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' SUR LES FONCTIONS ABELIENNES. 249

Remarques diverses sur les fonctions abéliennes;

Par M. H. POINCARE.

1. — Définitions.

Je considére un systéme de fonctions abéliennes de genre p depen-
dant des p variables .
Uyy Uy ooy Up

et admettant 2p périodes.
J’écrirai souvent pour abréger

F(u,-) ou F(u, - e,«),' .

au lieu de
Flu,uy...;u,) ou F(u,—e,u,—e,,...,u,—e,),

e,y €y, ..., €, étant des constantes quelconques.
Si F(u;) est une des fonctions abéliennes considérées et si I'on a

F(u;) =F(u;+ a;),
on dit que :
. Gy 3y vy G

est une penode on sait qu on peut toujours supposer que I'on a choisi
les variables normales et les perlodes normales de sorte que le Ta-
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220 - H. POINCARE.

bleau complet des 2p périodes s'écrive

2T, 0, ..., O,

< o, 0, ..., 21T,
Ay,yy  Qyay -"‘3 “up',

Qa9 Qaay ooy ‘?2‘.9,

veeey ce ey ceey e sy

. Ap,is Cpay  coy Qpopy
avec la condition
Ak = Q-

~Les p premiéres périodes du Tableau (1) seront les périodes de

premiére espéce ct les p derniéres les périodes de seconde espéce.

Une fonction 0 d’ordre # est une fonction entiére qui jouit des pro-
priétés suivantes :

1° Quand on augmente les u; de la k'*" période de premiére cspéce
(c’est-a-dire quand on change u; par exemple en u;+ 2i7, les autres ;
ne changeant pas), la fonction 0 est multipliée par un facteur constant,
que j’'appelle a;;

2° Quand on augmentc les u; de la k™ période de scconde espéce,
la fonction § est multipliée par un facteur exponentiel de la forme

enu‘-p{"
de sorte que
0w+ ay) = e b(u,).
Les facteurs .
ap et e™t

s'appelleront les multiplicateurs.

- Sideux fonctions 8 ont les mémes multiplicateurs, on dira qu’elles
appartiennent au méme faisceau.

. Il est bien connu que, dans un faisceau d'ordre n et de genre p, il
ya )

n?
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fonctions § linéairement indépendantes dont toutes les autres fonc-
tions 0 du faisceau sont des combinaisons linéaires.

Parmi les fonctions 0 il y en a une qui est particulitrement remar-
quable et que j’appellerai ©.

C’est la fonction bien connue

Z em,u,+m,11,+...+ln,,ul,—- ; Elkﬂ,'km,'mk’

qui est une fonction 6 du premier ordre.

Le cas le plus simple est celui que j'appelle cas singulier
elliptigue; c'est celui ou dans le Tableau (1) des periodes normales
tous les a; sont nuls si i 2 k.

La fonction @ est alors le produit de p fonctions @ elliptiques.

Vient ensuite le cas que j'appellerai cas singulier abélien. 1l se
présentera dans les circonstances suivantes.

Soit

P=pitpate.t Py

Prenons les p derniéres lignes du Tableau (1), nous obtiendrons
ainsi un Tableau & p lignes et p colonnes. Je suppose que tous les élé-
ments de ce Tableau soient nuls, sauf :

1° Ceux qui appartiennent & la fois aux p, premiéres lignes et aux
P\ premiéres colonnes;

2° Ceux qui appartiennent & la fois aux p, lignes suivantes et aux p,
colonnes suivanles;

et s et R R R R R R ) D R I ] D I R R R )

Et enfin ceux qui appartiennent 4 la fois aux p, dermeres hgnes et
aux p, derniéres colonnes.

S'il en est ainsi la fonction @ a p variables sera le produit de ¢
fonctions @.admettant respectivement p,, p,, ... et p, variables.

On sait comment les fonctions abéliennes ont été imaginées; on a
considéré une courbe algébrique quelconque de genre p et les p inté-
grales abéliennes de premiére espéce correspondantes que j'appellerai
015 Va3 + .1y 93 SUpposons alors qu’on prenne sur la courbe p points
quelconques, qu’on considére une desintégrales abéliennes ¢;, et qu'on
fasse la somme Zo; des valeurs de cette intégrale en ces p points.
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Alors toute fonction symétrique des coordonnées de nos p points
sera une fonction abélienne de

20, Z0y ...y Zep

Mais on sait également que toutes les fonctions abéliennes ne peu-
vent pas étre obtenues de cette maniére.
Un systéme S de fonctions abéliennes de genre p dépend de

p(p+1)
2

constantes qui sont les périodes normales a;;.

Une courbe algébrique de genre p, si I'on ne regarde pas comme
distinctes deux courbes dérivées I'une de l'autre par une transforma-
tion birationnelle, ne dépend que de 3p — 3 constantes.

Ces deux nombres sont égaux pour p = 2 et pour p = 3; mais,
pour p >3, le premier est plus grand; il existe donc des fonctions
abéliennes  qui n’ont pas pour origine une courbe algébrique de
genre p.

J’appellerai fonctions abéliennes spéciales celles qui admettent cette
origine.

2. — Zéros des b,

Aprés ces préliminaires sur lesquels j’ai peut-étre un peu longue-
ment insisté, j’arrive a 'objet de mon travail qui est ’étude des zéros
des fonctions . Cette question a été abordée par deux voies trés
différentes; et par I'une comme par I'autre on a pénéiré assez loin
a l'intérieur du domaine inconnu qu'il s'agissait d’explorer; mais ces
deux voies ne se sont pas encore rejointes, pour ainsi dire; c'est 11 le
résultat que je voudrais atteindre, car je crois qu'il ne doit plus nous
coliter-qu’un léger effort.

Dans le Tome X du Bulletin de la Société mathématique de
France, j’ai démontré le théoréme suivant :

Soit p fonctions 9 qui soient respectivement d’ordre

Ry Moy oouy By
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le nombre de leurs zéros communs sera

nny ... ny(pl).

Bien entendu, je ne considére pas comme distincts deux zéros qui
ne différent que par des multiples des périodes. ‘

Si en particulier I'on considére p fonctions 0 d’ordre n appartenant .
4 un méme faiseeau, le nombre de leurs zéros communs sera

nfp!

Il en résulte que la relation algébrique qui existe entre p + 2 fonc-
tions O d’ordre n, appartenant & un méme faisceau, est d’ordre

nPpl

ou d’ordre moindre; et il est aisé de vérifier ensuite qu’en général
elle n’est pas d’ordre moindre.

Mais il ne sera peut-étre pas sans intérét de montrer comment on
peut arriver au méme résultat par un chemin entiérement différent.

Considérons donc p + 2 fonctions § d’ordre n appartenant & un
méme faisceau ; soient 0, 0,, ..., 0,,, ces fonctions..

Considérons un polynome homogene et d’ordre m par rapport &
ces p + 2 fonctions 0. ‘

Les coefficients arbitraires de ce polynome sont au nombre de

(m—+p+71)! .
(m)!'(p+1)!

Mais ce polynome sera une fonction § d’ordre
mn,

et tous les polynomes ainsi obtenus seront des fonetions § apparte-
nant au méme faisceau.
Or un faisceau de genre p et d’ordre mn ne peut contenir que

“mP n?

fonctions 0 linéairement indépendantes.

..
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Il 'y a donc au mains

(m 4+ p 1)}
(m>_(7)11;—+‘1)— —(m)?ne

de nos polynomes qui s’annulent et qui d’ailleurs sont linéairement
indépendants.
Il y a donc au moins, entre nos p + 2 fonctions 6 d'ordre n, (m)
relations algébriques homogénes d’ordre m, linéairement dlstmctes
Soit, d’autre part, :
F(en Bay ..y ep-l—&) =0

celle de toutes les relations algébriques entre les p + 2 fonctions 0
- dont le degré est le plus petit.
Soit g ce degré; c’est le nombre g qu'il s’agit de déterminer.
Toutes les autres relations algébriques homogénes entre les p + 2
fonctions 0 s'obtiendront en multipliant

I'=o

par un polynome quelconque homogéne par rapport aux 0.

Nous pouvons maintenant répondre 4 la question suivante :

Combien y a-t-il entre les 0 de relations algébriques et homogénes
d’ordre ¢ + £ linéairement distinctes?

Il y en aura autant que de polynomes homogénes d’ordre / linéaire-
ment indépendantes ; car on obtiendra toutes ces relations en multi-
pliant F = o par I'un de ces polynomes.

Il'y aura donc entre les p + 2 fonctions 0

(h4-p+1)!
Al(p—+ 1)l

relations algébriques homogeénes d’ordre ¢ + /£ et il ny en aura pas

davantage.
Nous aurons donc, quel que soit le nombre £,

h+p+
Bep il (g by
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ou bien .

(h+p+1)!  (g+h+p+1)!
(1) AT a0l — (gl T +h)in2o,
ou bien

(h+p+1)y(h+p)y...(h+2)(h+1)

S (p+1)!
(1 bis) _+hrprn(g+h+p..(g+h+1)

: (p+1)!

+(g+h)PnPZo.

Tous les termes du premier membre de (1) ou de (1 bis) sont des
polynomes entiers en 4.
Le premier terme
(h4-p+1)!
RlU(p+1)!

est un polynome d’ordre p + t dont les deux premiers termes sont

hP+t (PH1)(p+2) pp
(p+1)l 2(p +1)! ‘

Le second terme ,
_(g+h+p+)l
(g+A) (p+1)! R .

est un polynome d’ordre p + 1 dont les deux premiers termes sont

het qh? (p+1D)(P+2) 4,

(p+0)!  pl 2(p +1)!

Enfin le troisieme terme est un polynome d’ordre p dont le premier

terme est
nthe.

11 résulte de tout cela que les termes en A7*' se détruisent et que le
premier membre de (1) est un polynome.d’ordre p en % dont le pre-
mier terme est ' B

- 3)
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Comme le premier memhre de (1) ne peut étre négatif, quelle que
soit la valeur positive ou nulle attribuée & 'entier %, le coefficient du
terme en /P ne peut pas étre négatif, ce qui donne

(2) g<nopl

Il nous reste & faire voir qu’en général le nombre g n’est pas infé-
rieur 4 ##p! c'est-a-dire qu'en général il n’existe pas entre nos p -+ 2
fonctions § de relation algébrique de degré plus petit que n?p!

On peut présenter la chose dans un autre langage.

Envisageons les n? fonctions 0 d'un méme faisceau de genre p et
d'ordre n; considérons ces n” fonctions § comme les coordonnées

homogeénes d'un point M dans I'espace & 77 — 1 dimensions.
* Sinous donnons aux p variables u,, u,, ..., #, toutes les valeurs
possibles, ce point M va décrire une certaine variété V.

Cette variété V sera située dans I'espace &4 n? — 1 dimensions; elle
aura elle-méme p dimensions; elle sera algébrique; son degré sera
au plus égal & n?p! :

Je me propose d’établir quen général ce degré n'est pas infe-

“rieur @ nPp!

3. — Cas singulier elliptigue.

Pour cela, il me suffit de montrer qu’il en est ainsi dans un cas par-
ticulier; car, sila réduction du degré avait lieu en général, elle devrait
avoir lieu aussi dans ce cas particulier.

Le cas particulier que je choisirai est celui que j'ai appelé cas sin-
gulier elliptique.

Voyons comment on peut dans ce cas former les 77 fonctions § du
faisceau.

Considérons un premier systéme de fonctions elliptiques dépen-
dant de la variable u,; formons avec cette variable u, un faisceau
d’ordre 7 et de genre 1 de fonctions 0 elliptiques. Soient

(l> ei,l) ec,zy <oy el,n

les n fonctions de ce faisceau.
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" Soient de méme-
(2) 02,41 02,27 RY) en,n

n fonctions 0 elliptiques de la variable u,, formant un faisceau
d’ordre » et de genre 1.

Et ainsi de suite.

Soient enfin

(P) ep,H 0p,:n vy ep,n

n fonctions 0 elliptiques de la variable u,, formant un faiscean
d’ordre n et de genre 1.

Cela posé, prenons une fonction dans le Tableau (1), une dans le
Tableau (2), etc., et enfin une dans le Tableau (p). Faisons le produit
de ces p fonctions; nous obtiendrons une fonction 8 abélienne & p va-
riables répondant au cas singulier elliptique.

Comme chacun des Tableaux (1), (2), ..., (p) contient n fonctlons
différentes, on obtiendra n? fonctions 0 abéliennes & p variables,
linéairement indépendantes et formant un faisceau d'ordre 7 et de
genre p.

Ce sont ces n? fonctions 0 abehennes que je regarde comme les
coordonnées homogénes du point M qui engendre la variété V, dans
I'espace & n? — 1 dimensions.

Un premier point, fort important, est le suivant : pour que deux
systémes de valeurs de u,, «,, ..., u, correspondent 4 un méme point
de V, il faut et il suffit que la différence de ces deux systemes de
valeurs soit une période. -

En effet, pour que ces deux systémes correspondent & un méme
point de V, il faut et il suffit :

1° Que les rapports des fonctions 6 elliptiques

(l) : ' 0,” 642; ooy’ e.g,n

reprennent les mémes valeurs, ¢ est—é—dlre que les deux valeurs de u,
différent d’une période;

» Journ. de Math. (5° série), tome I. — Fasc. II[, 1895. 3o
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2° Que les rapports des fonctions 0 elliptiques (2) reprennent les
mémes valeurs, ¢'est-d-dire que les deux valeurs de u, différent d'une
période, etc., et. enfin que les rapports des fonctions 8 elliptiques (p)
reprennent les mémes valeurs, c’est-a-dire que les deux valeurs de u,
différent d'une période.

Il y a exception pour n= 2; dans ce cas, en effet, il n’y a dansle
Tableau (1), par exemple, que deux fonctions elliptiques 0, ,, 0, , et le
rapport de ces deux fonctions peut reprendre la méme vabdur, sans
que les deux valeurs de u, différent d'une période.

Pour évaluer le degré de la variété V, il faut la couper par une
variété plane (c'est-d-dire algébrique et du premier degré) ayamt
nf — p — 1 dimensions et compter le nombre des points d’intersection.
Une pareille variété plane, que nous pouvons d’ailleurs choisir arhi-
‘trairement, sera définie par p équations linéaires entre les coordon-
nées courantes.

Soient donc

Ny Ny vovy Nyyp

p combinaisons linéaires des fonctions 0 elliptiques (r).
Soient de méme

7]2,17 71'.',21 sy 122»['

p combinaisons linéaires des fonctions elliptiques (2), cte.
Soient enfin

Npiy Npey o9 Tipp

p combinaisons linéaires des fonctions elliptiques (p).
Considérons les équations

N Noyieee Npy = 0,

(3) NiaNaa e Np2 =0,

D AR )

n‘»P.’]?vl’ e nP)P =o.

Les premiers membres seront des fonctions linéaires des n# fonc-
tions 0 abéliennes de notre faisccau, c'est-3-dire des coordonnées cou-
rantes.
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Les équations ( 3) définiront donc une variété plane P. .

Il est aisé d’évaluer le nombre des solutions distinctes des équa-
tions (3) en ne considérant pas comme distincts deux systémes de
valeurs des u qui ne différent que d’une période. -

Cette évaluation est presque immédiate, et je I'ai déja faite dans le
Mémoire cité plus haut du Bulletir de la Société mathématique de
France. Le nombre des solutions est n?p! .

A chacune de ces solutions correspond, comme nous I'avons vu, un
point de V et un seul. y

Ainsi le nombre des points d'intersection de V et de P est égal
a nfp!

La variété V est donc du degré nf p!

En résumé, le degré de la variété V ne peut s’abaisser que dans des
cas exceptionnels. '

Je ne m’arréterai pas & rechercher quels sont ces cas exceptionnels.
Je rappellcrai seulement que le cas de n = 2 est toujours excepté et
qu'il y a de cette exception un excmple bien connu.

Soit )
pP=2,n=2;
d’ou :

nfp! =38, nf = 4;

dans ce cas la variété V se réduit & une surface dans I'espace ordinaire
a trois dimensions. ;

Dans ce cas, le degré se réduit; et V est une surface de Kummer du
quatriéme degré. ‘

4, — Théorémes de Riemann.

Dans les deux numéros qui précédent et dans mon Mémoire du
Bulletin de la Société mathémaitique, j’ai exposé un premier moyen’
d’étudier les zéros des fonctions 6. Mais il y en a un autre, entiére-
ment différent et qui est dta Riemann..

Jlne s’applique qu’aux fonctions abéliennes spéciales, au sens donné
a ce mot dans le nv 1.

Considérons donc un systéme S de fonctions abéliennes spéciales,
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c'est-a-dire devant leur existence & une courbe algébrique C de
genre p. ' '
A cette courbe appartiendront p intégrales abéliennes de premiére

espéce
Piy P2y veey Ppy

correspondant aux variables
Uyy Usy oovy Upe

Soit (x, ¥) un point de la courbe C; les v; seront des fonctions de x
et de y qui ne sont pas des variables indépendantes, mais qui sont
lides par I'équation de la courbe.

On aura
@y )

v (2, ¥) _—.f dv;.

(ro, Yo

.

dy; est une fonction rationnelle bien déterminée de (x, y), de dx et
de dy;mais ¢; ne sera entiérement définie en fonction de x et de y
(4 une période pres, bien entendu) que quand on se sera donné la
limite inférieure d’intégration, c'est-a-dire le point (z,, ¥, ).

Nous verrons un peu plus loin comment ee point (,, y,) doit étre
choisi ; mais je dis tout de suite que ce point ne sera pas le méme, en
général, pour les p intégrales

Py Vay veey Ppy

de sorte qu'en général ces p intégrales ne pourront pas s’annuler & la
fois.
Voici maintenant I'énoncé des théorémes découverts par Riemann :
Considérons la fonction @ définie plus haut, qui est paire et du pre-
mier ordre. :
Soient e,, e,, ..., e, p constantes quelconques; formons I'équa-
tion ~ '

a 8 (v~ e) =o.

Comme les ¢, sont des fonctions de z et de y, cette équation (1)
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est une équation en z et y, définissant un point (z, y ) dela courbe C.

