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DÉVELOPPEMENT APPROCHÉ DE LA FONCTION PERTURBATRICE. 891 

Sur le développement approché de la fonction perturbatrice 

dans le cas des inégalités d'ordre élevé; 

PAR M. MAURICE H AM Y. 

Lorsque l'inclinaison relative γ des plans des orbites de deux pla-
nètes Ρ, P, est petite, la partie principale de la fonction perturbatrice 
s'exprime au moyen d'une série procédant suivant les puissances de 

sin2 > dont les termes cessent très rapidement d'être sensibles. Les 

coefficients des puissances de sin2 ^ sont de la forme 

Ρ
0
(ζ,

;
ζ) = /(Ε'·^·(Ε"'), 

Ε désignant la base des logarithmes népériens ; i le symbole s] — ι ; 
ζ et ζ, les anomalies moyennes respectives des planètes Ρ, P

4
 ; u et ux 

les anomalies excentriques ; /( E/B) une fonction réelle entière de sin u 
et cos m; /, (E'wi) une fonction réelle entière de sin u

{
 et cos u

K
 ; s un 

nombre de la forme £, f, f, ..., peu élevé dans les applications; Δ l'ex-
pression du carré de la distance des planètes, où l'on a fait γ = o. 

On rencontre aussi, dans le calcul des inégalités lunaires d'ordre 
élevé causées par l'action des planètes, des expressions de même 
forme ('). 

(1) HILL, American Journal of Mathematics, t. VI; — RADAU,. Recherches 
concernant les inégalités planétaires du mouvement de la Lune ( Annales de 
l'Observatoire, t. XXI). 
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La connaissance des coefficients de c.os(m£ ) dans le dévc-

loppement trigonom étriqué de F0 suffit donc aux besoins de l'Astro-
nomie lorsque l'inclinaison γ est petite. 

J'ai entrepris de rechercher l'expression asymp to tique de ces coef-
ficients lorsque les entiers m et mt sont grands. 

Dans le présent Mémoire, je suppose nulle l'excentricité de la pla-
nète P,, l'excentricité e de la planète Ρ pouvant prendre une valeur 
quelconque. Je considère le cas où l'orbite circulaire de P, enveloppe, 
sans la rencontrer, l'orbite elliptique de P. 

Un cas particulier du problème ainsi posé a été examiné par 
M. Poincaré ('). 

M. Poincaré a pris / =f
{
 = i, s = a supposé l'excentricité etrès 

petite et la valeur de voisine du rapport des moyens mouvements 

des deux planètes. 

Je ne fais aucune hypothèse particulière sur les valeurs de et de 

e, et je laisse à/, s leur signification générale. 
Les travaux de M. Darboux, concernant l'approximation des fonc-

tions de grands nombres (2), m'ont conduit à reconnaître qu'une cer-
taine fonction, désignée dans le texte par φ(^), fonction qui est 
entièrement explicite, devait jouer un rôle important dans les discus-
sions; j'ai procédé de façon à faire apparaître dès le début cette fonc-
tion <p (ζ). Si je me suis ainsi écarté de la méthode proposée par 
M. Poincaré, l'Ouvrage de l'illustre géomètre m'a néanmoins été d'un 
secours indispensable pour mener abonne fin la tâche que je m'étais 
imposée (3). 

Les divisions principales de mon travail sont les suivantes : 

INTRODUCTION. Sur l'approximation des fonctions de très grands nombres; mé-
thode de M. Darboux. 

I. Expression des coefficients éloignés du développement d'une 

(Les méthodes nouvelles de la Mécanique céleste, t. I. 
(') Journal de Mathématiques pures et appliquées; 1878. 

(8) Le présent Mémoire a fait l'objet de deux Communications dans les 
Comptes rendus de l'Académie des Sciences (numéros du 25 décembre i8g3 
et du 27 mars i8g4· 
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fonction périodique de deux variables au moyen d intégrales 
I et J, à limites imaginaires. 

II. Définitions de la fonction Φ (ζ) et de la fonction F(a·, z); points 
singuliers et valeur asymptotique de la fonction J. 

III. Etude de la dérivée tp'(s). 
IV. Étude de | φ (s) |. 
V. Remarques concernant les équations qui fournissent les points 

singuliers de J. 
VI. Valeur de 1 dans quelques cas particuliers. Décomposition de I, 

dans les autres cas, en deux parties I' et l". Expressions de I". 
VII. Transformation de l'expression de la dislance des planètes et de 

la fonction F(ar, 5). 
VIII. Transformation de 1'. Définition de la fonction Φ(.Έ). 

IX. Développement de la fonction Φ(Λ?). 

X. Calcul del'. 
XI. Conclusions. 

Résumé des formules. 
Applications. 
Addition. 

INTRODUCTION. 

.SUR L'APPROXIMATION DES FONCTIONS DE GRANDS NOMBRES. 

MÉTHODE DE M. DARBOUX. 

1. Considérons, dans le plan représentatif d'une variable complexe, 
un contour BCD {fig. 1) et un point a. Admettons que les circon-

Fig. t. 

] \
 %

cu 

rt -

stances suivantes se présentent simultanément : i° les extrémités B, D 
du contour sont plus éloignées de l'origine que le point 20 le 
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contour rencontre la droite Ο a en un point unique, compris sur le seg-
ment 0«, ou satisfait à cette condition après des déformations conve-
nables. Nous dirons alors, pour abréger le langage, que le contour 
BCD est de première espèce par rapport au point a. 

Nous désignerons par contour de seconde espèce par rapport au 
point a un contour dont toutes les parties sont plus éloignées de l'ori-
gine que le point a. 

Les contours de seconde espèce jouissent de la propriété suivante : 

L'intégrale 

M = 1/2u-1 Q(-z dz/zn+1 

supposée finie, étant prise le long d'un contour G, de seconde espèce 
par rapport à un point dont la distance à l'origine est R, le pro-
duit R"/i9M tend vers zéro lorsque 11 augmente indéfiniment, q dé-
signant un nombre fini quelconque aussi grand que l'on veut. 

Cette proposition joue un rôle essentiel dans l'établissement des 
théorèmes qui vont suivre et que nous nous bornerons à énoncer.. 

THÉORÈME I. —- Étant donnée l'intégrale 

M = 1/2u-1 Q(-z dz/zn+1 

prise le long d'un contour BCD {fig* ι), dans laquelle η désigne lin 
entier positif très grand, on peut en général obtenir une expres-
sion approchée de M en mettant à profit la grandeur de n, lorsque 
le contour d'intégration est de première espèce par rapport à un ou 
plusieurs points singuliers de la fonction Φ (s)· On suppose d'ail-
leurs i° que ces points singuliers particuliers sont isolés les uns 
des autres par des espaces finis ; 2° que le contour ne rencontre 
aucune singularité de Φ(*). 

PREMIER CAS. — Admettons que le contour d'intégration soit de 
première espèce par rapport à un certain nombre de points singuliers 
de Φ(^). Appelons a l'affixe de celui de ces points particuliers qui 
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approche le plus près de l'origine et supposons que l'on puisse écrire 
dans le domaine de a 

φ
Ο) = ?O) +

 Α
· (' -1)"'+

A»(· - s)"1+· · ■ 

Α· (' -1)"'+A»(· - s)"1+· · ■ 

la fonction <p étant holomorphe et la fonction ψ finie dans le domaine 
de α; A0 A2, Ap désignant des constantes; α un nombre supé-
rieur à — ι, vérifiant les inégalités 

a1^ ^3 &"p *· 

Les binômes affectés d'exposants entiers rentrent dans la fonction φ; 
on peut donc admettre que la suite α

η
 a

2
,..., apne contient pas d'en-

tiers positifs. 
Dans ces conditions, le coefficient Ν de z", dans le développement 

de la fonction 

FO) - A, fi -fj ' + AJi- A '-κ..+ α/i - jV, 

diffère de M d'une quantité N' dont l'ordre de grandeur ne dépasse 

pas l'ordre de ̂  en faisant R = ( a |. Il faut entendre par là que, 

si l'on pose 
M = N + N', 

le produit R" | N'| ne dépasse pas un nombre fixe, lorsque η aug-
mente indéfiniment. 

Il y a exception lorsque la fonction ψ(*) est identiquement nulle. 
Il arrive alors que le produit R" rfl N' tend vers zéro, lorsque η aug-
mente indéfiniment, quel que soit le nombre q

1 si grand qu'il soit, 
pourvu qu'il soit fini. 

Cette circonstance se présente lorsque a est un pôle de Φ (s). 

