a donc au moins, entre nos ρ -f-2 fonctions G d'ordre n, <p(m) 
relations algébriques homogènes d'ordre m, linéairement distinctes. 

Soit, d'autre part, 
F ( θ «, θ

2
, ..., θί+2 ) = ο 

celle de toutes les relations algébriques entre les ρ -h 2 fonctions G 
■ dont le degré est le plus petit. 

Soit q ce degré; c'est le nombre q qu'il s'agit de déterminer. 
Toutes les autres relations algébriques homogènes entre les ρ H- 2 

fonctions G s'obtiendront en multipliant 

F = 0 

par un polynome quelconque homogène par rapport aux G. 
Nous pouvons maintenant répondre à la question suivante : 
Combien y a-t-il entre lés G de relations algébriques et homogènes 

d'ordre q-¥ h linéairement distinctes? 
Il y en aura autant que de polynômes homogènes d'ordre h linéaire-

ment indépendantes ; car on obtiendra toutes ces relations en multi-
pliant F = ο par l'un de ces polynômes. 

Il y aura donc entre les ρ -h 2 fonctions G 

(h i)l 
h ! (ρ 1)! 

relations algébriques homogènes d'ordre q 4- /1 et il n'y en aura pas 
davantage. 

Nous aurons donc, quel que soit le nombre h, 

(h + p + 1) ! / h ! (p + 1) ! 
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ou bien 

(0 (!'uP+u - !? + !\wPt'u +(?·+λ)'Β>>0, 

ou bien 
/ (A 4-jp-Hi)(A 4-jp) ... (A H-2) (A + 1) 
» C/' +1 ) 1 

(1 _ (y + ̂ +jp + 'Xy+^+^-^y + ^ + i) 

[ "+"(? + h)pnp>o. 

Tous les termes, du premier membre de (1) ou de (1 &&y) sont des 
polynômes entiers en h. 

Le premier terme 
(A -h/> H- 1)! 
Λ! (ρ -H i)l 

est un polynome d'ordre ρ -h χ dont les deux premiers termes sont 

hp+l (p+i)(p + 0
 hP 

(p + 1)! 2(p + 1)! 

Le second terme 
(q -l· hρ -1— ι) 1 
(<7 + A)! (/> 1)! 

est un polynome d'ordre ρ H- 1 dont les deux premiers termes sont 

_ hp+x qhi> (p + i) (/> + 2)
 hp 

(p + 1)! p! 2(p+1)! 

Enfin le troisième terme est un polynome d'ordre ρ dont le premier 
lerme est 

n*hK 

Il résulte de tout cela que les termes en h9** se détruisent et que le 
premier membre de (1) est un polynome d'ordre ρ en h dont le pre-
mier terme est 

h
i

np
-fl)· 
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Comme le premier membre de (i) ne peut être négatif, quelle que 
soit la valeur positive ou nulle attribuée à l'entier A, le coefficient du 
terme en hp ne peut pas être négatif, ce qui donne 

(») q<nppl 

Il nous reste à faire voir qu'en général le nombre q n'est pas infé-
rieur à nppl c'est-à-dire qu'en général il n'existe pas entre nos ρ -h 2 
fonctions θ de relation algébrique de degré plus petit que npp ! 

On peut présenter la chose dans un autre langage. 
Envisageons les nf fonctions 0 d'un même faisceau de genre ρ et 

d'ordre n; considérons ces np fonctions θ comme les coordonnées 
homogènes d'un point M dans l'espace k np — 1 dimensions. 

Si nous donnons aux ρ variables u
n

 u
2

, ..., up toutes les valeurs 
possibles, ce point M va décrire une certaine variété V. 

Cette variété Y sera située dans l'espace knp — i dimensions ; elle 
aura elle-même ρ dimensions; elle sera algébrique; son degré sera 
au plus égal à npρ ! 

Je me propose d'établir qu'en général ce degré n'est pas infé-
rieur à npp\ 

3. — Cas singulier elliptique. 

Pour cela, il me suffit de montrer qu'il en est ainsi dans un cas par-
ticulier; car, si la réduction du degré avait lieu en général, elle devrait 
avoir lieu aussi dans ce cas particulier. 

Le cas particulier que je choisirai est celui que j'ai appelé cas sin-
gulier elliptique. 

Voyons comment on peut dans ce cas former les np fonctions θ du 
faisceau. 

Considérons Un premier système de fonctions elliptiques dépen-
dant de la variable u

{
 ;'formons avec cette variable ui un faisceau 

d'ordre η et de genre 1 de fonctions θ elliptiques. Soient 

(0 O1,1^1,2) ···> ^1,71 

les η fonctions de ce faisceau. 
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Soient de même 

(2) O2,1^a,a> ···)O2,n 

η fonctions β elliptiques de la variable u
21

 formant un faisceau 

d'ordre λ et de genre 1. 
Et ainsi de suite. 
Soient enfin 

00 Op,1 Op,2 ...., Op,n 

η fonctions 0 elliptiques de la variable up1
 formant un faisceau 

d'ordre η et de genre 1. 
Cela posé, prenons une fonction dans le Tableau (1), une dans le 

Tableau (2), etc., et enfin une dans le Tableau (ρ). Faisons le produit 
de ces ρ fonctions ; nous obtiendrons une fonction θ abélienne à ρ va-

riables répondant au cas singulier elliptique. 
Comme chacun des Tableaux (1), (2), ..., (p) contient η fonctions 

différentes, on obtiendra np fonctions θ abéliennes à ρ variables, 

linéairement indépendantes et formant un faisceau d'ordre η et de 

genre p. 
Ce sont ces np fonctions 0 abéliennes que je regarde comme les 

coordonnées homogènes du point M qui engendre la variété Y, dans 
l'espace knp dimensions. 

Un premier point, fort important, est le suivant : pour que deux 
systèmes de valeurs de «2, ..., up correspondent à un même point 
de Y, il faut et il suffit que la différence de ces deux systèmes de 
valeurs soit une période. 

En effet, pour que ces deux systèmes correspondent à un même 
point de Y, il faut et il suffît : 

i° Que les rapports des fonctions θ elliptiques 

.(■) O1,1> ^
1>2

, .. ., 0.,
)Λ 

reprennent les mêmes valeurs, c'est-à-dire que les deux valeurs de ut 

diffèrent d'une période ; 

• Journ. de Math. (5· série), tome I. —- Fasc. Ill, i8g5. 3θ 
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2° Que les rapports des fonctions 0 elliptiques (a) reprennent les 
mêmes valeurs, c'est-à-dire que les deux valeurs de diffèrent d'une 
période, etc., et enfin que les rapports des fonctions θ elliptiques (ρ) 
reprennent les mêmes valeurs, c'est-à-dire que les deux valeurs" de up 

diffèrent d'une période. 
Il y a exception pour /1=2; dans ce cas, en effet, il n'y a dans le 

Tableau (1), par exemple, que deux fonctions elliptiques 0M, θ
1)2

 et le 
rapport de ces deux fonctions peut reprendre la même valeur, sans 
que les deux valeurs de ux diffèrent d'une période. 

Pour évaluer le degré de la variété Y, il faut la couper par une 
variété plane (c'est-à-dire algébrique et du premier degré) ayant 
?ιρ — ρ — 1 dimensions et compter le nombre des points d'intersection. 
Une pareille variété plane, que nous pouvons d'ailleurs choisir arbi-
trairement, sera définie par ρ équations linéaires entre les coordon-
nées courantes. 

Soient donc 
*)»,! t *]l,2> · · · J t]i,p 

ρ combinaisons linéaires des fonctions ô elliptiques (1). 
Soient de même 

^2,1) *Î2,25 ···» ^2 ,p 

p combinaisons linéaires des fonctions elliptiques (2), etc. 
Soient enfin 

*]/>,!) ·'") Tip,p 

p combinaisons linéaires des fonctions elliptiques (p). 
Considérons les equations 

(3) 

"1l,l ^2,1 · · · ηΛ, — °> 

*h,2 "^2,2 * · ' ^/>,2 = °> 
y 

n1, p n2, p... 1 ρ,ρ ̂ 0. 

Les premiers membres seront des fonctions linéaires des np fonc-

tions θ abéliennes de notre faisceau, c'est-à-dire des coordonnées cou-

rantes. 
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Les équations (3) définiront donc une variété plane P. 
Il est aisé d'évaluer le nombre des solutions distinctes des équa-

tions (3) en ne considérant pas comme distincts deux systèmes de 
valeurs des u qui ne diffèrent que d'une période. 

Cette évaluation est presque immédiate, et je l'ai déjà faite dans le 
Mémoire cité plus haut du Bulletin de la Société mathématique de 
France. Le nombre des solutions est npp ! 

A chacune de ces solutions correspond, comme nous l'avons vu, un 
point de V et un seul. ·> 

Ainsi le nombre des points d'intersection de V et de Ρ est égal 
à npp\ 

La variété V est donc du degré npp\ 
En résumé, le degré de la variété Y ne peut s'abaisser que dans des 

cas exceptionnels. 
Je ne m'arrêterai pas à rechercher quels sont ces cas exceptionnels. 

Je rappellerai seulement que le cas de η — ι est toujours excepté et 
qu'il y a de cette exception un exemple bien connu. 

Soit 
ρ = 2, η — ι\ 

d'où 
npp\ = S, np= 4; 

dans ce cas la variété V se réduit à une surface dans l'espace ordinaire 
à trois dimensions. 

Dans ce cas, le degré se réduit; et Y est une surface de Kummer du 
quatrième degré. 

4. — Théorèmes de Riemann. 

Dans les deux numéros qui précèdent et dans mon Mémoire du 
Bulletin de la Société mathématique, j'ai exposé un premier moyen 
d'étudier les zéros des fonctions Θ. Mais il y en a un autre, entière-
ment différent et qui est dû. à Riemann. 

Il ne s'applique qu'aux fonctions abéliennes spéciales, au sens donné 
à ce mot dans le n° 1. 

Considérons donc un système S de fonctions abéliennes spéciales, 
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c'est-à-dire devant leur existence à une courbe algébrique C de 
genre p. 

A cette courbe appartiendront ρ intégrales abéliennes de première 
espèce 

v1, v2, ...., vp, 

correspondant aux variables 

Ui , W2, . . ., Up. 

Soit (a?, y) un point de la courbe C; les p
t
· seront des fonctions de χ 

et de y qui ne sont pas des variables indépendantes, mais qui sont 
liées par l'équation de la courbe. 

On aura 
vi (x, y) =Jç y 

dvf 

dvi est une fonction rationnelle bien déterminée de (oc, y), de dx et 
de dy\ mais s? g ne sera entièrement définie en fonction de χ et de y 
(à une période près, bien entendu) que quand on se sera donné la 
limite inférieure d'intégration, c'est-à-dire le point (#

0
, y

0
). 

Nous verrons un peu plus loin comment ce point (x
01
 y

0
) doit être 

choisi; mais je dis tout de suite que ce point ne sera pas le même, en 
général, pour les ρ intégrales 

P,, P2, . .., Pp, 

de sorte qu'en général ces ρ intégrales ne pourront pas s'annuler à la 
fois. 

Voici maintenant l'énoncé des théorèmes découverts parRiemann : 
Considérons la fonction Θ définie plus haut, qui est paire et du pre-

mier ordre. 
Soient e

if
 c

2
, ..., ep ρ constantes quelconques; formons l'équa-

tion 

(0 θ(Ρ/-β/) = 0. 

Comme les p
t
· sont des fonctions de χ et de y, cette équation ( t) 



SUR. LES FONCTIONS ABÉLIENNES. 23 t 

est une équation en χ et y, définissant un point (#, y) de la courbe C. 
Comme y et χ ne sont pas deux variables indépendantes, je dirai dé-
sormais, pour abréger le langage, le point χ au lieu du point (x, y). 

Riemann a démontré que cette équation (i) admet ρ solutions. 
Soient 

a?(,), #(2), x{p) 

ces ρ solutions et soient 

p,.,\ P(.2>, ..., Ρ(·ρ) 

les valeurs correspondantes de l'intégrale p,·; Riemann a montré que 
l'on a 

(O ei — ' 4- 4-... H- Ρί/) + c
( 

(les Ci étant des constantes indépendantes de <?,, e
27 ···> e

P), cela, 
bien entendu, à un multiple près des périodes. 

Je dis maintenant qu'on peut choisir les limites inférieures d'inté-
gration, de façon que les constantes c,· soient nulles. 

Ces limites d'intégration, que j'ai appelées plus haut (x
Q
, y

Q
)7

 sont 
restées jusqu'ici arbitraires. 

Changer les limites d'intégration, c'est changer p,· en pf-4- hh Les /fr-
étant des constantes. Mais il faut en même temps changer <?,· en cf- 4- àh 
de façon que — et ne change pas. 

Quant aux 
ci = ei - vi(1) - vi(2) - ... vi(p), 

ils se changent en 
Ci-h(i-p)hi. 

11 suffit donc de prendre 

hi=ei / p - I, 

pour satisfaire à la question. 
Nous pouvons donc toujours choisir les limites inférieures d'inté-

gration de façon que les relations (2) s'écrivent 

(2 bis) e
t
. = -μ· p|2) +., .4- v\p). 
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Cette démonstration est en défaut quand le dénominateur ρ — ι 
s'annule; c'est-à-dire pour les fonctions elliptiques. 

Dans ce cas, en effet, la relation (2), 

e,= f>l + c, («' = ') 

ne peut pas se mettre sous la forme (2 bis) et c/, quelle que soit la 
limite inférieure d'intégration, est égal à la demi-somme des périodes 
normales. On sait, en effet, que la fonction Θ elliptique s'annule quand 
la variable est égale à cette demi-somme. 

Le théorème le plus important est le suivant : 
Pour que 

©(«,) = o, 

il faut et il suffit que w, puisse se mettre sous la forme 

ui = ç{.{) h- f><2) -f-... +vi (p - 1) 

ou bien encore (ce qui revient au même) : 
Pour que 

#("/) = o» 

il faut et il suffit que M, puisse se mettre sous la forme 

Ui = — P)1) — Ρ1/1—...— v[f-1). 

Insistons un peu sur la signification de ce résultat. 
Supposons, par exemple, ρ — 3 et considérons l'équation 

O(u1, MO, M
3
) = Ο. 

Si nous regardons u
t

, u
2

, u
a
 comme les coordonnées rectangulaires 

d'un point dans l'espace, cette équation représente une surface, et les 

équations de cette surface peuvent être mises sous la forme 

U{ =<0+ίι, 
u2 = v(1) + v2(2), 

u3 = v3(1) + v3(2) 
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Ρ'/', P
(

2
\ Ρ

(
3
π sont fonctions d'une seule variable #(,); p(,21, v{*\ d'f sont 

fonctions d'une seule variable x[i). ·χ.^. 
Il en résulte que notre surface" peut être enaSlKiA^tie la manière 

suivante : Une courbe se déplace d'un mouvement a?translation sans 
se déformer et de telle façon qu'un de ses "points, décrïv^ une courbe 
fixe. Une surface susceptible de ce mode de génération s'appelle une 
surface de translation. -

Plus généralement, si l'équation "V 

(3) F(M
t
,Wa,...,M/,) = 0 

admet une solution de la forme 

(4) 

U1 — ,+ ?ri)(Vi)' 

«. = ?ϊ)(ί.)+??,(0+.··+φ(Γι,(ν.). 
· * 

«,=
?
;'(<ο+?·;■(*.)+·.·+?Γ'( v.). 

t1, t2, ...···> tP-1 étant ρ — ι variables indépendantes; je dirai que l'é-
quation (3) est translative. 

Alors, d'après ce qui précède, l'équation 

Θ = ο 

sera translative pour tout système de fonctions abéliennes spécial au 
sens donné à ce mot au n° 1. 

On peut alors se demander si celte propriété est encore vraie pour 
cles fonctions abéliennes non spéciales. 

Parmi les autres résultats obtenus par Riemann, je citerai seule-
ment les suivants : 

Un système de valeurs quelconque 

e\, e2y .. ·, βρ 

peut être toujours mis sous la forme 

et = P
(
/

5
 H- d'f +...-F- v\p)

, 



234 H. P01NCARÊ. 

et en général il ne peut l'être que d'une seule manière; pour que cela 
puisse se faire de plusieurs manières (et alors d'une infinité de ma-
nières), il faut et il suffit que 

Θ(ρ
(
·- et) 

soit identiquement nulle; ou ce qui revient au même, il faut et il 
suffit qu'on puisse mettre les e,· sous la forme 

et = — pj15 — vf ν\ρ~*\ 

Soit maintenant un système de valeurs 

r\> ^2 5 · · * 1 T'p 
- tel que 

Θ(/\·)~ o. 

Les Vj peuvent toujours être mis sous la forme 

'V == *4*' ■+* vf* -h... 4- v(p~3\ 

En général, cela n'est possible que d'une manière et il n'y a excep-
tion que si toutes les dérivées du premier ordre de Θ s'annulent en 
même temps que Θ. 

5. — Extension du théorème de Riemann. 

Considérons maintenant un faisceau d'ordre η et de genre p. 
Soit θ une fonction de ce faisceau; formons l'équation 

(0 Θ(Ρ,·) = Ο. 

En raisonnant tout à fait comme l'a fait Riemann, on verrait que 
cette équation (si elle n'est pas identiquement satisfaite) admet 
np solutions. 

Soient 
X[i\ £C(2), ..., X{np) 
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ces np solutions, c'est-à-dire les np points de la courbe C qui satisfont 
à la question. Soient 

P}» P», »<r 

les valeurs correspondantes de l'intégrale P,·. 

Le raisonnement prouve encore que l'on a 

(^) 4"+^'+...+vi(np) = Ci, 

les C/ étant des constantes qui sont les mêmes pour toutes les fonc-
tions θ du faisceau. 

Je dis que les équations (2) peuvent nous permettre de déterminer ρ 
des points x[i) quand on connaît les (η — ι)/? autres. 