Comme y et  ne sont pas deux variables indépendantes, je dirai dé-

sormais, pour abréger le langage, le point « au lieu du point (z, y).
Riemann a démontré que cette équation (1) admet p solutions.

Soient
x(‘)’ x(’)’ veny w(l’)

ces p solutions et soient
(1) (2) (P)
R R

les valeurs correspondantes de l'intégrale ¢;; Riemann a montré que
I'on a

(2) e =0+ +.. .+ 0P ¢

(les c; étant des constantes indépendantes de e, e,, ..., ¢,), cela,
bien entendu, & un multiple prés des périodes.

Je dis maintenant qu'on peut choisir les limites inférieures d’inté-
gration, de facon que les constantes c; soient nulles. '

Ces limites d’intégration, que j'ai appelées plus haut (z, y,), sont
restées jusqu'ici arbitraires.

Changer les limites d'intégration, c’est changer ¢, en v;+ h;, les A;
étant des constantes. Mais il faut en méme temps changer e, en ¢; + /4;,
de fagon que v; — ¢; ne change pas.

Quant aux

) ci=e— 0 — o — . — o,
ils se changent en
ci+(1—p)h,.

11 suffit donc de prendre

pour satisfaire & la question. _
Nous pouvons donc toujours choisir les limites inférieures d’inté-
gration de fagon que les relations (2) s’écrivent

(2 bis) e =0 4+ 0 .. 40P,
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Cette démonstration est en défaut quand le dénominateur p — ¢
s’annule; c’est-a-dire pour les fonctions elliptiques.
Dans ce cas, en effet, la relation (2),

e;=v;+ ¢ (i=1)

ne peut pas se mettre sous la forme (2 bis) et c;, quelle que soit la
limite inférieure d’intégration, est égal a la demi-somme des périodes
normales. On sait, en effet, que la fonction @ elliptique s’annule quand
la variable est égale & cette demi-somme.

Le théoréme le plus important est le suivant :

Pour que

@(u,’) =0,
il faut et il suffit que u, puisse se mettre sous la forme
=" o 0P

ou bien encore (ce qui revient au méme) :
Pour que

@(u,-) =0,

il faut et il suffit que ¥; puisse se mettre sous la forme

Uy =— " — P — Y,
Insistons un peu sur la signification de ce résultat.
Supposons, par exemple, p = 3 et considérons l’equatlon

O(u,, u,, uy) =o.

St nous regardons ,, u,, u, comme les coordonnées rectangulaires
d'un point dans l'espace, cette équation représente une surface, et les
équations de cette surface peuvent étre mises sous la forme

u — 0(|)+ ‘)(‘2)’

U, = o) + o,

Uy = o\ + o5
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o1y o1, of sont fonctions d’une seule vamable My ¢

fonctions d une seule variable z®. Sy

Il en résulte que notre surface’ peut étre en de la maniére
suivante : Une courbe se deplacc d'un mouvement ,tr%nslanon sans
se déformer et de telle fagon qu'un de ses pomts decrlvq une courbe
fixe. Une surface susceptible de ce mode de génération's appellc une
surface de translation. . T

Plus généralement, si I'équation e

(2) (2! (H
o, o, o sont

(3) F(u,,ugy...,u,)=0

admet une solution de la forme

u = ?1‘)(13 )+?(| )<t,)+" .+?lp ”(t -i)’
(4) u2=%n(t‘>+ ?(22)(52)’*'""*‘ (P(ap “(tp—l)’

D I R R R R I R R N R A A AR S S AT R AP S

= o\(¢,) + 9‘“'(&)—*—-..+<p""”<tp—-)’

liy &y «uy L,y étant p — 1 variables indépendantes; je dirai que 1I'é-
quation (3) est translative.
Alors, d’aprés ce qui précéde, 1'équation

®@=o

sera translative pour tout systéme de fonctions abéliennes spécial au
sens donné & ce mot au n°® 1.

On peut alors se demander si celte propriété est encore vraie pour
des fonctions abéliennes non spéciales.

Parmi les autres résultats obtenus par Riemann, je citerai seule—
ment les suivants :
Un systéme de valeurs quelconque

Ciy €y .iry €
peut &tre toujours mis sous la forme

e; ="+ o .+ 0,
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et en géncral il ne peut I'étre que d'une seule maniére; pour que cela
puisse se faire de plusieurs maniéres (et alors d’une mﬁmté de ma-
niéres), il faut et il sufﬁt que

®<V,' -— e,-)

soit identiquement nulle; ou ce qui revient au méme, il faut et il
suffit qu'on puisse mettre les ¢; sous la forme

e;=— o\ — o — P,
Soit maintenant un systéme de valeurs

Ty Ty ooy Tp
-tel que
@(l',-):-:o.

Les r; peuvent toujours &tre mis sous la forme
v — (1) (2) (p—2)
rp= 0 4o o 0

En général, cela n’est possible que d’une maniére et il n’y a excep-
tion que si toutes les dérivées du premier ordre de ® s’annulent en
méme temps que 0.

5. — Extension du théordme de Riemann.

Considérons maintenant un faisceau d’ordre » et de genre p.
Soit § une fonction de ce faisceau ; formons |'équation

(1) 8(v;) = o.

En raisonnant tout & fait comme I'a fait Riemann, on verrait que
cette équation (si elle n'est pas identiquement satisfaite) admet
np solutions.

Soient

o, @, L. gt
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ces np solutions, c’est-i-dire les np points de la courbe C qui satisfont
a la question. Soient
o o, L, e
les valeurs correspondantes de 'intégrale ¢,.
Le raisonnement prouve encore que I'on a

>

(1) (2) np)
(2) o o L P = G,

les C; étant des constantes qui sont les mémes pour toutes les fonc-
tions 0 du faisceau,

Je dis que les équations (2) peuvent nous permettre de determmer P
des points z quand on connait les (»n — 1) p autres. :

En effet, considérons I'une quelconque des fonctions 9 du faisceau
et soient

(3) z)y P, ..., ZP
les np solutions correspondantes de I'équation (1); par les np points z
je fais passer une courbe adjointe quelconque H. Cette courbe H cou-
pera la courbe C, en dehors des points doubles et des points ', en un
certain nombre d’autres points que j'appelle

2V, 2P .., 2,

Alors les équations (2) signifieront que les points 2 et les points '
sont sur une méme courbe adjointe de méme degré que H.

Je puis toujours supposer que le degré de H est supérieur a celui
de C diminué de trois unités. On sait que dans ce cas on peut choisir
arbitrairement tous les points d'intersection, sauf p d’entre eux.

Par les p points &' et par (n—1)p des points ' je pourrai
donc toujours faire passer une courbe adJOInte de méme degré que H
et, en général, je n'en pourrai faire passer qu'une seule. Les p autres
pomts x® se trouveront donc ainsi déterminés.

Jai dit que dans un faisceau il y a n? fonctions 6 linéairement indé-
pendantes. Le premier membre de I'équation (1) (si la fonetion 0:est

Journ. de Maih. (5 série), tome 1. - Fasc. III, 1895, 31
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la plus générale du faisceau) contient donc n? coefficients arbitraires
que j’appellerai A et dont il dépend linéairement.

Disposonsdes A de telle fagon que 1’équation (1) soit satisfaite pour
(n — 1)p points donnés quelconques de la courbe C, & savoir

(4) 2V, ©¥, ..., PP,

il en résultera, d’aprés ce qui précéde, qu'elle sera également satisfaite
pour p autres points de la courbe C, & savoir

(5) ) =P+ glaP),

qui sont déterminés par les (» — 1) p premiers.
- Disposons encore des A de telle fagon que I'équation (1) soit satis-
faite pour un autre point de C différent des points (4) et (5).

La fonction 9 devrait alors s'annuler pour np + 1 points différents,
ce qui ne peut arriver que si elle est identiquement nulle.

Or nous avons introduit, entre les A, des relations linéaires au
nombre de np — p + 15 il reste donc

nf+p—np—1

coefficients A arbitraires.

11 existe donc dans notre faisceau n? + p — np — 1 fonctions 9 li-
néairement indépendantes et qui s’annulent identiquement quand on
y remplace les variables indépendantes u; par les intégrales ;.

Cela peut se traduire dans un autre langage.

Reprenons la variété algébrique V définie an n° 3. Je rappelle
qu'elle est de degré n?p!, qu'elle appartient a I'espace & n? —1 di-
mensions et qu'elle a elle-méme p dimensions.

Considérons un point dont les coordonnées homogénes soient pré-
cisément les 27 fonctions §(v;); ce sera un point de la variété V.

Et quand le point « décrira la courbe C, ce point de la variété V
décrira une certaine courbe (ou variété a une dimension) que j'ap-,
pelle B. '

Cette courbe B, qui fait partie de V, est de genre p comme la
courbe C & laquelle elle correspond point par point.
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Pour trouver son degré, il suffit de chercher le nombre de ses
points d'intersection avec une variété plane & n” — 2 dimensions; c'est-
a-dire le nombre des soluttons de I'équation (1).

Nous avons vu que ce nombre est égal & np: la courbe B est donc '
de degré np.

Enfin, d’aprés ce qui précéde, il y a entre les coordonnées d’un
point de B

W —np+p—1

relations linéaires & coefficients constants. Ces ‘relations définissent
un espace plan & (r — 1)p dimensions. :

La courbe B fait donc partie d’un espace plan & (n — t)p dimen-
sions.

Soient par exemple 2 =2, p=1a; d'ol

nP—1=3, np!=8, (n—1)p=2;

la variété V est alors une surface de Kummer du 4¢ degré dans l'espace
ordinaire et la courbe B, qui sera du 4° degré, sera plane.
Considérons maintenant I'équation

(6) 0(0i— ;) =0,

les quantités

(7) Cyy Cay iy Cp

étant p constantes quelconques. Elle jouira des mémes propriétés que

I’équation (1), la démonstration serait la méme; elle est d’ailleurs
inutile, car, siles fonctions 8(«;) forment un falsceau, il en sera de
méme des fonctions 6(u; — e;).

Si donc les »” fonctions 8(v; — e;) sont les coordonnées homogénes
d'un point, ce point, quand « décrira la courbe C, décrira une certame
courbe B’ située sur V. o

Cette courbe B’ sera de degré np, de genre p et sera située dans un
espace plan 4 (7 — 1) p.dimensions. '

1l y aura-une p-uple infinité de courbes B'; par chaque pomt de v
passera une infinité de ces courbes. JR

.-
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Deux de ces courbes en général ne se rencontreront pas ; les deux
courbes correspondant & deux systémes de valeurs,

e; et e,

des quantités (7) ne pourraient en effet se rencontrer que si I'on peut
trouver deux points x et «’ sur C tels que

e;— e = o, — 0.

Cela n'arrivera pas en général sauf pour p = 2.

Nous savons toutefois que I'on peut trouver sur une variété V quel-
conque deux courbes B’ qui ont au moins un point commun, puisque
par tout point de V passent une infinité de courbes B’. Mais on peut
‘se demander si deux courbes B’ peuvent se rencontrer en deux points.

Pour cela il faudrait que I'on piit trouver sur C quatre points, x,
x', x", £, tels. que

Ci— e =p;— ;=0 — 073

d’'olt

(8) Vit o =0+ 0.

Une égalité telle que (8) est-elle possible?

Les théorémes de Riemann énoncés a la fin du numéro précédent
nous fourniront la réponse.

Si p = 2, l'égalité (8) est possible; nous pouvons supposer que la
courbe C est une courbe du 4° ordre avec un point double. La condi-
tion pour que P’égalité (8) soit satisfaite, c’est alors que les points &
et " d'une part, 2’ et z” d’autre part soient en ligne droite avec le
point double.

Sip>o, l’egahte (8) ne serait possible que si la foncuon ® pou-
vait s'annuler en méme temps que toutes ses dérivées du premier
ordre, Or cela n'arrivera pas en général, je veux dire pour un sys-
téme S quelconque de fonctions abéliennes.

" Par conséquent on ne peut pas, en général, trouver sur la va-
riété V deux courbes B’ qui se coupent en plus d’un point.
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8. — Examen des cas singuliers elliptiques.

Voyons ce que deviennent ces résultats dans les cas singuliers e!
commencons par le cas singulier elliptique; ou la fonction' ® est le
produit de p fonctions @ elliptiques. ‘

Soit d’abord p = 2. v

Considérons notre variété V de degré 2n® et les courbes B’ d)
degré 2n tracées sur cette variété.

Considérons en particulier la courbe B.

Cette courbe peut étre regardée comme définie par I'équation

U, =v;
ou bien

@(u;) = 0.
Dans le cas singulier elliptique on a

@(ui) =0, (u¢) ®2(u2)a

0, et ©, étant des fonctions @ elliptiques; de sorte que 1'équation de .
la courbe B se décompose en deux

0,(u,)=0, 0,(u,)=o0.

LLa premiére nous donne .
U, =y,

«, étant la demi-somme des périodes de la fonction ®,; la seconds
nous donne de méme ' a
Uy = Oa.

La courbe B se décompose donc en deux autres, ayant respective-
ment pour équations

.

Uy =y, U, = a,.

Quel est le degré de chacune d’elles-et en particulier de:la eoutha
u, =a? o o B
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Soit 0(#;) une fonction quelconque du faisceau qui nous a servi &
former la variété V; ce sera une fonction 9 abélienne d’ordre n et de
genre 2 qui sera- une fonction linéaire & coefficients constants des n?
fonctions 0 fondamentales du faisceau; ¢’est-a-~dire (avec le mode de
représentation géométrique adopté pour la définition de la variété V')
des coordonnées homogeénes courantes dans I'espace & n?— 1 dimen-
sions.

L’équation

(1) 0(u;)=o0

est donc celle d'une variable plane P & n*— 2 dimensions. Pour dé-
terminer le degré de la courbe z, = «,, il faut chercher en combien
de pomts elle coupe la variété P.

Or si l’on fait #, = &, le premier membre de (1) devient une fone-
tion O elliptique d’ordre » par rapport & u,; I'équation (1) admet
alors n solutions.

La courbe u, = a, est donc de degré n.

Ainsi la courbe B qui, dans le cas général, est de degré 2n et de
genre 2, se décompose dans le cas singulier en deux courbes de
degré n et de genre 1.

11 est clair qu'il en est de méme de toutes les courbes B'.

l.e cas de n=12 est toujours excepté; examinons donc le cas
de n=3.

Dans le cas général, si # =3, la courbe est du sixiéme degré et du
genre 23 c'est une courbe gauche dans I'espace & (n —1)p =4 di-
mensions. Dans le cas singulier, elle se décompose en deux courbes
du degreé 3 etdu genre 1 qui doivent étre toutes deux planes. Ces deux
courbes ont un point commun u, = &, &, = a,. '

Si nous projetons la courbe B sur un plan quelconque, la projection
sera, dans le cas général, une courbe du sixiéme ordre avec huit points
doubles; dans le cas singulier, elle se décomposera en deux cubiques
se coupant .en neuf points; elle acquerra donc un point double de
plus.

Passons au cas de p =3 et proposons-nous de trouver ce que
devient la courbe B dans le cas singulier elliptique.
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Cette courbe a pour équation

et doit satisfaire aux théorémes de Riemann. .

Il est clair que I'on peut satisfaire & ces théorémes en supposant que
la courbe B se décompose en trois autres ayant respectivement pour
équations

u, = 323, Uy, = 52‘3,
(2) {u, = g, u, =%3,
w="  u=t
Par exemple,
(3) O(0;4+9,)=0,(0,+ 0)) 0, (vs+ 07)0;, (05 + ¢})

sera identiquement nul.
En effet, si la courbe B se décompose en trois autres définies par les
équations (2), il est clair que deux des trois équations

a a @
1 2 3
P, = —%y 0, = -2, P, = 2

! 2. 2 2 3 2

devront é&tre satisfaites. De méme deux des trois équations

' ay ’ a3 ’ dy

devront étre satisfaites. Il en résulte que I'une des trois éguations
Ot o=y (¢=1,2,3)

devra étre satisfaite. Donc 1'un des trois facteurs du second membre
de (3) devra s’annuler. Donc

O(vi+v)=0, . - C. Q. F. D.
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Malheureusement cette solution n'est pas unique. On satisfait éga-
lement aux théorémes de Riemann en supposant que la courbe B se
décompose en-trois'autres ayant respectivement pour équations

@ a«

Uy=24H  Uy=-+h,
%y _ %

4) f = Uy = — 1
] ot 3
u;:;, Uy, = —>

/. désignant une constante quelconque.

Un examen plus approfondi est donc nécessaire.

Voici comment nous y procéderons. Ne nous supposons plus dans
le cas singulier elliptique, mais dans un cas trés voisin de ce cas sin-
gulier. Supposons, en d’autres termes, que, dansle Tableau (1) dun°1,

les quantités .
@

(que j’appellerai termes diagonaux) sont finies, mais que les quan-
tités
ax  (12k)

(que j’appellerai termes latéraux) sont infiniment petites du premier
ordre sans étre nulles,
Etudions maintenant la courbe définie par les équations

(5) O(u;—e)=o,
B(u;—e)=o,

ou les ¢; et les e] sont six constantes quelconques. Cette courbe, que
nous appellerons A, jouit de diverses propriétés.

Nous savons que, pour un choix convenable des constantes ¢; et ¢,
elle se décompose en plusieurs autres, parmi lesquelles la courbe B
(ou bien une courbe B').

Pour aborder I'étude de cette courbe A, observons que la fonction ©
dépend non seulement des u, mais des a;, et peut se développer sui-
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vant les puissances de ces quantités. Nous allons effectuer le dévelop-
pement suivant les puissances des termes latéraux que nous avons
supposés trés petits. Nous avons

‘ .