Conséquences du théorème précédent. — On utilise le théorème 
précédent en se fondant sur ce que le coefficient ΤΛ de zn dans le déve-

loppement de ^ A, pour n très grand, est de l'ordre de ~ ; 

Journ. de Math. (4* série), tomeX. — Fasc. IV, 1894. 5l 
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c'est-à-dire que le produit TA reste fini et différent de zéro 
lorsque n devient infini. 

Formons l'expression de Ν et portons-la dans l'équation qui précède. 
M se trouve décomposé en un nombre fini de termes qui décroissent 
de telle sorte que le rapport d'un terme au précédent tend vers zéro, 
lorsque n croît indéfiniment : 

M = A, T, -t- A
2
T

2
 -t- A

3
TJ ■+-··.-+- A-_,Tp_, -}- A^T^ -t- N'. 

On voit ainsi qu'en prenant A, T, comme valeur approchée de M, 

on commet une erreur de l'ordre de ̂  on peut écrire 

M = Α,Τ,(i -f- ε
2
), 

ε
2
 étant infiniment petit de l'ordre de ^=s;· 

Si l'on prend Α,Τ, H- A2
T

2
 comme valeur approchée de M, 011 

commet une erreur de l'ordre de ̂  ; on peut écrire 

M = (A,T, -f- A
2
T

2
) (ι -t-ε,), 

ε
3
 étant infiniment petit de l'ordre de · 
Etc 
Si l'on prend A, T, ·+■ A

2
T

2
 H- ... -t- Ap_, T,,,,, comme valeur appro-

chée de M, on commet une erreur de l'ordre de ̂  l °
n

 P
eut écrire 

M = (Α,Τ, -h A
2
TJAp_,Τρ_,)(i 4- ε

Λ
), 

i
p
 étant infiniment petit de l'ordre de

 na · 

Enfin, si l'on prend Ν comme valeur approchée de M, on commet 

une erreur de l'ordre de N'; on peut écrire 

M = N(i + e), 

le produit η* ** |ε| demeurant au-dessous d'un nombre fixe, lorsque 

n croît indéfiniment. 
Si la fonction ψ {£) est identiquement nulle, le produit nçt tend vers 
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zéro, lorsque η augmente indéfiniment, q désignant un nombre fini 
quelconque, aussi grand que l'on veut. 

Remarque 1. — La fonction ψ (ζ) est, en général, développable 

suivant les puissances positives ascendantes de ι— On peut alors 

augmenter à volonté l'exposant α et réduire ε autant qu'il est nécessaire. 
Mais, le plus souvent, il est suffisant de prendre A, T, comme valeur 
approchée de M. 

Remarque II. — Ce qui vient d'être dit suppose essentiellement 
i° que la variable d'intégration chemine sur le contour de façon à 
tourner autour du point a dans le sens rétrograde (sens des arguments 
décroissants)·, s'il en était autrement, il faudrait changer le signe des 
résultats obtenus d'après la règle qui vient d'être donnée ; 2° que les 
constantes A,, At, ...,AP ont été choisies de façon que la valeur des 

binômes '> ··· soit réelle et positive, lorsque ζ 

désigne l'affixe d'un point du segment de droite oa {fig. ι). 

DEUXIÈME CAS. — Admettons que le contour d'intégration soit de 
première espèce, par rapport à un certain nombre de points singuliers 
de Φ (ζ) et supposons que ceux de ces points qui ont pour affixes «, 
b, c, ..., soient i° à la même distance, R, de l'origine, 2® plus rap-
prochés de l'origine que les autres singularités, par rapport auxquelles 
le contour est de première espèce. 

Chacun de ces points singuliers a, b, c, ... apporte alors un appoint 
à la valeur approchée de M. 

Cette valeur s'obtient en appliquant, successivement à chacun des 
points a, &, c, ..., la règle donnée dans le premier cas et en faisant la 
somme S des résultats. 

On détermine pour chacun des points a, b} c, ... l'ordre de gran-
deur des termes négligés d'après la règle donnée dans le premier cas. 
La plus grande des valeurs obtenues donne l'ordre de l'erreur com-
mise, lorsque l'on remplace M par son expression approchée S. On 
peut écrire 

M = S(i -h ε), 
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ε étant un infiniment petit, en même temps que d'autant plus petit 

que là différence entre l'ordre du terme le plus important de S et 
l'ordre de Terreur commise est plus accusée. 

Ce théorème étend les résultats obtenus par M. Darboux, dans son 
beau Mémoire sur l'approximation des fonctions de grands nombres('). 
Il a été découvert par M. Flamme (2), qui s'est placé dans l'hypothèse 
où le développement de la fonction Φ (s), autour de ses points singu-
liers, peut être prolongé indéfiniment. 

Je me bornerai ici à indiquer qu'en exprimant, au moyen de la 
fonction eulérienne de seconde espèce, les factorielles contenues dans 
T

n
 T

2
, ..., on obtient une expression approchée de M qui est valable 

pour les valeurs positives entières ou fractionnaires de n. 

Généralisation du théorème précédent. — Revenons au premier 
cas du théorème I et supposons que l'on puisse écrire dans le domaine 
du point singulier a de Φ (ζ) 

Φ(,) = ?(*) + A,(.-i)a'Log*,(.-i) 

+
 A
.(i-s)'

L
°g

f,
(' -5) + ··· 

+ Α
"(
,
-^)'

,
'
Χο

^(
ι
-5)

 +
 (

ι
 -sJWp -ΐ)ψ(*)

; 

la fonction φ étant holomorphe et la fonction ψ finie dans le domaine 
de a ; A,,..., désignant des constantes ; q

n
 q

2
, ..., qp, q des en-

tiers positifs ou nuls rangés dans un ordre quelconque ; α étant un 
nombre supérieur à — 1 vérifiant les inégalités 

a1<a2 <···<«;><«· 

La fonction φ (s) comprenant la partie holomorphe de Φ (s), dans 
le voisinage de a, nous admettrons que si la suite des entiers 

$\1 $21 * · Ί $p 

(l) Loc. cit. 
(*) Thèse de doctorat. Paris, Gauthier-Villars, 1887. 
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contient des termes nuls, les termes de même rang de la suite 

a1, a2.. ap 

ne sont pas des entiers positifs. 
Dans ces conditions, le coefficient Ν de zn dans le développement 

de la fonction 

F(a) = A, (. - i)"' Log»· (ι — |) +... + A, (. - 2)*' Log* (ι -z/a) 

diffère de M d'une quantité N', dont le module multiplié par y
j0

^tn 

demeure au-dessous d'un nombre fixe, lorsque η augmente indéfini-
ment. 

Conséquences. — Les applications de ce théorème sont fondées sur 
ce que 

ι
0
 Le coefficient de ζΛ, dans le développement Log*^

} 

est de l'ordre de ̂  "~^fï+7r~>
 s

* ^
 est un ent

i
er positif ou nul (k entier 

positif non nul), ou de l'ordre de ^ > si h n'est pas un entier 

positif ou nul (h entier positif ou nul) ; 
a0 Toute puissance positive de Log λ est infiniment petite par rap-

port à toute puissance positive de η si petite qu'elle soit, pourvu qu'elle 
soit finie, lorsque η croît indéfiniment. 

Il résulte de là que l'on peut, comme dans le théorème I, décom-
poser M en un nombre fini de termes, qui vont en décroissant de telle 
sorte que le rapport d'un terme au précédent tend vers zéro en même 

temps que ~ · En prenant comme valeur approchée de M un certain 

nombre de ces termes, on commet une erreur de l'ordre du premier 
terme négligé et cette valeur approchée tend asymptotiquement vers 
M, lorsque η augmente indéfiniment (1 ). 

Lorsque le contour d'intégration est de première espèce par rapport 

(*) Aux remarques faites deux pages plus haut, on doit ajouter que la déter-

mination de Log^i — ι considérée ici, est réelle et négative, lorsque ζ est 

l'affixe d'un point de oa {fig. τ). 
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à un certain nombre de points singuliers de Φ (-s) et que, parmi ceux-

ci, plusieurs sont équidistants de l'origine et plus rapprochés que les 
autres de l'origine, on doit considérer tous ces points singuliers par-
ticuliers, et leur appliquer la règle donnée dans le deuxième cas^du 
théorème I ('). 

2. Voici un corollaire important des propositions qui précèdent, 
applicable seulement lorsque η est entier : 

Corollaire. — Supposons que l'intégrale M soit prise le long d'un 
contour fermé D ( fig. 2), et que la fonction <Ê(s) reprenne sa valeur 

Fig. 2. 

CB 

(O) 
NV \a 

lorsque la variable complexes, après avoir décrit le contour en entier, 
revient au point de départ. 