En effet, considérons l'une quelconque des fonctions 0 du faisceau 
et soient 

(3) r'0 «.«> «.<»*»> 

les np solutions correspondantes de l'équation (1 ); par les np points a?,',11 

je fais passer une courbe adjointe quelconque H. Cette courbe H cou-
pera la courbe C, en dehors des points doubles et des points en un 
certain nombre d'autres points que j'appelle 

/v»H) /y»(2) /yttpd 

Alors les équations (2) signifieront que les points et les points α?(,Αι 

sont sur une même courbe adjointe de même degré que H. 
Je puis toujours supposer que le degré de H est supérieur à celui 

de C diminué de trois unités. On sait que dans ce cas on peut choisir 
arbitrairement tous les points d'intersection, sauf ρ d'entre eux. 

Par les p. points et par (τι — i)p des points x[l) je pourrai 
donc toujours faire passer une courbe adjointe de même degré que H 
et, en général, je n'en pourrai faire passer qu'une seule. Les ρ autres 
points x{i) se trouveront donc ainsi déterminés. 

J'ai dit que dans un faisceau il y a np fonctions θ linéairement indé-
pendantes. Le premier membrè de l'équation (1) (si la fonction θ est 

Journ. de Math. (5· série), tome I. — Fasc. III, 1895. 3l 
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la plus générale du faisceau) contient donc np coefficients arbitraires 
que j'appellerai A et dont il dépend linéairement. 

Disposons des A de telle façon que l'équation ( i) soit satisfaite pour 
(η — i)p points donnés quelconques de la courbe C, à savoir 

(4) x(i\ x{2), x^np~p\ 

il en résultera, d'après ce qui précède, qu'elle sera également satisfaite 
pour ρ autres points de la courbe C, à savoir 

(5) apr-p*», ..., x(np) 

qui sont déterminés par les (η — ι)ρ premiers. 
• Disposons encore des A de telle façon que l'équation (i) soit satis-
faite pour un autre point de C différent des points (4) et (5). 

La fonction 0 devrait alors s'annuler pour np 4-1 points différents, 
ce qui ne peut arriver que si elle est identiquement nulle. 

Or nous avons introduit, entre les A, des relations linéaires au 
nombre de np — ρ -h ι ; il reste donc 

np-h ρ — np ~ ι 
coefficients A arbitraires. 

Il existe donc dans notre faisceau np 4- ρ — np — ι fonctions θ li-
néairement indépendantes et qui s'annulent identiquement quand on 
y remplace les variables indépendantes u

t par les intégrales c,·. 
Cela peut se traduire dans un autre langage. 
Reprenons la variété algébrique V définie au n° 5. Je rappelle 

qu'elle est de degré npp\, qu'elle appartient à l'espace à np — ι di-
mensions et qu'elle a elle-même ρ dimensions. 

Considérons un point dont les coordonnées homogènes soient pré-
cisément les np fonctions d(c

t
·); ce sera un point de la variété V. 

Et quand le point χ décrira la courbe C, ce point de la variété V 
décrira une certaine courbe (ou variété à une dimension) que j'ap-
pelle Β. 

Cette courbe B, qui fait partie de V, est de genre ρ comme la 
courbe C à laquelle elle correspond point par point. 
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Pour trouver son degré, il suffit de chercher le nombre de ses 

points d'intersection avec une variété plane à np — 2 dimensions ; c'est-
à-dire le nombre des solutions de l'équation (1). 

Nous avons vu que ce nombre est égal knp: la courbe Β est donc 
de degré np. 

Enfin, d'après ce qui précède, il y a entre les coordonnées d'un 
point de Β 

np — np -H ρ — ι 

relations linéaires à coefficients constants. Ces 'relations définissent 
un espace plan à (η — i)p dimensions. 

La courbe Β fait donc partie d'un espace plan à (η — i)p dimen-
sions. 

Soient par exemple η = 2, ρ = a ; d'où 

np — i = 3, nppl=z 8, (n — i)jo = 2; 

la variété Y est alors une surface de Kummerdu 4e degré dans l'espace 
ordinaire et la courbe B, qui sera du 4e degré, sera plane. 

Considérons maintenant l'équation 

(6) O(vi -«,) = o, 

les quantités 

(7) t'f , 6.yy . . ., Cρ 

étant ρ constantes quelconques. Elle jouira des mêmes propriétés que 
l'équation (1); la démonstration serait la même; elle est d'ailleurs 
inutile, car, si les fonctions forment un faisceau, il en sera de 
même des fonctions θ(m, — e

t
). 

Si donc les np fonctions 6(p
t
 — e,·) sont les coordonnées homogènes 

d'un point, ce point, quand χ décrira la courbe C, décrira une certaine 
courbe B'située sur V. 

Cette courbe B' sera de degré np, de genre ρ et sera située dans un 
espace plan à (η — 1)ρ dimensions. 

Il y aura une p-uple infinité de courbes B'; par chaqué point dé V 
passera une infinité de ces courbes. 
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Deux de ces courbes en général ne se rencontreront pas ; les deux 
courbes correspondant à deux systèmes de valeurs, 

ci ? 

des quantités (7) ne pourraient en effet se rencontrer que si l'on peut 
trouver deux points x et x' sur G tels que 

ci - c'i = ci - vi' 

Cela n'arrivera pas en général sauf pour ρ — 2. 
Nous savons toutefois que l'on peut trouver sur une variété V quel-

conque deux courbes B' qui ont au moins un point commun, puisque 
par tout point de V passent une infinité de courbes B'. Mais on peut 
se demander si deux courbes B' peuvent se rencontrer en deux points. 

Pour cela il faudrait que l'on pût trouver sur C quatre points, x, 
χ', x", x"\ tels que 

ei-ei=vi-vi= vi — vi; 
d'où 

(»> ν i -H V· — v· -t- ν i. 

Une égalité telle que (8) est-elle possible? 
Les théorèmes de Riemann énoncés à la fin du numéro précédent 

nous fourniront la réponse. 
Si ρ = 2, l'égalité (8) est possible; nous pouvons supposer que la 

courbe C est une courbe du 4e ordre avec un point double. La condi-
tion pour que l'égalité (8) soit satisfaite, c'est alors que les points x 
et x'" d'une part, x' et x" d'autre part soient en ligne droite avec le 
point double. 

Si ρ > 2, l'égalité (8) ne serait possible que si la fonction Θ pou-
vait s'annuler en même temps que toutes ses dérivées du premier 
ordre. Or cela n'arrivera pas en général, je veux dire pour un sys-
tème S quelconque de fonctions abéliennes. 

Par conséquent on ne peut pas, en général, trouver sur la va-
riété V deux courbes B' qui se coupent en plus d'un point. 
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6. — Examen des cas singuliers elliptiques. 

Voyons ce que deviennent ces résultats dans les cas singuliers e\ 
commençons par le cas singulier elliptique, où la fonction Θ est le 
produit de ρ fonctions Θ elliptiques. 

Soit d'abord ρ = 2. 

Considérons notre variété V de degré ini et les courbes B' d| 
degré m tracées sur cette variété. 

Considérons en particulier la courbe B. 
Cette courbe peut être regardée comme définie par l'équation 

Ui = pt· 
ou bien 

®(Ui) = o. 

Dans le cas singulier elliptique on a 

0(w/) = 0
1
(u

l
)0

2
(w2), 

0, et 0
2
 étant des fonctions Θ elliptiques; de sorte que l'équation de 

la courbe Β se décompose en deux 

Θ,0,) = ο, Θ
2
(Μ

2
) = Ο. 

La première nous donne 
u1 = &1, 

étant la demi-somme des périodes de la fonction Θ, ; la seconde 
nous donne de même 

u2 = cc2. 

La courbe Β se décompose donc en deux autres, ayant respective-
ment pour équations 

u{ = a,, u2 = a2. 

Quel est le degré de chacune d'elles et en particulier de la courbe 
«, = α, ? , 
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Soit θ(«/) une fonction quelconque du faisceau qui nous a servi à 
former la variété Y ; ce sera une fonction θ abélienne d'ordre η et de 
genre 2 qui sera une fonction linéaire à coefficients constants des λ2 

fonctions 0 fondamentales du faisceau; c'est-à-dire (avec le mode de 
représentation géométrique adopté pour la définition de la variété Y) 
des coordonnées homogènes courantes dans l'espace à η2— 1 dimen-
sions. 

L'équation 

(0 ô(«z) = 0 

est donc celle d'une variable plane Ρ à n%— 2 dimensions. Pour dé-
terminer le degré de la courbe u

{
 = a,, il faut chercher en combien 

de points elle coupe la variété P. 
Or si l'on fait u

K
 — a, le premier membre de (1) devient une fonc-

tion θ elliptique d'ordre η par rapport à w,; l'équation (1) admet 
alors η solutions. 

La courbe u, = a
t
 est donc de degré n. 

Ainsi la courbe Β qui, dans le cas général, est de degré in et de 
genre 2, se décompose dans le cas singulier en deux courbes de 
degré η et de genre 1. 

Il est clair qu'il en est de même de toutes les courbes B'. 
Le cas de /1 = 2 est toujours excepté ; examinons donc le cas 

de η = 3. 
Dans le cas général, si η = 3, la courbe est du sixième degré et du 

genre 2; c'est une courbe gauche dans l'espace k{n — i)p = 4 di-
mensions. Dans le cas singulier, elle se décompose en deux courbes 
du degré 3 et du genre 1 qui doivent être toutes deux planes. Ces deux 
courbes ont un point commun u

t
 = a,, u

3
 = ac

2
. 

Si nous projetons la courbe Β sur un plan quelconque, la projection 
sera, dans le cas général, une courbe du sixième ordre avec huit points 
doubles ; dans le cas singulier, elle se décomposera en deux cubiques 
se coupant en neuf points; elle acquerra donc un point double de 
plus. 

Passons au cas de p = 3 et proposons-nous de trouver ce que 
devient la courbe Β dans le cas singulier elliptique. 
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Cette courbe a pour équation 

U; = Vi 

et doit satisfaire aux théorèmes de Riemann. 
Il est clair que l'on peut satisfaire à ces théorèmes en supposant que 

la courbe Β se décompose en trois autres ayant respectivement pour 
équations 

(2) 

U2 = —, U% = —) 

U, = —> M- = —, 

M. = —> M» = — · 

Par exemple, 

(3) #("/+ Ο = ("c + + Ρί)β»(Ρ> + <>',) 

sera identiquement nul. 
En effet, si la courbe Β se décompose en trois autres définies par les 

équations (2), il est clair que deux des trois équations 

Ρ = -1, P2 = —, P, = -

devront être satisfaites. De même deux des trois équations 

P| = P
2
 = —> P

3
 = — 

devront être satisfaites. Il en résulte que l'une des trois équations 

p,+ (t = I,2,3) 

devra, être satisfaite. Donc l'un des trois facteurs du second membre 
de (3) devra s'annuler. Donc 

O (vi + P
T
·) = O, - C.Q.F.D. 
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Malheureusement cette solution n'est pas unique. On satisfait éga-

lement aux théorèmes de Riemann en supposant que la courbe Β se 
décompose en trois autres ayant respectivement pour équations 

;4) 

u2 = — , u
3
 = — -h h, 

U( = —, Un = A, 

a, a2 

u1 =1 2 2 

Λ désignant une constante quelconque. 
Un examen plus approfondi est donc nécessaire. 
Voici comment nous y procéderons. Ne nous supposons plus dans 

le cas singulier elliptique, mais dans un cas très voisin de ce cas sin-
gulier. Supposons, en d'autres termes, que, dans le Tableau (i) dun° l, 
les quantités 

au 

(que j'appellerai termes diagonaux) sont finies, mais que les quan-
tités 

aik (i<k) 

(que j'appellerai termes latéraux) sont infiniment petites du premier 
ordre sans être nulles. 

Etudions maintenant la courbe définie par les équations 

(5) 
d(ui~ei) = o, 

®(ui — e'i) = o, 

où les et et les e\ sont six constantes quelconques. Cette courbe, que 
nous appellerons Λ, jouit de diverses propriétés. 

Nous savons que, pour un choix convenable des constantes et et e'v 
elle se décompose en plusieurs autres, parmi lesquelles, la courbe Β 
(ou bien une courbe B'). 

Pour aborder l'étude de cette courbe A, observons que la fonction Θ 
dépend non seulement des w, mais des α,·*, et peut se développer sui-



SUR LES FONCTIONS ABÉLIENNES. 243 
vant les puissances de ces quantités. Nous allons effectuer le dévelop·^ 
pement suivant les puissances des termes latéraux que nous avons 
supposés très petits. Nous avons ^ 

0 J] βΜ,ΐ"*-+-···+"'/>ν~Ϊ < 

calculons les premiers termes du développement, à savoir ceux 
d'ordre 0 et d'ordre 1. 

D'abord le terme d'ordre ο s'obtiendra en annulant les termes laté-
raux aik ( f > k) ; on voit que la fonction Θ se réduit au produit de trois 
fonctions Θ elliptiques, à savoir 

Θ = θ,Μ„ 
où 

0, = %em'"1/2 

Cherchons maintenant le coefficient de au par exemple. 
Le terme général de 0 contient le facteur 

e-a22m2m3. 

Si nous développons ce facteur suivant les puissances croissantes 
de a

23
, il devient, en négligeant les termes du deuxième ordre, 

1 — a2im2m3. 

Le coefficient de a
iZ

 dans le développement de 0 sera donc 

V aii'n\ 

— Lm2m%e * 

c'est-à-dire 
-Μ'Λ· 

Je pose, bien entendu, 
dOj 

* dut 

Ainsi les premiers termes du développement de 0 (en négligeant les 
Journ. de Math. (4* série), tome I. — Fasc. III, 1894. 32 
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termes du second ordre) seront 

(6) 0 = o, oaoa ~ — Gs
<a

oao; Θ; — — 

J'aurai à revenir dans la suite sur ce développement et à calculer 
les termes d'ordre supérieur. Ceux-ci me suffisent pour le moment. 

Etudions l'equation 

(7) 0=o. 

Comme les G et leurs dérivées ne peuvent devenir infinis, 0 ne peut 
s'annuler que si le premier terme du développement (6) 

o.M. 

est infiniment petit du premier ordre, sans quoi ce terme ne pourrait 
se détruire avec aucun autre. 

L'un au moins des trois facteurs 0,, θ2, 03 doit être infiniment 
petit, c'est-à-dire que l'une au moins des trois quantités «,· doit être 
infiniment voisine de a,· (à une période près, bien entendu). 

Comme je puis choisir deux d'entre elles arbitrairement, je suppo-
serai que u

2 et w3 aient des valeurs qui ne soient pas très voisines 
de a

3
 et a,, mais d'ailleurs quelconques. 

Alors les deux facteurs θ
2
 et θ3 sontfinis; et le facteur 0,, de même 

que κ, — «ι, doit être un infiniment petit du premier ordre. 
Le premier membre de l'équation (7) est développable suivant les 

puissances croissantes de 

U y OC, , Ct y 0, #23,a13, 

L'équation est satisfaite quand toutes ces quantités s'annulent. 
Enfin le coefficient du terme en m, — a, est égal à 

O'(&1)O2(u2)O2(u3) 

et ne s'annule pas puisque n'est pas égal à oc
a
 ni u

3
 à a,. 

Donc, en vertu d'un théorème bien connu, l'équation (7) pourra 
être résolue par rapport à u

{
 — a

t
, cette quantité étant développable 

suivant les puissances croissantes des termes latéraux aih. 
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Les premiers termes du développement, en négligeant ceux du 
second ordre, seront 

(8) U\ — a« a\i "+" ^«s * ·· 

Ce développement est valable quand les termes latéraux a
ik

 sont 
assez petits et quand u

2
 n'est pas voisin de a

a
, ni u

3
 dé a

3
. 

Donnons donc à u
2
 et à M

3
 des valeurs quelconques u\ et u\ que je 

suppose n'être pas très voisine de a
2
 et de a

3
; le développement (8) 

nous donnera la valeur correspondante u\ de u, qui sera très voisine 
de a,. 

Puisque 
©(«?) = O, 

nous pourrons poser 
K? = p?-Hp!, 

011 pj et ('· sont deux valeurs particulières de l'intégrale que j'ai ap-
pelée vh correspondant à deux points particuliers de la courbe C que 
j'appellerai #

0
 et a?,. 

Alors il existera deux courbes remarquables 

u, = p,· ·+· p
t
i (courbe B, ), 

UI = P
T
* ·+- P° (courbe B

0
). 

% 

Je dis que ce sont deux courbes; en effet pj et pjsont des constantes 
puisque je regarde les points a?

0
 et comme fixes; p

f
- est une fonc-

tion d'une seule variable indépendante, puisque cette intégrale dépend 
seulement du point a?, mobile sur la courbe C. 

Ces deux courbes B
0
 et B, passeront toutes deux par les points 

ut = u] = pj + pi·. 

Ce sont ces deux courbes que je me propose d'étudier en détail. 
J'ai supposé que je faisais tendre les termes latéraux aih vers zéro; 

pour fixer les idées, je vais poser 

«ί»='βί* ('<*), 
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les β
ιΑ
 étant des constantes et t un paramètre que je vais faire tendre 

vers o. 
Ecrivons alors l'équation (8) sous la forme 

(8 bis) u
x
 = F(M2, K8); 

le second membre se trouve développé suivant les puissances crois-
santes de t. 

Désignons par 
dvi d1 i>i 
dx ' dx1 

les dérivées de p,· par rapport à a? et par 

dvj div°i dv\ d'2 vj 
dx o* dx\ * dxx dx'\ 

les valeurs de ces dérivées pour χ = xQ et pour x — x
x

. 
Le long de la courbe B0, on aura 

dv\
 =

 dv\. 

Au point ut — u] en particulier, on aurait 

dv\=^di>:+^dvi, 

en appelant ~ la valeur de pour u
x
 = «J. 

On en déduira 

(9) dvl(r — ̂ ) + d<>l(^r ~ ;r0 = °· 

On trouverait de même, pour la courbe B
n 

(io) ^(£-®+^(ί:-δ)=0· 

Les équations (8), (9) et(io) suffiraient pour définir les courbes 



SUR LES FONCTIONS ABÉLIENNES. 2.47 

B0 et B, si l'on connaissait les deux constantes 
dvo3 dv& 
dv\ ' dv\ 

Pour abréger l'écriture, je supposerai que pj a été exprimé en fonc-
tion cle pj et pj en fonction de pj et je poserai 

d Ρ»~"ςι dv\%~^' 
dv\ dii> 1 , 
dv'3 n , dv13 

de sorte que les équations (9) et (10) s'écriront · 

(9 bis) 
dF dFo dF dFo 
\dut dn%) *\du} du%) ' 

(10 bis) 
dF dFo dF dFo 
'\d«

2
 du

2
/ \du

%
 du

9
J=0 

Cherchons à déterminer les deux constantes ξ et yj. 
Soient χ et x' deux points quelconques mobiles sur la courbe C, 

Ρ, et v\ les valeurs correspondantes de l'intégrale P,·. 