___ Mttt tmplty— = Bapmmy |
@ =TT S
calculons les premiers termes du développement, & savoir ceux
d’ordre o et d’ordre 1. '

D’abord le terme d’ordre o s’obtiendra en annulant les termes laté-
raux a; (i2 k)3 on voit que la fonction O se réduit au produit de trois
fonctions elhpthues, savoir

0 =10,0,6,,

aj; m’

0 2 e gitg—
=

Cherchons maintenant le coefficient de a,, par exemple.
Le terme général de © contient le facteur

%,

Si nous développons ce facteur suivant les puissances croissantes
de a,,, il devient, en négligeant les termes du deuxi¢me ordre,

I — ags m2m3.
Le coefficient de @,, dans le développement de O sera donc

)
aym;

— Zm,m,.,e}"”""“‘T
c'est-d-dire
—~ 0, 0’ '
Je pose, bien entendu,
[ dOI
dul

Ainsi les premiers-termes du. développement de® (en neghgeant les
Journ. de Math. (}* sévie), tome 1. — Fasc. IlI, 1894. 32
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termes du second ordre) seront
(6) ©=0,0,0,— a,,0,0,9, — a,,0,0,0, — a,,0,0,0,+....

J'aurai & revenir dans la suite sur ce développement et & calculer
les termes d’ordre supérieur. Ceux-ci me suffisent pour le moment.
Etudions 'équation

(7) 0 = o.

Comme les 0 et leurs dérivées ne peuvent devenir infinis, © ne peut
s'annuler que si le premier terme du développement (6)

0,0,9,

cst infiniment petit du premier ordre, sans quoi ce terme ne pourrait
se détruire avec aucun autre.

L'un au moins des trois facteurs 0,, 0,, 0, doit étre infiniment
petit, c’est-a-dire que I'une au moins des trois quantités ; doit ¢tre
infiniment voisine de a; (4 une période prés, bien entendu).

Comme je puis choisir deux d’entre elles arbitrairement, je suppo-
serai que u, et u, aient des valeurs qui ne soient pas trés voisines
de a, et &y, mais d'ailleurs quelconques. '

Alors les deux facteurs 0, et 8, sont finis; et le facteur 0,, de méme
que u, — &,, doit étre un infiniment petit du premier ordre.

Le premier membre de I'équation (7) est développable suivant les
puissances croissantes de "

Uy~ ayy, Qyay «Qagy Q.

L’équation est satisfaite quand toutes ces quantités s’annulent.
Enfin le coefficient du terme en u, — a, est égal &

0% (@) 0,(uy)0,(n,)

¢t ne s'annule pas puisque u, n’est pas égal & a; ni u, 4 2,.

Donc, en vertu d'un théoréme bien connu, I'équation (7) pourra
¢tre résolue par rapport & u, — a,, cette quantité étant développable
suivant les puissances croissantes des termes latéraux a;,.
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Les premicrs termes du développement, en négligeant ceux du
second ordre, seront '
(8) SRV ST ST
8, 8,

Ce développement est valable quand les termes latéraux a;; sont
assez petits et quand u, n’est pas voisin de a,, ni u, dé a,.

Donnons donc & u, et & u, des valeurs quelconques u; et u; que je
suppose n'étre pas trés voisine de o, et de a,; le développement (8)
nous donnera la valeur correspondante | de , qui sera trés voisine
de a,.

Puisque Co
0(47) =o,
10US pourrons poser

up = o} -+,

ot ¢ et v} sont deux valeurs particuliéres de 'intégrale que j'ai ap-
pelée ¢;, correspondant & deux points particuliers de la courbe C que
j'appellerai z, et z,.

Alors il existera deux courbes remarquables

u, = v;+ o} (courbe B,),
u; = v;+v; (courbe B,).
, : .
Je dis que ce sont deux courbes; en effet o] et ¢f sont des constantes
puisque je regarde les points x, et z, comme fixes; ¢; est une fonc-
tion d’une seule variable indépendante, puisque cette intégrale dépend

seulement du point #, mobile sur la courbe C.
Ces deux courbes B, et B, passeront toutes deux par les points

u;=u] = o] + ol

Ce sont ces deux courbes que je me propose d'étudier en détail.
J’ai supposé que je faisais tendre les termes lateraux @x VeTs zero,
pour fixer les idées, je vais poser

an=1fy . (F2k),
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les @, étant des constantes et £ un paramétre que je vais faire tendre
vers o.
- Ecrivons alors I'équation (8) sous la forme

(8 bzs) u, = F(“ev Uy);

le second membre se trouve développé suivant les puissances crois-
santes de 2
- Désignons par

dv;  dio;

dx’ dat

les dérivées de o; par rapport & et par

de}  d*o} dv}l d?}
by peuitd 33 ? vl ,
dxy, dzt dz, dx?

les valeurs de ces dérivées pour x =z, et pour x = «,.
Le long de la courbe B, on aura

do} = dF ——dv) + gl_‘ dy;.
ty LA

Au point #; = u] en parucuher, on aurait
dF, dF,
o . 0 0 0 (
dv} = . de, + a, doy,

dF,
en appelant s ? la valeur de pour u; = u.

On en déduira

0 dF dFo 0 dF dFO —
(9) & (i — 7e) + 9, — ) =

On trouverait de méme, pour la courbe B,,
., (dF  dF,  (dF  dF,
(10) do, (d__llg Y doy du, dus)

Les équations (8), (9) et (10) suffiraient pour définir les courbes
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B, et B, si 'on connaissait les deux constantes

de}  de}
-1 =T
dey’ dvi
Pour abréger l'écriture, je supposerai que ¢] a été exprimé en fonc-
tion de ¢ et ¢} en fonction de ¢; et je poserai
dv} —k d*o} 2
‘7"73 - dvl® — 2

1 1
dv} d o}

dv} = dvit = U

de sorte que les équations (9) et (10) s’écriront -

. dF daF, g/ dF dF,\
(gbzs) (zi—u—’—-al—t;)-i-s,(‘m—m)-—o,

. dF dF, "dF dF,\ _
(IOblS) Y](a—m)ﬁ-("‘l—%‘——m)—o

Cherchons 4 déterminer les deux constantes § et .

Soient z et # deux points quelconques mobiles sur la courbe C,
v; et v; les valeurs correspondantes de 'intégrale ¢;.

Si I'on reprend alors ’équation (8) et qu’on y fasse

U, =0, + v,

Uy = 03 + 0;,
on aura aussi
u, =9, -+,

Considérons ¢, et v; comme fonctions de ¢,, ¢, et ¢, comme fonc-
tions de ;. ‘

Alors u,, u, et u,, et aussi F(u,, u,), seront des fonctions des deux
variables indépendantes ¢, et ;. On devra avoir

da? U : P .
. dvedvy, =
ulisque )
p q __ ’ .
U=+ 9;,

dépendant seulement de v, et ¢; de ¢;.
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Nous pourrons donc écrire, en tenant compte de (8),

(i) d’F o oF PF dF

dnde, =% Tad, =% Tndp =" dadn T
Les prémiers membres des équations (11) s'expriment aisément &

I'aide des dérivées de F par rapport aux z et des quatre dérivées

dv, dtvy dv, dv,
(12) 2;;;) 7‘)—:') HT:,’ m.

Les équations (11) sont donc quatre relations entre les quatre déri-.
vées (12). Sil'on y fait

elles deviendront quatre relations entre les quantités
& & o .

Ce sont ces quatre’ relations que nous appellerons les équa-
tions (13).

Nous tirerons £ et v de ces équations (13) ct les équations (g bis)
et (10 bis) nous feront connaitre alors toutes les courbes B, et B,.

Les premiers membres de toutes nos équations sont développées
suivant les puissances de ¢; mais les équations (9) & (13) contiennent 2
en facteur et il convient de le faire disparaitre; nous remplacerons
donc les équations (g bis), (10 bis) et (13) par les équations (g ter),,
(10 ter) et (13 bis) obtenues en divisant les premiéres par Z.

Si nous supposons ¢ = o ces équations vont prendrc une forme trés
particuliére. On a en effet, pour £ = o,

F— uz) 3(”)
— B'* 8; (a) +Bis g (us)

et je puis observer que le second membre est la somme d'une fonction
de #, et d’une fonction de u, que je puis écrire

Sa(ue)+ fa(uy).
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Les premiers membres des équations (13 bis)-sont alors des poly-
nomes du deuxiéme degré au plus en § et n, du premier degré au
plus en &' et v’.

Ehmmant ¥ et o' entre les trois derniéres equauons (13 bzs) 1l
reste deux relations entre £ et v, 'une du premier degré, T'autre du
deuxiéme. Il semble donc que le probléme comporte deux solutions.
Mais ces deux solutions se confondent en une seule qui est

Ainsi les équations (13 bis) comportent pour { =0 une solution
double et I'on en conclura que pour ¢ = o le jacobien des premiers
membres de ces équations par rapport aux quatre inconnues §, v, &, 7,
sera nul; d'oi il résulte une petite difficulté.

Ne supposons plus ¢ = o; les premiers membres des équations
(13 bis) sont développables snivant les puissances des inconnues et
de t.

Sile jacobien dont je viens de parler n’était pas nul nous pournons,
par un théoréme bien connu de Cauchy, conclure que les inconnues
%, m, &, v’ sont développables suivant les puissances de ¢.

Ici je ne puis raisonner ainsi, mais comme la solution

SNV
I
o
I

e
I
e |

.
l
o

est double seulement, nous conclurons que &, 1, &, 0’ sont développa-
bles suivant les puissances de y/7; les développements commenceront
par des termes du premler degré au moins en yZ; et par conséquent
infiniment petits au moins d’ordre ;.

Un examen plus approfondi montrerait, je pense, que &, 7, &, 7'
sont développables suivant les puissances de ¢, mais je ne I'ai pas vé-
rifié. Cela ne m’est d’ailleurs pas nécessaire pour mon objet actuel.

Substituons la valeur de £ ainsi trouvée dans. Péquation (gter); le -
premier membre de cette équation sera. -développé suivant-les puis-

sances de \/t (le développement ne contiendrait vralsemblablement'
que des puissances paires).
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Pour ¢ = o, £ devieni nul et I'équation (g fer ) se réduit &

B[ (2)— ()] =0
ou

- 40
u-j — u2‘

On peut alors, d'aprés le théoréme de Cauchy, résoudre Péquation
(g ter); ou trouve u, développé suivant les puissances croissantes de

Vi et de u, — ul; pour ¢ = o, u, se réduit & u’.
D’ol I’équation.de la courbe B,.

. (Y ! I -
= 4Bt () Buagt (2) | + Bty

, = u)+ hyl.

(14)

Je désigne par ht* un ensemble de termes procédant suivant les

puissances entiéres de /Z et commencant par un terme en 2.
On aurait de méme, pourI'équation de la courbe B,,

(15) %m:“””@w%W0+&£awﬂ+hwa

Uy = ul + hyt.

Considérons maintenant une courbe remarquable que je vais ap-
peler B et qui a pour équation

u; = 20,

Supposons que le point %] soit un point de cette courbe; on aura

alors
[ ] 0;

etla courbe B, devra se confondre avec B,. La comparaison des équa-
" tions (14) et (15) montre que ces deux courbes ne peuvent se con-
fondre ; 4 moins toutefois que les développements (14) et (15) ne
soient pas valables. Or nous avons vu qu'ils ne cessent de 'dtre que
si u, est voisin de a, et u, de «,.
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Ainsi en un point de B* la fonction ® devant s'annuler, l'un des u;
devra &tre trés voisin de «;; soit par exemple u, trés voisin de ,, ce
qui nous conduit 4 I'équation (8); alors, d’aprés ce que nous venons
de voir, u, devra encore &tre trés voisin de «, ou u, de «,.

En un point de B*, deux des u; devront donc étre trés voisins de a;;
en résumé, dans le cas singulier elliptique, la courbe B* se décompose
en trois autres ayant respectivement pour équations

Uy =0yy. . U= &y,
Uy= oy, Uy == By, )
Uy =0y,  Uy=0,.

Il est aisé d'en déduire ce qui arrive pour-la courbe B qui a pour
équation
U;=9;.

Lille sc décompose en trois autres ayant respectivement pour équa-
tions

-4 Ay
uazf, uy= >
- 4 - &
Uy = - Uy = -3
2 2

. 2, oy
Uy = - Uy = —
=3 2 =5

Voyons maintenant quel est le degre de chacune d elles.

Soit p =3, n>2; la courbe B est, en général, d’ordre 3n et de
genre 3; dans le cas smguher elhpthue, elle se décompose en trois
courbes d'ordre n et de genre 1.

On arriverait au méme résultat dans le cas de p = 4. Si les termes
latéraux tendent vers o, de facon que les fonctions abéliennes restent
spéciales (je suis. obligé d’ajouter. cette restriction parce que, pour
p >3, les fonctions ne sont pas tOllJOllPS spéciales ; d’ailleurs, si elles
ne I'étaient pas, la courbe B cesserait d’exnster) la courbe B se dé-
compose & la limite en quatre autres quisont de degré n(n> 2) et

Journ. de Math, (5 série), tome I. — Fasc. III, 1895, 33
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de genre 1 et qui ont respectivement pour équations

dy o5 a,
~u2$-3—3 Il3=-§- u,—-—g—,
1‘ d; 2%

Uy= 3 u3=§-, u’.=-3-,
. %y '
a|=—3" u2=“."5" . U4=§’

~u|=“? u.)='_" Ll»3=—3-'

7. — Généralisation du théoréme de Riemann.

Proposons-nous maintenant le probléme suivant : Riemann a mon-
tré combien I'équation '

(1) 0(v;—¢;)=0
admet de solutions; proposons-nous les deux équations simultanées

(2) @(v,-—}—o':.—-e,-):o,

O(v;+ v, — ¢,)=o,
ol les ¢; et les ¢; sont 2p constantes quelconques et o nous avons deux
inconnues, 4 savoir les points 2 et 2’ de la courbe G qui correspondent
aux intégrales o; et ¢;. '
Cherchons combien ces équations admettent de solutions.

De méme, considérons les trois équations simultanées suivantes
(avec trois inconnues z, z' et 2”), :

s O(vo;+ 0, + 0 —¢,)=o,
(3) O(v;+v;+ v — )= o,
0040+ 0/ —e])=o.
Plus généralement, envisageons ¢ équations simultanées 4 4 incon-
nues, »

4) O+ I M=y (k=1,2,...,9).
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Combien ces équations admettront-elles de solutions? -

On peut, dans I'évaluation du nombre de ces solutions, se placer &
deux points de vue différents.

Au premier point de vue, nous ne regarderons pas comme distinctes
deux solutions que I'on déduit I'une de I'autre en permutant les ¢ points
inconnus de la courbe C,

’ -1
x, X, ... xO

et, par conséquent, lgs ¢ intégrales correspondantes

! - (g—1)
iy Piy  ovey O~q .

Au second point de vue, on regardera ces deux solutlons comme dis-
tinctes.
Il est clair que le nombre des solutions, évalué au second point de

vue, sera ¢! fois plus grand que le nombre des solutions évalué au pre-
mier point de vue.

Il y a deux cas ol nous savons faire cette évaluation.

Cest d’abord celui ot g = 1, celui de I'équation (1) : c'est celui de
Riemann.

Le nombre des solutions est alors égal 4 p.
Clest ensuite celui ot ¢ = p; si I'on a les équations

(5)  O(u—e™=o0 (k=1,2,...,p),

j’ai démontré, comme je l'ai rappelé au début de ce travail, que le
nombre des solutions est égal a p!.

D'un autre c6té, les #; peuvent toujours étre mis sous la forme
U= 0+ 0+ ...+ 0P

et cela d'une seule maniére (en général du moins d’aprés les théo-
rémes de Riemann); d'une seule maniére, veux-je dire, si 'on seplace
au premier pomt de vue et de p! mameres différentes si I'on se-place
au second point de vue. SR

Si done ¢ =p, le nombre des solutions des equatlons (4) est égal
a p' au premier point de vue, 4 (p!)? au second point de vue. -
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* Le probléme est donc résolu dans les deux cas extrémes ¢ =1,
q = p; pour traiter les cas intermédiaires, je vais employer la méme
méthode dont j'ai fait usage pour les équations (5) dans le Mémoire
cité du Bulletin de la Société mathématique de France. Cette mé-
thode consiste & évaluer le nombre des solutions dans le cas singulier
elliptique; ce nombre étant constant sera encore le méme dans le cas
général. :

Soit d'abord p = 3, ¢ = 2; dans lc cas singulier elliptique on aura

. 0=10,(u,)0,(u,)0,(u,).
Soient alors
six constantes quelconques; posons, pour abréger,

6,‘(0; -+ 92 —_— C,‘) = 0,‘,
0;(0;:+ v, —e.)=0.

Les équations (4) s’écriront alors

. 8,6,0,= o,
(4 bls) 0’ OI el
1 Iy =0.
En général, on aura
’ ! U
e2e,, e.2€, €26,

de sorte que 0, ne pourra pas s’annuler en méme temps que 0, ni 6,
en méme temps que 0, ni 8, en méme temps que 0.

Un des facteurs 0; devra s’annuler ainsi qu'un des facteurs 0 ; mais
ces deux facteurs ne pourront étre de méme indice.

Nous pourrons donc faire autant d’hypothéses qu’il y a d’arrange-
ments de trois lettres, deux a deux, c'est-a-dire six. Adoptons une
quelconque de ces hypothéses, par exemple '

0,=0,=o.
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Pour aller plus loin, il faut se rappeler ce que devient. dans le cas
singulier elliptique la courbe B qui a pour équation u;= ¢;; elle se dé-
compose et I'on doit avoir : soit

0y = %’-, vy= = (hypothése 1),
soit »

0, = %‘-, 0y = % (hypothése 2),
soit B

0y = 4, o= %’- (hypothése 3).

De méme en ce qui concerne ¢;, on doit avoir : soit

soit '
o=, = f;—‘ (hypothése 5),
soit
o = “_2', 0, —__.—A% (hypothése 6).

On peut combiner les hypothéses 1, 2, 3 avec les hypothéses 4, 5,
6, ce qui fait en tout neuf combinaisons; la plupart doivent éire reje-
tées. : '
On ne peut pasavoir & la fois

%2 ’ %s

car alors

0,=08,(a,—¢€,)
ne serait pas nul en général. Cela exclut les combinaisons.
16 (1,6), (3,4, (3,6).
On ne peul pas avoir non blus 4 la fois |

0 a4 v %y
= — = —
LY 1T g
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Cela -exclut les combinaisons

(2,5), (2,6), (3,5).
Il ne reste que deux combinaisons
(r,5) et (2,4).
Adoptons la premiére, les équations

0, = o, 0,=o0
deviennent

d’oli, enfin,

(une solution et une seule). La combinaison (2,4) nous donnerait
une autre solution.