Supposons que Φ (s) ait, à l'extérieur du contour D, un certain 
nombre de points singuliers et soit a l'affixe de celui de ces points qui 
est le plus rapproché de l'origine. Adme ttons que ce point singulier 
soit de la nature de ceux que nous avons considérés jusqu'ici. 

Il est aisé de voir que la valeur approchée de M s'obtient en appli-
quant au point a la règle déduite du théorème I. 

En effet, la fonction Φ (s) reprenant sa valeur lorsque la variable 
parcourt en entier le contour D, ce contour peut être déformé d'une 
façon quelconque, à condition d'éviter de rencontrer les points singu-
liers de Φ(5) et l'origine. On peut prendre, en particulier, comme 
nouveau contour d'intégration, une circonférence D', ayant l'origine 
pour centre, de rayon supérieur à | a |, déformée comme il est indiqué 

(*) Ces propositions sont applicables lorsque Φ (s) dépend de n, à condition 
que cette fonction demeure finie lorsque η croît indéfiniment. 
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{fig. 2), de façon à laisser le point a à l'extérieur du contour ; le rayon 
de la circonférence doit, en outre, être choisi de façon que les points 
singuliers de Φ (s), plus éloignés de l'origine que a, soient extérieurs 
au nouveau contour (*). 

En prenant, comme extrémités du nouveau contour, un point B, C 
de la circonférence, on obtient un contour de première espèce par 
rapport au point a. Il faut donc appliquer à ce point la règle donnée 
précédemment. c. Q. F. D. 

S'il y avait plusieurs points singuliers de Φ(*), également éloignés 
de l'origine, à l'extérieur du contour D, et plus rapprochés de l'origine 
que les autres points extérieurs, on devrait utiliser tous ces points sin-
guliers particuliers pour obtenir la valeur approchée de M. 

Conséquences. — i° Supposons Φ(ζ) développable par la série de 
Mac Laurin à l'intérieur d'une circonférence de rayon R et admettons 
que la convergence du développement cesse au delà de ce cercle, parce 
que la fonction Φ (ζ) possède, sur la circonférence R, un ou plu-
sieurs points singuliers de la nature de ceux qui ont été considérés 
jusqu'ici. M représente alors le coefficient des" dans le développement 
de Φ(^). La considération des points singuliers dont il s'agit permet 
d'obtenir la valeur approchée de ce coefficient. 

C'est cette proposition très importante qui a fait l'objet du beau 
Mémoire de M. Darboux. 

20 Si la fonction Φ (s) est développable, non par la série de Mac 
Laurin, mais par la série de Laurent, à l'intérieur d'une couronne cir-
culaire limitée extérieurement par une circonférence de rayon R, la 
considération des points singuliers situés sur cette circonférence per-
met d'obtenir la valeur approchée du coefficient de z". 

Pour obtenir la valeur approchée du coefficient de j
(l

> posers — ;-, 

et chercher la valeur approchée du coefficient de z"1. 

5. i° Soit Α
λ
 le coefficient de zn dansle développement de Γι — · 

(1) Si le contour D renferme des singularités, à une distance de l'origine 
supérieure à [ a |, dilater la circonférence D' de façon qu'elle les contienne. 
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On a 
1 n-h) 

Λη ~~ α» Γ(— Α)Γ(Λ + Ι)' 

On peut prendre pour η très grand 

+ + ~ Α(Α+")Log»+-2/«-+-1]+... J 

2° Soit q un entier positif. Appelons BJf' le coefficient de zn dans le 

développement de ^ Log?(1-z/a) 

On a, si h n'est pas un entier positif, 

rj
(9)
 _ I I dt T(n—~ h) 

» ~~ a'1 T(n-hi) dht Γ(— Λ) 

Il est facile de développer cette expression suivant les puissances 
descendantes de n. En particulier, BJ," a pour valeur approchée 

-DM) J_ 1 [ 
" an Γ(—h) Λ1+Α 

(*) x l'-(-h)/f(-h) - Logn 

+ + ~ Α(Α+")Log»+-2/«-+-1]+... J. 

Si h est un entier positif ou nul il convient d'écrire 

B«" — ? fôTiT, m T(l+ ·*) - Λ>· 

On a, en particulier, 

R(') ~ (~0Α+1 Γ(Α + ι)Γ(/ι~ h) 
>l a" Γ(Λ + Ι) ' 

ou, approximativement, 

(S) B» +···]· 

Les développements asymptotiques qui précèdent se déduisent de 
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l'expression approchée 

ΓΟ+/>) = ν2πΕ "n*
p 'ji +

 7
A
i
[n-6p(/> + i)]-t-...j, 

où η désigne un grand nombre positif quelconque, ρ un nombre fini, 
Ε la base des logarithmes népériens. 

Ce développement asymptotique de Γ(/ι -f-p) jouit de la propriété 
de pouvoir être différentié par rapport à ρ, en sorte que le développe-

ment asymptotique de d s'obtient en dérivant r fois, terme à 

terme, le développement de Γ («-+-/>), par rapport à p. 

4. M. Darboux a étendu, dans son Mémoire, le résultat de Laplace 
concernant la valeur approchée des intégrales de la forme 

f/(z) ï"{")dz, 

où il entre un facteur élevé à une haute puissance, au cas des inté-
grales à limites imaginaires. 

THÉORÈME II. — L'intégrale j*f (*) ψ (S) dz étant prise le long 

d'un chemin d'intégration donné, supposons que l'on puisse dé-
former ce chemin de façon à le faire passer par un point a, autre 
qu'une des limites de l'intégrale, jouissant des propriétés sui-
vantes : i° la plus grande valeur de | φ (^) | le long du nouveau con-
tour a lieu en a\ 2° φ'(α) = ο; 3° les fonctions φ (s) et f(z) sont 
holomorphes autour du point a. Dans ces conditions la valeur 
asymptotique de l'intégrale est la suivante 

f/(*)?"(*)dz 
(cB) 

ν-*ίΛ/ϊΙ·^πΗ/+ί(^-^+^-/·)]+4 
Dans cette expression, η désigne un grand nombre positif quel-

conque; les lettres f, f, ..., φ, <p", ... sont mises à la place de 

/0)>/'0)> ···.?(«)>?"(«)< ···· 
H 
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Le nouveau contour passe quelquefois par plusieurs points, ana-
logues à a, dont les affixes satisfont à l'équation |<p(*)| = |?(α)|· M 
faut alors calculer le second membre de la formule (ύΰ) pour chacun 
de ces points. La valeur asymptotique de l'intégrale est égale à la 
somme des résultats ('). 

Le radical^/ — est susceptible de deux déterminations. La règle 

suivante donne le moyen de choisir entre ces déterminations, Soit ω 
l'angle que fait, avec la partie positive de l'axe des abscisses, la tan-
gente menée au contour au point a, dans le sens du mouvement de la 
variable d'intégration. 

Si ω est compris entre — ^ et H-1 > la partie réelle de ̂ / — est 

positive. 

Si ω est compris entre ^ et , la partie imaginaire de ̂ ~
 est 

positive. 

Si ω est compris entre ̂  et la partie réelle de \J~ γ est né-

gative. 

Si ω est compris entre ̂  et la partie imaginaire de \J — ςτ est 

négative. 

5. Avant de quitter ce sujet il y a lieu de donner quelques indica-
tions sur la façon dont varie |φ(s)| dans le voisinage d'un point a 
pour lequel φ'(α) = ο. 

Il existe deux droites rectangulaires passant par a et divisant le 
plan en régions jouissant de propriétés différentes. Dans l'une de ces 
régions CaB', Β α G', par exemple (fig. 3), |<jp(s)| passe par un 
maximum pour s = a, lorsque ζ suit un contour tracé dans cette 
région, au moins dans le voisinage de a. Dans la seconde région, 
CaB, C'aB', |φ(2)| passe, au contraire, par un minimum pours = a. 
Lorsque la variable complexe ζ suit l'une des droites CC' ou BB', 
|φ(ζ)| s'infléchit pour ζ — a. 

(') Ce théorème est applicable lorsque /(s) et φ(*) dépendent de n, à condi-
tion que ces fonctions demeurent finies lorsque η croit indéfiniment. 
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Il résulte de là que, quel que soit le contour qui passe par «, la dé-
rivée de |φ(β)|, par rapport à la variable indépendante réelle dont 
dépend le point ζ lorsqu'il chemine sur ce contour, devient nulle 
lorsque cette variable atteint la valeur qui rend ζ égal à a. 

Fig. 3. 

Réciproquement, considérons une fonction φ (s), holomorphe dans 
le voisinage d'un point d'affixe a, et deux contours C, G' passant par 
ce point dans des directions différentes. Formons l'expression de 
| φ (jff) | le long du contour C et admettons que la dérivée de |<p(^)|c> par 
rapport au paramètre réel dont dépend la variable complexe ζ le 
long de ce contour, soit nulle lorsque ce paramètre reçoit la valeur qui 
rend ζ égal à a. 