Si l'on reprend alors l'équation ( 8) et qu'on y fasse 

u.
2
 = v., + v't, 

Μ
3
 = Ρ3+-Ρ'3, 

on aura aussi 
u, = p, -Hpj. 

Considérons p< et P
3
 comme fonctions de p2, pj et p'2 comme fonc-

tions de p2 . 
Alors u

n u2
 et M

3
, et aussi F(M

2
, K

#
), seront des fonctions des deux 

variables indépendantes p3 et p'
s

. On devra avoir 
d²u 

dv 
3
 dv 3 °' 

puisque 
ui = vi + vi', 

dépendant seulement de p2 et ç\ de P
3

. 



a48 H. POINCARÉ. 

Nous pourrons donc écrire, en tenant compte de (8), 

d²F d²F dF d²F 
(11)dv

2
dv'

%
 dv

2
dv'£ dv\ dv'f °* 

Les premiers membres des équations (n) s'expriment aisément à 
l'aide des dérivées de F par rapport aux u et des quatre dérivées 

(12) dv 3 d?v3 dv j d* c j 
Î/PÎ' Î/P® ' RFP'

A
 ' dv'* 

Les équations (11) sont donc quatre relations entre les quatre déri-. 
vées (12). Si l'on y fait 

p, = pî, Pî=p!
f 

elles deviendront quatre relations entre les quantités 

l V, η, -η'· 

Ce sont ces quatre ' relations que nous appellerons les équa-
tions (i3). 

Nous tirerons ξ et η de ces équations (i3) et les équations (9 bis) 
et (10 bis) nous feront connaître alors toutes les courbes B

0
 et B,. 

Les premiers membres de toutes nos équations sont développées 
suivant les puissances de t ; mais les équations (9) à (τ3 ) contiennent t 
en facteur et il convient de le faire disparaître ; nous remplacerons 
donc les équations (9 bis), (10 bis) et (i3) par les équations (9 1er)

â
, 

(10 ter) et (i3 bis)obtenues en divisant les premières par t. 
Si nous supposons t — ο ces équations vont prendre une forme très 

particulière. On a en effet, pour t = o, 

Ft ^'3 β
3
(«

3
) 

et je puis observer que le second membre est la somme d'une fonction 
de u

2
 et d'une fonction de u

3
 que je puis écrire 

/>(»«)+/»(«.)· 
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Les premiers membres des équations (i3 ùte) sont alors des poly-

nômes du deuxième degré au plus en ξ et η, du premier degré au 
plus en ξ' et η'. 

Éliminant ξ' et η' entre les trois dernières équations (i3 bis), il 
reste deux relations entre ξ et η, l'une du premier degré, l'autre du 
deuxième. Il semble donc que le problème comporte deux solutions. 
Mais ces deux solutions se confondent en une seule qui est 

ξ = η = ο, ξ' = η' = ο. 
/ 

Ainsi les équations (i3 bis) comportent pour / = ο une solution 
double et l'on en conclura que pour l = ô le jacobien des premiers 
membres de ces équations par rapport aux quatre inconnues ξ, η, ζ', rf, 
sera nul; d'où il résulte une petite difficulté. 

Ne supposons plus / = o; les premiers membres des équations 
(i3.bis) sont développables suivant les puissances des inconnues et 
de t. 

Si le jacobien dont je viens de parler n'était pas nul, nous pourrions, 
par un théorème bien connu de Cauchy, conclure que les inconnues 
ξ, η, ξ', η' sont développables suivant les puissances de t. 

Ici je ne puis raisonner ainsi, mais comme la solution 

ζ = η = ς = η = o 

est double seulement, nous conclurons que ξ, η, ξ", r{ sont développa-
bles suivant les puissances de \β\ les développements commenceront 
par des termes du premier degré au moins en \fi\ et par conséquent 
infiniment petits au moins d'ordre1/2. 

Un examen plus approfondi montrerait, je pense, que ξ, η, ξ', η' 
sont développables suivartt les puissances de mais je ne l'ai pas vé-
rifié. Cela ne m'est d'ailleurs pas nécessaire pour mon objet actuel. 

Substituons la valeur de ξ ainsi trouvée dans.l'équation (9 ter); le -
premier membre de cette équation sera développé suivant les puis-
sances de φ (le développement ne contiendrait vraisemblablement 
que des puissances paires). 



230 H. POINCARE. 

Pour l = ο, ξ devient nul et l'équation (9 ter) se réduit à 

B12 [O'2 / O2 (u2) - O'2 / O2] 

ou à 
u.

2
 — u\. 

On peut alors, d'après le théorème de Cauchy, résoudre l'équation 
(9 ter); on trouve développé suivant les puissances croissantes de 
s/1 et de «3 — ; pour t = o, u

2 se réduit à u\. 
D'où l'équation de la courbe B0. 

04) 
u, — α, + <|jî|

2
 J (u°)+ -+- klyll, 

u
2
 = u\ 4- h fi. 

Je désigne par hlh un ensemble de termes procédant suivant les 
puissances entières de fi et commençant par un terme en tk. 

On aurait de même, pour l'équation de la courbe B
4

, 

<j5) 
uK =α, -4- + +htVt, 

u
9
 = u\ -f- h fi. 

Considérons maintenant une courbe remarquable que je vais ap-
peler Β et qui a pour équation 

U( = 2P,·. 

Supposons que le point u] soit un point de cette courbe ; on aura 
alors 

vi = vi 

et la courbe B, devra se confondre avec B
0

. La comparaison des équa-
tions (14) et (15) montre que ces deux courbes ne peuvent se con-
fondre ; à moins toutefois que les développements (i4) et (i5) ne 
soient pas valables. Or nous avons vu qu'ils ne cessent de l'être que 
si u2 est voisin de aa et us de a3. 
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Ainsi en un point de B* la fonction Θ devant s'aniiuler, l'un des Ut 

devra être très voisin de a,·; soit par exemple u
{
 très voisin de ot<, ce 

qui nous conduit à l'équation (8)*, alors, d'après ce que nous venons 
de voir, u.2 devra encore être très voisin de a2 ou «3 de αa. 

En un point de B*, deux des ut devront donc être très voisins de α
4
·; 

en résumé, dans le cas singulier elliptique, la courbe B* se décompose 
en trois autres ayant respectivement pour équations 

u2— α
2

, «ί=«ί, 
ut~ α,, M,= a„ 
£/, = a,,. u.2— a2. 

Π est aisé d'en déduire ce qui arrive pour la courbe Β qui a pour 
équation 

Ui = P/. 

Elle se décompose en trois autres ayant respectivement pour équa-
tions 

U.>=—} u——, 

M. = —> W, = —> 

M, = — > U2 = — 

Voyons maintenant quel est le degré de chacune d'elles. 
Soit ρ = 3, λ> 2; la courbe Β est, en général, d'ordre 3η et de 

genre 3; dans le cas singulier elliptique, elle se décompose en trois 
courbes d'ordre η et de genre ι. 

On arriverait au même résultat dans le cas de ρ = 4· Si les termes 
latéraux tendent vers o, de façon que les fonctions abéliennes restent 
spéciales (je suis obligé d'ajouter cette restriction parce que, pour 
ρ > 3, les fonctions ne sont pas toujours spéciales ; d'ailleurs, si elles 
ne l'étaient pas, la courbe Β cesserait d'exister), la courbe Β se dé-
compose à la limite en quatre autres qui sont, de degré η.:( η > 2) et 

Joiirn. de Math. (5* série), tome I. — Fasc. III, 1895, 33 . 
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de genre ι et qui ont respectivement pour équations 

U·! — = f» 

i/| j· ) Wj —- -g· J W4 — ^ I 

uI ""* J* * Wj — j > , li^ "j* i 

W, = y> — U
a
=j' 

1. — Généralisation du théorème de Riemann. 

Proposons-nous maintenant le problème suivant : Riemann a mon-
tré combien l'équation 

0) ®("i - «ο=0 

admet de solutions; proposons-nous les deux équations simultanées 

J Ô(t>,+ 4-C/)=o, 

( θ(ρ,+ 4 - <) = o, 

où les βι et les e\ sont 2ρ constantes quelconques et où nous avons deux 
inconnues, à savoir les points χ et x' de la courbe G qui correspondent 
aux intégrales v-

t
 et v\ 

Cherchons combien ces équations admettent de solutions. 
De même, considérons les trois équations simultanées suivantes 

(avec trois inconnues χ, x' et x"), 

(3) 

0(0; -h P; -h O'i — ) = o, 

®(^ + ̂  + <ί-β'/)=0) 
O (vi +v\ -h pJ— «?*)= o. 

Plus généralement, envisageons q équations simultanées à q incon-
nues, 

(4) θ(^-+· <· +■·.. + tf"l) e\h)) = 0 (k = r, 2,.,...., q). 
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Combien ces équations admettront-elles de solutions? 
On peut, dans l'évaluation du nombre de ces solutions, se placer à 

deux points de vue différents. 
Au premier point de vue, nous ne regarderons pas comme distinctes 

deux solutions que l'on déduit l'une de l'autre en permutant les q points 
inconnus de la courbe C, 

χ, x\...., x(q-1), 

et, par conséquent, les q intégrales correspondantes 

Ο. ο v^-{) 

Au second point de vue, on regardera ces deux solutions comme dis-
tinctes. 

Il est clair que le nombre des solutions, évalué au second point de 
vue, sera q \ fois plus grand que le nombre des solutions évalué au pre-
mier point de vue. 

Il y a deux cas où nous savons faire cette évaluation. 
C'est d'abord celui où q — i, celui de l'équation (τ) : c'est celui de 

Riemann. 
Le nombre des solutions est alors égal à p. 
C'est ensuite celui où q = ρ ; si l'on a les équations 

(5) @(u,-c'/")=o (k = 1,2,.........., p), 

j'ai démontré, comme je l'ai rappelé au début de ce travail, que le 
nombre des solutions est égal h pl. 

D'un autre côté, les w
{
 peuvent toujours être mis sous la forme 

m— Vi + ρ-h ν\p-1), 

et cela d'une seule manière (en général du moins d'après les théo-
rèmes de Riemann) ; d'une seule manière, veux-je dire, si l'on se place 
au premier point de vue et de p \ manières différentes si l'on se place 
au second point de vue. . ··, 

Si donc q = jd, le nombre des solutions des équations (4) est égal 
à p\ au premier point de vue, à (p!)2 au second point de vue. 



254 II. POINCARÉ. 

Le problème est donc résolu dans les deux cas extrêmes q == ι, 
q =p\ pour traiter les cas intermédiaires, je vais employer la même 
méthode dont j'ai fait usage pour les équations (5) dans le Mémoire 
cité du Bulletin de la Société mathématique de France. Cette mé-
thode consiste à évaluer le nombre des solutions dans le cas singulier 
elliptique; ce nombre étant constant sera encore le même dans le cas 
général. 

Soit d'abord ρ = 3, q = ι ; dans le cas singulier elliptique on aura 

Θ = 0,(Μ
ί
)0

2
(Μ·

3
)0

3
(ΐί,). 

Soient alors 
c1,^25 ^3 î ^3 

six constantes quelconques; posons, pour abréger, 

Oi(vi + vi') = 0i, 

w>/+p;-o=*i· 

Les équations (4) s'écriront alors 

( 4 bis) 
θ,θ203 = ο, 
w;=o. 

En général, on aura 

e1e1^2 <C2> ^3<^3> 

de sorte que 0, ne pourra pas s'annuler en même temps que 0',, ni θ
2 

en même temps que ô'
2
, ni θ

3
 en même temps que ô'

3
. 

Un des facteurs 0
t
 devra s'annuler ainsi qu'un des facteurs 0) ; mais 

ces deux facteurs ne pourront être de même indice. 
Nous pourrons donc faire autant d'hypothèses qu'il y a d'arrange-

ments de trois lettres, deux à deux, c'est-à-dire six. Adoptons une 
quelconque de ces hypothèses, par exemple 

O1 = O2 = 0 
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Pour aller plus loin, il faut se rappeler ce que devient dans.le eas 
singulier elliptique la courbe Β qui a pour équation w,= p,·; elle se dé-
compose et l'on doit avoir : soit 

^ = 7» *» = 7 (hypothèse i), 
soit 

^ = 7' = 7 (hypothèse 2), 

soit 
<>, = X p3 = 7 (hypothèse 3). 

De même en ce qui concerne v'n on doit avoir : soit 

v', = 7· < = 7 (hypothèse 4), 

soit 
v\ = 7· = 7 (hypothèse 5), 

soit 

"'. = 7' "i=7 (hypothèse 6). 

On peut combiner les hypothèses i, 2, 3 avec les hypothèses 4, 5, 
6, ce qui fait en tout neuf combinaisons; la plupart doivent être reje-
tées. 

On ne peut pas avoir à la fois 

P2 = — ? P, = —s 

car alors 
e;=6,(^-4) 

ne serait pas nul en général. Gela exclut les combinaisons 

(1,4), (1,6),.' (3,4), (3,6). 

On ne peut pas avoir non plus à la fois 

v1 = &1 / 2, v1' = &1 / 2. 
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Cela exclut les combinaisons 

(2,5), (2,6), (3,5). 

Il ne reste que deux combinaisons 

(',5) et (2,4). 

Adoptons la première, les équations 

Q, = o, O'a = o 
deviennent 

O1(P* + ~2 ~ ~ °' 

®»(pi+7 _eï) = 0> 
d'où, enfin, 

ç, = Gi —, (j,= — , ^.= — > 

P. = —> P., = Î? = -

(une solution et une seule). La combinaison (2,4) nous donnerait 
une autre solution. 

Chacune de nos six hypothèses nous donne donc deux solutions; 
cela fait douze solutions au second point de vue et six au premier point 
de vue. 

Raisonnons delà même manière pour des valeurs quelconques de ρ 
et de q\ plaçons-nous encore dans le cas singulier elliptique. Le pre-
mier membre de chacune des q équations (4) sera le produit de ρ fac-
teurs. 

Dans chacun de ces produits, un des ρ facteurs devra s'annuler; 
mais, pour la même raison que plus haut, les q facteurs qui s'annule-
ront devront être d'un indice différent, 

Nous poùvons donc faire autant d'hypothèses qu'il y a d'arrange-
ments de ρ lettres q à y, soit 

pi 
(p-q)l 
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Adoptons une de ces hypothèses; les q équations (4) seront rempla-
cées par q équations plus simples de la forme 

(6) 0,(e, + pJ + ... + p-v~" — ef) = o, 

où i prendra q valeurs différentes comprises entre ι et p, pendant 
que k prendra les valeurs ι, 2,..., q ; à chaque valeur de k correspond 
une valeur de i et une seule. 

Cela posé, la courbe Β se décompose; nous pouvons donc faire 
ρ hypothèses différentes au sujet des p,·; ces hypothèses peuvent se ré-
sumer dans la proposition suivante : 

Les ρ quantités p
t
· devront être égales à yiiY'

 exceplé une d'entre 
elles. 

La même chose est vraie des quantités 

p·, ρ., .,p.* . 

Les p quantités p^' (où k a une valeur donnée et où i prend les valeurs 

1, 2, devront être égales à excepté une d'entre elles. 

Formons un Tableau à p colonnes et q lignes, de telle façon que 
l'élément de la ïiémB colonne et de la k-\~ilème ligne soit pJ.A); dans 
chaque ligne un élément et un seul ne devra pas être égal à ~Tj* 

Il y a donc dans le Tableau q éléments et il n'y en a que q qui ne 
sont pas égaux à ■—yj · 

Distinguons les colonnes de ce Tableau en deux catégories; nous 
rangerons dans la première catégorie les colonnes dont l'indice figure 
parmi les indices i des équations (6). Il y aura donc q colonnes de la 
première catégorie et p — q de la deuxième. 

Je dis que dans une colonne de la première catégorie il y a un élé-
ment qui n'est pas égal à —3—; car, s'il n'en était pas ainsi, on aurait 

0,·+4+4 + ... + οΓ"=q&i / p - 1, 

et, en général, c'est-à-dire pour une valeur quelconque de ef', on 
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n'aurait pas 
0/(P,· + . 1 — ef') = o, 

Dans chaque colonne de la première catégorie, il y a donc un élément 
différent de——·; je dis qu'il n'y en a qu'un dans chaque colonne; 
en effet, il y en a un dans chacune des q colonnes de la première caté-
gorie et il n'y en a que q dans tout le Tableau. 

Ainsi, en supprimant les /? — q colonnes de la deuxième catégorie, 
il nous restera un Tableau à q lignes et q colonnes; tous les éléments, 
sauf q éléments singuliers, seront égaux à > dans chaque ligne et 
dans chaque colonne il y aura un élément singulier et un seul. 

Nous pouvons donc faire, au sujet de la position des éléments singu-
liers ql hypothèses différentes. 

A chacune d'elles correspond une solution des équations (6) et, par 
conséquent, une solution des équations (4). 

Chacune des ̂  — q)\ hypothèses faites au début avant la formation 
des équations (6) nous donnera donc q\ solutions des équations (4). 

En résumé, les équations (4) admettent (aussi bien dans le cas gé-
néral que dans le cas singulier elliptique) 

p! q! solutions. 
Λρ-qY-

Cela au second point de vue. Au premier point de vue, le nombre des 
solutions est 

•/>1 
p-q\' 

autant que d'arrangements de ρ lettres q à q. 
Dans le cas de q = ι (cas de Riemann), ce nombre d'arrangements 

est égal à 

p! / (p - 1 ) !-ρ· 

C'est le résultat de Riemann. 
Dàns le cas de q."==_/>, ce nombre d'arrangements est celui des per-
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mutations de ρ lettres, c'est-à-dire p. I.C'est le résultat que j'ai obtenu 
dans le Mémoire cité du Bulletin de la Société mathématique de 
France. 