Chacune de nos six hypothéses nous donne donc deux solutions;
cela fait douze solutions au second point de vue et six au premier point
de vue,

Raisonnons de la méme maniére pour des valeurs quelconques de p
et de ¢; placons-nous encore dans le cas singulier elliptique. Le pre-
mier membre de chacune des g équations (4) sera le produit de p fac-
teurs.

Dans chacun de ces produits, un des p facteurs devra s’annuler;
mais, pour la méme raison que plus haut, les ¢ facteurs qui s'annule-
ront devront étre d’un indice différent. '

Nous pouavons donc faire autant d’hypothéses qu’il y a d’arrange-
ments de p lettres g a g, soit

' pl
(P=q)"
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Adoptons une de ces hypotheses; les ¢ équations (4) seront rempla-
cées par ¢ équations plus simples de la forme

(6) 0,61+ 6+ 0 — ) = 0,

ol i prendra ¢ valeurs différentes comprises entre 1 et p, pendant
que k& prendra les valeurs 1, 2, .. ., ¢; & chaque valeur de & correspond
une valeur de i et une seule.

Cela posé, la courbe B se décompose; nous pouvons donc faire
p hypotheéses différentes au sujet des ¢;; ces-hypothéses peuvent se ré-

sumer dans la proposition suivante :
%

Les p quantités ¢; devront étre égales a » excepté une d’entre

—_1
elles.
La méme chose est vraie des quantités

g " (g-1
Piv  Piy vy 0 .

Les p quantités ¢* (ol k a une valeur donnée et ol ¢ prend les valeurs
%y
p—1

Formons un Tableau & p colonnes et ¢ lignes, de telle facon que
Pélément de la £ colonne et de la k + 1€ ligne soit ¢{”; dans

1,2,...,p) devront étre égales a » excepté une d’entre elles.

chaque ligne un élément et un seul ne devra pas étre égal 4 ﬁ—;

Ily a donc dans le Tableau ¢ éléments et il n’y en a que ¢ qui ne
sont pas égaux 4 ;}—“_’——I .

Distinguons les colonnes de ce Tableau en deux catégories; nous
rangerons dans la premiére catégorie les colonnes dont I'indice figure
parmi les indices i des équations (6). 11 y aura donc ¢ colonnes de la
premiére catégorie et p — ¢ de la deuxiéme.

Je dis que dans une colonne de la premiére catégorie il y a un élé-
a

ment qui n'est pas égal a —* —; car, s'il n'en était pas ainsi, on aurait

-

. ”. R - N a
O Vi O o = ;q—__—’;,

et, en général, c'est-a-dire pour une valeur quelconque de e*';on



2b8 . "N, POINCARE.

n'aurait pas ,
’ (g—1) b\
bi(vi4+0; 4.+~ =0,

Dans chaque colonne de la premiére catégorie, il y a donc un élément
cppe o . . .
différent de»——’—; je dis qu'il 0’y en a qu'un dans chaque colonne;

en effet, il y en a un dans chacune des ¢ colonnes de la premiére caté-

gorie ct il n’y en a que g dans tout le Tableau. .
Ainsi, en supprimant les p — ¢ colonnes de la deuxiéme catégorie,

il nous restera un Tableau & ¢ lignes et ¢ colonnes; tous les éléments,

1 . . Y a .
sauf ¢ éléments singuliers, seront égaux a ?:’—I; dans chaque ligne et

dans chaque colonne il y aura un élément singulier et un seul.

Nous pouvons donc faire, au sujet de la position des éléments singu-
liers ¢! hypothéses différentes.

A chacune d’elles correspond une solution des équations (6) et, par
conséquent, une solutxon des équations (4).

Chacune des ), hypotheses faites au début avant la formation
des equatlons (6) nous donnera donc ¢! solutions des équations (4).
En résumé, les équations (4) admettent (aussi bien dans le cas gé-

néral que dans le cas singulier elliptique)

plq!

o solutions.

Cela au second point de vue. Au premier point de vue, le nombre des

solutions est
!

p—ql’

autant que d'arrangements de p lettres ¢ & ¢.
Dans le cas de ¢ =1 (cas de Riemann), ce noml)re d’arrangements
est egal a

C’est le résultat de Riemann. _
Dans le cas de ¢ = p, ce nombre d’arrangements est celui des per-
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mutations de p lettres, c’est-d-dire p!. C’est le résultat que j’ai-obtenu
dans le Mémoire cité du Bulletin de la Société mathémattque de
France.

Ainsi se trouvent réunis dans une formule plus compiéhensible le
résultat de Riemann et le mien. Un chemin est frayé entre les deux
domaines précédemment conquis et le.but que je me proposais au dé-
but de ce travail est en partie atteint.

Considérons encore le cas de g =p — 1.

Les équations (4 ) sont alors équivalentes aux suivantes :

@(u,-):o,
O(u;— M=o
(k=1,2,..,p—1).

(7)

En effet, I'équation ®(#;)= o équivaut a -
U= 0+ 0 +...+ o,

Or les équations (7) admettent p! solutions. .
Les équations (4) doivent donc av01r aussi, au premier point de vue,
p! solutions.
Et, en effet,

8. — Décomposition de la courbe A

Aun° 6, j'ai défini par les équations (5) une certaine courbe que
j’ai appelée A; je transcris ces équations en leur donnant le n° (1),

@(uf-f- e;) =.o.
‘ ) ‘ ( O(u;— €;) =o.

J’ai dit que cette courbe doit se decomposer dans certains cas, et
c'est sur ce point que je désire revenir, :
11 est aisé de comprendre pourqu01 cette‘decomposmon dmtl avoir
lieu. - : v . 2 =
Journ. de Math. (5* série), tome I. — Fasc. III, 1895, 34
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Cherchons en effet le degré de la courbe A.

Je suppose p=3,n>2; la courbe A est alors tracée sur la va-
riété V qui a été définie plus haut; la variété V est de degré 6 n® et est
située dans I'espace & n* — 1 dimensions.

Pour évaluer le degré de A, il faut couper par une variété plane
ayant n*® — 2 dimensions et compter le nombre des points d'intersec-
tion. '

Cette variété plane sera définie par une seule équation qui sera de

la forme
0=o,

6 étant l'une des fonctions d’ordre n qui donne naissance & la variété V.
Les trois équations

@(ui'— 95)20,
@(u,~~ e:): o,
h=o

admettent 67 solutions; la courbe A est donc de degré 6a.
Maintenant donnons des valeurs particuliéres aux six constantes e;
ete).
Soient
ep=—9, e=—y9,

x,, @, étant deux points de la courbe C, et ¢}, ¢! les valeurs corres-
pondantes de ¢;.
It est clair qu'on satisfera aux équations

O(u; + vj) =o,

O(u;+v)=o0
en faisant
u;, = v;.

La courbe B fait donc partie de A, et comme elle est de degré 3z,
il faut bien que A se décompose.

Etudions les circonstances de cette décomposition.

Placons-nous d’abord dans le cas singulier elliptique.

La courbe A se décompose alors toujours en 6 autres ayant respec-
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tivement pour équations

u,=a,+e,
Uy = Oy + €y,
U, =ao,+ ey,
u:;:“s"*; Cs,

Uy = Uy + €y

\ Uy = Uy - €y,

Uy= &ty + €,
u =a,-+e,
Uy =ty + €,
u=o,+ e,
Uy = oty + €y,

’
Uy = aa’*" e,.,.

Celle de ces six courbes dont les deux équations occupent la. féme
ligne dans ce tableau, je Pappellerai la courbe (a, ).
Cela posé, supposons

—_ 0 Jpa— N

On peut faire trois hypothéses différentes sur ¢} ; deux des ¢} doi-
venl en effet étre égaux & %1 ; on peut faire de méme trois hypothéses

sur ¢!, Cela fait en tout neuf hypothéses différentes; je n’en examine-
rai que deux, toutes les autres s'en déduisant par permutation. Dans
'une comme dans P’autre, la courbe B se décomposant en trois courbes
de degré n, nous devrons retrouver ces trois courbes parmi les six
courbes (2).

Soient d’abord
0___ 4 __ % 0__ 1 __0%s
92——02—-2'7 93—-03——-‘;’
Les équations (2) deviendront
o
u,=a,+e,, u2=;’,
o
uz—;, u‘—“{_‘—e”
-3
u,—-d,—i—c“ u3=;l’
(2 bis) < ' oy ,
| W= 0 uy=o,+ep
az a3
U, = P Ug = —2-)
@ @
u3= ';3’ u2= _!.
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On ne retrouve ainsi que 'une des trois courbes ‘dans lesquelles se
décompose B, & savoir
%y
Ug = ; ’ 3= -;'
La contradiction n’est qu’apparente. Si, en effet, nous nous placons

dans le cas singulier elliptique et si nous faisons

les équations (1) de la courbe A ne sont plus distinctes; elles sont sa-
tisfaites toutes les fois que

et toutes les fois que

Les équations ne définissent donc plus une courbe, mais une sur-
face ou variété & deux dimensions. Les trois parties de la courbe B se
trouvent sur cette surface.

Mais si, restant dans le cas singulier elliptique, on fait tendre e,,

"4 a . e .
Cyy €3y €y, VErS — -25 et — —23, la Zimite de la courbe A ne contiendra

pas la courbe B tout entiére.

Si, au contraire, nous placant d’abord dans le cas général, nous
faisons tendre les termes latéraux vers o, de fagon a nous rapprocher
indéfiniment du cas singulier elliptique, si nous prenons

—_ 0 ' [}
Ci= — ¥, ;= — 90,

et de telle maniére que, 4 mesure qu'on se rapproche du cas singu-

. a [} o

lier, e,, €;, €,, €, tendent vers — 2 et — -2, alors, la nouvelle limite
2 2

de A contiendra la courbe B tout entiére.
Supposons maintenant
ag 0 %
3

0 __
92——;, Y
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les équations (2) deviendront

Uy=oa;+ e, Uy =ty + €,
« a
u,=";" u‘='2'!)
%
u,=a|+e” us———: ;"
(2 ter) a 2,
ua-— —2" u‘= _2'7
] o,
&2= ;”, ua‘:f,
o3 ’
us= ’;’ ) u2= a2+32.

Nous retrouvons ici les trois parties de la courbe B.
Ici encore les équations (2) ne sont pas distinctes. -
. Elles sont satisfaites par tous les points de la surface
ad
u3 = _Z- b
et, en outre, par tous les points des deux courbes (2 ter, 1) et
(2 ter, 2).
Seulement les choses ne se passent pas ici comme dans la premlere
hypothése, et c’est sur ce point que je désirais attirer Pattention.

Si, restant dans le cas singulier elliptique, nous faisons tendre e,,
ey, €, et ¢ vers les limites — ?, - ?, — %" — —, la llmlte de la
courbe A contiendra la courbe B tout entiére. :

Ktudions maintenant la décomposition de A dans le cas général.

Dans le cas de p=3, on peut supposer que la courbe C est une
courbe de quatriéme degré sans point double.

Etudions la mgnnﬁcatlon de I'équation
(3) 0 (u; —e,)-—o.
On peut toujours poser | V

—e;=9 + ¢} + ¢},
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0!, o}, o2 btant les valeurs de l'intégrale ¢, qui correspondent & trois
points de C que j'appellerai les points x,, z,, ,, ou, pour abréger
encore, les points 1, 2, 3.

De méme, nous pouvons toujours poser

U= o} + 0} + 0},

les mtegrales v, ... correspondant & trois points de C que j'appelle-
rai les points 4, 5, 6.

L’équation (3), en vertu du théoréme de Riemann, peut étre rem-
placée par la suivante :

€4) U— ej=—v; — 9},

les points 7 et 8, qui correspondent aux deux intégrales du second
membre de (4), étant deux points quelconques de C. Mais I'équation
(4) peut s’écrire

1 2 3 A 5 o 1 B .
O} 4 0; + 0l 0l 4+ 0] + 0] + 9] + 0] = 0;

elle signifie que les huit points 1, 2, 3, 4, 5, 6, 7, 8 sont sur une
méme conique.

La signification géométrique de 1'équation (3), c’est donc que les
six points 1, 2, 3, 4, 5, 6 doivent &tre sur une méme conique. Consi-
dérons maintenant I’équation

(3 bis) - O(u;—e;)=o.
Nous pourrons toujours poser
| —e =9+ 0"+,
et l’équauo’n (3 bzs) signifiera que les six points 4, 5,6, 9, 10, 11 sont

sur une méme conique.
La courbe A est définie par les équations simultanées (3) et (3 bis);
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si I'on veut satisfaire a la fois & ces deux équations, le probléme se po-
sera géométriquement de la maniére suivante :

On se donne sur la courbe C siz points 1, 2, 3, 9, 10, 11; il faut
Jaire passer par 1, 2, 3 une conique K, et, par 9, 10, 11, une co-
nique X', et de telle fagon qu'ily ait trois points 4, 5, 6 communs
¢ C et aux deux coniques.

A chaque solution de ce probléme correspondra un point de A.
Supposons en particulier que deux des points 1, 2, 3 coincident
avec deux des trois points g, 10, 11; par exemple, 2 avec 10 et 3 avec
11, de sorte que D .
— e, =9, + 9 + 9.

Qu’arrivera-t-il alors? Les équations (3) et (3 bis) de la courbe A
deviendront
O(u;+ 9! + v} + v} )=o,

O (u;+ o)+ v; +vl)=0o,
et elles admettront pour solution
u;=v;~— 0] — 0.

Clest 1a léquation d’une courbe B'; la courbe A se décompose donc,
une des deux parties étant la courbe B’

Examinons géométriquement les circonstances de cette décompo-
sition. Les deux coniques K et K’ ont déja deux points communs 2
et 3+ sielles doivent en avoir trois autres 4, 5, 6, elles se confondront
4 moins de se décomposer.

Examinons séparément ces deux hypothéses.

On obtiendra les valeurs de u; (ou des points de A) qui correspon-
dent 4 la premiére hypothése de la maniére suivante :

Par les quatre points 1, 2, 3, 9, faisons passer une conique elle
coupera la courbe C en quatre autres points, parmi lesquels j’en ch01-
sirai trois qui seront les points 4, 5, 6.

Ce choix peut se faire de trois maniéres différentes.
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Les coniques qui passent par les quatre points 1, 2, 3, g forment un
faiscean. A chaque conique du faisceau correspondent ainsi trois
points de A.

Examinons maintenant la seconde hypothése.

Pour que deux coniques aient cinq points communs, sans se con-
fondre, il faut que chacune d’elles se décompose en deux droites et
que deux de ces droites se confondent. -Quatre des cinq points doi-
ventalorsse trouver en ligne droite. Les coniques K et K’ ont cinq points
communs, 2, 3, 4, 5, 6; quatre de ces points doivent étre en ligne
droite.

Cela peut se faire de deux maniéres, de sorte que la seconde hypo-
thése se subdivise en deux autres que j'appellerai, pour abréger, la
* seconde et la troisiéme hypothése.

Ou bien, les points 2 et 3 sont en ligne droite avec deux des points 4,
5, 6; par exemple, avec les points 4, 5; ce sera 1a la deuxiéme hypo-
thése. :

Ou bien, les points 4, 5 et 6 sont en ligne droite avec un des points 2
et 3; par exemple, avec le point 3; ce sera la la troisiéme hypothése.

Examinons d’abord la deuxi¢me hypothése.

Les points 2, 3, 4, 5 étant en ligne droite, on aura

Ol 0] + 0} + 9 = 0.

La conique K se réduira a la droite 2, 3, 4, 5 et a la droite 1, 6; la
conique K’ se réduira 4 la droite 2, 3, 4, 5 et 4 la droite g, 6.
Les points 4 et 5 sont fixes et le point 6 est seul mobile; on aura
d’ailleurs
U= 0t 08 4 0] =0} — 0} — 0}

comme le point 6 est mohlle les points 2 et 3 fixes, je puis écrire
cela sous la forme
2 3
Uy =9;— 9y — ¥

le point z qui correspond & ¢; étant un pomt mobile quelconque de C.
C’est 1aI'équation de la courbe B’ et I'on voit ainsi d’une autre ma-
niére qu'elle doit faire partie de la courbe A. Mais j'ajouterai.qu'elle
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doit faire partie d'une infinité de courbes A; et en effet nous pouvons
laisser les points 2, 3, 4, 5 fixes et en ligne droite et faire varier les
deux autres points 1 et g (et par conséquent les quantités ¢; et ¢;); nous
ne cesserons pas d’avoir

Up=0;— ¢ — 0},

Examinons maintenant la troisitme hypothése.
Les points 3, 4, 5, 6 étant-en ligne droite, on aura

3 3 3 8 .
pi+pi+pi+pi_o’
d’ot

Comme les ; sont des constantes, on voit qu'a la trmswme hypo-
thése correspond seulement un point de A.

La courbe A se décompose donc en deux parties correspondant
aux deux premiéres hypothéses; la partie qui correspond 4 la deuxiéme
hypothése est la courbe B'.

Nous n'obtenons pas ainsi tous les cas de decomposmon de la
courbe A. '

Soient en effet

‘ Jo fo s

trois constantes quelconques, nous pourrons encore poser

u;=fi+ 0} + 90} +9f,
—e=fi+v + 0} +¢},

' 9 10 i
—e=fi+0+ 0"+ 9"

Les équations (3) et (3 bis) signifieront encore que les six points
1, 2, 3, 4, 5, 6 sont sur une conique K et les six points 4, 5, 6, g,
10, 11 sur une conigue K. ,

Si deux des points 1, 2, 3 coincident avec deux des points g, 10,
11, ces deux coniques doivent se confondre ou se décomposer. Il.en
résulte que la courbe A se décomposera encore en .deux parties; 'une
de ces parties (celle qui correspond & I'hypothése de la décomposition

Journ. de Math. (5 série), tome I. — Fasc. TII, 1895, 35
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de K et de K’) a pour équation
=0+ fi— o = v}

C’est encore une courbe B’. On a la courbe B elle-méme si 'on
supposc

fl-:()?—l*();-'.

9. — Cas voisins du cas elliptique.