Admettons que les mêmes circonstances se présentent pour le con-
tour C'. 

Il arrive alors que a est racine de l'équation φ'(s) = o. 
J'ai dû me borner à énoncer ici les propositions sur lesquelles sont 

fondées mes recherches présentes sur le développement approché de 
la fonction perturbatrice. 

Je me propose de revenir sur cçs méthodes d'approximation qui 
peuvent être étendues de manière à fournir, dans des circonstances 
très générales, la valeur approchée des intégrales définies où il entre 
un facteur élevé à une haute puissance. 

I. 

β. Étant donnée une fonction réelle Ρ
0
(ζ

η
ζ) de période 2% par 

rapport à chacune des variables ζ,, ζ, on peut la développer sous la 
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forme suivante, en appelant ΒΛι/> et ? des coefficients constants, 

'Ρο(^Μ^):=^ΣΛ^ρ
ι
,ρ^θ8(ρ

ί
ί
ι
^ρΙ)·^^^

ί
Ο

ΡιιΡ
ΰη(ρΧ

ί
 H- ρζ). 

Pi ρ Pi Ρ 

Si l'on remplace les lignes trigonométriqucs en fonction d'exponen-
tielles imaginaires, il vient, en désignant toujours par Ε la base cles 
logarithmes népériens et par i le symbole \l — ι, 

(0 Fo(£uO=22
A
^

E
'
w

'
+rt

> 
Pi Ρ 

en posant 

®7>i.P ^PkP 2^·ΡρΡ' 

Bp1 pι^Ί>ι·ρ — 2^-ρ>.-ρ· 

Si donc on développe F
0

('C
n
 ζ) sous la forme (i), le double de la 

partie réelle de APiP donne le coefficient BPii/J
 et le double du coeffi-

cient de — i dans Ap>p donne le coefficient CPi J). 
En particulier, pour résoudre le problème énoncé dans l'avant-

propos du présent travail, il faut calculer A
wli
m 

Nous supposerons, dans la suite, /«, >o, le nombre m pouvant être 
positif ou négatif. 

7. Posons 

(2) ~ — 9, Ε« = /, ΕΡ
1
(χ,0 = Γ'Ρ,(ζ„ζ). 

Considérons les intégTales 

\6) ^«»+1 aX' 

(4) ■ ■ ·■ l=±ji,dt
: 
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prises, la première le long de la circonférence \x |= i, La seconde le 
long de la circonférence 1t1 = ι. 

On a, d'après les formules (i) et (2), 

J.=ΣΣ
Α
»·^·-'άίxp-m dx/x 

h Ρ 

L'intégrale est nulle tant que p^m
K
 et a pour valeur 221c pour 

p
{
 = m,. On peut donc écrire 

(3) J = E Am,p tp 0m-1 

ou, en observant que 0/«, = «2, d'après la première formule ( 2), 

(5) (3) J = E Am,p tp 0m-1 

Remplaçons J, par cette expression dans la formule (4). Il vient 

l = E Am,p Ζ '"••'zir.J t 

L'intégrale est nulle tant que ρ <v»; elle a pour valeur 2ΐπ lorsque 
ρ = m. 

On a donc 
I =A m1,m 

La détermination de A
/M|

est ainsi ramenée au calcul de l'inté-
grale (4); c'est ce qui va maintenant nous occuper. 

Voici d'abord quelques remarques qui seront utilisées dans la suite 
du présent travail. 

La valeur de l'intégrale (4) ne dépend pas de la détermination de 
Γ0 adoptée dans les formules (2) (ces déterminations sont au nombre 
de m, lorsque m et m

t
 sont premiers entre eux). On en voit la raison 

en examinant la formule (3)', où Γθ se trouve élevé à la puissance m
{

. 
Afin de fixer les idées, nous pouvons convenir de partir du point t — 1, 
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dans le plan de la variable avec la détermination de H qui a pour 
valeur ι. 

Le développement (i) est valable pour les valeurs réelles de ζ, et 
de ζ. En y introduisant les nouvelles variables t et χ, au moyen des 
formules (2), le développement converge donc forcément lorsque 
| ί | = 1 et | a? | = 1. 

D'après les formules (1) et (2), le développement de F, (a?, t) ne 
contient que des puissances entières dé la variable x. Cette fonction 
reprend donc sa valeur lorsque le point χ, après avoir parcouru la cir-
conférence \x | = 1 en entier, revient au point de départ. 

Dans le calcul de J, on pourra par suite déformer la circonférence 
|.ζ·|= ι arbitrairement, à la condition d'éviter de faire traverser à ce 

contour variable les points singuliers de Fl^ en tant que fonction 
de x. 

Voici une autre remarque qui a également une grande importance. 
La formule (5) donne le développement de la fonction J,, suivant 

les puissances de t. Ce développement, qui est valable pour |/| = 1, con-
tient uniquement des puissances entières de l. J, reprend donc sa 
valeur lorsque la variable t, après avoir décrit la circonférence 111 = 1 
en entier, revient au point de départ. Dans le calcul de I on pourra 
donc déformer la circonférence 11 | = 1 d'une façon arbitraire, pourvu 
que l'on évite de faire traverser à ce contour variable les points singu-
liers de J,. 

8. Dans le problème qui doit nous occuper, ζ et ζ, sont les anoma-
lies moyennes des deux planètes Ρ, Ρ,. 

A la variable t nous allons en substituer une autre, s, définie par 

z = E'". 

L'équation de Kepler u — e sin h = ζ donne en faisant e = sin ψ et 
tenant compte de la seconde formule (2), 

7 =-.(* - tans ; ) (* -cot *)dz-
(6) 

7 =-.(* - tans ; ) (* -cot *)dz-
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Les formules connues du mouvement elliptique (') (w anomalie 
vraie, r rayon vecteur, a demi grand axe de P), 

r cos m? = a(cosu — <?), 

r sinw = a \ji — e'1 sin u, 

r=a(\ — ecostf), 
se changent en 

rE'»= —ngj), 

(7) 
r Ι·;-"" = —-— is — cot| j > 

r=■- (2 ~tan4) (3
 -

cot
ï)· 

Ces formules seront bientôt utilisées. 
Effectuons dans l'intégrale (4) le changement de variable défini par 

les formules (6). 
Aux valeurs réelles de ζ correspondent pour u des valeurs réelles ; 

il en résulte que | ζ | = ι lorsque 111 = ι. 
Le contour d'intégration que doit suivre la variable nouvelle s est 

donc la circonférence | ζ | = ι qui est la transformée de la circonfé-
rence | /1 = ι. En posant 

F(®,3)=— ^r(«- tangîy^-cot^F0(i,,ï), 
(8) 

F(®,3)=— ^r(«- tangîy^-cot^F
0
(i,,ï), 

on peut écrire l'expression (4) de I 

(9) I = Jdz, 

(') TISSERAND, Traité de Mécanique céleste, t. 1, P. ΙΟΊ et io3. 
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cri faisant 

(10) J = 1/2iu F(x,z/ xm+1 

Nous avons fait observer que J, est une fonction uniforme de t dans 
le voisinage de la circonférence |/| = i. En remplaçant, dans celte 
fonction, ipar sa valeur (8), uniforme en s, J, devient une fonction 
uniforme de ζ dans le voisinage de la circonférence | ζ \ — i. Or on a, 
d'après les formules (io), (8), (3), (2), 

J=- (* - tan?ï) (s -cot!) ύ<

; 

donc J est une fonction uniforme de ζ dans le voisinage de la circonfé-
rence |s| = i, c'est-à-dire reprend sa valeur, lorsque la variable r, 
après avoir décrit en entier la circonférence \z\ = r, revient au point 
de départ. 

II. 

9. Appliquons les considérations qui précèdent au problème parti-
culier énoncé dans l'avant-propos de ce Mémoire. 

Appelons a, et ζ, le rayon vecteur et l'anomalie moyenne de la pla-
nète P, qui décrit l'orbite circulaire; /·, a, e — sin φ, ζ, m, w1

 le rayon 
vecteur, le demi grand axe, l'excentricité, l'anomalie moyenne, l'ano-
malie excentrique, l'anomalie vraie de la planète P. On peut supposer, 
puisque l'excentricité de P, est nulle, que le périhélie de cette planète 
et celui de la planète Ρ ont même longitude. 

Le carré de la distance de P< et de Ρ a ainsi pour valeur 

A = a; -1- r2 — 20, r(cosi, coscp -h βίηζ, sincp). 