Ainsi se trouvent réunis dans une formule plus compréhensible le 
résultat de Riemann et le mien. Un chemin est frayé entre les deux 
domaines précédemment conquis et le but que je me proposais au dé-
but de ce travail est en partie atteint. 

Considérons encore le cas de q — ρ — ι. . 
Les équations (4) sont alors équivalentes aux suivantes : 

(7) 
%{Ui)~ o, 
0(«,-éf)= ο 

(k=I,2,...,p-l). 

En effet, l'équation Θ(«;) = ο équivaut à 

ut = (>,· -h -h... -h ν\ρ~*\ 

Or les équations (7) admettent ρ ! solutions. 
Les équations (4) doivent donc avoir aussi, au premier point de vue, 

pl solutions. 
Et, en effet, 

F±?)î = 7i=?!· 

8. — Décomposition de la courbe a. 

Au n° β, j'ai défini par les équations (5) une certaine courbe que 
j'ai appelée Λ; je transcris ces équations en leur donnant le n° (1), 

(0 
0(w

(
 — Ci) = 0. 

Θ (m,— et) = o. 

J'ai dit que cette courbe doit se décomposer dans certains cas, >et 
c'est sur ce point que je désiré revenir. 

Il est aisé de comprendre pourquoi cette tdécomposition doit*,avoir 
lieu.·· ■'■■.-· ■'■·· '■··■ .. ι 

Journ. de Math. (5· série), tome I. — Fasc. III, »895. 34 
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Cherchons en effet le degré de la courbe Λ. 
Je suppose ρ — 3, η > 2 ; la courbe À est alors tracée sur la va-

riété V qui a été définie plus haut; la variété V est de degré 6 η8 et est 
située dans l'espace à η3 — ι dimensions. 

Pour évaluer le degré de Λ, il faut couper par une variété plane 
ayant na — a dimensions et compter le nombre des points d'intersec-
tion. 

Cette variété plane sera définie par une seule équation qui sera de 
la forme 

θ = o, 

θ étant l'une des fonctions d'ordre η qui donne naissance à la variété Y. 
Les trois équations 

θ(«ί —e;) = o, 
@(ui-e'i) = o, 

ô = Ο 

admettent 6/i solutions; la courbe Λ est donc de degré 6n. 
Maintenant donnons des valeurs particulières aux six constantes et 

et e\. 
Soient 

ei = - vi ei = - vi 

x
0

, étant deux points de la courbe C, et c®, v} les valeurs corres-
pondantes de ρ,·. 

Il est clair qu'on satisfera aux équations 

®(Ui + *>·)= o, 
®(ut + v)) = o 

en faisant 
Ui = pt·. 

La courbe Β fait donc partie de Λ, et comme elle est de degré 3n, 
il faut bien que Λ se décompose. 

Étudions les circonstances de cette décomposition. 
Plaçons-nous d'abord dans le cas singulier elliptique. 
La courbe Λ se décompose alors toujours en 6 autres ayant respec-
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tivement pour équations 

(2) 

uK — u
i
= a

2
+e'

a
, 

w2 = a24-£a, m4 = a, 4-

w, = a, 4" βj j m 3 == otj 4~ Sj) 

U3 = ÛC3 4" £3 j U\ == OCf 4" £| , 

U
2
 — a

a
4-c

2
, = a3 -t- β'

3
, 

Wj — Oij 4" Cj; Mj — Otj 4" fij· 

Celle de ces six courbes dont les deux équations occupent la iéme 

ligne dans ce tableau, je l'appellerai la courbe (a, ί). 
Cela posé, supposons 

βί = -ρ·, ei = - f /. 
On peut faire trois hypothèses différentes sur p? ; deux des p° doi-

vent en effet être égaux à on peut faire de même trois hypothèses 

sur p/. Cela fait en tout neuf hypothèses différentes; je n'en examine-
rai que deux, toutes les autres s'en déduisant par permutation. Dans 
l'une comme dans l'autre, la courbe Β se décomposant en trois courbes 
de degré η, nous devrons retrouver ces trois courbes parmi les six 
courbes (2). 

Soient d'abord 

«ί=<>:=?. e;=o;=7· 

Les équations (2) deviendront 

(2 dis) 

u, — a, 4- e,, w2 — ~ ' 

"2=7» u, = a
(
+e'

(
, 

w, = ^8=7' 

w3 — j M, r= a4 4-e'1, 

Uo= ~i Uo = —> 
α, a. M, — -75 Ma= -· 
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On ne retrouve ainsi que l'une des trois courbes dans lesquelles se 

décompose B, à savoir 

Ma= — > U, =■ — · 

La contradiction n'est qu'apparente. Si, en effet, nous nous plaçons 
dans le cas singulier elliptique et si nous faisons 

/ e2 = e9 = > c* — β~ ~ — —> 

les équations (i) de la courbe Λ ne sont plus distinctes; elles sont sar 
tisfaites toutes les fois que 

u3 = — » 
et toutes les fois que 

«* = —* 

Les équations ne définissent donc plus une courbe, mais une sur-
face ou variété à deux dimensions. Les trois parties de la courbe Β se 
trouvent sur cette surface. 

Mais si, restant dans le cas singulier elliptique, on fait tendre e
ai 

ea> e3) vers ~ — et — -> la limite de la courbe A ne contiendra 
pas la courbe Β tout entière. 

Si, au contraire, nous plaçant d'abord dans le cas général, nous 
faisons tendre les termes latéraux vers o, de façon à nous rapprocher 
indéfiniment du cas singulier elliptique, si nous prenons 

β,= -ρ?, β;=~ρ;, 

et de telle manière que, à mesure qu'on se rapproche du cas singu-

lier, e2, eg, e3, e'3 tendent vers — ~ et — alors, la nouvelle limite 

de À contiendra la courbe Β tout entière. 
Supposons maintenant 

3 2
 3 2 1 "2 3 2 
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les équations (2) deviendront 

( 2 ter) 

te, = a, + en Ha = aa-f-ea, 

l&2— — > U,= - > 

M4 = a, + en «3=7» 

«,= -> M, = — , 

«3=7» «3=7» 

«>=7> it
a
 = «

a
+e;. 

Nous retrouvons ici les trois parties de la courbe B. 
Ici encore les équations (2) ne sont pas distinctes. 
Elles sont satisfaites par tous les points de la surface 

u3 = &3 / 2, 

et, en outre, par tous les points des deux courbes (2ier, 1) et 
(2 ter, 2). 

Seulement les choses ne se passent pas ici comme dans la première 
hypothèse, et c'est sur ce point que je désirais attirer l'attention. 

Si, restant dans le cas singulier elliptique, nous faisons tendre e
a
, 

Co, e\ et e' vers les limites — -s — — > — - » — - » la limite de la 
courbe Λ contiendra la courbe Β tout entière. 

Étudions maintenant la décomposition de Λ dans le cas général. 
Dans le cas de p = 3, on peut supposer que la courbe C est une 

courbe de quatrième degré sans point double. 
Étudions la signification de l'équation 

(3) %(ai—ei) = o. 

On peut toujours poser 

-βι-Ρΐ + ή+Ι>1, 



264 H. POINCARÊ. 

çJ
f s?n P® étant les valeurs de l'intégrale P,· qui correspondent à trois 

points de C que j'appellerai les points x„ a?
2
, x

3
, ou, pour abréger 

encore, les points i, 2, 3. 
De même, nous pouvons toujours poser 

U{= pj -t- çf 4- P·, 

les intégrales ν], ... correspondant à trois points de C que j'appelle-
rai les points 4> 5, 6. 

L'équation (3), en vertu du théorème de Riemann, peut être rem-
placée par la suivante : 

(4) Ui-e, = — v)-v% 

les points 7 et 8, qui correspondent aux deux intégrales du second 
membre de (4), étant deux points quelconques de C. Mais l'équation 
(4) peut s'écrire 

v\ -H p? -4 v) + p; 4- P? 4- P? 4- pj 4- pf = ο ; 

elle signifie que les huit points 1, 2, 3, 4> 5, 6, 7, 8 sont sur une 
même conique. 

La signification géométrique de l'équation (3), c'est donc que les 
six points 1, 2,· 3, 4, 5, 6 doivent être sur une même conique. Consi-
dérons maintenant l'équation 

(3 bis) Θ(«,-<?;.)= ο. 

Nous pourrons toujours poser 

~ e'i — P? P<·0 4- PJ1, 

et l'équation (3 bis) signifiera que les six points 4, 5, 6, 9,10,11 sont 
sur une même conique. 

La courbe Λ est définie par les équations simultanées (3) et (3 bis) ; 
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si l'on veut satisfaire à la fois à ces deux équations, le problème se po-
sera géométriquement de la manière suivante : 

On se donne sur la courbe C six points i, 2, 3, 9, 10, τι; il faut 
faire passer par 1, 2, 3 une conique K, et, par 9, 10,11, une co-
nique K', et de telle façon qui il y ait trois points 4> 5, 6 communs 
àdet aux deux coniques. 

A chaque solution de ce problème correspondra un point de Λ. 
Supposons en particulier que deux des points t, 2, 3 coïncident 

avec deux des trois points 9, 10, 11 ; par exemple, 2 avec 10 et 3 avec 
11, de sorte que 

— e'. = p? 4- p? -4- p?. 

Qu'arrivera-t-il alors? Les équations (3) et (3 bis) de la courbe Λ 
deviendront 

®(ui-+- W -t- pJ + P?) = °> 
Θ(μ

{
·Η- Ρ· + P?H- P?)= O, 

et elles admettront pour solution 

uî = Pi ~ P? — PJ · 

C'est là l'équation d'une courbe B'; la courbe À se décompose donc, 
une des deux parties étant la courbe B'. 

Examinons géométriquement les circonstances de cette décompo-
sition. Les deux coniques K et K' ont déjà deux points communs 2 

et 3; si elles doivent en avoir trois autres 4» 5, 6, elles se confondront 
à moins de se décomposer. 

Examinons séparément ces deux hypothèses. 
On obtiendra les valeurs de ut (ou des points de Λ) qui correspon-

dent à la première hypothèse de la manière suivante : 
Par les quatre points 1, 2, 3, 9, faisons passer une conique; elle 

coupera la courbe C en quatre autres points, parmi lesquels j'en choi-
sirai trois qui seront les points 4> 5, 6. 

Ce choix peut se faire de trois manières différentes. 
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Les coniques qui passent par les quatre points i, 2, 3, 9 forment un 
faisceau. A chaque conique du faisceau correspondent ainsi trois 
points de Λ. 

Examinons maintenant la seconde hypothèse. 
Pour que deux coniques aient cinq points communs, sans se con-

fondre, il faut que chacune d'elles se décompose en deux droites et 
que deux de ces droites se confondent. Quatre des cinq points doi-
vent alors se trouver en ligne droite. Les coniques Κ et K' ont cinq points 
communs, 2, 3, 4> 5, 6; quatre de ces points doivent être en ligne 
droite. 

Cela peut se faire de deux manières, de sorte que la seconde hypo-
thèse se subdivise en deux autres que j'appellerai, pour abréger, la 
seconde et la troisième hypothèse. 

Ou bien, les points 2 et 3 sont en ligne droite avec deux des points 4, 

5, 6; par exemple, avec les points 4> 5; ce sera là la deuxième hypo-
thèse. 

Ou bien, les points 4? 5 et 6 sont en ligne droite avec un des points 2 

et 3 ; par exemple, avec le point 3 ; ce sera là la troisième hypothèse. 
Examinons d'abord la deuxième hypothèse. 
Les points 2, 3, 4, 5 étant en ligne droite, on aura 

pf 4- v] 4- Vki 4- P? = O. 

La conique Κ se réduira à la droite 2, 3, 4> 5 et à la droite 1,65 la 
conique K' se réduira à la droite 2, 3, 4> 5 et à la droite 9, 6. 

Les points 4 et 5 sont fixes et le point 6 est seul mobile ; on aura 
d'ailleurs 

ui = P; 4- .9) 4- P? = P? - e? - P·; 

comme le point 6 est mobile, les points 2 et 3 fixes, je puis écrire 
cela sous la forme 

7/. — ρ. — of — ni 

le point χ qui correspond à étant un point mobile quelconque de C. 
C'est là l'équation de la courbe B' et l'on voit ainsi d'une autre ma-

nière qu'elle doit faire partie de la courbe Λ. Mais j'ajouterai qu'elle 
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doit faire partie d'une infinité de courbes A; et en effet nous pouvons 
laisser les points 2, 3, 4> 5 fixes et en ligne droite et faire varier les 
deux autres points 1 et 9 (et par conséquent les quantités et et c)) ; nous 
ne cesserons pas d'avoir 

i^p,—PJ-PJ. 

Examinons maintenant la troisième hypothèse. 
Les points 3, 4> 5, 6 étant en ligne droite, on aura 

p;+e;-+-pj-t-p; = o; 
d'où 

af = - PJ. 

Comme les «
t
· sont des constantes, on voit qu'à la troisième hypo-

thèse correspond seulement un point de A. 
La courbe A se décompose donc en deux parties correspondant 

aux deux premières hypothèses ; la partie qui correspond à la deuxième 
hypothèse est la courbe B'. 

Nous n'obtenons pas ainsi tous les cas de décomposition de la 
courbe A. 

Soient en effet 
/., /'il f* 

trois constantes quelconques, nous pourrons encore poser 

a/=//4-pJ-H P· +PJ, 

-*/=//■+- p; p? +P
(
j, 

- e'i = fi + vi(10) + vi 11 

Les équations (3) et (3 bis) signifieront encore que les six points 
I, 2, 3, 4j 5, 6 sont sur une conique Κ et les six points 4> 5, 6, 9, 

10, 11 sur une conique K/. 
Si deux des points 1, 2, 3 coïncident avec deux des points 9,10, 

II, ces deux coniques doivent se confondre ou se décomposer. lien 
résulte que la courbe A se décomposera encore en deux parties; l'une 
de ces parties (celle qui correspond à l'hypothèse de la décomposition 
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de Κ et de K') a pour équation 

ui= + l'*. 

C'est encore une courbe B'. On a la courbe Β elle-même si Ton 
suppose 

fi = vi² + vi². 

9. — Cas voisins du cas elliptique. 

J'ai déjà eu l'occasion, au n° 6, d'étudier les cas voisins du cas singu-
lier elliptique. Nous avons vu que, pour les cas suffisamment voisins 
de ce cas singulier, la fonction Θ peut se développer suivant les puis-
sances croissantes des termes latéraux. 

C'est le développement (6) du n°6 dont nous avons formé plus 
haut les premiers termes. 

Il est aisé d'en former le terme général. 
Soit par exemple à former le terme en 

ay23 ay13 ay12 

en supposant d'abord ρ = 3. 
Posons 

γ, = λ' λ", γ
2
 — λ λ", γ

3
 = λ Λ', 

le coefficient du terme cherché sera 

/ .y+wWWW 

Je désigne toujours par θ, 0
2
0

3
 le premier terme du développe-

ment (6) et par θ^Τι> la dérivée d'ordre γ, de la fonction 0,. 
Supposons maintenant ρ = 4 et soit à trouver dans le développe-

ment (6) le coefficient du terme général en 

a \za\'3U\\0,y23 a23 a24 a33 
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Soient 
γ, = λ

12
Η-λ

Ι3
4- λ

Μ
, 

7a — "+* ^23 "+r ^2») 

7 3 ^ ^31 ~+~ ^32 λ
34

, 

7 » — ^4 « "+" ^· | 2 ^*2 * 

IL va sans dire que je pose 
λ/j· —yki. 

Le coefficient clierclié sera alors 

a oy>* ey«> oy«> ey*> 
(-I)λ12! λ 13 ! λ14! λ23 ! X2i! λ34! 

Il est donc facile dans tous les cas de former le développement (6). 
Voici maintenant l'usage que j'en ferai. 

Nous avons défini plus haut au n° 5 ce qu'on doit entendre par sur-
face de translation et par équation translative et nous avons vu que 
l'équation 

(0 Θ = ο 

est translative si la fonction Θ est une fonction spéciale. 
Mais on peut se demander si cette équation est encore translative 

si la fonction Θ est une fonction non spéciale. 
Pour résoudre cette question j'étudierai l'équation 

Θ=ο, 

en me servant du développement (6) et en supposant que les termes 
latéraux sont assez petits pour qu'on puisse négliger les termes 
d'ordre supérieur de ce développement. 

Mais cette étude peut se faire de plusieurs manières. 
Nous pouvons d'abord supposer que m, est très voisin de aM mais 

que w2, «3, uA ne sont pas très voisins de α2, α3, αΥ. C'est ainsi que 
nous avons obtenu le développement (8) du n° 6 dont nous avons 
formé les premiers termes. 
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Nous avons formé les termes du premier ordre et nous avons trouvé, 
pour ρ = 3, 

°i Κ U\ — a, ai3 h- a{ j ^-· 

Dans le cas de/? = 4> nous aurions trouvé 

u, = A, -H a
iS
 ^ + a

u
 ̂  4- A

N
 ̂ -

Cherchons maintenant à former les termes du deuxième ordre. 
Soit 

r-!L<îl> 

Nous trouverons pour ces termes du deuxième ordre, dans le cas 
de/? = 4, 

l -Σ-4-2 ΐ ■>(!-?) 
w

 j -2""»«Î;(i-î;) 

(i, k = 2, 3, 4). 

Cette équation peut ctre remplacée par les suivantes, au même 
degré d'approximation, c'est-à-dire en négligeant les cubes des au et 
de u{ — «,. 

Nous introduisons trois paramètres ft>2, w„, vo
t
 et nous posons 

(3) 

u< = a< + 2i
i
a<i^T) 

„ _ Βα1' I
 tr

 ι V „O'k(wk) 

(ik ~ 2, 3,4ΐ ^*<'')· 

Les équations (3) peuvent remplacer l'équation (1) en négligeant 
les cubes dès termes latéraux. 