J’ai déja eul’occasion, au n° 6, d'éLudier les cas voisins du cas singu-
lier elliptique. Nous avons va que, pour les cas suffisamment voisins
~ de ce cas singulier, la fonction @ peut sc développer suivant les puis-
sances croissantes des termes latéraux.

C’est le développement (6) du n° 6 dont nous avons formé plus
haut les premiers termes.

Il est aisé d’en former le terme général.

Soit par exemple & former le terme en

@y @30
en supposant d'abord p = 3.
Posons

T=N+N, =R+, fy=A+N,
le coefficient du terme cherché sera

(= P O oiY=16ys)
AL

Je désigne toujours par 0,0,0, le premier terme du développe-
ment (6) et par 6 la dérivée d’ordre vy, de la fonction 6,.

Supposons maintenant p = 4 et soit & trouver dans le développe-
ment (6) le coefficient du terme général en '

)‘!J

das s phia e b
d,‘._:a,{;a,{;a;;a._.’; 35°
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Soient .o
Y= )\12+‘)\13+ lu’

Y2 = Ay + Rag + Aoy
Y3 = Ry + Mg+ Agsy
Y = )‘u + )\.ie + 7\2*

If va sans dire que je pose
Nw= My
Le coefficient cherché sera alors

(—1 )m (Y B(Ye (Y190 )
)\12! )\|3 ! )»lgl )\23 ! )\35! )\351

11 est donc facile dans tous les cas de former le développement (6).
Voici maintenant I'usage que j’en ferai.

Nous avons défini plus haut au n°® 3 ce qu’on doit entendre par sur-
face de translation et par équation translative et nous avons vu que
Péquation

(1) ®=o0

est translative si la fonction @ est une fonction spéciale.

Mais on peut se demander si cette équation est encore translative
si la fonction @ est une fonction non spéciale.

Pour résoudre cette question j'étudierai I'équation

®=o,

en me servant du développement (6) et en supposant que les termes
latéraux sont assez petits pour qu'on puisse négliger les termes
d’ordre supérieur de ce développement.

Mais cette étude peut se faire de plusieurs maniéres.

Nous pouvons d’abord supposer que u, est trés voisin de «,, mais
que Uy, Uy, u, ne sont pas trés voisins de a,, a,, a,. C'est ainsi que
nous avons obtenu le développement (8) du n°.6 dont nous avons
formé les premiers termes.
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Nous avons formé les termes du premier ordre et nous avons trouvé,
pour p =3,
0, 05
u, *—'“c“*‘aine “*‘ana

Dans le cas de p = 4, nous aurions trouvé

A a; s

Cherchons maintenant a former les termes du deuxiéme ordre.
Soit

V

e’l (al
B= 6' ("x

~—

Nous trouverons pour ces termes du deuxiéme ordre, dans le cas

de p=4, 0; YR
‘ Uy = a, +Ea,,~—ii '—E%B<6{ - —éi;)
(2) ¢ ""Eanalke (0” %’;>
( (i, k= 2, 3, 4)’

Cette équation peut étre remplacée par les suivantes, au méme
degré d’approximation, c’est-a-dire en négligeant les cubes des «,; et
deu, —u,.

Nous introduisons trois paramétres &,, wy, %, ¢t Nous posons

w =3 ]
3 __Bay; . i 0. (wr)
( ) U = -—2—1-+w'+2kam ﬂk(Wk)
(i, k=2,3,4;iZr).

Les équations (3) peuvent remplacer I’équation (1) en négligeant
les cubes dés termes latéraux.

Or les équations (3) ont un caractére manifestement translatif.
H semblerait donc que ’équation (1) reste translative méme pour les
fonctions abéliennes non spéciales. Mais on ne:doit pas oublier-que les
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équations (3) ne sont qu’approchées et nonsne_tarderons pas & voir
que le caractére translatif ne subsiste pas & un degré supérieur d’ap-
proximation. .

Une seconde hypothése est celle ou, p étant égal a 4 par exemple,
u, et u, sont trés voisins de a, et «,, u, et u, trés différents de «,
et a,.

Posons alors

u, =a,+ g, u, = g+ 1§,

—_—12
Cir = UYiky

¢ étant un paramétre trés petit.

La fonction ©, représentée par le développement (6), se trouvera
alors développée suivant les puissances de ¢;si ¢ est trés petit, nous
pourrons ne conserver que le premier terme qui est un terme en ¢* et

qui s’écrit -
20,0,0,0,(88— 7i2)-
Alors I'équation (1) se réduit &
Et 22 =3+

Dans le cas de p =3, si u,, u,, u, représentent les coordonnées
d’un point dans I’espace, cette équation représente un cylindre hyper-
bolique qui peut, d'une infinité de maniéres, étre regardé comme une
surface de translation.

Le caractére translatif est également évident pour p > 3.

Nous avons encore trois hypothéses & examiner :

p=3; u,, u, et u, trés voisins de a,, oy, o5}
P =45 uy, u, et u, trés voisins de a,, ,, a,; @, trés différent de a, 5
P =A4; u,, u,, u, et u, trés voisins de «,, a,, o, et «,.

Nous nous en occuperons dans les numéros suivants.

10. — Etude d’une surface de translation.

Les surfaces de translation peuvent étre engendrées par la- transla-
tion d'une courbe gauche et c’est la l'origine du nom qu'on-leur a
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donné. 1.’équation générale d'une surface de translatlon est, comme

nous l’avons vu, v
o (e=h0 s,
v =AM+ £,
5= f(O)+ [, (w),
¢ et u étant deux variables indépendantes; les f et les f” étant six
fonctions quelconques.
La surface définie par 1'équation (1) peut ene, de deux manicres

différentes, engendrée par la translation d'une courbe gauche, i savoir
par celle de la courbe

@ = f,(1), .V':"fz(t)a s=/fy(0)

¢t par celle de la courbe

z = f(u), y =/ (), 5=f,(u).
On peut tracer sur la surface deux systémes de lignesremarquables
que j'appellerai génératrices.
Ce sont pour le premier systéme
z=f()+[(a),
y =r(0)+[i(a),
5= f3(1)+ fi(a),

a étant une constante quelconque et £ une variable, et pour le second

systéme
z = f(u)+fi (@)
y =f:(u)+ fi(a),
z=f,(u) + fs(a),

a étant une constante quelconque et « une variable.
Les génératrices d’'un méme systéme sont toutes égales entre elles.
Parmi les surfaces de translation, je distinguerai une classe remar-
quable de surfaces que Jappelleral surfaces de translation distin-
guees.



SUR LES FONCTIONS ABELIENNES. 273

On les obtient quand les trois fonctions f), f,, f, sont identiques
respectivement aux trois fonctions f, f,, fs. Les deux systémes de
géneératrices se confondent alors en un seul.

D’autre part, la sucface peut étre considérée comme le lieu des
milicux des cordes d'une courbe gauche tracée sur la surface et que
j'appellerai courbe directrice. Elle a pour équations

=2f,(1), y=2/i(2) 5 =df, (1)

11 suffit d’ailleurs, pour qu’une surface soit distinguée, que les diffé-

rences .
| Si®)—=fi(), -
S (8) = fa(D),
fi(t) = fa(D)

se réduisent & des constantes; c’est-a-dire qu'une génératrice du
sccond systéme soit égale & une génératrice du second systéme et
semblablement orientée dans I'espace. Ce cas se raméne en effet au
précédent d’'une maniére immédiate.

La surface

0 ==o,

ol u,, &,, u, sont regardés comme les coordonnées rectangulaires
d’un point dans I'espace, est une surface de translation distinguée.
On a cn effet ‘

O (0, + 9,y 0s+ v,y 0+ 0,) =0,
de sorte que I'équation de la surface peut se mettre sous la forme
u;=v;+ ¢;,
ou les ¢; ne dépendent que de x et les ¢; de .
C’est donc bien une surface de translation distinguée dont les géné-
ratrices ont pour équation : : :

u;=0;+ 0},

@, étant un point fixe de C et ¢} la valeur correspondante de v;.
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La directrice a pour équation
u;= 20;
Mais ce n’est pas tout. On a également
O(—v—¢;) =0,
de sorte que l’équafion de la surface peut se mettre encore sous la

forme
N !
u,':""‘ 0[‘—‘ ‘)"-

(C’est donc encore le lieu des milieux des cordes de la courbe
U;=— 29,

(C'est donc, de deux maniéres différentes, une surface de translation
distinguée qui a deux courbes directrices

U; = 20, Uy=— 29,
et deux systémes de génératrices
u;=o;+ vf, Ui=—v; — o},

Avant d’aller plus loin, étudions les points 4 I'infini des surfaces de
translation; elles correspondent évidemment aux points & I'infini des
génératrices.

Considérons la courbe

z=f(v), y=f(u), s=f,(u)

et I'une des asymptotes de cette courbe. Supposons que I'on ait pris
I'axe des z paralléle & cette asymptote, de telle facon que, pour une
certaine valeur u, de u, f; (u,) devienne infini, [ (,) et f, (u,)
restant finies.

Alors
z=f, () + [ (%), y =S (1) + [y (1),
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oll ¢ est une variable et u, une constante, sera 'équation d'un cylindre
asymptotique & la surface.

La projection d'une génératrice quelconque sur le plan des zy sera
égale 4 la section droite de ce cylindre.

Cela posé, voici ou je voulais en venir.

Examinons I'hypothése

P=3; u,, U, u,trés voisins de a;, ay, a,.
Posons ‘ )
u;=o; + 2§, au= Yy (i2k);

la série (6) du n° 6 se trouve alors developpee suivant les puissances
de Z et le premier terme, qui est én 2, s'écrit

20,0, 0, (8,88 — YasBi — YiaBa — Yiaba)-

Si je suppose ¢ trés petit, jé pourrai négliger les autres.
Donc la surface-algébrique du troisiéme ordre

vy z r
(3) Q;qugz‘{23§|+‘{|3§3+“{13§3

doit étre une surface de translation.

C’est méme une surface de translation distinguée.

Sur ce dernier point le passage & la limite que je viens d’opérer
pourrait peut-étre laisser des doutes.

Soit S une surface de ‘translation distinguée wariable ayant pour
limite une certaine surface S’ (quand le paramétre variable dont dé-
pend la surface S tend vers une certaine limite). Soit M un point de S
tendant vers un point M’ de §'. Par le point M passeront deux généra-
trices de S, que j’appellerai G et H; les deux courbes G et H tendront
vers deux courbes limites G’ et H' passant par le point M'; et la sur-
face &’ pourra, 4 lalimite, &tre regardée comme engendrée par la trans-
lation de G’ ou par celle de H'. C’est donc une surface de translation.

La surface S étant une surface de translation dlstmguée, les deux
courbes G et H sont égales entre elles; s'ensuit-il que les deux courbes
G’ et H' soient égales entre elles? 11 n'en est- pas forcément ainsi; il
peut se faire qu'a la limite la courbe G se décompose et méme que,

Journ. de Math. (5¢ série), tome I. — Fasc. 11, 18g5. 36
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dans cette décomposition, certaines parties de celte courbe soient reje-
tées & I'infini. De méme la courbe H, égale 4 G, se décomposera; et il
peut se faire que G’ soit la limite d'une partie de G et H' celle d’unc
partie de H correspondant & une autre partxe de G.

Pour mieux faire comprendre ma pensée, je vais essayer de fixer
les idées; supposons que G et H soient deux cubiques gauches égales;
on pourrait imaginer qu’a la limite G se décompose cn une droite &
distance finie (qui serait G') et une conique rejetée & l'infini, et que
H se décompose en une droite rejetée a l'infini et unc conique & dis-
tance finie (qui serait H").

Clest d'ailleurs ce qui arrive quand on passe & la limite d’une autre
maniére et comme nous l'avons fait au n° 6; c’est-a-dire de telle sorte
que ¥, — a, devienne infiniment petit et que u,— &, #; — o, reslent
finis.

La surface (2) est donc une surface de translation; mais on pour-
rait se demander si c’est une surface distinguée. t

On peut faire de cette surface une transformation homographique
trés simple qui en simplifie un peu I'équation en lui conservant le carac-
tére translatif.

Nous pouvons toujours trouver des quantités

Eiy Ear &y
définies par les équations

. . e e
&y =—Y2 €983 =— Y3y & &y =—"s3

nous poserons alors

Ei=¢a, L=y, La= 55,
et P'équation (2) deviendra
(3) TYys5+x+y + 3=o.

La surface du troisi¢éme ordre (3) (ol z, y, 5 sont regardés comme les
coordonnées rectangulaires d’un point) est donc une surface de trans-
lation.
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La surface (3) admet trois cylindres asymptotiques qui sont

zy +1=0,
X5+ 1=0,
ys+1==o0.

D’aprés une remarque faite plus haut sur les cylindres asymptotiques
des surfaces de translation, la projection d'une génératrice sur I'un quel-
conque des plans de coordonnées est une hyperbole équilatére.

Toute génératrice est donc I'intersection de deux cylindres hyper-

boliques équilatéres dont les plans asymptotiques sont parallgles aux
plans de coordonnées, 4 savoir aux plans

x=0, s=0
pour le premier cylindre, et aux plans
Yy =0, 5=0

pour le second. L'intersection de ces deux cylindres se décompose en
une droite rejetée a infini dans la direction du plan z = o et en une
cubique gauche.

Les génératrices de notre surface de translation sont domc des
cubiques gauches dont les asymptotes sont, paralléles aux axes de
coordonnées.

Cela nous fait déja prévoir que la surface sera une surface de trans-
lation distinguée; en effet, la projection d’une génératrice du second

systéme surle plan des zy doit étre, comme celle d’une génératrice du
premier systéme, égale & 'hyperbole

zy + 1
et semblablement orientée.

Les projections des génératrices des deux systémessur I'un des trois
plans de coordonnées sont donc égales; donc les génératrices du second
systéme sont égales a celles du premier et semblablement origntées.

C. Q. F.D.
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La surface a donc une directrice qui est aussi une cubique gauche,
et les deux systémes de génératrices se confondent en un seul. Mais ce
nest pas tout; la surface admet un centre de symétrie qui est origine,
et trois plans de symétrie qui sont les plans x =y, z = 5,y = z. Elle
admet en conséquence trois axes de symétrie binaire et un axe de sy-
métrie ternaire.

Nous pouvons conclure de 1a que : ou bien la directrice admettra
Porigine pour centre de symétrie ; ou hien sa symetrlque sera encore
une directricé. Or une cubique gauche ne peut avoir de centre de
symétrie; donc la surface admet deux directrices, symétriques 'une
de Pautre par rapport & l'origine.

On pourrait raisonner de méme avec I'un des trois plans de symé-
trie; car une cubique gauche ne peut pas non plus avoir de plan de
symétrie. Les deux directrices sont donc aussi symétriques 1'une de
Pautre par rapport a 'un de ces trois plans,

On verrait de méme que chacune des directrices admet trois axes
de symétrie binaire et un axe de symétrie ternaire.

La surface (3) jouit donc de la méme propriété que la surface
® =o0; je veux dire qu'elle sera de deux maniéres différentes une
surface distinguée et qu'elle aura par conséquent deux directrices et
deux systémes de generatmces. .

Nous sommes ainsi amené a rechercher les cubiques gauches que
Ion peut tracer sur la surface.

- Une cubique gauche est déterminée quand on en connatt six points
et en particulier quand on connait les trois asymptotes.

D’un autre c6té une cubique gauche, qui a ses trois asymptotes sur
les trois cylindres asymptotiques de la surface, rencontre cette sur-
face en neuf points a I'infini. Elle ne peut donc la rencontrer encore
en un point & distance finie sans étre tout entiére sur la surface.

Voici donc ce que je vais faire.

Je prendrai une droite sur chacun des trois cylindres asymptotiques.

Je construirai une cubique ayant pour asymptotes ces trois droites
‘qui seront respectivement paralléles aux trois axes de coordonnées.
Jécrirai qu'un point, & distance finie, mais d’ailleurs quelconque de
cette cubique est sur la surface; et la cubique sera tout entiére sur la
- surface.



SUR LES FONCTIONS ABELIENNES. 299

Soient
y=1u =T
I
z:v, X == —
7]
1
x:w, = — —
w

ces trois asymptotes; u, v, w sont trois constantes quelconques.
On voit que les trois asymptotes sont bien sur les trois cylindres
asymptotiques. :
Pour qu'un point de la cubique soit sur la surface, il faut et il
suffit que

upw ==x1;
soit d’abord
(4) uow =1.
Posons
1 y 1 — ! —
(5) ;Hw=g S +u=m, Zte==C

La forme de la cubique gauche dépendra uniquement de &, n et {;
de sorte que deux cubiques gauches, correspondant 4 un méme sys-
téme de valeurs de &, et {, seront égales.

Les trois paramétres u, ¢, w étant liés par la relation (4 ), on voit
qu’il y a sur la surface une double infinité de cubiques gauches.

Leséquations (5) deviennent, en tenant compte de (4),

( g ! = L=
(6) L+ —=80, 1+ =1, v1+w__Cu~.

Des équations (5) et (6) nous tirons

_1+7 R N o
(7). "= TR % SE
avec la condition

(8) ' El=+E+n+L+2
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Alors u, ¢ et w étant fonctions rationnelles de &, v et {, 4 un sys-
téme de valeurs de &, v, { correspondra un seu! systéme de valeurs
de u, ¢, w; deux de nos cubiques gauches ne peuvent donc &tre égales
entre elles, & moins que ces fonctions rationnelles ne se présentent
sous une forme indéterminée. C'est ce qui arrive si I'on fait

EA=Y]=C=—"9

valeurs qui satisfont d’ailleurs 4 la relation (8).

C’est donc ainsi que I'on obtient les génératrices de notre surface
qui doivent, en nombre infini, étre égales entre elles et semblablement
orientées. '

Pour obtenir les équations de ces génératrices, il faut donner a &,
1, ¢ non pas la valeur — 1, qui rendrait les expressions de u, ¢, w
indéterminées, mais des valeurs trés voisines, en les choisissant de telle
sorte que la relation (8) ne cesse pas d'étre satisfaite, c'est-d-dire que
'on ait sensiblement (en négligeant les carrés de 1+8, 1+,

1+ ()
(9) E+q+{=-3

On tire de 13, en combinant les équations (7) et (g),
u=-> 0= — w=1-+1,

¢ étant un paramétre arbitraire; telles sont les valeurs de u, ¢, w qui
correspondent aux génératrices. 4
De u*¢0*w? =1 on aurait pu déduire, au lieu de (4), la relation

(4 bis) C upw=—1.