/-, w, u étant supposés exprimés en fonction de ζ, on a dans le cas 
actuel 

F0 (C1, C = f1 Ei Ci οίΛη W [«J-!- 7'2— ^/'(cosC, cosw + sinE, sirup)]* 
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On en déduit, après l'introduction des notations (8), 

(•o 
F(x,

z) [_ + ι
Λ

)χ — a1rE'
,w

/
ô
l 

X (* ~ cota) (* ~ tan^i)/«(r0a?)/(^)' 

r, w, t étant maintenant des fonctions de ζ définies par les for-
mules (7). 

Posons, eu égard aux formules (6) et (7), 

u = t0 a1/r Eiw = 1/cl(z) 

u = t0 a1/r Eiw = 1/cl(z) 

(12) 
α = ί<'' 

ç(s) = « —-Η (s-cotϊ) [«Ε ' (* =·*] . 

Lorsque | ζ | = ι, on a 

ΙΜ>ι, Μ<»; 

car, φ et /' étant alors réels et 1t1 = 1, on a, puisque l'orbite de P, enve-
loppe l'orbite de Ρ, 

IM = ?>i, |v|= 57<I-
En introduisant ces notations dans F (α?, s), il vient, en tenant compte 

des formules (7), 

(■■y
 5

7.<Γ**>/(--> 
ou 

(11)'' F(x,z) = xcl(z) / -a xcl(z) - 1 xcl(z) -

Dans ces formules le premier facteur élevé à la puissance s est 

l'expression de ^ en fonction de a? et de s. 
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10. Les points singuliers de F(#, z) en tant que fonction de χ sont 
pour | ζ | = ι : les points χ = oo et χ = [λ, à l'extérieur de la circonfé-
rence |a?|=i, et, à l'intérieur de cette circonférence, les points 
X = V, X = o. 

Cela étant, considérons l'intégrale (io) 

2ί"π J= f ^-~^—dx. 

J est une fonction uniforme de ζ lorsque |s] est voisin de ι ('). 
Quels sont les points singuliers-de cette fonction? Ces points singu-
liers s'obtiennent en écrivant que deux des points singuliers de 

F(x,z)/xm1+1> en tant que fonction de χ, l'un intérieur, l'autre extérieur au 

contour d'intégration, se confondent (2). Ils vérifient par suite les 
équations 

p = o, v = ac, p. = v. 

On doit y joindre les valeurs ζ — ο, ζ = χ pour lesquelles le poly-

nôme ^7/(3), en ζ et ~ devient infini. Ces valeurs sont également des 

points critiques pour (8) et, par suite, pour fi{t~^x) pour ρ et 
pour ν (12) qui rentrent dans l'expression de F(#, z). 

L'équation p = o équivaut (12) à φ (5) = 00 qui n'admet pas de 
solutions en dehors de ζ — ο, ζ = ασ. 

L'équation ν = 00, comme on s'en assure aisément en partant des 
formules (12) et ( 7), n'est vérifiée que par ζ = ο et ζ — oo. 

L'équation p. = ν se décompose en deux 

r = a, et /' =— an 

ou, 

pour/· = a,, asu^s2-*- 2(1 — OL)Z -h a sin ψ = ο; 
03) 

pour /· = —«,, a δΐηψΐ3 — 2(1 + a)s + « sin ψ = ο. 

(1) Se reporter au n° 7. 
(2) POINCARÊ, Les nouvelles méthodes de la Mécanique céleste, t. 1, p. 282. 
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En résumé, les points singuliers de J sont : ζ = ο, ζ = oo et les 
valeurs de ζ qui vérifient les équations (i3). 

11. Application de la méthode de M. Darboux à J. — Nous ferons 
ultérieurement suivre à ζ un chemin coupant Taxe des abscisses en 
deux points qui séparent respectivement les racines de chacune des 
équations (i3). Ce chemin s'obtiendra en déformant la circonfé-
rence |s|= i, d'une façon continue, sans jamais rencontrer les points 
singuliers de J. 

Pour ces valeurs de s, le point p. ne reste plus nécessairement à 
l'extérieur de la circonférence \ x | = ι, ni le point ν à l'intérieur. Mais 
on peut, à tout instant, déformer le contour le long duquel est prise 
l'intégrale J, de façon que p. demeure à l'extérieur, ν et l'origine à 
l'intérieur de ce contour. Effectivement, les passages compris entre 
l'origine et le point p., entre le point ν et l'oo, entre les points p. et v, 
que le contour traverse lorsque |s| = i, demeurent constamment 
libres, puisque ζ ne rencontre aucun des points singuliers de J. Il 
convient d'ajouter que le point ν ne peut venir se placer sur le pro-
longement de la droite qui joint l'origine au point p. (f). Le point v, 
en circulant, ne peut donc pas enrouler, autour du point μ, le con-
tour le long duquel est prise l'intégrale J. Il en résulte que ce contour 
rencontre, en un seul point, la droite qui joint au point p. l'origine 
des x. Ce point peut donc servir à évaluer l'intégrale J, en appliquant 
la méthode de M. Darboux. 

Le développement de F(a?, z)
}
 dans le voisinage de p,, est, en rem-

plaçant par sa valeur déduite des formules (12), 

F(*> «) = j ;/·(<»/(*> W-'·2)-' (' - f)"' 
('4) 

χ [ι + des termes où (i — ^ ) entre en facteur!. 

(*) Cela résulte de l'expression ν — μ = — μ(«1— r2) [form. (12)], qui 
permet de construire le point v en partant du point μ, et de ce que celui des 
arguments de a\ — r2 qui est nul, lorsque ce binôme est réel, est toujours infé-
rieur à π et supérieur à — π (n° 20, Remarque). 
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Le produit (aj —/**)-* ^ est susceptible de deux détermi-

nations puisque s est de la forme - » -> · · · ; il faut donc faire un choix 

préalable entre ces déterminations. Plaçons-nous à cet effet dans 
l'hypothèse où | ζ \ = i, cas où r est réel. Les formules (12) montrent 
que [a et ν ont même argument. Figurons ces points dans le plan, la 
circonférence |a?)= 1 et le point M {fig. 4) où la droite [av la ren-
contre. Lorsque χ varie sur la droite (av, entre [a et v, ^argument 

Fig. 4. 

\
 0 V

 / 

de a?, celui de χ — (a et celui de a? — v demeurent invariables. L'expres-
sion (11)' de F(#, z) montre de suite que l'argument du facteur élevé 
à la puissance s est lui-même invariable. Or, lorsque χ vient en M, le 
facteur en question est réel et positif comme égal à la distance réelle 
des planètes; il est donc réel et positif lorsque χ est l'affixe d'un point 
quelconque du segment [av. 

En convenant de prendre dans le développement (i/j) la détermi-

nation de ^1 — qui est réelle et positive le long de 0 (A, la condition 

à laquelle nous venons d'arriver conduit à prendre celle des détermi-
nations de (a] — r2)~J qui est positive et réelle pour |z\ = 1. 

En partant de la formule (i4)> on a, d'après la méthode de M. Dar-
boux (' ), 

J = 1/z r/a f1 t.u) 

χ ^coefficient de dans ^1 — ̂  

-h un terme de l'ordre de 1 · 

(*) Se reporter au n° 2. 
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En remplaçant dans la formule («Λ») (Introd.) α par p., h par —s et 
conservant seulement le terme principal, il vient, d'après les formules 
(,2)et(7), 

J = ̂  ?»'·(*) Ψ(*) (i + J). 
en faisant 05) 

ψ
 ̂  = îs/'Γ

 t
*yl

m
a2-r2/r(s) 

R restant fini lorsque m
t
 augmente indéfiniment. 

Cette expression de J n'est pas valable pour les valeurs ζ = o, 
z — oo ni pour les valeurs de ζ qui satisfont aux équations (i3). Il 

faut y joindre la valeur ζ =cot ^ qui rend p. infini, car la méthode de 

M. Darboux ne s'applique que lorsque le point p. est à distance finie. 
L'expression (r5) de J est une identité, du moment où R est une 

fonction de ζ convenablement choisie. Nous répétons que cette 
fonction R reste finie lorsque m, augmente indéfiniment, d'après le 
théorème de M. Darboux, sauf pour les valeurs de ζ qui viennent 
d'être mentionnées. 