Or les équations (3) ont un caractère manifestement translatif. 
Il semblerait donc que l'équation (1) reste translative même pour les 
fonctions abéliennes non spéciales. Mais on ne doit pas oublier que les 
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équations (3) ne sont qu'approchées et nous ne tarderons pas à yoir 
que le caractère translatif ne subsiste pas à un degré supérieur d'ap-
proximation. -

Une seconde hypothèse est celle où, ρ étant égal à 4 par exemple, 
u

K
 et u

2 sont très voisins de a, et a
2
, u

2
 et u

s
 très différents de a

3 

et a,. 
Posons alors 

«, = a, -t- ίξ,, «
2
 = α2-Μΐ;2, 

«/A = *STiA, 

l étant un paramètre très petit. 
La fonction©, représentée par le développement(6), se trouvera 

alors développée suivant les puissances de t ; si t est très petit, nous 
pourrons ne conserver que le premier terme qui est un terme en tx et 
qui s'écrit 

''Ο'ΛΜ^ξΛ-γ,,.ι). 

Alors l'équation (i) se réduit à 

l S — γ 

Dans le cas de ρ = 3, si u
n

 w
2

, u
3 représentent les coordonnées 

d'un point dans l'espace, cette équation représente un cylindre hyper-
bolique qui peut, d'une infinité de manières, être regardé comme une 
surface de translation. 

Le caractère translatif est également évident pour ρ > 3. 
Nous avons encore trois hypothèses à examiner : 

ρ = 3; un u2 et uz très voisins de α,, a2, a3 ; 
ρ = 4 ; et u3

 très voisins de a,, a2, a3 ; uk très différent de a, ; 
ρ = 4 ; u

{
, u2, uz et uA très voisins de a,, a2, a3 et a4. 

Nous nous en occuperons dans les numéros suivants. 

10. — Étude d'une surface de translation. 

Les surfaces de translation peuvent être engendrées par la transla-
tion d'une courbe gauche et c'est là l'origine du nom qu'on· leur a 
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donné. L'équation générale d'une surface de translation est, comme 
nous l'ayons vu, 

x = fi(t) + f'1(u) 

(0 ί r=/»(<)-*-/>(«)> 
' s = /a(0 + /a'(u)j 

l et u étant deux variables indépendantes; les / et les /' étant six 
fonctions quelconques. 

La surface définie par l'équation (i) peut être, de deux manières 
différentes, engendrée par la translation d'une courbe gauche, à savoir 
par celle de la courbe 

« =/.(*)> r=A(0» -=/.(0 

ét par celle de la courbe 

® =/.'(«)> /=/»(«)> -=/»(«)· 

On peut tracer sur la surface deux systèmes de lignes remarquables 
que j'appellerai génératrices. 

Ce sont pour le premier système 

*=/<(0-+-/,'(<*). 
y=/»(0+/.'(a)» 
s =/a(0 + .Λ(α)> 

a étant une constante quelconque et t une variable, et pour le second 
système 

*=/;(»)+/.(«)> 

y=/.'(»)'+/»(«)> 

*=/.'(«)-i-/»(a)> 

a étant une constante quelconque et u une variable. 
Les génératrices d'un même système sont toutes égales entre elles. 
Parmi les surfaces de translation, je distinguerai une classe remar-

quable de surfaces que j'appellerai surfaces de translation distin-
guées. 
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On les obtient quand les trois fonctions soiit identiques 
respectivement aux trois fonctions /0/2»/3· Les deux systèmes de 
génératrices se confondent alors en un seul. 

D'autre part, la surface peut être considérée comme le lieu des 
milieux des cordes d'une courbe gauche tracée sur la surface et que 
j'appellerai courbe directrice. Elle a pour équations 

χ—2^, (/), y — 2 ,/a(0' ^—^"aCO* 

Il suffit d'ailleurs, pour qu'une surface soit distinguée, que les diffé-
rences 

/;<o-/.(o, -

m)-/>(o. 

Λ(0-/.(0 

se réduisent à des constantes; c'est-à-dire qu'une génératrice du 
second système soit égale à une génératrice du second système et 
scmblablement orientée dans l'espace. Ce cas se ramène en effet au 
précédent d'une manière immédiate. 

La surface 
Θ — o, 

où u
n

 u.
2

, u.
A
 sont regardés comme les coordonnées rectangulaires 

d'un point dans l'espace, est une surface de translation distinguée. 
On a en effet 

0 (P, 4- P'„ 4- P'„ P
a
 4- P

a
) = o, 

de sorte que l'équation de la surface peut se mettre sous la forme 

ii-i = 4- ç., 

où les Vi ne dépendent que de χ et les de x\ 
C'est donc bien une surface de translation distinguée dont les géné-

ratrices ont pour équation 
Ui=9t 4-PJ, 

λ·
0
 étant un point fixe de C et v] la valeur correspondante de p

(
·. 
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La directrice a pour équation 

Ui— 2(V 

Mais ce n'est pas tout. On a également 

0(-p/-P'
î
.) = O, 

de sorte que l'équation de la surface peut se mettre encore sous la 
forme 

ui = - vi - vi'. 

C'est donc encore le lieu des milieux des cordes de la courbe 

Ui~— 2 P,·. 

C'est donc, de deux manières différentes, une surface de translation 
distinguée qui a deux courbes directrices 

Ui=1Vh Ui=-2Vl 

et deux systèmes de génératrices 

Ut—Vi+V°nui = - vi -vio. 

Avant d'aller plus loin, étudions les points à l'infini des surfaces de 
translation; elles correspondent évidemment aux points à l'infini des 
génératrices. 

Considérons la courbe 

*=/.'(«)> y—*=/,'(«) 

et l'une des asymptotes de cette courbe. Supposons que l'on ait pris 
l'axe des ζ parallèle à cette asymptote, de telle façon que, pour une 
certaine valeur m

0 de m, /'
3
 (u

0
) devienne infini, f\ (u9) et /'2 (h0) 

restant finies. 
Alors 

■«=/<(') +/. (".)> y =/«(<) +/a («»)' 



SUR LES FONCTIONS ABÉLIENNES. 270 

où t est une variable et u
Q
 une constante, sera l'équation d'un cylindre 

asymptotique à la surface. 
La projection d'une génératrice quelconque sur le plan des xy sera 

égale à la section droite de ce cylindre. 
Cela posé, voici où je voulais en venir. 
Examinons l'hypothèse 

ρ = 3; m2, u9 très voisins de αη α2, a
:1

. 
Posons 

«,' = «, + 4 ctik=t-^ik («<*); 

la série (6) du n° 6 se trouve alors développée suivant les puissances 
de t et le premier terme, qui est en t2, s'écrit 

C- Ο', ΟΙ θ; (ξ,ξ
2
ξ

3
 - γ

33
ξ

4
 - γ13ξ2 - Tî2?3)· 

Si je suppose t très petit, jé pourrai négliger les autres. 
Donc la surface algébrique du troisième ordre 

(2) Ïtt-V S S 

doit être une surface de translation. 
C'est même une surface de translation distinguée. 
Sur ce dernier point le passage à la limite que je viens d'opérer 

pourrait peut-être laisser des doutes. 
Soit S une surface de translation distinguée variable ayant pour 

limite une certaine surface S' (quand le paramètre variable dont dé-
pend la surface S tend vers une certaine limite). Soit M un point de S 
tendant vers un point M' de S'. Par le point M passeront deux généra-
trices de S, que j'appellerai G et H; les deux courbes G et H tendront 
vers deux courbes limites G' et H' passant par le point M'; et la sur-
face S' pourra, à la limite, être regardée comme engendrée par la trans-
lation de G' ou par celle de H'. C'est donc une surface de translation. 

La surface S étant une surface de translation distinguée, les deux 
courbes G et H sont égales entre elles; s'ensuit-il que les deux courbes 
G' et H' soient égales entre elles? 11 n'en est pas forcément .ainsi; il 
peut se faire qu'à la limite la courbe G se décompose et même que, 
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dans cette décomposition, certaines parties de celte courbe soient reje-
tées à l'infini. De même la courbe H, égale à G, se décomposera ; et il 
peut se faire que G' soit la limite d'une partie de G et H' celle d'une 
partie de H correspondant à une autre partie de G. 

Pour mieux faire comprendre ma pensée, je vais essayer de fixer 
les idées; supposons que G et H soient deux cubiques gauches égales ; 
on pourrait imaginer qu'à la limite G se décompose en une droite à 
distance finie (qui serait G') et une conique rejetée à l'infini, et que 
H se décompose en une droite rejetée à l'infini et une conique à dis-
tance finie (qui serait H'). 

C'es.t d'ailleurs ce qui arrive quand on passe à la limite d'une autre 
manière et comme nous l'avons fait au n° 6 ; c'est-à-dire de telle sorte 
que ut — a, devienne infiniment petit et que u

3
 — a

2
, u

3
 — a., restent 

finis. 
La surface (2) est donc une surface de translation; mais on pour-

rait se demander si c'est une surface distinguée. 
On peut faire de cette surface une transformation homographique 

très simple qui en simplifie un peu l'équation en lui conservant le carac-
tère translatif. 

Nous pouvons toujours trouver des quantités 

£| > ^2» 's 
définies par les équations 

ε,ε3 = γ, ο, ε2ε3 = γ33, ε,ε3 = Yuî 

nous poserons alors 

ζ, = £fû?
f
 ζ

 2
 = i.^y, ζ

3
=ε

3
£, 

et l'équation (2) deviendra 

(3) xyz -+- χ ■+■ y -h ζ = ο. 

La surface du troisième ordre (3) (où x, y, ζ sont regardés comme les 
coordonnées rectangulaires d'un point) est donc une surface de trans-
lation. 
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La surface (3) admet trois cylindres asymptotiques qui sont 

χγ + 1 = 0, 

^ + 1 = 0, 

yz-+- i = o. 

D'après une remarque faite plus haut sur les cylindres asymptotiques 
des surfaces de translation, la projection d'une génératrice sur l'un quel-
conque des plans de coordonnées est une hyperbole équilatère. 

Toute génératrice est donc l'intersection de deux cylindres hyper-
boliques équilatères dont les plans asymptotiques sont parallèles aux 
plans de coordonnées, à savoir aux plans 

X — Ο, Ζ = Q 

pour le premier cylindre, et aux plans 

7=o, 5 = 0 

pour le second. L'intersection de ces deux cylindres se décompose en 
une droite rejetée à l'infini dans la direction du plan ζ = ο et en une 
cubique gauche. 

Les génératrices de notre surface de translation sont donc des 
cubiques gauches dont les asymptotes sont, parallèles aux axes de 
coordonnées. 

Cela nous fait déjà prévoir que la surface sera une surface de trans-
lation distinguée; en effet, la projection d'une génératrice du second 
système sur le plan des xy doit être, comme celle d'une génératrice du 
premier système, égale à l'hyperbole 

xy 4-1 

et semblablement orientée. 
Les projections des génératrices des deux systèmes sur l'un des trois 

plans de coordonnées sont donc égales; donc les,génératrices du second 
système sont égales à celles du premier et semblablernent orientées. 

c. Q. F. D. 
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La surface a donc Une directrice qui est aussi uùe cubique gauche, 
et les deux systèmes de génératrices se confondent en un seul. Mais ce 
n'est pas tout; la surface admet un centre de symétrie qui est l'origine, 
et trois plans de symétrie qui sont les plans χ =y, χ = s, y = z» Elle 
admet en conséquence trois axes de symétrie binaire et un axe de sy-
métrie ternaire. 

Nous pouvons conclure de là que : ou bien la directrice admettra 
l'origine pour centre de symétrie ; ou bien sa symétrique sera encore 
une directricé. Or une cubique gauche ne peut avoir de centre de 
symétrie; donc la surface admet deux directrices} symétriques l'une 
de l'autre par rapport à l'origine. 

On pourraitraisonner de même avec l'un des trois plans de symé-
trie; car une cubique gauche ne peut pas non plus avoir de plan de 
symétrie. Les deux directrices sont donc aussi symétriques l'une de 
l'autre par rapport à l'un de ces trois plans. 

On verrait de même que chacune des directrices admet trois axes 
de symétrie binaire et un axe de symétrie ternaire. 

La surface (3) jouit donc de la même propriété que la surface 
Θ = ο ; je veux dire qu'elle sera de deux manières différentes une 
surface distinguée et qu'elle aura par conséquent deux directrices et 
deux systèmes de génératrices< · 

Nous sommes ainsi amené à rechercher les cubiques gauches que 
l'on peut tracer sur lë. surface. 

Une cubique gauche est déterminée quand on en connaît six points 
et en particulier quand on connaît les trois asymptotes. 

D'un autre côté une cubique gauche, qui a ses trois asymptotes sur 
les trois cylindres asymptotiques de la surface, rencontre cette sur-
face en neuf points à l'infini. Elle ne peut donc la rencontrer encore 
en un point à distance finie sans être tout entière sur la surface. 

Voici donc ce que je vais faire. 
Je prendrai une droite sur chacun des trois cylindres asymptotiques. 

Je construirai une cubique ayant pour asymptotes Ces trois droites 
qui seront respectivement parallèles aux trois axes de coordonnées. 
J'écrirai qu'un point, à distance finie, mais d'ailleurs quelconque de 
cette cubique est sur la surface; et la cubique sera tout entière sur la 
surface. 



SUR LES FONCTIONS ÀBÉLIENNES. *79 
Soient 

ι y = u. ζ = » 

I 
Ζ =V, X = » 

x = w y = — — 

ces trois asymptotes; u
9
 p, w sont trois constantes quelconques. 

On voit que les trois asymptotes sont bien sur les trois cylindres 
asymptotiques. 

Pour qu'un point de la cubique soit sur la surface, il faut et il 
suffit que 

uvw = ± ι ; 
soit d^abord 

(4) UVW = I. 

Posons 

(5) - 4- w = ξ, -4-α = γ], - + ρ = ζ. 

La forme de la cubique gauche dépendra uniquement de ξ, η et ζ; 
de sorte que deux cubiques gauches, correspondant à un même sys-
tème de valeurs de ξ, η et ζ, seront égales. 

Les trois paramètres M, P, T étant liés par la relation (4), on voit 
qu'il y a sur la surface une double infinité de cubiques gauches. 

Les équations (5) deviennent, en tenant compte de (4), 

(6) 1-|-~=ξρ, I-j--=Y]pp, ï + — == ζ M. 

Des équations (5) et (6) nous tirons 

il) u = P = T~£> ' w=—
i
—> 

avec la condition 

(8) ξηζ=+ξ+η + ζ + 2. 
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Alors w, Ρ et w étant fonctions rationnelles de ξ, η et ζ, à un sys-
tème de valeurs de ξ, η, ζ correspondra un seul système de valeurs 
de u, v, w; deux de nos cubiques gauches ne peuvent donc être égales 
entre elles, à moins que ces fonctions rationnelles ne se présentent 
sous une forme indéterminée. C'est ce qui arrive si l'on fait 

ξ = η = ζ = -ι, 

valeurs qui satisfont d'ailleurs à la relation (8). 
C'est donc ainsi que l'on obtient les génératrices de notre surface 

qui doivent, en nombre infini, être égales entre elles et semblablement 
orientées. 

Pour obtenir les équations de ces génératrices, il faut donner à ξ, 
η, ζ non pas la valeur — i, qui rendrait les expressions de u, p, w 
indéterminées, mais des valeurs très voisines, en les choisissant de telle 
sorte que la relation(8) ne cesse pas d'être satisfaite, c'est-à-dire que 
l'on ait sensiblement (en négligeant les carrés de ι+ξ, ι+η, 

n-0 

(9) ϊ + η +
 ζ = -3. 

On tire de là, en combinant les équations (7) et (9), 

u = -> ν = -J w = 1 -M, 

t étant un paramètre arbitraire; telles sont les valeurs de u, P, w qui 
correspondent aux génératrices. 

De W2P2Ws = 1 on aurait pu déduire, au lieu de (4), la relation 

(l\bis) uvw = 1. 

On peut donc tracer sur la surface deux familles de cubiques gau-
ches, formées chacune d'une double infinité de courbes, et correspon-
dant la première à (4), la seconde à (4 bis). 

Si nous prenons (4 bis) au lieu de (4) et que nous écrivions (5), 
nous trouverons 

{η bit) U y 3 Ρ f » } W = 3 
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avec la condition 

(S bis) ξηζ = ξ -h η + ζ ~ 2. 

Les génératrices du second système correspondent alors aux 
valeurs 

ξ = η = ζ = ., 

qui rendent les expressions (7 bis) indéterminées et qui satisfont 
à (8 bis). 

Quant à la directrice correspondant au premier système, elle cor-
respondra aux valeurs 

ξ = η ζ =— 2, 

qui satisfont à (8 bis) et qui donnent 

u= ç = w = — 1. 

Enfin la directrice correspondant au deuxième système corres-
pondra aux valeurs 

ξ = η = ζ = 2, 

qui satisfont à (8) et qui donnent 

u — v = sv — 1. 

Ainsi les génératrices du premier système et la directrice du second 
appartiendront à la première famille de cubiques; les génératrices du 
second système et la directrice du premier appartiendront à la seconde 
famille de cubiques. 

Notre surface est donc le lieu des milieux, des cordes de deux 
cubiques gauches qui ont respectivement pour asymptotes 

(10) — χ = ζ = 1, —z = x = -1, — χ = y z= ι 

et 
y = - z= 5=-® = 1, . x =-y = i. 

Étant données trois droites quelconques dans l'espace, je puis tou-
jours choisir des axes obliques tels que ces droites aient pour éqna-
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tions 
y = by

 Ζ ~ Cy Z = Cy 
(II) 

[cc = a, χ == — a, y = b. 

Il suffît ensuite d'une transformation homographique très simple 

^en changeant #, y, ζ en ^ pour ramener les équations (u) 

aux équations (10). 
Si nous nous rappelons qu'une cubique gauche est déterminée par 

ses asymptotes, nous conclurons que le lieu des milieux des cordes 
d'une cubique gauche quelconque est une transformée homographique 
de la surface (3) et par conséquent est une surface à centre. 