On peut donc tracer sur la surface deux familles de cubiques gau-
ches, formées chacune d'une double infinité de courbes, et correspon-
dant la premiére a (4), la seconde & (4 bis).

Si nous prenons (4 bis) au lieu de (4) et que nous écrivions (5),
nous trouverons

(7 bis) U=—1 o=, w=-—,
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avec la condition

(8 dis) El=8+n+{—2
Les génératrices du second systéme correspondent alors aux
valeurs
E =N= z =1,

qui rendent les expressions (7 bis) indéterminées et qui satisfont
a (8 bis). :
Quant 4 la directrice correspondant au premier systéme, elle cor-
respondra aux valeurs
E =1 = Z =2,

qui satisfont & (8 bis) et qui donnent

Enfin la directrice correspondant au deuxiéme systéme corres-
pondra aux valeurs
t= n=_{=2,

qui satisfont & (8) et qui donnent
u=v=w=1I.

Ainsi les génératrices du premier systéme et la directrice du second
appartiendront i la premiére famille de cubiques; les génératrices du
second systéme et la directrice du premier appartiendront 4 la seconde
famille de cubiques. : ’

Notre surface est donc le lieu des milieux, des cordes de deux
cubiques gauches qui ont respectivement pour asymptotes

(10) —y =z=1, —s=x=1, —r=y=1

et

12}

y=—z=1, =—z=I, &=—y=I.

Etant données trois droites quelconques dans I'espace, je puis tou-
jours choisir des axes obliques tels que ces droites aient pour équa-
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tions

(11)

y=-0b, z=g¢, s=—c¢,

* = a, x=—a, y=D>
Il suffit ensuite d’une transformation homographique trés simple

en changeant x, ¥, 5 en 2, &, 2) pour ramener les équations (11)
1 a b ¢

aux équations (10).

Si nous nous rappelons qu'une cubique gauche est déterminée par
ses asymptotes, nous conclurons que le lieu des milieux des cordes
d’une cubique gauche quelconque est une transformée homographique
de la surface (3) et par conséquent est une surface 4 centre.

On peut prendre la question par un autre coté.

Soient §,, &, &, les coordonnées d'un point; soit une cubique
gauche ayant ses asymptotes paralleles aux axes; les équations de la
cubique pourront se mettre sous la forme

.« -

2
& =‘ -t_—-p—fa,- + b;,

oll £ est un paramétre variable et les 38, a et b des constantes.
La surface lieu des milieux de ses cordes aura pour équation

(12) E,':‘ t—p—iai+uﬁiai+bi’
ol Z et u sont deux paramétres.

Soit P un polynome du premier degré par rapport & chacune des
trois variables &, et par conséquent du troisiéme degré par rapport &
P’ensemble de ces variables; ce polynome contiendra huit coefficients
arbitraires.

Si nous y substituons a la place des &; leurs valeurs (12), on ob-.
tiendra une fonction rationnelle R tant en ¢ qu'en z et symétrique
par rapport a ces variables. Sinous décomposons cette fonction ra-
tionnelle en éléments simples, d’abord par rapport ¢, puis par rap-
port a u, nous pourrions obtenir seize éléments différents; on pourrait

avoir en effet un terme
: 1 1

. — ~3
Jt—au—a
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ot le premier facteur pourrait &tre remplacé par

I
t—a, t(—a,

ou I,
et le sccond par
1 1
U—ay, U—a,

ou I.

Mais on voit d’abord qu'il ne peut y avoir de terme en

1
R S,
. (t—a;)(u—a;)
mais sculement en

1 '
T=en(i—aD (k).

Le développement de notre fonction rationnelle R en éléments sim-
ples comprendra done treize termes; et si 'on observe que, par raison
de symétrie,

1 et 1
’
(¢ —a:)(u—ag) (t—ap)(u—a;)

t
t—a; € u—a;

doivent avoir méme coefficient, on verra que le développement R con-
tient sept cocfficients.

En annulant ces sept coefficients, on impose sept conditions aux
huit coefficients de P, mais il en reste encore un arbitraire; de sorte
que P'équation de la surface (12) peut s’écrire

P=o;

cette surface est donc du troisitme degré.
Jusqu'ici I'origine est restée arbitraire; nous pourrons la-choisir de
fagon a faire disparaitre les trois termes du second degré; alors, comme

la surface doit avoir un centre, le terme de degré o disparaitra de lui-
: ;
méme.

Passons encore & une autre hypothése ; soit
P=4;

Uyy Usy Uy trés voisins de a,, o,, o, &, trés voisin de a,.
Journ. de Math. (5* série), tome I. — Fasc. III, 18g5. 37
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Posons encore
(i=1,2,3) u; = o;+ 18, @y = ¥y,
il viendra, en négligeant les termes en ¢,
0= 130'. 0'2 OI, 0;(54 528y — *.'«_»a’éf - ‘{lazz - ‘4’1223)’
ct 'équation ® = o s'écrira
£, B, -:'fzsz.l -+ “{4322 -+ ‘(1253-

Nous sommes ainsi ramenés au cas précédent.

11. —- Extension au cas de p = 1.

Nous allons examiner une derniére hypothése

iy, Uy, Uy, Uy trés voisins de a,, o,, o, o,.

Cette hypothése va enfin nous permelttre de montrer que les fone-
tions non spéciales, c’est-a-dire les fonctions abéliennes de genre p
qui ne sont pas engendrées par une courbe algébrique de genve p, ne
conservent pas le caractére translatif, c’est-a-dire que les théorémes
de Riemann ne sont plus vrais pour elles.

Posons encore

Jup = o+ L&, @i = Vi (i2h);
il viendra, en négligeant les termes en %,
Y ror v - \
O=2¢ 04 03 03 (’; (44 G2 E.:: 54 — ZY«;)E:; ¢y + 2d'Y:;ﬁ’:u,)-

La premiére somme
Iy, Es Ea

comprend six termes-que 1’on déduit les uns des autres en permutant

’
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les indices, de sorle que

ZYlnE:}Ea = ";’122324 + T|3£254 -+ 'YMEzEs
-+ YMEqu ‘*“Y;HE‘E:: + Y:NEC Eﬁ-

Laseconde somme comprend trois termes déduits les uns des autres
par permutations d’indices, de sorte que

ZY13Yas =Y2Yas T VeaYos + YisYoue

L’¢quation @ = o peut donc, pour ¢ trés petit, étre remplacée par la
suivante

(1) 24522354““2]’|2£3£4’*“£"{¢2"{35=0-

Yest 'équation d’une variété  trois dimensions dans I'espace & -
(uatre dimensions, si 'on regarde les £ comme des coordonnées rec-
tangulaires dans cet espace. Jappellerai cette variété V. Elle est algé-
brique et du quatrieme degré; elle admet l'origine comme centre de
symétric.

La variété & trois dimensions qui a péur équation

0 =o,

si 'on y regarde les u comme des coordonnées rectangulaires dans
Uespace & quatre dimensions; cette variété, dis-je, jouit, si la fonc-
tion © est spéciale, d'une propriété analogue & celle des surfaces de
translation distinguées. :

Considérons en effet la courbe (variété 4 une dimension) qui a pour
¢équation

u; =3, (i=1,2,3,4).

Prenons trois points quelconques sur cette courbe; le lieu du centre
de gravité de ces trois points sera, d'aprés les théorémes de Riemann,
la variété @ =o. , S

Nous appellerons donc variété de translation, toute variété dont
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I’équation peut se mettre sous la forme
(2) L=L() +fiO)+fi(0)  (G=1,23,4),

t, ¢ et " étant trois parameétres.

En donnant & deux des paramétres ¢, ¢, ¢” des valcurs constantes ct
faisant varier lc troisitme, on obticndra trois systémes de géncra-
trices.

Si les trois fonctions f;, f;, f; sount identiques, c’est-d-dire si les
génératrices des trois systémes sont égales ct semblablement orientécs,
la variété sera dite distinguée; les trois systtmes de génératrices se
confondront en un seul; et la courbe

14 ;
o £ =3 /(1)
s'appellera directrice.
Etudions les points & I'infini, considérons unc asymptote d’unc des
génératrices et prenons-la par exemple paralléle & 'axe des &,. Soit ¢,

une valeur de ¢’ telle que
fs‘(ti) = %.

Posons alors, pour abréger,

f,-"(l,‘)=a,- (i::l,f).,3).
Nous voyons que, pour ¢’ =,, ona
3) &t=x; EL=fi(0)+fi({)+a (i=1,2,3).

Si donc dans I'équation de la variété (2), obtenue en éliminant ¢,
¢ et t" entre les équations (2), on ne considére que les termes du
degré le plus élevé en £, (ce qui revient & faire £, = %), on obticndra
une certaine équation cn £,, €., &5 qui sera 'équation d'une surface de
translation. Si la variété (2) est distinguée, il en scra de méme de
cette surface et sa directrice aura pour équation

Li=afi()+a (i=1,2,3).

La variété V doit étre de translation, au moins quand la fonction ©
est spéciale, ct I'on peut supposer, par conséquent, qu’on ait mis ses
équations sous la forme (2).
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Donnons alors & ¢ une valeur constante qui rende £ (#")infinie. On
obtiendra les équations (3) qui (abstraction faite de I’équation
E, = ) définissent une certaine surface S,, qui.sera de translation.

On obtiendra I'équation de cette surface S, en égalant 4 o le coef-
ficient de la plus haute puissance de &, (c’est-a-dire de,) dans I'équa-
tion (1).

On définirait de la méme maniére les surfaces S,, S, et S;. L'équa-
tion de la surface S,, ainsi obtenue, s'écrit

(,‘) E.ngs—- 52324 ""Yiss‘z‘—YczEa:O-

C’est la surface que nous avons étudiée dans le numéro précédent.

Nous avons vu que c'était une surface de translation distinguée.
Les équations (3) doivent donc étre celles d'une surface distinguée,
c’cst-a-dire que 1'on doit avoir

fi=fi (i=1,2,3).

Comme j’aurais pu tout aussi bien raisonner sur f, ou f au lieu
dc f, que rien ne distingue de £, et £}, je puis écrire

fi=fi=f (i=1,2,3),
et comme jaurais pu raisonner sur S,, S,, S, comme sur S;, nous
aurons
' ] .
f:':"“f,:f, (1=1,2,3,4),

¢’est-d-dire que V sera une variété de translation distinguée.
Queclle sera maintenant la nature de sa directrice? La directrice
de la surface S,, qui a pour équation

& =2fi(t)+a;

est, comme nous l'avons vu, une cubique gauche ayant ses asymptotes
paralleles aux axes. Il en sera donc de méme de la courbe

E,-=3f,-(t) (i::l,z,3).

Or, ce qui caractérise une cubique gauche, dont les asymptotes
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sont paralléles aux axes, c'est que deux quelconques des trois coor-
données sont liées par unerelation homographique. Done, deux quel-
conques des trois cquantités 3 £, (¢), 3f,(¢), 3/5(t), ou (puisque
J’aurais pu raisonner sur S, aussi bien que sur S,) deux quelconques
des quatre quantités 3£, (2), 3 f2(?), 3/3(1), 3f.(t) sont liées par
une rclation homographique.

Donc la dircctrice de la variété 'V .est unc courbe de espace &
quatre dimensions, analogue aux cubiques gauches; c'est une quar-
tigue ue j’appellerai Q et dont I'équation est de la forme

~ 3 . .
(5) & = t_fi;i +b (i=1,2,3,4).

Solent donc

B3 (i=2,3,4)
E=3N, (i=1,3,4),
Ei=37\i3 (i: I,2,/|),
E=3N  (i=1,2,3)

(6)

les asymptotes de la quartique Q.
La cubique qui sert de directrice 4 la surface S, aura pour asym-
ptotes
=M +N  (i=1,2,3; k=1,2,3; i2k).

Or nous connaissons les asymptotes de la directrice de S,; on peut
les déduire de 'analyse du numéro précédent. '

Jappellerai k" asymptote (k =1, 2, 3) de cette directrice celle
qui correspond & &, = =, et j’écrirai la premiére équation de la pre-
miére asymptote sous la forme '

£, =% \/:—712'(23 .
(7> - Y13

La surface S, a deux directrices; le signe + correspond a la pre-
miére dirvectrice, le signe — & la seconde. Nous prendrons, par
exemple, la premiére directrice et le signe +-.

Les autres équations de la premiére asymptote et celles des autres
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asymptotes se déduiraient de I’équation (7) par permutations d'in-
dices.

Nous aurons ainsi six équations analogues & (7); j'appellerai équa-
tion (k, h) celle des équations de la k¢ asymptote qui donne &,.

On verrait alors que dans 'équation (4, 4) on doit prendre le
signe + si & succtde & k dans l'ordre circulaire 1, 2, 3, 1, et le
signe — si c'est k quisuccéde & /.

On a donc

(8) X Vo _'l'__;_‘h.a.
13

avec cing autres équations analogues.
De ces six équations (8) on déduit d’ailleurs aisément

A+ A+ A =0,
(9) (R AN =,
NN+ N =o.

On peut, en considérant la directrice de S,, de S,, ou de S, au lieu
de S,, obtenir trois autres groupes de six équations analogues a (8).

Cela ferait en tout vingt-quatre équations; mais elles ne sont pas
toutes distinctes. En effet, les équations (8) peuvent étre remplacées
par trois d’entre elles et par les trois équations (g). Chacun des
uatre groupes de six équations peut étre remplacé par trois de ces
six équations et par un groupe de trois équations analogues & (9g).
Mais les quatre groupes de trois équations analogues & (9) ne con-
liennent en réalité que quatre équations distinctes, a savoir les trois
¢équations (g) et I'équation '

(9[”.3) A+ A+ Ay =o0.

Il y a donc seulement secize équations distinctes que- j'appellerai
les équations (10). , :

1l faut dire quelques mots au sujet des radicaux qui entrent dans
ces équations, Il semble au premier abord que les six équations (8)
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contiennent trois radicaux distincts

\/ Y1213 \/ Y1223 \/ Yra o3,
— sl — ei — 2.
Ta3 3 Y12

mais ils s’expriment tous rationnellement en fonctions des y et du ra-
dical unique

ps = \/_‘ YasYr2Yise

Nous avons donc en tout dans nos équations (10) quatre radicaux
Pus P2y Pay Py que l'on peut déduire de p, par permutations d’indices.
En réalité, ces quatre radicaux ne sont pas encore distincts; car le pro-
duit p, p,p,p, est égal au produit des six y et, par conséquenl, ration-
nel. D’ailleurs, il est impossible, si les y sont regardés comme indé-
‘pendants, d’exprimer p,, par exemple, en fonction rationnelle de p,,
de p, et des y.

Si donc on se donne les vy, il faudra encore se donner le signe de
£1y P2y P33 le signe de p, s’en déduira.

Nos seize équations (10) peuvent se répartir en quatre groupes de
quatre. Le premier groupe contiendra les équations qui définissent
les A} et qui s’écrivent
A+ A+ A = o,

a4+ N =B,
’ N £
11

{34

Al 4+ N = — B
° ’ T2

Voici comment ont été déterminés les signes des seconds membres.
Revenons & I'équation (7); le second membre, en prenant lesigne +

devant le radical, s'écrit f—‘ ; j'ai donc pris, pour la premiére équa-
13
tion (8),

(8bis) AN+ A= {P_

Pour obtenir les cinq autres équations (8); il suffit de permuter les
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indices 1, 2, 3 de toutes les facons possibles, en conservant le signe +
devant le second membre si la permutation appartient au groupe
alterné et en lui donnant le signe — dans le cas contraire.

On obtiendra ensuite les trois autres groupes de six équations ana-~
logues & (8) en permutant circulairement les quatre indices 1, 2, 3,
4. Cette régle pourrait toutefois soulever une difficulté. Quand on
permute circulairement 1, 2, 3, 4, pour les changer en 2, 3, 4§, 1,
le carré ¢} se change en p}; mais on ne sait pas si p, se change en + p,
ouen — p,. ,

Pour tenir compte de cette difficulté j'écrirai la premiére équa-
tion (8), non plus sous la forme (8 bis), mais sous la forme

(8 ter) 24 N = BB,

13

o g, === 1 et dans les autres éguations (8) je remplacerai de méme
ps par &, g,. Je feral ensuite une permutation circulaire d'indices; et
j'obtiendrai trois autres groupes d'équations analogues 4 (8) ot en-
treront trois nombres ¢, ¢,, €,, tous égaux & 1.

Cela posé, nous avons vu que de nos quatre radicaux p, trois sont
indépendants; je puis donc prendre arbitrairement le signe de trois
d’entre eux; celui du quatriéme s’en déduira; de méme, je puis prendre
arbitrairement le signe de trois des ¢, celui du quatriéme s’en déduira.
Je puis donc faire |

=g, =¢g =1I.

Mais je ne sais pas si ¢, est égal & +~1 oua —1.
Clest ainsi que j'ai obtenu les équations (11). Pour qu'elles soient
compatibles, il faut et il suffit que

Y23 RETS Y24
ou que

(12) V¥iaYiaYaeYas + VY0aTiaYas Yas = VY 12Y 1 Taa Tas

Cette condition ne change pas quand on permute circulairement les
Journ. de Math. (5 série), tome I. — Fase. IIl, 1895. 38
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quatre indices; les quatre groupes d'équations analogues & (11) seront
donc compatibles si 'on suppose la condition (12) satisfaite et que
l'on prennce,=rt.

La condition (12) est donc la condition nécessaire et suffisante pour
que les seize équations (10) soient compatibles.

On peut encore se demander s'il existe une quartique Q admettant
les asymptotes définies par ces seize éqnations et si la variété de trans-
lation distinguée, dont Q est la directrice, est bicn la variété V.