La fonction φ(^) (12) est holomorphe pour toute valeur de s
} 

sauf pour ζ = ο, ζ = oo, et ne devient nulle que pour ζ = ο, ζ = ao, 

s = cot^· J est holomorphe pour toute valeur de z> sauf pour ζ = ο, 

ζ = oo et les racines des équations (i3) ('). D'après l'identité (15), la 

fonction -+- ~^Ψ(ζ) est donc holomorphe pour toute valeur de z, 

sauf pour s = o, z = oo, z = cot^, et pour les racines des équa-

tions (i3). La fonction RT(£) joiiit des mêmes propriétés, la fonc-
tion Ψ (s) n'ayant manifestement pas de points singuliers en dehors 

de ζ — ο, ζ = oo, ζ = cot ^ et des valeurs de ζ qui annulent a] — ra, 

c'est-à-dire des racines des équations (i3). 

(*) Se reporter au n° 10. 
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En résumé, les fonctions φ (s), R?(s) sont holomorphes, 
sauf dans le voisinage des valeurs de ζ pour lesquelles l'expression ( 15 ) 
de J cesse d'être valable. 

III. 

12. La fonction y(z) joue un rôle essentiel dans la suite de ce 
travail. Nous commencerons par étudier sa dérivée. 

On tire de l'équation (12) 

(16) as»(s-cot|)gg=U(»), 

en posant 

(' 7) U(s)= 08ΐηψ(; - tang-jjV- - cot*Y + 2 s (s + cot'*)· 

Discussion de Γéquation U(s)=o. — Cette équation, du troi-
sième degré en s, peut se mettre sous la forme 

si Z -+- cot -J 

- tang-jjV- - cot*Y + 2 s (s + cot'*)· 

on en tire 

M _ _2_ [(
s
 -

 t
«a)(

a 5 + co
4)- "(

3 + C0
4)] (

4 _ cal
 î) -

 2 + COl
ï) (' ~tg y/2 

dz sitt
· (>-*$z-cot y/2 

Le numérateur de du troisième degré en s, a ses racines réelles, 

savoir ζ = z' (— z ' — cot γ\> ζ = s" (— cot ^ < ζ" < ο j > 

3 = s*(tRngjj<5*<coti). 

Nous trouverons plus loin ζ', ζ", zmet les valeurs correspondantes Θ', 
e%e'"deO. . 

En considérant θ comme l'ordonnée d'une courbe dont ζ est 
l'abscisse, on construit immédiatement la fig. 5, en observant que 
l'ordonnée est maximum pour ζ = ζ', minimum pour z = z" et z = s"'. 
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En coupant la cotirbe par une parallèle à l'axe des abscisses, à une 
distance de cet axe égale à la valeur de θ qui figure dans l'équa-

Fig. 5. 

A Ψ / ' Φ Ψ , g"
 0

 / ~\*9ί zm 'V*τ 5: 

β ΐ ;θ"' | 

' Λ ι / rv 
lion U = ο, les racines de cette équation sont figurées géométriquement 
par les abscisses des points de rencontre. 

Le nombre m, des formules (2) et (fi) est positif par hypothèse. 
Supposons : 1® m < ο et par conséquent G < o. 

On voit sur la fig. 5 que l'équation U = ο a toujours une racine 

positive supérieure à cot ^ qui croît lorsque G croît. Les deux autres 

racines sont : réelles et comprises entre tangï et cot ~ si 0 est inférieur 

à l'ordonnée G'" du point C ; imaginaires si G est compris entre 6W et l'or-

donnée 0" du point Β ('); réelles et comprises entre — cot~ et ο si G 
est supérieur à G". 

Supposons : 20 m^> o, d'où G > o. 
L'équation U = o a toujours une racine positive comprise entre 0 

et tang ^ qui croît avec G. Les deux autres racines sont : réelles et com-

prises entre — 00 et — cotî si G < G'; imaginaires si G > G'. 

(*) Q" est nécessairement inférieur à 6", sans quoi l'équation aurait plus de 
trois racines pour les valeurs de θ comprises entre G" et θ1". 
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Faisons dans (17) 

(18) ζ = cot - ÛL 

L'équation U = ο devient 

(19) ρ" — (ι — 28 οοβψ)ρ 4· 28 = ο. 

Remarquons que 

ρ croissant de — αο à — ι, ζ décroît de cot- à o, 

O) Id. — 1 à H- 1, Id. o à — oo, 

Id. 4· 1 a -}- 00, Id. 4* 00 a -H cot - · 

Gela étant, pour que l'équation U = o ait une racine double, il faut 
et il suffit que l'équation (19) ait une racine double, θ', 8", 0"' vérifient 
donc l'équation 

(21) 27Ôa = (l — 28COS<JJ)3, 

que l'on peut écrire, en prenant la racine cubique arithmétique des 
deux membres, 

(21)' U] — \ — 2 COS'| = o. 

Cette équation en -j- a ses racines réelles : une racine positive et 

deux négatives. 
Les formules de résolution de l'équation du troisième degré donnent 

Q'= |séc8|> 

(22) 0"= — ^séc3^6o°—y/3 

r= - g séc«(6o°+ ly 

On trouvera, à la fin du présent Mémoire, une Tablé donnant les 
valeurs de θ', Θ", 6"; en fonction de l'excentricité e = sin ψ. 
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13. Résolution de l'équation U = ο : 

i° Si 0 < Θ'" les trois racines de l'équation U = ο sont réelles et po-
sitives ; nous n'aurons, dans le cours de ce travail, à considérer que la 
plus petite. 

Si ο > θ > θ"les trois racines sont réelles; deux sont négatives. Nous 
n'aurons à considérer que la plus petite de ces racines (la plus voisine 
de — ce). 

Si ο < θ < θ' les trois racines sont réelles ; deux sont négatives. Nous 
n'aurons à considérer que la plus grande de ces racines négatives (la 
racine moyenne). 

Dans ces trois hypothèses, la racine que nous venons de définir sera 
désormais désignée par Z. Elle a pour valeur 

(a3) Z = cot*—, 

en posant 

(24) cos£ = —Op—°°<X< 1800, 

et 

(25) ρ= — —
2 

3
COb

^
cos

 (^°°
+

 3)· 

Pour la démonstration de ce résultat nous renvoyons à l'addition 
annexée à ce Mémoire. 

20 Lorsque les racines de l'équation U = ο ne seront pas toutes 
réelles, nous désignerons par Z

t
· et Z_

4
 ses racines imaginaires. 

Si θ"> θ > θ"' ou si θ'< θ < ——τ ( ' ), ces racines sont données 

(J) On a trouvé θ'=—ï—d'autre part, cos ψ = 4 cos3 3 cos |· On 
8coss £ 

ο 

a donc bien θ' < —î— . 
2 cos ψ 

Jour η. de Math. (4· série), tome X. — Fasc. IV, 1894. 
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par les formules 

sin2x = -i[' 'g
00

'
41
]

7
, tan g ξ = V»angx, 

(26) v=-\/-—+V^-ïV' - îOcos|cot2?, 

Z
t
 = cot | £-377» Ά-ΐ = conjuguée de Z,. 

Si () > ——Γ> Ζ,· et Z_, sont donnés par les formules 

cot2x = ô[ï^iÎ—ij tang? = Vtangx, 

(26) 
p=

 ^/ii£2îi—'-cotai-h J- I v'a a cos ψ -1 1/sin2 

Z,= cot jj v | > Z_, = la conjuguée de Z,·. 

3° Lorsque θ = θ', θ" ou θ"7, l'équation U = ο a une racine double. 
On peut en obtenir une expression simple. 

En posant pour un moment 

(28) τ'=θ'*, τ"=θ"*, τ'" — θ*', 

on a, d'après les formules (22), 

(29) -*«"<-ji' —<*■<—· 

On peut tirer la valeur de cos ψ de l'équation (21)' en fonction de τ', τ" 

ou τ'" et exprimer, par suite, cot| en fonction de ces paramètres. On 



DÉVELOPPEMENT APPROCHÉ DE LA FONCTION PERTURBATRICE. 4
21 

trouve, en tenant compte des inégalités (29), 

COt- = ——Λ/ — > 

(3ο) COt- = 7.4/ —τ. , 

c°t- _ — at'—Γ 

Les équations (19) et (21) donnent comme valeur de la racine 
double Ρ : 

pour 0 = 0', ρ = τ', 
(3i) pour G = 6", ρ = Τ", 

pour G = θ"', ρ = Τ'". 

Les équations (18), (3o), (3i) conduisent ensuite à 

2r'+12r'+12r'+12r'+1 
** y 2τ'—ι' y 2t"—1' "" y 2τ^—; 

ou, en tenant compte des formules (28) et (22), 

(32) z'= — cot|> z" — — tang^3o° — z"' = 4- tang^3o°+y/6 

z' correspondant à G', z" à G", z'" à G'". Telles sont les abscisses des 
points A, B, C de la fig. 5 qui ont pour ordonnées G', G" et G'". 