On peut prendre la question par un autre côté. 
. Soient ξ,, ξ,, ξ

3
 les coordonnées d'un point; soit une cubique 

gauche ayant ses asymptotes parallèles aux axes; les équations de la 
cubique pourront se mettre sous la forme 

&■— 2^' 4- h-

où t est un paramètre variable et les β, a et b des constantes. 
La surface lieu des milieux de ses cordes aura pour équation 

(12) ξ,·=Γ^- +-^-+é,·, 

ou t et u sont deux paramètres. 
Soit Ρ un polynome du premier degré par rapport à chacune des 

trois variables ξ, et par conséquent du troisième degré par rapport à 
l'ensemble de ces variables; ce polynome contiendra huit coefficients 
arbitraires. 

Si nous y substituons à la place des ξ, leurs valeurs (12), on ob-
tiendra une fonction rationnelle R tant en l qu'en u et symétrique 
par rapport à ces variables. Si nous décomposons cette fonction ra-
tionnelle en éléments simples, d'abord par rapport à ly puis par rap-
port à Uy nous pourrions obtenir seize éléments différents ; on pourrait 
avoir en effet un terme 

I I 

. t ~τ ~ II. —a1, 
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où le premier facteur pourrait être remplacé par 

ι 1 > ou i, 
et le second par 

1 1 
J ou I. u — a3 u — a3 

Mais on voit d'abord qu'il ne peut y avoir de terme en 

I 

(t — al)(u — ai)
> 

mais seulement en 

(l — β/)(α — ai) ' 

Le développement de notre fonction rationnelle R en éléments sim-
ples comprendra donc treize termes; et si l'on observe que, par raison 
de symétrie, 

1 .. 1 

{t — at){u — ak) {t — aA.) (u — a,·) 

1 » 1 

t — ai u — ai 

doivent avoir même coefficient, on verra que le développement R con-
tient sept coefficients. 

En annulant ces sept coefficients, on impose sept conditions aux 
buit coefficients de P, mais il en reste encore un arbitraire; de sorte 
que l'équation de la surface (12) peut s'écrire 

P = o; 

cette surface est donc du troisième degré. 
Jusqu'ici l'origine est restée arbitraire; nous pourrons la choisir de 

façon à faire disparaître les trois termes du second degré ; alors, comme 
la surface doit avoir un centre, le terme de degré 0 disparaîtra de lui-
même. 

Passons encore à une autre hypothèse ; soit 

p = 4; 

u21 u3 très voisins de α,, a2, a3; uA très voisin de a,,. 
Journ. de Math. (5* série), tome I. —: Fasc. III, 1895. 3y 

* 
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Posons encore 
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(i = i, 2,3) U( = a,·-}- tlh aik = l2yÎk1 

il viendra, en négligeant les termes en t', 

u — i υ, υ2 7;, v^s ι >»2^3 ι sa ι jieta jia-ssy? 

et l'équation Θ = ο s'écrira 

ι ^2^» — | 23 Ή ^ iijSjT ,
 12 >β:ι· 

Nous sommes ainsi ramenés au cas précédent. 

Il# — Extension au cas de /> = 4-

Nous allons examiner une dernière hypothèse 

ρ = 4 ; 

m,, m2, ιιΆ, w, très voisins de αη α,, a3, a
4

. 
Cette hypothèse va enfin nous permettre de montrer que Les fonc-

tions non spéciales, c'est-à-dire les fonctions abéliennes de genre ρ 
qui ne sont pas engendrées par une courbe algébrique de genre ρ, ne 
conservent pas le caractère translatif, c'est-à-dire que les théorèmes 
de Riemann ne sont plus vrais pour elles. 

Posons encore 

ui= Y/A OVO; 

il viendra", en négligeant les termes en /% 

θ = ξ.ξ.Ι - Σγ,,ξ,ξ. + Σγ,,γ,,). 

La première somme 
^ 112^3^4 

comprend six termes-que l'on déduit les uns des autres en permutant 



SUR LRS FONCTIONS ÀBÉLIENNES. 285 

les incuces, de sorte que 

Σγ
Ι2

ξ
3
ξ

Λ
 = +y13EE + 

+ T23?1 5* "+" *YaJ» ζ* ζ» "+" Τ3 '« ζI ?2· 

La seconde somme comprend trois termes déduits les uns des autres 
par permutations d'indices, de sorte que 

Σγ«ΐγ*« = T.3Ï34 ■+· T.3Ï2i ■+* γ < 4 Y 2 3 · 

L'équation Θ = ο peut donc, pour t très petit, être remplacée par la 
suivante 

(0 5i5»5»5« —2γι
3

ξ»ξ« + Σγ„γ,
4
 = o. 

C'est l'équation d'une variété à trois dimensions dans l'espace à 
quatre dimensions, si l'on regarde les ξ comme des coordonnées rec-
tangulaires dans cet espace. J'appellerai cette variété V. Elle est algé-
brique et du quatrième degré; elle admet l'origine comme centre de 
symétrie. 

La variété à trois dimensions qui a pour équation 

Θ = ο, 

si l'on y regarde les a comme des coordonnées rectangulaires dans 
l'espace à quatre dimensions; cette variété, dis-je, jouit, si la fonc-
tion 0 est spéciale, d'une propriété analogue à celle des surfaces de 
translation distinguées. 

Considérons en effet la courbe (variété à une dimension) qui a pour 
équation 

ui = 3(ί = ι,2,3,4). 

Prenons trois points quelconques sur cette courbe; le lieu du centre 
de gravité de ces trois points sera, d'après les théorèmes de Riemann, 
la variété 0 = o. 

Nous appellerons donc variété de translation, toute variété dont 
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l'équation peut se mettre sous la forme 

(^) i=m +//(o+/;c") (»·=». », 3,4), 

l, i' et Γ étant trois paramètres. 
En donnant à deux des paramètres £, tt" des valeurs constantes et 

faisant varier le troisième, on obtiendra trois systèmes de généra-
trices. 

Si les trois fonctions fh //, /." sont identiques, c'est-à-dire si les 
génératrices des trois systèmes sont égales et semblablement orientées, 
la variété sera dite distinguée; les trois systèmes de génératrices se 
confondront en un seul; et la courbe 

?,· = 3/,(z) 
s'appellera directrice. 

Etudions les points à l'infini, considérons une asymptote d'une des 
génératrices et prenons-la par exemple parallèle à l'axe des ξ

ν
 Soit ί

Λ 

une valeur de t" telle que 
/;(/.) =oo. 

Posons alors, pour abréger, 

fî((i) = ai (« = i,2,3). 

Nous voyons que, pour t" — on a 

(3) ξ, = oo; 5ί=/,·(0+//(Ο(/' =r ι, 2, 3). 

Si donc dans l'équation de la variété (2), obtenue en éliminant t, 
t' et t' entre les équations (2), on ne considère que les termes du 
degré le plus élevé en ξ., (ce qui revient à faire H, = ao), on obtiendra 
une certaine équation en ξ,, ξ

2
, ξ

3 qui sera l'équation d'une surface de 
translation. Si la variété (2) est distinguée, il en sera de même de 
cette surface et sa directrice aura pour équation 

Ei = 2fi(t) + ai (i = 1, 2, 3) 

La variété V doit être de translation, au moins quand la fonction Θ 
est spéciale, et l'on peut supposer, par conséquent, qu'on ait mis ses 
équations sous la forme (2). 
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Donnons alors à i"une valeur constante qui rende f\ (t")infinie. On 
obtiendra les équations (3) qui (abstraction faite de l'équation 
E= co) définissent une certaine surface S4, qui, sera de translation. 

On obtiendra l'équation de cette surface S
4
 en égalant à ο le coef-

ficient de la plus haute puissance de ξ
4
 (c'est-à-dire de ξ.,) dans l'équa-

tion (1). 
On définirait de la même manière les surfaces S,, S

2
 et S

3
. L'équa-

tion de la surface S.,, ainsi obtenue, s'écrit 

ω ξ, - YmÎ| - ïlîÎs - ΥΐΛ = Ο. 

C'est la surface que nous avons étudiée dans le numéro précédent. 
Nous avons vu que c'était une surface de translation distinguée. 

Les équations (3) doivent donc être celles d'une surface distinguée, 
c'est-à-dire que l'on doit avoir 

fi = fi'0'= 1,2,3). 

Comme j'aurais pu tout aussi bien raisonner sur /., ou f\ au lieu 
de fl, que rien ne distingue de/, et/

4
, je puis écrire 

fi = fi' = fi"(»' = 1,2.3), 

et comme j'aurais pu raisonner sur S,, S
2

, S3
 comme sur S.,, nous 

aurons 
fi = fi' = fi"(i= 1,2, 3,4), 

c'est-à-dire que Y sera une variété de translation distinguée. 
Quelle sera maintenant la nature de sa directrice? La directrice 

de la surface S.,, qui a pour équation 

li = 2/;(') + ai, 

est, comme nous l'avons vu, une cubique gauche ayant ses asymptotes 
parallèles aux axes. Il en sera donc de même de la courbe 

5/ = 3/f(/) (i* = I,2,3). 

Or, ce qui caractérise une cubique gauche, dont les asymptotes 
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sont parallèles aux axes, c'est que deux quelconques des trois coor-
données sont liées par une relation homographique. Donc, deux quel-
conques des trois quantités 3/,(0» 3/a(0» V»(0>

 ou (puisque 
j'aurais pu raisonner sur S, aussi bien que sur S4) deux quelconques 
des quatre quantités 3/,(/), 3/a(f), 3/3(/), 3/»(/) sont liées par 
une relation homographique. 

Donc la directrice de la variété Y .est une courbe de l'espace à 
quatre dimensions, analogue aux cubiques gauches; c'est une quar-
lique que j'appellerai Q et dont l'équation est de la forme 

(5) ξ,. = JtL. + ft,. (ί = I, 2, 3, 4). 

Soient donc 
/ ξ/ == 3λ', (£ = 2,3,4), 

(6)J ξ/ = 3λ^ (ί= Ι,3,4), 
I ξ,· = 3λ'3 (£=1,2,4), 

[ Si = 3λ( (£ = I, 2, 3) 

les asymptotes de la quartique Q. 
La cubique qui sert de directrice à la surface S., aura pour asym-

ptotes 
ξ,·=2λί + λ; (£=i,2,3; A-=t,2,3; i>k). 

Or nous connaissons les asymptotes de la directrice de S
4
 ; on peut 

les déduire de l'analyse du numéro précédent. 
J'appellerai kiè,He asymptote {k = i, 2, 3) de cette directrice celle 

qui correspond à = oo, et j'écrirai la première équation de la pre-
mière asymptote sous la forme 

(7> ζ, = ± ι / — Ύι-γ" · 

La surface S., a deux directrices ; le signe 4- correspond à la pre-
mière directrice, le signe — à la seconde. Nous prendrons, par 
exemple, la première directrice et le signe 4-. 

Les autres équations de la première asymptote et celles des autres 
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asymptotes se déduiraient de l'équation (7) par permutations d'in-
dices. 

Nous aurons ainsi six équations analogues à (7); j'appellerai êquct-
lion(Ji, h) celle des équations de la kikm asymptote qui donneEn. 

On verrait alors que dans l'équation (Zr, h) on doit prendre le 
signe + si h succède à h dans l'ordre circulaire 1, 2, 3, 1, et le 
signe — si c'est h qui succède à h. 

On a donc 

(8) ϊλ; + λ; = +ν
/Γϊ^ 

avec cinq autres équations analogues. 
De ces six équations (8) on déduit d'ailleurs aisément 

(9) 

^2 ^3+ y'1 

λ; -+-.XJ -+- λ; = ο, 

λ; + λ;-Ηλ; = ο. 

On peut, en considérant la directrice de S,, de S2, ou de S;, au lieu 
de S

4
, obtenir trois autres groupes de six équations analogues à (8). 

Cela ferait en tout vingt-quatre équations; mais elles ne sont pas 
toutes distinctes. En effet, les équations (8) peuvent être remplacées 
par trois d'entre elles et par les trois équations (9). Chacun des 
quatre groupes de six équations peut être remplacé par trois de ces 
six équations et par un groupe de trois équations analogues à (9). 
Mais les quatre groupes de trois équations analogues à (9) ne con-
tiennent en réalité que quatre équations distinctes, à savoir les trois 
équations (9) et l'équation 

(9 λ; -+- λ * H- λ* = ο. 

Il y a donc seulement seize équations distinctes que j'appellerai 
les équations (1 o). 

Il faut dire quelques mots au sujet des radicaux qui entrent dans 
ces équations. Il semble au premier abord que les six équations (8) 
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contiennent trois radicaux distincts 

ν~~τΓ' V~ir· V~~' 

mais ils s'expriment tous rationnellement en fonctions des γ et du ra-
dical unique 

Pt = V-Y asYiaïie-

Nous avons donc en tout dans nos équations (10) quatre radicaux 
p

1f p2, p
3

, p
4
 que l'on peut déduire de p

4
 par permutations d'indices. 

En réalité, ces quatre radicaux ne sont pas encore distincts ; car le pro-
duit p, p2p3p, est égal au produit des six γ et, par conséquent, ration-
nel. D'ailleurs, il est impossible, si les γ sont regardés comme indé-
pendants, d'exprimer p

3
, par exemple, en fonction rationnelle de p

n 

de p2
 et des γ. 

Si donc on se donne les γ, il faudra encore se donner le signe de 

pη pa> p
3
 ; le signe de p

4
 s'en déduira. 

Nos seize équations (10) peuvent se répartir en quatre groupes de 
quatre. Le premier groupe contiendra les équations qui définissent 
les λ· et qui s'écrivent 

y2H- H- = o, 

αλΐ + λί = £, 
(II) 

2λ; + λ.: = ·^, 

+ χ; = -P3/y 

Voici comment ont été déterminés les signes des seconds membres. 
Revenons à l'équation ( 7) ; le second membre, en prenant le signe -+-

devant le radical, s'écrit j'ai donc pris, pour la première équa-
Yl3 

tion (8), 

(S.bis) *λ; + λΐ=ώ. 
Y13 

Pour obtenir les cinq autres équations (8), il suffit de permuter les 
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indices 1, 2, 3 de tontes les façons possibles, en conservant le signe -b 
devant le second membre si la permutation appartient au groupe 
alterné et en lui donnant le signe — dans le cas contraire. 

On obtiendra ensuite les trois autres groupes de six équations ana-
logues à (8) en permutant circulairement les quatre indices 1,2,3, 
4· Cette règle pourrait toutefois soulever une difficulté. Quand on 
permute circulairement 1,2, 3, 4» pour les changer en 2, 3, 4» 
le carré pj se change en pj; mais on ne sait pas si p

4
 se change en H- p, 

ou en — p,. 
Pour tenir compte de cette difficulté j'écrirai la première équa-

tion (8), non plus sous la forme (8 bis), mais sous la forme 

(8 ter) 2y² + y² = EP4/ y13, 

où ε
4
 = ± 1 et dans les autres équations (8) je remplacerai de même 

p
4
 par ε

4
ρ

4
. Je ferai ensuite une permutation circulaire d'indices; et 

j'obtiendrai trois autres groupes d'équations analogues à (8) où en-
treront trois nombres ε,, ε

2
, ε

3
, tous égaux à±i. 

Cela posé, nous avons vu que de nos quatre radicaux p, trois sont 
indépendants; je puis donc prendre arbitrairement le signe de trois 
d'entre eux ; celui du quatrième s'en déduira ; de même, je puis prendre 
arbitrairement le signe de trois des ε, celui du quatrième s'en déduira. 
Je puis donc faire 

ε2= ε, = ε4 = ι. 

Mais je ne sais pas si ε, est égal à -h 1 ou à — 1. 
C'est ainsi que j'ai obtenu les équations (11). Pour qu'elles soient 

compatibles, il faut et il suffit que 

P» j P* P» 
723 734 724 

ou que 

(12) vVnTnYinYi» -t-VTfuYnYsjTs» = V^.ÛYhTSJYJ*· 

Cette condition ne change pas quand on permute circulairement les 
Joum. de Math. (5e série), tome I. — Fasc. III, i8<)5. 38 
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quatre indices ; les quatre groupes d'équations analogues à (ι t) seront 
donc compatibles si l'on suppose la condition (12) satisfaite et que 
l'on prenneε, = t. 

La condition (12) est donc la condition nécessaire et suffisante pour 
que les seize équations (ro) soient compatibles. 

On peut encore se demander s'il existe une quartique Q admettant 
les asymptotes définies par ces seize équations et si la variété de trans-
lation distinguée, dont Q est la directrice, est bien la variété V. 

Nous savons que les périodes a
ik

 sont au nombre de ^ > c'est-

à-dire, dans le cas de p — 4> au nombre de 10. D'un autre côté, le 
nombre des modules d'une courbe de genre 4 est égal à 3/> — 3 = 9. 
Il faut donc une condition et une seule pour qu'une fonction Θ de 
genre 4 soit spéciale; si cette condition unique est remplie, la variété 
0 = o est une variété de translation distinguée. 

Si les termes latéraux #,·*(«<£) sont très petits, cette variété diffère 
très peu de Y; il suffit donc d'une condition pour que V soit une va-
riété de translation distinguée. Or nous venons de voir que, pour que 
V soit une variété de translation distinguée, il y a une condition néces-
saire, c'est la condition (12) ; donc, comme d'ailleurs l'équation (12) 
est indécomposable, cette condition sera aussi suffisante. 

Nous pouvons donc énoncer les résultats suivants : 

i° Si une fonction 0 n'estpas spéciale, c'est-à-dire si elle ne doit 
pas son origine à une courbe algébrique de même genre> Γ équa-
tion 0 = o ne présente pas, en général, le caractère translatif 
qu'elle présente, au contraire, d'après les théorèmes de Riemann si la 
fonction 0 est spéciale. 

20 Pour qu'une fonction Θ de genre 4 doive son origine à une 
courbe algébrique de genre 4, il faut et il suffit qu'il y ait une cer-
taine relation entre les périodes aik. 

Cette relation est transcendante et, en générai, assez compliquée. 
Mais si les périodes au étant finies, les périodes aik(i^k) sont très 
petites, cette relation se réduit à 

(l2 blS^ sja>\ïU\3Λ34 d"t\ "H ®23 — V® I 2 ^23 ̂ 31 * 
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Pour l'étude de la variété V, on peut encore raisonner comme il 
suit : 

Reprenons les équations de la quartique Q ; la variété dont cette 
quartique est la directrice aura pour équations 

(i3) Ei = Bi / t- ai + Bi / u - ai + Bi / v - ai 

t, u et ρ étant trois variables auxiliaires. 
Soit maintenant Ρ un polynome entier du premier degré par rap-

port à chacune des quatre variables ξ/ (et, par conséquent, du qua-
trième degré par rapport à l'ensemble de ces quatre variables). Ce po-
lynome contiendra seize coefficients arbitraires. 