P(p+1)
2

Nous savons que les périodes a;; sont au nombre de » Cest-

a-dire, dansle cas de p =4, au nombre de 10. D'un autre coté, le
nombre des modules d’'une courbe de genre 4 est égal 43p — 3 =
Il faut donc une condition ct une seule pour qu’unc fonction @ de
- genre 4 soit spéciale; si cette condition unique est remplie, la variété
® = o est unc variété de translation distinguée.

Si les termes latéraux a;; (2 £) sont tres petits, cette variété différe
trés peu de V; il suffit donc d’une condition pour que V soit une va-
riété de translation distinguée. Or nous venons de voir que, pour que
V soit une variété de translation distinguée, il ya une condition néces-
saire, c'est la condition (12); donc, comme d’ailleurs I'équation (12)
est indécomposable, cette condition sera aussi suffisante.

Nous pouvons donc énoncer les résultats suivants :

1° Si une fonction O n’est pas spéciale, c’esi-d-dire si elle ne doit
pas son origine ¢ une courbe algébrique de méme genre, I'équa-
tion ® =o ne présenle pas, en général, le caractére translatif -
qu’elle présente, au contraire, daprés les théorémes de Riemann si la
fonction @ est spéciale.

2° Pour qu’une fonction ® de genre 4 doive son origine ¢ une
courbe algébrique de genre 4, il faut et il suffit qu’il y ait une cer-
laine relation entre les périodes ay.

Cette relation est transcendante et, en général, assez compliquée.
Mais si les périodes a;; étant finies, les périodes ay(i2k) sont trés
petites, cette relation se réduit a

(12'bis) \/acia'sashau =+ \/aaaauaasa;n: \/alaaua-zaa:n .
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" Pour l'étude de la variété V, on peut encore raisonner comme il
suit : ' '

Reprenons les équations de la quartique Q; la variété dont cette
quartique est la directrice aura pour équations

(3) E=l BB (i=1,2,3,4),
{, u et ¢ étant trois variables auxiliaires.

Soit maintenant P un polynome entier du premier degré par rap-
port a chacune des quatre variables &; (et, par conséquent, du qua-
tritme degré par rapport 4 'ensemble de ces quatre variables). Ce po-
lynome contiendra seize coefficients arbitraires.

Substituons-y & la place des §; leurs valeurs (13); P deviendra une
fonction R rationnelle en ¢, u, ¢; décomposons cette fonction ration-
nelle R en éléments simples d’abord par rapport & ¢, puis par rappert
a u, puis par rapport & ¢. Chaque élément sera le produit d'un coeffi-
cient numérique et de trois facteurs. Le premier facteur peut étre

1
t—a;

(i=1,2,3,4) our,

le second

I .
r— (i=1,2,3,4) our,

le troisiéme
) §

;ra—L (i=I,2,3,4) ou 1.

A ce compte, le développement de R pourrait contenir 5° = 125 élé-
ments simples; mais il faut observer qu’aucun élément ne peut conte-
nir deux des trois facteurs

1 1 I
’ ’ )
t—a; u—a; v—a;

avec le méme indice i; le développement de R contient donc seule-
ment soixante-treize éléments simples.

Si P'on observe ensuite que la fonction R doit étre symétrique en ¢,
u, v, on voit que plusieurs des coefficients de' ¢es soixante-treize élé-
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ments doivent étre égaux, de sorte qu'il ne reste que quinze coef-
ficients distincts.

Si j’annule ces quinze coefficients, j'introduirai quinze relations
entre les seize coefficients de P, de sorte qu'un de ces seize coefficients
reste encore arbitraire. I

L'équation de la variété dont Q est directrice sera donc de la forme

P=o.

Nous avons choisi les axes paralléles aux asymptotes de Q, mais les
directions des axes sont seules ainsi déterminées, 'origine reste arbi-
traire; je puis en'disposer de fagon i faire disparaitre les quatre termes
du troisitme degré du polynome P.

Je dis que les quatre termes du premier degré auront disparu du
méme coup.

Posons
P=P:L +P,

P, et P, étant deux polynomes du premier degré par rapport & cha-
cune des trois variables §,, £,, &, et, par conséquent, du troisiéme de-
gré par rapport a 'ensemble de ces trois variables. L'équation P, = o
doit étre, comme nous I'avons vu plus haut, celle d’une surface de
translation distinguée ayant pour équations

3 B: B: B:

= -+ -+
. t—a; u—a; a—a;

+b (i=1,2,3)

et pour directrice

231‘ Bi '-i-l)‘.

Ei: t— a; a,— a; ¢
C’est donc, d’aprés le paragraphe précédent, une surface & centre e,

comme les termes du deuxiéme degré (qui donnent dans P des termes
du troisiéme degré) manquent par suite du choix de I'origine, le centre
ne'peut étre qu’a 'origine. Le terme de degré o doit donc manquer
également.

* Donc le térme en &, manque dans P, et 'on démontrerait de méme
que les autres termes du premier degré manquent également.
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. Le polynome P ne contient donc que des termes de degré pair et
nous pouvons écrire

P=E§E¢EE — 3'7.25354+ 8

Le polynome P contient donc encore sept coefficients, a savoir ¢ et
les six ¥.

L’équation de la quartique Q contient douze arbitraires, a savoir les
quatre a;, les quatre $; et les quatre b;; mais nous pouvons faire subir
azun changement linéaire en posant '

A4
R

A, t» Ay, t, étant des constantes quelconques que nous pouvons choi-
sir de telle fagon que a,, a, et a, aient des valeurs données; il reste
12 — 3 = g arbitraires; de plus, nous avons choisi une origine parti-
culiére, ce quirevient & attribuer aux quatre b; des valeurs particuliéres.
Il reste donc g — 4 = 5 arbitraires. Il faut donc 7 — 5 = 2 conditions
pour que P = o soit une variété admettant une quartique pour direc-
trice. :

L’une de ces conditions nous est déja connue, c’est la condition (12).
Nous savons d’autre part, quand cette condition est remplie, déter-
miner les asymptotes de la quartique Q. C'est ce que les équations (ro0)
nous permettent de faire.

Ces équations nous donnent en effet les A en fonction des y. Dans
les équations (10) entrent troisirrationalités; nous avons en effet quatre
radicaux p,, py Psy 05 dont le produit est rationnel, mais qui sont
d’ailleurs indépendants. Mais, si I'on introduit entre les y la relation
(12), cette indépendance cesse. En tenant compte de la relation (12)
on peut exprimer rationnellement, en fonction des v, les produits des
p; deux & deux.

On obtiendra donc les A en fonctions rationnelles des *( et de l’un
des p, et l'on en déduira sous la méme forme la valeur de a,, celles
des B; et celles des b;.

Toutes les constantes qui entrent dans les formules (13)-sont alors
déterminées en fonction des y. :
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Substituons alors 4 la place des &; leurs valeurs (13 )dans I'équation
P = o; nous trouverons une équation qui nous donnera ¢, etla valeur
de ¢ ainsi trouvée devra étre indépendante de 2, w et ¢ et dépendre
seulement des ¥,

On peut faire ce calcul en donnant a ¢, u, ¢ des valeurs arbitraires;
mais le plus simple est de prendre ¢ = u = ¢; le point qui correspond
& ¢ =u =y est un point de la directrice. Voici comment on pourra
diriger le calcul :

Nous pouvons, comme je I'ai dit plus haut, remplacer, dans les équa-
tions de la quartique Q, la variable ¢ par une autre variable ¢’ lide &

la premiére par une relation homographique. Le plus simple est de
prendre

= E,.
Les équations de la quartique Q se réduisent &
_ 38
_ (14) i= E::pz +b;

Substituons les valeurs (14) dans ’équation P = o; nous obtien-

drons une équation qui nous donnera ¢. La valeur trouvée devra étre
indépendante de &,.

Supposons &, trés grand et développons &; suivant les puissances dé-
croissantes de &,, il viendra

‘ 3
E,'= b,“*"ggi'-{"....
13
Substituons ces développements & la place de &,, &,, &;.
Dans P, nous obtiendrons un développement procédant suivant les

puissances décroissantes de £,, et commencant par un terme en ;; le
premier terme du développement est

E[0,0:0,+ b, + by + b,)
et le second

3pi(b2b3 - ""23) + 36‘(6‘ by— ql'43)+ Spa(blbz - Yc‘.*)
—viiboby— 230, by — 0.0, b+ 2.
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Ces deux termes doivent s’annuler; le premier s'annule de lui-méme
quand on y remplace les f et les b par leurs valeurs en fonction des y;
.en égalant le second & o, on aura une équation qui donnera 8.

On trouve aisément |

ﬁc’: - 3"{:‘1 3

on obtient aussi, sans peine, les expressions des b; et, en tenant compte
de (12), on a finalement

»~
(13) 87—'"{«2“{34‘*"‘{13‘(24 + YiaYos

Les conditions (12) et (15) sont donc les deux-conditions nécessaires
pour que P = o soit I'équation de la variété dont Q est la directrice.

On peut, d’aprés ce qui précéde, obtenir les A en fonctions ration-
nelles des vy et del’un des p, et comme p est susceptible de deux valeurs
égales et de signe contraire, on trouvera pour chacun des A deux va-
leurs.

La variété V admet donc deux directrices QQ et ellé sera, de deux
maniéres différentes, une variété de translation distinguée.

Par raison de symétrie, il est évident qu’on passera d'une des direc-

trices & l'autre en changeant &; en — %,.

Ce résultat ne doit pas nous surprendre; et en effet la variété
®@=o0

cstaussi, de deux maniéres différentes, une variété distinguée et elle ad-
met deux directrices qui ont respectivement pour équations

ui==+39,‘, u,-=—3v,-.

Les mémes considérations peuvent étre étendues au cas de p > 4.
Le nombre des quantités e est égale 3

ppr)
2

Celui des modules d’une courbe de genre p est 3p — 3.-
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Pour qu’une fonction @ soit spéciale, il faut donc

1 . —2 —3
»P(P;- )_3p+3:(p )2(1’ )
conditions.
Supposons maintenant les termes latéraux trés petits, u; trés voisin
de &; et posons .
w=o;+tE,  an=1Yp

Conservons seulement dans le développement de @ le premier terme
qui est en #° et négligeons les suivants.
L’équation @ = o devient alors cclle d’une variété algébrique que
j'appelle V et qui est de degré p; le premier membre de I'équation de
"V contient
plp—1)

2
indéterminées qui sont les +.
SiV est une variété de translation, ce sera une variété de translation
distinguée et les équations de sa directrice seront de la forme

(16) E=LM L (i=1,2,...p)

- L —a;

Les équations (16) contiennent 3 p indéterminées qui sont les §, les a
etles b. Si j’exprime que la variété dont la courbe (16) estla directrice
admet 'origine pour centre, j'aurai déterminé les b et il me restera
2p indéterminées. D’autre part, je puis choisir le paramétre ¢ de telle
facon que a,, a,, @, aient telles valeurs que je veux. Il me reste encore
2p — 3 arbitraires. Donc, pour que V soit une variété distinguée,
il faut

I’(Pz— N _ (2P . 3) — (P_ﬂ)z(l’— 3)
conditions. '

C’est le méme nombre que plus haut. Quelles sont ces conditions?
On voit d'abord que la condition (12) doit encore étre remplie, ainsi
que toutes celles qu'on en peut déduire par permutations d’indices. Le
nombre des conditions ainsi obtenues est égal au nombre des combi-
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naisons de p lettres 4 4.4. Ce nombre est plus grand que -(—’3:—3;);(-’1:3—)
d’ot1 il suit que ces conditions ne sont pas toutes distinctes.

12. — Cas voisins des cas singuliers abéliens.

Soit p = 3, et considérons la fonction 8.
Si '

Ay = Cyy =0,
on tombe sur le cas singulier abélien et I'on a
0 = 00,,

0 étant une fonction @ de genre 2 de u, et de u,, et 6, une fonction ®
elliptique de ;.
Supposons maintenant que @, et a,, ne soient pas nuls, mais trés

petits, de fagcon qu'on se trouve dans un cas voisin du cas abélien.
Posons

?
Uy = @y + 13, a; =1y,

¢ élant un parameétre trés petit, et developpons suivant les puissances
de ¢; il viendra, en négligeant £,

' db db
@::103(62—7, - -TW,)'

Je désigne par 0, ce que devxent &y quand on y remplace u,
par «,.
L'équation © = o se réduit &
S (RCLI (NG
(I) §= 0 du, + 0. duy
Sil'on regarde &, Uy Uy comme dés coordonnées rectangulawes,

'équation (r ) doit étre celle d’une surface de translation.

Nous avons vu plus haut & plusieurs reprises, et notamment au § 6
qu'une génératrice d’une surface de translation

s=f(2¥)

Joura. de Math. (5° série), tome I. — Fasc. Ill; 18¢5, - 39
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doit avoir pour équation .

vdf | df
y=ua az -+ B a{)
«, B, v élant des constantes.
Si donc nous posons
2 g 2 N U
d*logh R, d*logh d*logh =T,

du? — duydu, — 7 du?
nous aurons pour l'équation d'une génératrice de la surface (1),
p — a‘Y' R "I" (ﬁ,'{. + “.‘(2)5 + ¢|Yz1‘,

1] "
.&,, &, et B étant trois constantes.
Ou bien-

(2) o, ROP+ (apyy + o, 7,) SO0+ @,y,TO? — 62 =o.

Or R92, 862, T0*, 0* sont des fonctions § de genve 2 ct du second
ordre ayant mémes multiplicateurs, appartenant, par conséquenl, au
méme faisceau (toutes ces fonctions sont paires).

Il en est donc de méme du premier membre de (2), que jappellerai

n(#;:)-
Notre génératrice a donc pour équation
n(u,.) = 0.
Une autre génératrice aura pour équation
(3) | :fll_(ui)’—‘ 0

v/ étant une. fonction § ayant mémes multiplicateurs que ». Mais,
comme elle doit étre égale a 'autre génératrice, elle devra aussi avoir
pour équation

(4) . n(ui—hy),
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h, et h, étant deux constantes. Or les fonctions ' (u;).et n(u; — h;y
n’ont pas mémes multiplicateurs; elles ne peuvent donc étre iden-
tiques, d’ou il résulte que les deux courbes (3) et (4) ne peuvent
avoir une partie commune qu’a la condition de se décomposer.

Done »'(u;), n(u; — h;) et n(u;) doivent se décomposer en deux
facteurs, et 'on aura

n(u‘) = 60(“1 — e,-)e(u; + 8,'),

¢, e, et e, étant trois constantes. On obtiendra une génératrice en
annulant 'un des deux facteurs, c’est-A-dire en faisant u; = ¢; + ¢;;
je dirai en faisant u; = ¢, -+~e;, ce qui ne restreint pas la généralité
puisque rien ne distingue e; de — e,.

Donnons de tout cela une interprétation géométrique. SiR, S et T
sont trois coordonnées rectangulaires, le point (R, S, T) sera sur une
surface de Kummer; I’équation (2) représentera un plan et pour que
la fonction v se décompose, il faut que ce plan soit un plan tangent.’

Les génératrices de la surface (1) correspondront donc aux inter-
sections de la surface de Kummer par ses plans tangents, ou plutét &
quelques-unes d’entre elles. ’

Observons que le plan défini par I'équation (2) est paralléle a la
droite

(5) 7,Rfy,S=o, 71WS+y.T=o.

Les courbes qui, sur la surface de Kummer, correspondent aux
générairices de la surface (1) sont donc les intersections de celle
surface de Kummer avec les plans tangents qui lui sont menés pa-
rallélement a la droite (5).

La droite (5) se trouve sur le cone du second degré
(6) ' RT — S*=o.
Le plan =0 défini par 1'équation (2) est donc tangent a la sur-

face de Kummer en un point M dont les arguments abéliens u, et u,
seront définis par les équations

0(u; —e;) =0, --0(uy;+e)=o.
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Il est tangent en outre au cylindre N qui est circonscrit 4 la surface:
‘et dont les génératrices sont paralléles 4 la droite (5).

Au point M je ferai correspondre le point M’ qui a pour arguments
abéliens ¢, et ¢, augmentés d’une des dix demi-périodes qui n’annulent
pas 0. Voici quelle en est la signification.

La surface de Kummer est sa propre polaire réciproque par rapport
A une quadrique convenablement choisie (et cela de dix maniéres dif-
férentes). Le point M’ sera, d'une de ces dix maniéres, le réciproque
du plan (2), et quand le plan (2) enveloppera le cylindre N, le point
M’ décrira une certaine courbe plane Q dont le plan sera le réciproque
du.point & I'infini défini par les équations (5).

Etudions cette courbe Q.

Supposons que I'on ait mis les équations de la surface (1) sous la

forme translative
u; = fi() + £/ (V).

On aura I'équation d'une génératrice en donnant, soit & ¢ soit a ¢, une
valeur constante ; mais nous avons trouvé pour I'équation d'une géné-
ratrice
8(u; —e;)=o,
d’out
u;=0v; + e

On aura donc, si la génératrice a été obtenue en faisant £/ = const.,
fi(t)—vi=e;— ()= const.

On trouverait de méme, en considérant la génératrice obtenue en
faisant ¢ = const.,
S () — v = const.,
d’ou
u; = fi(t) + fi/ (¥') = v; + ¢; + const. ;

j'appellerai k; la constante du second membre et J’écrirai
U= v;+ V; “+ kg,

d’ou
ey = 0; -+ k,‘.
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Or la courbe Q .a pour équation
up=e;+®;,
@; ¢tant une demi-période. Cette équation peut s’écrire
u; = v;+ ki + ®;,

k; + @; est une constante, ¢; est une fonction de «’, ' étant un des
points de la courbe C.

Donc la courbe Q est planc et son plan doit étre tangent 4 la sur-
face de Kummer.

Le point & l'intini dans la direction (5) qui est le réciproque de
ce plan, doit se trouver sur cette surface.

La comque a l'infini, définie par I'équation (6), est donc sur la
surface; c’est donc une des seize coniques singuliéres de la surface.

Pour achever I'étude des génératrices, reprenons la surface

—nd
0 du,

J \’C

(1) +J—f-¢@)

On obtiendra 'équation compléte d’une génératrice en adjoignant a
'équation (1) 'équation
(7) 0(u; — ¢;)=o,

d’ot 'on tire
U =v;+e, E=@(v;+ ¢).