14. Lorsque G < 0W, la plus petite racine réelle Z de l'équation U = ο 
est comprise entre tang^ et 1 puisque z"'<^ 1. 

Le produit des racines dé l'équation U = 0 est indépendant de 0; 
d'ailleurs, lorsque G croît de G'" à G", la racine réelle croît comme Γ in-
dique la fig. 5 ; il faut donc, par compensation, que le module des 
racines imaginaires Z, et Z_

{
· décroisse. Le module de ces racines veste 

donc compris entre z'" et |z"|; il est inférieur à 1. 
Lorsque G est compris entre Θ" et o, la plus petite racine réelle Z de 

l'équation U == ο est comprise entre — cot- et z". 
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De là, il résulte que, pour 6 < o, la valeur absolue de Z ou le mo-

dule de Z
t
· et de Z_,· est compris entre cot^ et \z"\. Pour que ce module 

soit compris entre tang^ et cot^» il suffit que\z" | > tang ̂ · En rempla-

çant z" par sa valeur (32), on reconnaît que cette condition équivaut à 

ψ < 45°, c'est-à-dire à e = sin ψ < ou c <[0,707. C'est ce qui a lieu 

dans toutes les applications. Nous pourrons donc supposer la valeur 

absolue de Z, ou le module de L
t
 et de Z_

t
·, compris entre tang î et coty/2 

lorsque θ < o. 
Soit maintenant θ > 0. 

Si o< θ < ô', la racine moyenne Z de l'équation U = ο est com-

prise entre — cot^ et z . 

Lorsque 0 croît à partir de ô', on voit comme précédemment que le 
module des racines imaginaires Z/ et Z_

t
· décroît. Pour 6 = 00, ce module 

a pour valeur cot^· 

Ainsi, lorsque 6 > 0, la valeur absolue de Z ou le module de Z, et 

de Z_
{
- est compris entre cot^ et cot g· 

IV. — ÉTUDE DU MODULE DE LA FONCTION (p(z). 

On a 

φ(*) = «Btn»iA
 7

-y~[* . 

Posons ^ = RE"0. On en déduit 

(33) |
9
W|=««n*i ^ -[RE * iiiij . 

ti>. Élude de \y(z)\ le long de la circonférence de rayon R. — 
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On tire de l'expression (33) 

ι d\y{z)\ 
[<p(*jl cita 

(34) 4RS cot - — 6 siinj^R1 — ι) (R*—- aRcot - costa + cot*y/2 
= sin w 

aR(Rs —aRcot ^ cos ω Η-cot* | J 

Le second membre a le signe de l'expression 

(35) sin<o£4R2cot^ — θδίηψ(Ι12 — i)^R2 — nRcot^cos(*> + cot2
y/2)] 

Supposons d'abord 0 <Co. 
Si R > i, le coefficient de sinco est toujours positif; ^ a donc 

le signe de sin ω. Il en résulte que, le long de la circonférence R, | φ (s) j 

devient maximum absolu pour ω = π, minimum pour ω = o. 

Si R < ι, d- ^ a le signe de 

(36) sinto (costo + P), 

en posant 

ρ aR 2 
- 6 sin ψ (ι Rs) ~

 aRcotî ' 

Lorsque R décroît de ι à ο, Ρ décroît de +oo à — oo, comme on s'en 
assure aisément. Appelons R

2
 la valeur de R pour laquelle Ρ = — ι 

et R, la valeur de R pour laquelle Ρ = ι. 
Si R > R

n
 cos ω -h Ρ est essentiellement positif; l'expression (36) 

devient nulle pour ω = ο et ω = π. Il en résulte que, le long de la cir-
conférence de rayon R, | y(z) 1 devient maximum absolu pour ω = π, 
minimum pour ω == o. 

Si R, > R> R2, l'équation cos<o + P = oa une racine ω, entre o 
et π et une racine 2 π — ω, entre π et 21c. a pour racines ω = o, 
ω = ω,, ω = π, ω = 2π — ω,. Pour ω = ο, costo -f- Ρ est positif; il 
en résulte que, le long de la circonférence R, | φ(3) | passe par deux 
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maxima absolus égaux, correspondant à ω = ω, et ω = 2π — ωη et 
par deux minima qui correspondent à ω = ο, ω = π. 

Si R<R
2

, COS(OH-P est essentiellement négatif; les racines de 
d cl(z)/dwI sont ο et π. | φ(^)| est maximum absolu, le long de la circon-

férence R, pour ω = o, minimum pour ω = π. 

Soit en second lieu G>o. — Nous n'examinerons que le cas où 

R> cot^· Lorsque R croît depuis cot jj jusqu'à +00, Ρ diminue depuis 

ras? -1 - °°· 
Lorsque —1 >1 > Ρ prend toutes les valeurs comprises entre 

+ 1 et — 1 quand R s'éloigne assez de cot t · Appelons R', la valeur de R 

pour laquelle Ρ = ι, R'
2
 la valeuT de R pour laquelle Ρ = — 1 ; on a 

cotî<R;<R;. 

Lorsque 1 >
 Qc<

^ —1>— 1, Ρ ne peut devenir égal à 1, mais prend 

la valeur — 1 quand R est suffisamment éloigné de cot · Appelons 
encore R'

2
 la valeur de R pour laquelle Ρ = — ι ; on a 

cot|<n;. 

Si cot j < R < R',, | φ (s) | est maximum absolu pour ω = π, sur la 

circonférence R, minimum pour ω = o. 
Si R reçoit l'une des valeurs pour lesquelles Ρ est compris entre 

H-i et — 1, |φ(*)| passe par deux maxima égaux et absolus, le long 
de la circonférence R, pour ω = ω, et ω = 2π — ω', ; ω', et ηπ — ω', 
étant les racines de coso) + Ρ = ο. | φ(*)| est minimum pour ω = 0 
et ω = π. 

Si R> R'
a

, |φ(^)| est maximum absolu, sur la circonférence R, 
pour ω — o, minimum pour ω = π. 

16. i° Étude de φ(ζ) | le long de la partie négative de l'axe 



DÉVELOPPEMENT APPROCHÉ DE LA FONCTION PERTURBATRICE. T\2% 

des abscisses. — Faisons ω = π dans l'équation (33) ; il vient 

|
?

(*)l =
 g

sin»^ r ^ [RE · (
 '*>] . 

On en tire 

_J d [y(-g)| 
l?(*)| dtk 

= ,R.(B + coti) L2R(R " COt'-) ~ 0SinHR + "°*l)(R + COt^) J 

Le facteur entre crochets donne son signe à puisque R est 

positif. Ce.facteur s'obtient en changeant* en — R dans U(z) (17). 

Les valeurs absolues des racines réelles négatives de U(*), s'il y en a, 

sont donc racines positives dedcl(z)/dR 

Soil d3abord θ < ο : Si 0 < θ", U(*) n'a pas de racines négatives 

et, par suite, ^ >0; | <p(*) | décroît donc lorsque la variable * 

marche dans le sens des abscisses croissantes. 
Si ο > G > G", U(*) a toutes ses racines réelles et deux sont néga-

tives. |φ(*)| décroît, lorsque * marche dans le sens des abscisses 
croissantes, jusqu'à ce que * atteigne la plus petite racine Z, croît en-
suite jusqu'à la seconde racine·négative de U(*) qui est inférieure à 1 
en valeur absolue. Ainsi | φ(*) | passe par un minimum lorsque *, dé-
crivant l'axe des abscisses, passe par la plus petite racine Ζ de U(*) 
qui annule φ'(*)· C'est là un point essentiel. 

Soit en second lieu G > ο : Si G < G', U(*) a ses racines réelles, 
deux sont négatives. | φ (s ) | passe par un minimum lorsque * passe par 
la plus grande racine négative Ζ [racine moyenne de U(*)]; | φ(*) | 
croît ensuite lorsque * va de Ζ à l'origine. 

Si G>G', U(*) a des racines imaginaires et pas de racine néga-
tive; | φ (s) | croît lorsque * marche dans le sens des abscisses crois-
santes. 

20 Élude de | φ(*) | le long de la partie positive de l'axe des 
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abscisses. — Faisons ω = ο dans l'équation (33) ; il vient 

Ι?(2)ϊ= β sin* j -—g—^-[RE » . 

Oil en tire 

. d\
 f

 (
S

) ι _aR (R+001 !)+16 sin* (ρ - ,a"8 ;) (R -1001 ;)' 
Ιϊ(ί)Ι "® .R^R-coil) 

Le numérateur du second membre donne son signe à l'expression 

e Le facteur s'obtient en changeant z en R dans U(s). 