Substituons-y à la place des ξ,· leurs valeurs (i3); Ρ deviendra une 
fonction R rationnelle en ί, a, décomposons cette fonction ration-
nelle R en éléments simples d'abord par rapport à t, puis par rapport 
à u, puis par rapport à v. Chaque élément sera le produit d'un coeffi-
cient numérique et de trois facteurs. Le premier facteur peut être 

t-=^ (1=1,2,3,4) OUI, 

le second 

jérj. (« = 1,2,3,4) oui, 

le troisième 
--Î— (1 = 1,2,3,4) OUI. 

A ce compte, le développement de R pourrait contenir 53 = 125 élé-
ments simples; mais il faut observer qu'aucun élément ne peut conte-
nir deux des trois facteurs 

I 1 I 

t —a,· u — <ΐ( ν — at 

avec le même indice ι; le développement de R contient donc seule-
ment soixante-treize éléments simples. 

Si l'on observe ensuite que la fonction R doit être symétrique ent, 
u, çy on voit que plusieurs des coefficients de1 ces soixante-treize élé-
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ments doivent être égaux, de sorte qu'il ne reste que quinze coef-
ficients distincts. 

Si j'annule ces quinze coefficients, j'introduirai quinze relations 
entre les seize coefficients de P, de sorte qu'un de ces seize coefficients 
reste encore arbitraire. 

L'équation de la variété dont Q est directrice sera donc de la forme 

Ρ = o. 

Nous avons choisi les axes parallèles aux asymptotes de Q, mais les 
directions des axes sont seules ainsi déterminées, l'origine reste arbi-
traire ; je puis en disposer de façon à faire disparaître les quatre termes 
du troisième degré du polynome P. 

Je dis que les quatre termes du premier degré auront disparu du 
même coup. 

Posons 
ρ = ΡΛ + Ρ;, 

P., et Ρ'
Λ
 étant deux polynômes du premier degré par rapport à cha-

cune des trois variables ξ,, ξ
2

, et, par conséquent, du troisième de-
gré par rapport à l'ensemble de ces trois variables. L'équation P., = ο 
doit être, comme nous l'avons vu plus haut, celle d'une surface de 
translation distinguée ayant pour équations 

ξ, = --2ί 1 Ë£ J Ë£ H (i'
 = I

 2,3) 

et pour directrice 
ξ.= -h —^ h b{. 

C'est donc, d'après le paragraphe précédent, une surface à centre et, 
comme les termes du deuxième degré (qui donnent dans Ρ des termes 
du troisième degré) manquent.par suite du choix de l'origine, le centre 
ne peut être qu'à l'origine. Le terme de degré ο doit donc manquer 
également. 

Donc le terme en ξ
4
 manque dans P, et l'on démontrerait de même 

que les autres termes du premier degré manquent également. 
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Le polynome Ρ ne contient donc que des termes de degré pair et 
nous pouvons écrire 

Ρ = ξ,Μ.ξ«-2'τ..ξ.ξ.+*. ■' 

Le polynome Ρ contient donc encore sept coefficients, à savoir S et 
les six γ. 

L'équation de laquartique Q contient douze arbitraires, à savoir les 
quatre ah les quatre β,· et les quatre bt \ mais nous pouvons faire subir 
à t un changement linéaire en posant 

λ t -t- μ 

t =λ,ί + (J., 

λ, (A, λ,, μ, étant des constantes quelconques que nous pouvons choi-
sir de telle façon que a

n
 a

2
 et a

3
 aient des valeurs données; il reste 

12 — 3 = 9 arbitraires; de plus, nous avons choisi une origine parti-
culière, ce qui revient à attribuer aux quatre &,· des valeurs particulières. 
Il reste donc 9 — 4 = 5 arbitraires. Il faut donc 7 — 5 = 2 conditions 
pour que Ρ = ο soit une variété admettant une quartique pour direc-
trice. 

L'une de ces conditions nous est déjà connue, c'est la condition (12). 
Nous savons d'autre part, quand cette condition est remplie, déter-
miner les asymptotes de la quartique Q. C'est ce que les équations (10) 
nous permettent de faire. 

Ces équations nous donnent en effet les λ en fonction des γ. Dans 
les équations (10) entrent trois irrationalités ; nous avons en effet quatre 
radicaux ρ,, p

2
, p

3
, p., dont le produit est rationnel, mais qui sont 

d'ailleurs indépendants. Mais, si l'on introduit entre les γ la relation 
(12), cette indépendance cesse. En tenant compte de la relation (12) 
on peut exprimer rationnellement, en fonction des γ, les produits des 
pi* deux à deux. 

On obtiendra donc les λ en fonctions rationnelles des γ et de l'un 
des p, et l'on en déduira sous la même forme la valeur de a

Ay
 celles 

des ($
f
· et celles des &

t
·. 

Toutes les constantes qui entrent d'ans les formules (13) sont alors 
déterminées en fonction des γ. 
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Substituons alors à la place des ξ
4
· leurs valeurs (i3)dans l'équation 

Ρ = o; nous trouverons une équation qui nous donnera δ, et la valeur 
de δ ainsi trouvée devra être indépendante de l, ueIv et dépendre 
seulement des γ. 

On peut faire ce calcul en donnant à i, u, ν des valeurs arbitraires ; 
mais le plus simple est de prendre t = u = ρ ; le point qui correspond 
à t = u = ρ est un point de la directrice. Voici comment on pourra 
diriger le calcul : 

Nous pouvons, comme je l'ai dit plus haut, remplacer, dans les équa-
tions de la quartique Q, la variable t par une autre variable ï liée à 
la première par une relation homographique. Le plus simple est de 
prendre 

* = ξ
4

. 

Les équatiojis de la quartique Q se réduisent à 

04) ζ.— 3 β' + b-

Substituons les valeurs (i4) dans l'équation P = o; nous obtien-
drons une équation qui nous donnera S. La valeur trouvée devra être 
indépendante de . 

Supposons ξ., très grand et développons ξ,· suivant les puissances dé-
croissantes de il viendra 

Ei = bi + 3Bi / E4 + ... 

Substituons ces développements à la place de ξ,, ξ2, ξ
3

. 
Dans Ρ, nous obtiendrons un développement procédant suivant les 

puissances décroissantes de et commençant par un terme en ξ, ; le 
premier terme du développement est 

£4 b» b* + 4- b
2
 -H 6

3
] 

et le second 

3β
4
(Μ

8
-γ„) +-3ΜδΑ~γ,

8
)-+-3β

8
(Μ

2
--γ

12
) 

— γ»*h b
9
 - γ

34
b, b

9
 - γ

84
b

K
 b

2
4- 0. 
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Ces deux termes doivent s'annuler; le premier s'annule de lui-même 
quand on y remplace les β et les b par leurs valeurs en fonction des γ ; 
en égalant, le seconda o, on aura une équation qui donnera δ. 

On trouve aisément 
β,= -3γ,.,; 

on obtient aussi, sans peine, les expressions des et, en tenant compte 
de (12), on a finalement 

(i5) S = Y.aYa» + VuV» + ïuY»»· 

Les conditions (12) et (i5) sont donc les deux conditions nécessaires 
pour que Ρ = ο soit l'équation de la variété dont Q est la directrice. 

On peut, d'après ce qui précède, obtenir les λ en fonctions ration-
nelles des γ et de l'un des p, et comme ρ est susceptible de deux valeurs 
égales et de signe contraire, on trouvera pour chacun des λ deux va-
leurs. 

La variété Y admet donc deux directrices Q et elle sera, de deux 
manières différentes, une variété de translation distinguée. 

Par raison de symétrie, il est évident qu'on passera d'une des direc-
trices à l'autre en changeant ξ,· en — ξ,·. 

Ce résultat ne doit pas nous surprendre; et en effet la variété 

Θ = ο 

est aussi, de deux manières différentes, une variété distinguée et elle ad-
met deux directrices qui ont respectivement pour équations 

^==-+-3^/, Ui=— 3e
t
. 

Les mêmes considérations peuvent être étendues au cas de ρ > L\. 
Le nombre des quantités aik est égale ^ 

P(P + 0 
2 

Celui des modules d'une courbe de genre ρ est 3p — 3.-
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Pour qu'une fonction Θ soit spéciale, il faut donc 

■ />(/>·+·0 3
p

 ■ 3 _ (P — *)ÎP-Z) 

conditions. 
Supposons maintenant les termes latéraux très petits, u

t
· très voisin 

de et posons 
ut=9.i+t\h aik—P*>ik. 

Conservons seulement dans le développement de Θ le premier terme 
qui est en tp et négligeons les suivants. 

L'équation Θ = ο devient alors celle d'une variété algébrique que 
j'appelle V et qui est de degré p\ le premier membre de l'équation de 

' V contient 
p(p — Ο 

2 

indéterminées qui sont les γ. 
Si V est une variété de translation, ce sera une variété de translation 

distinguée et les équations de sa directrice seront de la forme 

(16) *'=F^ + 6' (' = 1,2,···/>)· 

Les équations (16) contiennent 3ρ indéterminées qui sont les β, les α 
et les b. Si j'exprime que la variété dont la courbe (iG) estla directrice 
admet l'origine pour centre, j'aurai "déterminé les b et il me restera 
ip indéterminées. D'autre part, je puis choisir le paramètre t de telle 
façon que a,, a2y

 a
À
 aient telles valeurs que je veux. Il me reste encore 

2jo —3 arbitraires. Donc, pour que Y soit une variété distinguée, 
il faut 

P(P~ Ο _ ç
2
p _ 3) _ (P-i)ip-3) 

conditions. 
C'est le même nombre que plus haut. Quelles sont ces conditions? 

On voit d'abord que la condition (12) doit encore être remplie, ainsi 
que toutes celles qu'on en peut déduire par permutations d'indices. Le 
nombre des conditions ainsi obtenues est égal au nombre des combi-
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naisons de ρ lettres 4 à 4· Ce nombre est plus grand que ———— 
d'où il suit que ces conditions ne sont pas toutes distinctes. 

12. — Cas voisins des cas singuliers abéliens. 

Soit ρ = 3, et considérons la fonction Θ. 
Si 

dK 3 = #23 = O, 

on tombe sur le cas singulier abélien et l'on a 

Θ = Θ03, 

0 étant une fonction Θ de genre 2 de u
K
 et de u

z
, et θ

3 une fonction Θ 
elliptique de «3. 

Supposons maintenant que a,3 et a23 ne soient pas nuls, mais très 
petits, de façon qu'on se trouve dans un cas voisin du cas abélien. 
Posons 

«2 = «3 &n = h 

t étant un paramètre très petit, et développons suivant les puissances 
de/; il viendra, en négligeant/2, 

O = tO'3 ( OE - y1dO/du1 - y2 dO/du2) 

Je désigne par 0!, ce que devient quand on y remplace u
à 

par «3. 
L'équation Θ = ο se réduit à 

ω g __ Ï1 . γζ dft 

Si l'on regarde ξ, u
n

 u.
2 comme dès coordonnées rectangulaires, 

l'équation (r) doit être celle d'une surface de translation. 
Nous avons vu plus haut à plusieurs ,reprises, et notamment au § 6, 

qu'une génératrice d'une surface de translation 

*=/(*> r) 
Jcurn. de Math. (5* série), tome I. — Fasc. IIl^ 1895. -39 
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doit avoir pour équation 

y = &' df / dx + Bdf/dy, 

α, β, γ étant des constantes. 
Si donc nous posons 

r/Mogô ρ d!log6 d1 logfi m 
du²1 du1du2 du²2 

nous aurons pour l'équation d'une génératrice de la surface (i), 

β = α,γ, R 4- («,γ, + α,γ.,)8 -+- α,γ
2
Τ, 

. a,, a
2
 et β étant trois constantes. 

Ou bien 

(2) a,y,RG2-t- (α3γ, -h α,γ
2
) SO2 H-α

2
γ

2
Τ02 — β θ2 = ο. 

Or RÔ2, SO2, ΤΟ2, ô2 sont des fonctions 0 de genre 2 et du second 
ordre ayant mêmes multiplicateurs, appartenant, par conséquent, au 
même faisceau (toutes ces fonctions sont paires). 

Il en est donc de même du premier membre de (2), que j'appellerai 

7)0,·). 

Notre génératrice a donc pour équation 

*!(«/) = o. 

Une autre génératrice aura pour équation 

(3) Y)'(u,) = o, 

r( étant une fonction 0 ayant.mêmes multiplicateurs que η. Mais, 
comme elle doit être égale à l'autre génératrice, elle devra aussi avoir 
pour équation 

(4) n(ui - hi), 
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h
{
 et h

2 étant deux constantes. Or les fonctions η'(iiv).et η(ui - hi) 
n'ont pas mêmes multiplicateurs; elles ne peuvent donc être iden-
tiques, d'où il résulte que les deux courbes (3) et (4) ne peuvent 
avoir une partie commune qu'à la condition de se décomposer. 

Donc η'(tf,·), η(«/ —Λ/) et V)(w,·) doivent se décomposer en deux 
facteurs, et l'on aura 

n(ui) = cO(ui - ei)O(uiH- e;), 

c, e
{
 et e

3
 étant trois constantes. On obtiendra une génératrice en 

annulant l'un des deux facteurs, c'est-à-dire en faisant n
t
· = vp^ep, 

je dirai en faisant i^= p,·-t-e,·, ce qui ne restreint pas la généralité 
puisque rien ne distingue e

t
- de — e{. 

Donnons de tout cela une interprétation géométrique. Si R, S et Τ 
sont trois coordonnées rectangulaires, le point (R, S, T) sera sur une 
surface de Kummer; l'équation (2) représentera un plan et pour que 
la fonction η se décompose, il faut que ce plan soit un plan tangent. 

Les génératrices de la surface (1) correspondront donc aux inter-
sections de la surface de Kummer par ses plans tangents, ou plutôt à 
quelques-unes d'entre elles. 

Observons que le plan défini par l'équation (2) est parallèle à la 
droite 

(5) Y,R + Y»S = o, γ, S + γ,Τ = o. 

Les courbes qui, sur la surface de Kummer, correspondent aux 
génératrices de la surface (1) sont donc les intersections de celte 
surface de Kummer avec les plans tangents qui lui sont menés pa-
rallèlement à la droite (5). 

La droite (5) se trouve sur le cône du second degré 

(6) RT - SJ = o. 

Le plan η = ο défini par l'équation (2) est donc tangent à la sur-
face de Kummer en un point M dont les arguments abélieiis uK et u3 

seront définis par les équations 

θ(Ui — eï) = 0, -ô(Ui ■+■ et) = 0. 
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Il est tangent en outre au cylindre Ν qui est circonscrit à la surface· 
et dont les génératrices sont parallèles à la droite (5). 

Au point M je ferai correspondre le point M' qui a pour arguments 
abéliens e{ et e2 augmentés d'une des dix demi-périodes qui n'annulent 
pas Θ. Voici quelle en est la signification. 

La surface de Kummer est sa propre polaire réciproque par rapport 
à une quadrique convenablement choisie (et cela de dix manières dif-
férentes). Le point M' sera, d'une de ces dix manières, le réciproque 
du plan (2), et quand le plan (2) enveloppera le cylindre N, le point 
M' décrira une certaine courbe plane Q dont le plan sera le réciproque 
du point à l'infini défini par les équations (5). 

Étudions cette courbe Q. 
Supposons que l'on ait mis les équations de la surface (1) sons la 

forme translative 
»/=//(0+//(0· 

On aura l'équation d'une génératrice en donnant, soit à t soit à une 
valeur constante ; mais nous avons trouvé pour l'équation d'une géné-
ratrice 

θ( ,· — <?«■) = °, 
d'où 

ut- ~ Vi H- er 

On aura donc, si la génératrice a été obtenue en faisant l' = const., 

fi(l)—Vi = Ci = const. 

On trouverait de même, en considérant la génératrice obtenue en 
faisant t = const., 

fit/)- v'i = coml., 
d'où 

ui—MO +//(0 = +const· ; 

j'appellerai Ar
{
· la constante du second membre et j'écrirai 

d'où 
u^Vi-1-4 +kh 

a = 4 H- h. 
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Or la courbe Q a pour équation 

m = et -hwi, 

tSi étant une demi-période. Cette équation peut s'écrire 

UÎ — ç- + k( + GX/, 

ki-\-TZi est une constante, est une fonction de a?', x' étant un des 
points de la courbe C. 

Donc la courbe Q est plane et son plan doit être tangent à la sur-
face de Kummer. 

Le point à l'infini dans la direction (5) qui est le réciproque de 
ce plan, doit se trouver sur cette surface. 

La conique à l'infini, définie par l'équation (6), est donc sur la 
surface ; c'est donc une des seize coniques singulières de la surface. 

Pour achever l'étude des génératrices, reprenons la surface 

(<) 5
 =

 Il^Lh_Ï!Û!?. _φ(α·\ 

On obtiendra l'équation complète d'une génératrice en adjoignant à 
l'équation (i) l'équation 

(7) θ (ι*,·-<?,) = o, 

d'où l'on tire 
Ui = Vi + eh ξ = Φ(*>/-+-<?,·). 

Une autre génératrice aura pour équations 

Ui = Vi-f-e;., ξ=Φ(Ρ/Η-ή), 

et, comme elles doivent être égales, on devra avoir 

φ(* + e'i) - Φ(f/ ed =k, 

k étant une constante. Posons donc 

ψ(α,) = Φ«.Η- Ui) -Φ(<?<·-f Ui)—k. 
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La fonction ψ(«/) est évidemment une fonction abélienne qui a 

pour dénominateur 
θ (m,· 4- ci) θ(ΐ£,·4- e(). 

Le numérateur doit évidemment être une fonction θ du deuxième 
ordre appartenant au même faisceau que le dénominateur. 