Une autre génératrice aura pour équations
u=v;+e, E=0(n+e),
et, comme elles doivent é&tre égales, on devra avoir
O(v; +e)) — O(o; +e) =k,
k étant une constante. Posons donc

V() = 6+ w) — B(e, + u)—k.
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La fonction ¢(u,) est évidemment une fonction abélienne qui a
pour dénominateur

O(ui+ 6’,‘) O(u;-!- GL.).

Le numérateur doit évidemment étre une fonction § du deuxiéme
ordre appartenant au méme faisceau que le dénominateur.

D’autre part, le numérateur doit s'annuler pour ;= ¢, c’est-a-dire
pour 0'(z;)=o. ‘ »

Il se décompose donc en deux facteurs; un de ees facteurs doit étre
0(u;) etil est aisé d’en déduire 'autre facteur. On aura donc

_ MO(u) (w4 e+ e))

(8) q’(u")_ O(u;+e;)0(u;+e;) ,

M étant un facteur constant.
L’étude de cette identité conduirait sans doute & des résultats inté-
ressants, mais je ne l'entreprendrai pas; cela m’entrainerait trop loin.
Je me bornerai 4 résumer cette discussion; pour avoir les équations
des génératrices, on posera

’
Ui=v;+ ",-+k,-,

k; étant la constante définie plus haut; si sur la courbe C on envisage
deux points x et &', I'intégrale ¢; sera fonction de z et I'intégrale ¢}
de z'; on obtiendra alors toutes les génératrices en faisant, soit
2 = const., soit z'= const. On voit en méme temps que la surface (1)
est une surface de translation distinguée.

La conique définie par I'équation (6) est I'une des coniques singu-
li¢res de la surface de Kummer et comme elle est rejetée a I'infini, si
T’on considére R, S et T comme des coordonnées rectangulaires, elle
est dans le plan

Son équation se réduit donc & u; = ¢;, ¢’est-a-dire que, au point a l'in-
fini dans la direction (5), on doit aveir

— 0
Ui=— 94y
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z, étant un point fixe de C et ¢} la valeur correspondante de I'inté-
grale v; (je pourrais aussi bien écrire u;= + ¢}, car 'équation 8= o
est aussi bien équivalente & ;= + v; qu'a u; = — ;).

D’autre part, I'équation de notre génératrice sera

U;=v0;4+ ¢;

La courbe qui correspond & cette génératrice sur la surface de Kum-
mer devra passer par le point a I'infini dans la direction (5), puisque
cette courbe est I'intersection 4 la surface avec un plan tangent passant
par ce point.

Il existera donc sur la courbe C un point z,, tel que

vite=—v¢]  [oi=vi(z,)]
Il existera aussi sur C un point z’, tel que
o=—0v; [oi=v(a)]

La courbe C est une courbe plane du quatriéme degré & point double;
la droite qui joint «’ & x, va passer par ce point double. Il vient alors

e;i=0;— v}
et pour I'équation de notre génératrice
— f 0
U;=v;4+ Oi — 9

La quantité que nous avons appelée plus haut k; est donc égale & —o¢f.
Soit maintenant p =4 et considérons une fonction @ spéciale. Si
Ton avait ' '
Ay =033, =0y, = 0,
© serait le produit d’une fonction de genre 3 et d'une fonction de
genre 1, et I'on aurait |

>

0 = 06,, -

6 dépendant de u,, u,, u, et §, de «,.
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Supposons maintenant que @,,, @y, @;, Ne soient pas nuls, mais
trés petits, de fagon qu’on se trouve dans un cas voisin du cas abélien.
Posons

’

(9) Uy== 0y 15, iy =LY,

et développons @ en négligeant ¢, il viendra

®=w(%—Td“ g &)

\da, ~ Vdu, V3,
L’équation ® = o se réduil &

S (NUANNI JULANS  JULN
(t0) TTT0 du, + 3 du, + 9 du, = F(u,, vz 4),
ce doit &tre I'équation d’une variété de translation.

Mettons les équations de cette variété sous forme translative :

w=fi()+f;()+Fi(0)  (E=1,2,3),
E=Li()+F(O)+Fu(1)

¢, ', " sont trois variables auxiliaires qui n’ont rien de commun, d’ail-
leurs, avec la variable ¢ qui entre dans les équations (g). On obtien-
drait une génératrice en donnant & ¢ et a2’ des valeurs constantes; si
I’on donne 4 ¢ seulement une valeur constante, on obtiendra un fais-
ceau de génératrices dont I'équation peut étre mise sous la forme sui-
vante. Soit, pour cette valeur constante de ¢,

dar.
S =8,

les f8; seront des constantes.
L’équation du faisceau de génératrices pourra s'écrire

, dF dF dF
(Il) ‘ B.ZT‘-Fpgm—l—B;m—B‘:O.
Or
o2, dF 02 dF 02, dF 02

du, ' du, du,
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sont des fonctions § qui ont mémes multiplicateurs. Le produit du
premier membre de (11) par 02 sera donc une fonction v ayant mémes
multiplicateurs que §*. L’équation (1) devient donc

n(w)=o.

Un autre faisceau de génératrices devrait avoir pour équation

' (u;)=o,
v’ ayant mémes multiplicateurs que v. D’autre part, il devrait avoir
pour équation
N(u;— k)=o,
les k; étant des constantes. Il en résulte que v doit se décomposer ct
qu'on doit avoir '

n=0(u;—¢;)0(u;+ e;).

Comme rien nc distingue ¢; de e¢;, je puis dice que I’équation d'un

faisceau de génératrices s'éerit
(12) 0(u;—e;))=o.
On déduit de la

(13) U=+ 0+ ¢ :
ou bien

. U
(14) Uy=—0; — 0; + ¢;,

94y 015 07, ¥; sont les valeurs de Pintégrale o, qui correspondent & quatre
points de la courbe C, que j’appelle z, &', z", 2".

On voit ainsi que la surface (12) est de deux maniéres différentes
une surface de translation, et que ces deux mani¢res sont définies
respectivement par les équations (13) et (14).

D’autre part, on peut écrire les équations de la surface (12) sous la

Journ. de Math. (5° série), lome 1. — Fasc. Il1, 1895, 4o
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forme

(15) =)+ L)+ LI,

ot " et, par conséquent, f7(¢") sont des constantes.

On peut alors faire trois hypotheses

Ou bhien les ‘équations (15) sont équivalentes aux équations (13),
c’est-d-dire que I'on a

f,-(t):v,--l—const., [i(t')=¢;+ const.

Ou blcn les équations (IJ) sont équivalentes aux équations (14), ¢'est-
d-dirc que I'on a

fi(t)=—o]+const.,,  fi({')=—¢;+ const.

'Ou enfin les équations (15) définissent une troisitme maniere pour lu
surface (12) d’¢tre de translation.

Cette troisicme hypothése doit élre rejetée; on pourrait sans doute
démontrer que la surface (12) ne peut étre de translation que de deux
maniéres. Mais on peut se dispenser de cette vérification.

Rappelons-neus cn cffet notre point de départ. Nous avons envisagé
d’abord une fonction @ spéciale de genre 4. L’¢quation

®=o0

représente alors une variélé de translation dont les génératrices ont
pour équations
u; = v;+ const.,

¢; étant une des intégrales abéliennes de premiére espéce afférentes a
la courbe C de genre 4 qui engendre la fonction spéciale 0.

Nous avons supposé ensuite que @,,, @y, @,, ¢taient des infiniment
pelits et, néfrliO'eant des termes d’ordre supérieur, nous avons réduit
l’equatmn @ = o0 4 la forme (10).

Mais, quand @4y @45 @y, Sannulent, la courbe C qui était de genre 4
se décompose en deux autres, 'une de genre 3 correspondant & la
fonction 0, 'autre de genre 1 correspondant & la fonction 0,.
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Rappelons-nous que 6 dépend seulement de u,, #,, u, ct 0, de u,.
La variété ® == o reste de translation et I'équation de ses' généra-
trices conserve la forme _ '
u; = 0;+ const.

Sii=1, 2 ou 3, v; devra étre 'une des intégrales abéliennes de
premiére espéce qui se rapportent & I'une des composantes de la
courbe C, & celle qui est de genre 3 et qu'engendre la fonction 0.

Ainsi la variété (10) peut étre regardée comme de translation et de
telle facon que ses génératrices aient pour équations

u; = ¢; + const.

La premitre hypothése est done réalisée.

Obscrvons cn passant que la seconde I'est également. En cffet, la
variété © = o est de deur maniéres différentes une variéte de trans-
lation. De la premiére maniére ses génératrices ont pour équations

u; = V,""f‘ const.
De la seconde maniére clles ont pour équations
U; = — ¢; =+ const.

A lalimite, la variété (ro) sera de translation de deux maniéres .
différentes. De la premitre maniére ses génératrices ont pour équa-
tions -

u; = v;+ const. (i=1,2,3).

De la scconde elles ont pour équations
U; =— ¢; 4+ const.

Nous nous en tiendrons & la premiére manicre.
Alors les équations de la variété (10), mises sous forme translative,
s'écriront
Uy = 0+ 0+ 0+ k; (i=1,2,3),

E=fu(x)+ [ (&) + [ ().
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‘Les k; sont des constantes; z, ', " sont trois points de la courbe C
de genre 3 qui engendre 0; ¢;, ¢}, ¢; sont les valeurs correspondantes
de I'intégrale de premiére espéce o;..

Puisque I'on a d’autre part

U= 0;+ 0+ e
on aura donc
C; = 0; -+ ki'

Comme rien ne distingue le point #” du point 2, nous pouvons sup-
primer les accents et écrire

(16) e = 9;‘!‘/{“.

Nous avons dit plus haut que le premier membre de 1'équation (11)
peut se décomposer en deux facteurs et s’écrire

O(u;—e)0(u;+ ;).

Mais ce produit peut se mettre sous une forme particuliére.
Posons, pour plus de symétrie dans les notations,

02(u,;) =, (u;).

Je désignerai d’autre part par {(u;), (k=2,3, ..., 7) les six dé-
rivées secondes de logf multiplices par 62(x;).

Par exemple {, {,, {, seront formées avec les dérivées sccondes
prises deux fois respectivement par rapport & u,, a u, et a u,; {;, {, &,
seront formées avec les dérivées secondes prises respectivement par
rapport & u, et u,, a u, et u,, a u, et u,.

Les fonctions ¢, {,, ..., §; ont mémes multiplicateurs et appartien-
nent au méme faisceau. !

- Soit{s une huitiéme fonction quelconque linéairement indépendante
des premiéres et appartenant aussi au méme faisceau.

On démontre que

( 0(u;— e;)0(u;+ ¢)
O 1 () e+ L) Gy (o) e L) (-
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Les fonctions {,, (., ..., {, sont des combinaisons linéaires de ,, -
sy ..., G453 ce sont donc encore des fonctions appartenant au meme
faisceau que 6°.

Quand on fait la-dedans
e; = v;+ ki,

Pexpression (17) doit (4 un facteur constant prés qui, étant arbitraire,
peut &tre supposé égal & 1) se réduire au premier membre de (11)
multiplié par §2.
Or :
dE
02 u, =% t.z -+ ‘{2{1 + Y3 CM

dE

02 ="(|C7+’(2C3+7§C57

du,

dE
62 du, =Y G+ "{22:5 + ”{3?;1'»
On a donc, pour ¢; = v;+ k;,

Cg:(’» Z'_, =Bq‘.’n C;':@a‘(:n t'; =Qs""3y
C,.5=@2"|'3+p:;72a C'qzzﬁl"(s"‘ps\'ua Cr=072+ Bavis
d’ou | ,
g Y;C.' - ~(1'1'22:,1 + Y?ts =0,
(18) (ﬁﬁ—%wq+ﬁ§=m
o~ + Yk =o.
D’apreés le n° 47, quand on fait e; = v;+ k;, il ya
. n’+p—np—1

fonctions du faisceau qui s’annulent identiquement. Ici n = 2, p = 3;
il ya donc dans le faisceau quatre fonctions linéairement indépen-
dantes qui s'annulent identiquement. Ces quatre fonctions doivent
étre §, et les premiers membres des trois équations (18 ).

Nous définirons donc les trois constantes k,, k,, k, par la condition
suivante : '

Cs("z-*- kz)
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devra &tre nul quel que soit le point « de la courbe C auquel corres-
pond lintégrale ¢;.
L’ensemble des valeurs de k,, k,, k, formera une certainc variéte.
Cette variété ne peut avoir trois dimensions; sans cela {, devrait
&tre identiquement nul, ce qui ne peut avoir lieu. En effet, nous avons
- désigné par 0(«) la fonction )

Zer}l,ll,+m,lf,+m,ll;.+l‘ ’
9

ot P est unc certaine forme quadratique par rapport aux nz; dont les
_ coefficients dépendent des périodes.
Considérons maintenant les séries

. (] ()) . E em.ul-o-m,ngﬁ-m,uﬂ-%l"

ot je ne donnerai & m, que des valeurs paires ou que des valeurs im-
paires; de méme je ne donnerai & m, que des valeurs paires, ou scule-
ment des valeurs impaires ; de méme pour m,.

Cela fait deux hypothéses pour m,, deux pour m,, deux pour mz,;
en tout 2* = 8 hypothéses. On peut donc former huit séries (19). Ce
sont des fonctions ) du deuxieéme ordre ayant mémes multiplicateurs.

Je les désignerai par

. Ny Moy ooy Nse
On a alors

0(u;—e:)0(u;+e¢;)
= o (u) nie) + e (i) na(er) +- o« + Na(ti) Ma(ei)-
Les %y, Ny - - ., Ns 'exprimeront linéairement & P'aide des { etVon aura
(19) =G 4li+ Goala oo+ Gauly '
et I'on déduit de la
(20)  G(e)=Gyin(e)+ Ggama(er)+... 4 Gyams(e)-
1l ne peut pas arriver que 1'on ait & la fois

G =Ggo=...= Gy =0,
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sans quoi les équations (19) montreraient que les v, ne sont pas lmeal-
rement 1ndcpendants, ce qui n’a pas licu.

Il ne peut pas arriver non plus que, les huit constantes Gy 4 n’étant
pasnulles & la fois, { soit identiquement nul, sans quoi I'équation (20)
exprimerait 4 son tour que les v, ne sont pas linéairement indépen-
dants. .

Ainsi la variété formée par les k; nc peut pas avoir trois dimensions;
clle ne peut pas non plus cn avoir deux.

Pour qu’elle en et deux, il faudrait que les deux ¢quations

C;(V}’+ /&‘i) =0, C; (v‘? + I.-t.) — 6,

(ot ¢! et ¢} sont deux valeurs particuliéres de ¢;) fussent identiques,
ou au moins que les premiers membres de ces deux équations se dé-
composassent en plusieurs facteurs et qu'un facteur fiit commun a ces
deux premiers membres. Il faudrait donc que, si

#(61 — ko)

est ce facteur, ce facteur ne changedt pas quand on y remplace of par
une autre valeur de ¢;.

Cela est évidemment impossible..

Supposons donc maintenant que la variété des k; ait une dimension
sculement. Nous regarderons par conséquent &, %, et k, comme des
fonctions d'une variable unique que j’appellerai z. Comme les ¢; dé-
pendent de x, les ¢;+ k; sont des fonctions de z et de z.

Tl ya, d’aprés ce que nous avons vu, trois combinaisons linéaires
del,, Gy .-+, {7 qui-sont identiquement nulles quand on y remplace
les e, par v;+ k;; expliquons le sens de cette proposition; si je regarde
un instant 5 comme une constante, les &; seront aussi des constantes;
mais ¢; dépendant de z, quand on aura remplacé ¢; par o;+ k;, les ¢’
deviendront aussi des fonctions de x;1l y aura entre ces sept fonctions
de x trois relations linéaires & coefficients constants. Mais je veux dire
par la que ces coefficients ne dépendent pas de «; ils dependront au
contraire, de 3. . o

Ces ‘trois relations linéaires dowent étre-les équations (18). Nous
voyons donc que ¥, ¥,Yzs Ya; Yg» « - - sont des fonctions de s.
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~ Si I'on élimine z entre ces équations, on obtiendra une relation

entre ;{1 et %l C’est celte relation qui exprime que la fonction © est
2 3

spéciale. o

Il reste encore & examiner deux hypothéses; on pourrait supposer
que la variété des k; a o dimensions; c’est-a-dire que les k; peuvent
prendre un ou plusieurs systémes dé¢terminés de valeurs. Alors, en rai-

sonnant comme nous venons de le faire, on verrait que les rapports 1

3
T2
é—' devraient prendre aussi des valeurs déterminées. Cela ferait donc

3
deux conditions nécessaires pour que la fonction @ soit spéciale ct
nous savons qu'il ne doit y en avoir qu'une.

On pourrait supposer enfin qu'il n'existe pas, en géncral, de va-

leurs des k; telles que
Co(oit+ k)

soit identiquement nulle. Il faudrait donc, pour que la fonction 0 soit
spéciale, qu'une certaine relation ait lieu entre les périodes

au(iyk=1,2,3),

relation ot les ¥ n’entrent pas. Mais comme il suffit d'une condition
pour que la fonction @ soit spéciale, lorsque la relation dont je viens
de parler entre les a; serait satisfaite, la fonction © devrait étre spé-
ciale quels que soient les y. Il faudrait donc que la relation entre les
a;. etant satisfaite, la variété des #; ait deux dimensions et nous ve-
nons de voir que cela était impossible.

Les deux hypothéses doivent donc étre rejetées I'une et I'autre.

Je m’arréte, quoique je n’aie fait qu'effleurer mon sujet; la consi-
dération des variétés de translation m’a donné un moyen d’exprimer
la condition pour qu'une fonction ® soit spéciale, mais je ne I'ai appli-
qué qu'a des cas trés particuliers.

Il y a lieu d’espérer qu'en I'appliquant au cas général on obtiendra
des résultats dignes d’intérét. De méme, j'ai dii passer trés rapide-
ment sur le cas voisin du cas singulier abélien qui a fait I'objet du pré-
sent paragraphe; mais je crois qu'il y a 13 un joli sujet de thése.

Y T————