D'autre part, le numérateur doit s'annuler pour w
f
-= p,·, c'est-à-dire 

pour θ'(ΐί,·) = o. 
Il se décompose donc en deux facteurs; un de ees facteurs doit être 

0(u'i) et il est aisé d'en déduire l'autre facteur. On aura donc 

(8) r\uO— β(ιι,+Ο ' 

M étant un facteur constant. 
L'étude de cette identité conduirait sans doute à des résultats inté-

ressants, mais je ne l'entreprendrai pas; cela m'entraînerait trop loin. 
Je me bornerai à résumer cette discussion ; pour avoir les équations 

des génératrices, on posera 

Ui— + kj, 

kt étant la constante définie plus haut; si sur la courbe C on envisage 
deux points χ et l'intégrale sera fonction de χ et l'intégrale v] 
de x'\ on obtiendra alors toutes les génératrices en faisant, soit 
χ = const., soit x'= const. On voit en même temps que la surface (i) 
est une surface de translation distinguée. 

La conique définie par l'équation (6) est l'une des coniques singu-
lières de la surface de Kummer et comme elle est rejetée à l'infini, si 
l'on considère R, S et Τ comme des coordonnées rectangulaires, elle 
est dans le plan 

ô2= o. 

Son équation se réduit donc à «/ = p,·, c'est-à-dire que, au point à l'in-
fini dans la direction (5), on doit avoir 

ui = - vi, 
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étant un point fixe de C et p? la valeur correspondante de l'inté-
grale V/ (je pourrais aussi bien écrire κ,= -H pj, car l'équation ô — ο 
est aussi bien équivalente à «,·= H- vt qu'à «,· — — p,·). 

D'autre part, l'équation de notre génératrice sera 

a,· = P/ 4- Cf. 

La courbe qui correspond à cette génératrice sur la surface de Rum-
iner devra passer par le point à l'infini dans la direction (5), puisque 
celte courbe est l'intersection à la surface avec un plan tangent passant 
par ce point. 

Il existera donc sur la courbe C un point #2, tel que 

0?+«/=-"! |>?= Ρ/(«·)1· 

Il existera aussi sur C un point χtel que 

v'i=-vf Μ=<ν(®')]· 

La courbe C est une courbe plane du quatrième degré à point double ; 
la droite qui joint x' à x2

 va passer par ce point double. Il vient alors 

β,= 4-ρ; 

et pour l'équation de notre génératrice 

B/=c/+ vi - vio. 

La quantité que nous avons appelée plus haut Ar
f
- est donc égale à — pj. 

Soit maintenant ρ = 4 et considérons une fonction Θ spéciale. Si 
l'on avait 

<Zk 4 #24 #34 0, 

β serait le produit d'une fonction de genre 3 et d'une fonction de 
arenre ι. et l'on aurait 

Θ = θ64, 

θ dépendant de w,, uir uz et de uA. 
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Supposons maintenant que au, aa4, a34
 ne soient pas nuls, mais 

très petits, de façon qu'on se trouve dans un cas voisin du cas abélien. 
Posons 

(9) u4 = &4 + lE, ai4 = lyi 

et développons Θ en négligeant t3, il viendra 

O = lO'4 (OE - y1 dO/ du1 - y2) 

L'équation Θ = ο se réduit à 

(10) ^ ~ 0 du, + θ rfw, θ d«3 ~~ ' " a'u3), 

ce doit être l'équation d'une variété de translation. 
Mettons les équations de cette variété sous forme translative : 

&i//(Ο + ΖΧΟ'+'/ΧΟ 0 = L 2> 3), 

^MO+f'ÂO+AiO, 

l, l', t" sont trois variables auxiliaires qui n'ont rien de commun, d'ail-
leurs, avec la variable t qui entre dans les équations (9). On obtien-
drait une génératrice en donnant à i! et à t" des valeurs constantes; si 
l'on donne à t" seulement une valeur constante, on obtiendra un fais-
ceau de génératrices dont l'équation peut être mise sous la forme sui-
vante. Soit, pour cette valeur constante de 

£L = e-

les β,· seront des constantes. 
L'équation du faisceau de génératrices pourra s'écrire 

(«) 
o d¥ 0 dF 0 dF Ω 
du1 + B2 du2 du3 = 0 

Or 
e», iEoa, ίΐ.9» 



SUR LES FONCTIONS ABÉLIENNES. 307 

sont des fonctions θ qui ont mêmes multiplicateurs. Le produit du 
premier membre de (11) par Qa sera donc une fonction η ayant mêmes 
multiplicateurs que 62. L'équation (11) devient donc 

η(α,) = ο. 

Un autre faisceau de génératrices devrait avoir pour équation 

η'(ΐί,) = ο, 

η' ayant mêmes multiplicateurs que η. D'autre part, il devrait avoir 
pour équation 

Y)O
t
--/f,) = o, 

les ki étant des constantes. Il en résulte que η doit se décomposer et 
qu'on doit avoir 

η = θ(^·—<?,·)·. 

Gomme rien ne distingue et de <?,·, je puis dire que l'équation d'un 
faisceau de génératrices s'écrit 

(12) 9(«/—e,-) = o. · 

On déduit de là 

(.3) Ui = Çrh pj + Ci 

ou bien 

04) Ui=— pJ- v"!-heh 

vh Pf-5 , p" sont les valeurs de l'intégrale ç
t
 qui correspondent à quatre 

points de la courbe C, que j'appelle x, ôc\ χ", x'". 
On voit ainsi que la surface (12) est de deux manières différentes 

une surface de translation, et que ces deux manières sont définies 
respectivement parles équations (i3) et (14)· 

D'autre part, on peut écrire les équations de la surface (12) sous la 
lourn. de Math. (5e série), tome I. — Faec. IU, 189S. 4° 
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forme 

(.5) l*i — fi(l) +fi (?)+ /'(*")> 

où l" et, par conséquent, sont des constantes. 
On peut alors faire trois hypothèses 
Ou bien les équations (i5) sont équivalentes aux équations (13), 

c'est-à-dire que l'on a 

fi(t)= f- const., — pj-h const. 

Ou bien les équations (i5) sont équivalentes aux équations (i 4), c'est-
à-dire que l'on a 

/,·(/) = —- pj-f. const., /;(/') = — p"+ const. 

Ou enfin les équations (id) définissent une troisième manière pour la 
surface (12) d'être de translation. 

Cette troisième hypothèse doit être rejetée; on pourrait sans doute 
démontrer que la surface (12) ne peut ctre de translation que de deux 
manières. Mais on peut se dispenser de cette vérification. 

Rappelons-nous en effet notre point de départ. Nous avons envisagé 
d'abord une fonction Θ spéciale de genre L\. L'équation 

Θ = ο 

représente alors une variété de translation dont les génératrices ont 
pour équations 

uι = const., 

pétant une des intégrales abéliennes de première espèce afférentes à 
la courbe C de genre t\ qui engendre la fonction spéciale Θ. 

Nousavons supposé ensuite que <z
M

, «
2i

, aik étaient des infiniment 
petits et, négligeant des termes d'ordre supérieur, nous avons réduit 
l'équation θ = ο à la forme (10). 

Mais, quand α
14

, α.,.,, a.
iS

 s'annulent, la courbe C qui était de genre ί\ 
se décompose en deux autres, l'une de genre 3 correspondant à la 
fonction 0, l'autre de genre 1 correspondant à la fonction 04. 
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Rappelons-nous que G dépend seulement de u
t9
 u

v
 et 0^ de u

h
. 

La variété Θ = ο reste de translation et l'équation de ses généra-
trices conserve la forme 

û,- — const. 

Si ί= ι, 2 ou 3, ρέ devra être l'une des intégrales abéliennes de 
première espèce qui se rapportent à l'une des composantes de la 
courbe C, à celle qui est de genre 3 et qu'engendre la fonction Û. 

Ainsi la variété (io) peut être regardée comme de translation et de 
telle façon que ses génératrices aient pour équations 

Ui = Vj H- const. 

La première hypothèse est donc réalisée. 
Observons en passant que la seconde l'est également. En effet, la 

variété Θ = ο est de deux manières différentes une variété de trans-
lation. De la première manière ses génératrices ont pour équations 

Uj = pf—h const. 

De la seconde manière elles ont pour équations 

U; — — Pi -+- const. 

A la limite, la variété (ίο) sera de translation de deux manières 
différentes. De la première manière ses génératrices ont pour équa-
tions 

Ui = Pi-+- const. (/ = ι, 2, 3 ). 

De la seconde elles ont pour équations 

Ui=— V;-h const. 

Nous nous en tiendrons à la première manière. 
Alors les équations de la variété (io), mises sous forme translative, 

s'écriront 
Ui = P( 4- Pi -H P( -+- ki ( ί == 1,2,3), 
E = f1(x) + f'1(x') + f"1(x"). 
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Les ki sont des constantes; x
y
 χ', χ" sont trois points de la courbe C 

de genre 3 qui engendre 0; vh v\ sont les valeurs correspondantes 
de l'intégrale de première espèce P,·. . 

Puisque l'on a d'autre part 

Ui
 — Vi 4- v\ 4- eh 

on aura donc 
et == v. 4-ki 

Comme rien ne distingue le point x'r du point x, nous pouvons sup-
primer les accents et écrire 

(iG) Ci = Vi -h ki. 

Nous avons dit plus haut que le premier membre de l'équation (ι τ) 
peut se décomposer en deux facteurs et s'écrire 

0(ui - ei) O ( ui + ei). 

Mais ce produit peut se mettre sous une forme particulière. 
Posons, pour plus de symétrie dans les notations, 

O²(ui)= £·("*·)· 

Je désignerai d'autre part par £*(«<·), (k = 2, 3, ..7) les six dé-
rivées secondes de logO multipliées par 0(ui). 

Par exemple ζ2, ζ3, ζ., seront formées avec les dérivées secondes 
prises deux fois respectivement par rapport à , à u

2
 et à u, ; ζ

5
, ζ„, ζ-

seront formées avec les dérivées secondes prises respectivement par 
rapport &ιι.

2
 et w

3
, à u, et &

3
, à u

{
 et u

2
. 

Les fonctions ζ,, ζ
3

, ..., ζ7
 ont mêmes multiplicateurs et appartien-

nent au même faisceau. 
Soit ζ

8 une huitième fonction quelconque linéairement indépendante 
des premières et appartenant aussi au même faisceau. 

On démontre que 

ί 0(a,·-e
{
) 0(^-4-<?,·) 

(17) = Ci(ui)C1'(ci) + (ui) C2+ ... + C8* 
f 
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Les fonctions ζ',, ζ'
2

, ..., ζ'
8
 sont des combinaisons linéaires de ζ,, 

ζ
2

, ..., ζ8; ce sont donc encore des fonctions appartenant au même 
faisceau que Θ2. 

Quand on fait là-dedans 
Ci = vt -h h,·, 

l'expression (17) doit (à un facteur constant près qui, étant arbitraire, 
peut être supposé égal à 1) se réduire au premier membre de (11) 
multiplié par 6a. 

Or 
• ( γ; ζ'4 - γ3 γ, ζ'β + γ? ζ', 

O² dE / du2=γιζ» + γ«ζ. + γ·Ϊ9. 

O² dE/du3 = y1Co + y2 

On a donc, pour e,· = kh 

ς=0, ς=ρ(γ„ ς = ρ,γ« r» = P.T.. 
^5 Ta? Co = βι-Ύ3 βίΎ'' C7 == βι Ta βδΤι ' 

d'où 
ί YÏCa — T« T»Ci -·- TÏ^i= 0, 

("β) γ^;-τ
2
γ

3
Ογ;ζ; = ο, 

• ( γ; ζ'4 - γ3 γ, ζ'β + γ? ζ', = ο. 

D'après le η° 47, quand on fait et = c
t
· -H kiy il y a 

np ρ — np — ι 

fonctions du faisceau qui s'annulent identiquement. Ici ri — 2, ρ — 3 ; 
il y a donc dans le faisceau quatre fonctions linéairement indépen-
dantes qui s'annulent identiquement. Ces quatre fonctions doivent 
être ζ'

8
 et les premiers membres des trois équations (i 8 ). 

Nous définirons donc les trois constantes /c,, /ra, k3 par la condition 
suivante: 

C» (vi "+* ki) 
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devra être nul quel que soit le point χ cle la courbe C auquel corres-
pond l'intégrale P,·. 

L'ensemble dés valeurs de kn /c2, /c3
 formera une certaine variété. 

Cette variété ne peut avoir trois dimensions; sans cela ζ'
Η
 devrait 

être identiquement nul, ce qui ne peut avoir lieu. En effet, nous avons 
désigné par ô( u) la fonction 

2em1n1 + m3n3 + p 

où Ρ est une certaine forme quadratique par rapport aux />?, dont les 
coefficients dépendent des périodes. ' 

Considérons maintenant les séries 

Oo) Ee m1n1 + m2 

où je ne donnerai ù m, que des valeurs paires ou que des valeurs im-
paires; de même je ne donnerai à m

2
 que des valeurs paires, ou seule-

ment des valeurs impaires; de même pour m
3

. 
Cela fait deux hypothèses pour m,, deux pour deux pour /«., ; 

en tout 23 = 8 hypothèses. On peut donc former huit séries (19). Ce 
sont des fonctions 0 du deuxième ordre ayant mêmes multiplicateurs. 

Je les désignerai par 
*h> η2> ···» ^8· 

On a alors 

0 (ui— 0(«, -+- e() 

= ηι0/)η<0/)-1- η
2
("/)η

2
(^·) +·· ·· + η

8
(^,·)η

8
(^/). 

Les η,, η
2
,..., η* s'exprimeront linéairement à l'aide des ζ et l'on aura 

(•9) *)* = £-,.*£,·+· 0
2
.*ζ

2
 4-... H- G

8
.
A
£

K 

et l'on déduit de là 

(20) Ï'.(E<)= G->.S»1J(C/) + ·· · + G,.,I),(C
F
). 

Il ne peut pas arriver que l'on ait à la fois 

G8.I — G
8
, — ... — G

8>8
 — o, 
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sans quoi les équations (19) montreraient que les η* ne sont paslinçai-
rement indépendants, ce qui n'a pas lieu. 

Il ne peut pas arriver non plus que, les huit constantes G
8
.A n'étant 

pas nulles à la fois, ζ'8 soit identiquement nul, sans quoi l'équation (20) 
exprimerait à son tour que les ne sont pas linéairement indépen-
dants. 

Ainsi la variété formée par les ne peut pas avoir trois dimensions ; 
elle ne peut pas non plus en avoir deux. 

Pour qu'elle en eût deux, il faudrait que les deux équations 

w+kt)=°; NW+*O='«. 

(où Pj etc] sont deux valeurs particulières de p
f
) fussent identiques, 

ou au moins que les premiers membres de ces deux équations se dé-
composassent en plusieurs facteurs et qu'un facteur fût commun à ces 
deux premiers membres. Il faudrait donc que, si 

Y(vio - ki) 

est ce facteur, ce facteur ne changeât pas quand on y remplace P]' par 
une autre valeur de p

t
·. 

Cela est évidemment impossible. 
Supposons donc maintenant que la variété des k,· ait une dimension 

seulement. Nous regarderons par conséquent k
t
, A2

 et k, comme des 
fonctions d'une variable unique que j'appellerai z, Comme les dé-
pendent de χ, les Ρ

4
·-+- A, sont des fonctions de χ et de z. 

Il y a, d'après ce que nous avons vu, trois combinaisons linéaires 
de ζ',, ζ'

2
, ..ζ'

τ
 qui sont identiquement nulles quand on y remplace 

les par H- A
t
·; expliquons le sens de cette proposition; si je regarde 

Un instant z comme une constante, les Ay seront aussi des constantes; 
mais P/ dépendant de #, quand on aura remplacé ey· par ρA,·, les ζ' 
deviendront aussi des fonctions de a?; il y aura entre ces sept fonctions 
de χ trois relations linéaires à coefficients constants. Mais je veux dire 
par là que ces coefficients ne dépendent pas de x; ils dépendront, au 
contraire, de s. . < 

Ces trois relations linéaires doivent être les équations (18·)·. Nous 
voyons donc que γ';, γ,γ

2
, yi;, yj, ... sont des fonctions de z. 
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Si l'on élimine ζ entre ces équations, on obtiendra une relation 

entre ~ et —· C'est cette relation qui exprime que la fonction Θ est 

spéciale. 
Il reste encore à examiner deux hypothèses; on pourrait supposer 

que la variété des kt a ο dimensions; c'est-à-dire que les /r,· peuvent 
prendre un ou plusieurs systèmes déterminés de valeurs. Alors, en rai-

sonnant comme nous venons de le faire, on verrait que les rapports ̂  s 

^ devraient prendre aussi des valeurs déterminées. Cela ferait donc 

deux conditions nécessaires pour que la fonction Θ soit spéciale et 
nous savons qu'il ne doit y en avoir qu'une. 

On pourrait supposer enfin qu'il n'existe pas, en général,' de va-
leurs des ki telles que 

?,(«>/+*/) 
soit identiquement nulle. Il faudrait donc, pour que la fonction Θ soit 
spéciale, qu'une certaine relation ait lieu entre les périodes 

Q'ikif'i h — L 2, >5), 

relation où les γ n'entrent pas. Mais comme il suffit d'une condition 
pour que la fonction Θ soit spéciale, lorsque la relation dont je viens 
de parler entre les aik serait satisfaite, la fonction Θ devrait être spé-
ciale quels que soient les γ. Il faudrait donc que la relation entre les 
a

lk
 étant satisfaite, la variété des k( ait deux dimensions et nous ve-

nons de voir que cela était impossible. 
Les deux hypothèses doivent donc être rejetées l'une et l'autre. 
Je m'arrête, quoique je n'aie fait qu'effleurer mon sujet; la consi-

dération des variétés de translation m'a donné un moyen d'exprimer 
la condition pour qu'une fonction Θ soit spéciale, mais je ne l'ai appli-
qué qu'à des cas très particuliers. 

Il y a lieu d'espérer qu'en l'appliquant au cas général on obtiendra 
des résultats dignes d'intérêt. De même, j'ai dû passer très rapide-
ment sur le cas voisin du cas singulier abélien qui a fait l'objet du pré-
sent paragraphe; mais je crois qu'il y a là un joli sujet de thèse. 