Soit d'abord θ < ο : Il nous suffira de savoir comment varie [9(2)1 
lorsque R < cot î et 9 < Θ,Λ. U(z) a ses racines réelles et positives; 

| 9(3)! ou, ce qui revient au même ici, 9(2) décroît donc lorsque ζ 
croît à partir de zéro et devient minimum lorsque ζ passe par la plus 

petite racine Z de U(s), laquelle annule 9'(3). 
Soit en second lieu θ > ο : Il nous suffira de savoir comment varie 

19(3)! lorsque R>cot^· U(s) n'a pas de racines supérieures à 

cot | 9(2) | croît donc lorsque ζ croît à partir de cot ^ · 

17. De cette discussion nous allons tirer quelques conséquences : 
i° Admettons que l'équation U(s) = o ait ses racines réelles. 

Comment varie | 9 (ζ) | le long de la circonférence D ayant l'origine 
pour centre et passant par le point Ζ ('). 

On vient de voir que 19(2)! devient minimum lorsque z, décrivant 
l'axe des abscisses, passe par le point Ζ. Il en résulte, puisque 9' (2) = o, 
que 19(2) | devient maximum pour 2 = Z, lorsque ζ décrit un contour 
normal à l'axe des abscisses au point Z (2). Ainsi 19(2) | passe par un 
maximum pour 2 = Z, lorsque 2 décrit la circonférence D. Ce maximum 
se produisant pour une valeur réelle de 2 est unique et absolu le long 

(*) Se reporter au n° 14, 
(2) Se reporter au n° 5. 
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de la circonférence (^). Nous arrivons ainsi à cette conclusion capi-
tale que, lorsque la variable z suit la circonférence D, |<p(*) | prend 
sa plus grande valeur au point Z pour lequel φ' (Ζ) = o. 

2° Plaçons-nous, en second lieu, dans l'hypothèse où l'équation 
U = ο a des racines imaginaires. Figurons, dans le plan représentatif de 
la variable z, les racines Z, et Z_,· et désignons maintenant par D la 
circonférence décrite de l'origine comme centre avec | Z/1 pour rayon. 

Je dis que | φ(ζ) | passe par des maxima égaux et absolus lorsque ζ, 
cheminant sur la circonférence D, atteint les valeurs ζ = Lh ζ = Z_/. 

En effet, φ'(-ζ) étant nulle pour ζ = Z, et ζ = Z_,·, la dérivée de 
|φ (z)| par rapport à la variable réelle indépendante dont dépend le 
point Z, le long du contour D, doit s'annuler lorsque cette variable 
atteint les valeurs qui rendent ζ = Z/} ζ =z-1 (2) 

La variable indépendante le long de D est l'argument ω de z, en 

sorte que, si ω, représente l'argument de Zh est nulle pour 

ω = ω, et ω = 2π — ω,, ω, est différent de zéro et de π; nous sa-
vons (( ), dans ces conditions, que | φ (ζ) | est maximum absolu le long 
delà circonférence D pour les valeurs ω = ω,, ω = — ω,. c. Q. F. D. 

Ainsi, lorsque la variable ζ décrit la circonférence D, | φ(ζ) | prend 
sa plus grande valeur aux points ζ — Ζ,· et z = Z_,·, pour lesquels 
<ρ'(Ζ/) = φ,(Ζ_ί) = ο. 

V. 

18. Les racines des équations ( 13) 

asin<|/z*-t-2(1 — oc)z-h α sin ψ = ο, 
(ι3) 

αείηψζ2— 2(1 4- α)ζ -+■ α sin ψ = ο 

sont réelles, du moment .où les orbites des planètes ne se rencontrent 
pas en un point réel. Ces racines sont inverses deux à deux; celles de 

(*) Se reporter au n° 15. 
(2) Se reporter au n° 5. 

Journ. de Math. (4* série), tome X. — Fasc. IV, 1894. 55 



428 MAURICE H AMY. 

la première équation sont négatives et moins écartées de la circonfé-
rence |*| = i que les racines de la seconde équation qui sont posi-
tives. 

α étant inférieur à i, les nombres tang-> cot- sont intérieurs aux 

racines de la seconde équation; les nombres — tang-> — cot-sont 

intérieurs aux racines de la première seulement lorsque α < j. 
Cela étant, considérons une circonférence, de rayon variable, con-

centrique à l'origine, coïncidant au point de départ avec la circonfé-
rence |*|=i et venant se confondre avec la circonférence D du Cha-
pitre précédent. Cette circonférence variable ne rencontre pas, en 
chemin, les racines des équations (i 3) si 0 < ο et α < vu les limites 
entre lesquelles sont alors compris | Ζ | ou | Ζ, | (1 ). Mais, si 0 et α ne vé-
rifient pas ces inégalités, la circonférence variable peut rencontrer 
l'une des racines de chacune des équations (i3). La première racine 
rencontrée appartient nécessairement à la première équation (i3), 
puisque, des deux racines des équations (i3) situées d'un même côté 
de la circonférence | * | = ι, la plus rapprochée de cette circonférence 
vérifie la première équation. 

Définition. — Nous désignerons désormais par *, et z
2
(z

t
 <Cz

2
<C.o) 

les racines de la première équation (i3) et par z\, z[
2
 celles de la se-

conde (z\ > s'
2
 > o). 

VI. 

Revenons à l'intégrale (9) prise le long de la circonférence | s | = J ; 

I = -U f idz. 

On a vu (2) que J est une fonction uniforme dans le voisinage de la 
circonférence |* | = 1 ; ses points singuliers sont * = 0, * = co et les 
racines des équations (i3). On peut donc remplacer la circonférence 

(*) Se reporter au n° i4. 
(*) Se reporter au n.0 8. 
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d'intégration \z\ = ι par un autre contour C, entourant l'origine, à 
condition que, dans l'intervalle compris entre C et la circonférence 
| ζ | = ι, les équations (i3) n'aient pas de racines. 

19. En choisissant convenablement le contour C, on parvient rapi-
dement, dans deux cas particuliers que nous examinerons tout d'a-
bord, à l'évaluation approchée de I. 

i° L'équation U(z) = o a toutes ses racines réelles (6 <θ"' ou 
0"<0< Θ') et de plus | z

t
 | > | Ζ | > | z

2
1. 

On peut prendre, comme nouveau contour C, la circonférence D 
décrite de l'origine comme centre avec |Z| pour rayon. Effective-
ment, d'après l'hypothèse, on a, α fortiori (1 ), z\ > | Ζ | > z[

2
. 

Il s'ensuit que J n'a pas de singularités dans l'espace compris entre 
la circonférence D et la circonférence | ζ | = ι, les intervalles compris 
entre |s, | et |s

2
|, d'une part, entre z\ et z'2, d'autre part, compre-

nant l'unité. 
L'expression (i5) de J est valable pour tous les points de la circon-

férence D. On peut donc écrire 

Ι = ̂ Χψ<*)(ι + έ)*,,,<*>Λ· 

Le maximum de | <p(,s) |, le long de D, correspond à la valeur ζ = Ζ 
qui annule y'(z) (2). L'expression approchée de I s'obtient donc, sur-
le-champ, en appliquant le théorème II de l'Introduction. On trouve, 
en conservant seulement le terme principal et remarquant que le pro-
duit R¥(s) est fini pour ζ — Z(3), 

(3?) 1 = -M \/|τ(Ζ)Γ(Ζ)(. + £), 

Κ restant fini lorsque croît indéfiniment. 
2° L'équation U(^) = o a des racines imaginaires (θ'"<θ<θ" 

ou 6' < 0) et de plus | zt | > | Z,1 > | z31. 

(1 ) Se reporter au n° 18. 
(2) Se reporter au n° 17. 
(3) Se reporter au n° 11 et au n» h (uote^. 
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On peut prendre comme nouveau contour G, pour les mêmes raisons 
que précédemment, la circonférence D ayant pour rayon | Z/1 = | Ζ_,· |. 
En remplaçant J par sa valeur (i 5), qui est valable pour tous les points 
du contour D, on a 

I =+\/-2Ι©)ψ(ζ-'·)?™'(ζ-')](ι+£)' 

Le long de D, | φ(^) | passe par deux maxima absolus égaux pour 
ζ — Z

t
· et ζ = Z_

t
·; on a en outre φ'(Ζ,) = <p'(Z_

t
·) = o(1 ). 

Il faut donc, pour avoir l'expression de I, faire la somme des résul-
tats que l'on obtient en appliquant successivement le théorème II de 
l'Introduction aux points Z

{
 et Ζ.;. Ainsi on a, en conservant seulement 

le terme principal et remarquant que R¥(z) est fini pour ζ = Ζ,· et 
z=Z-1(2) 

I =+\/-2Ι©)ψ(ζ-'·)?™'(ζ-')](ι+£)' 
(37)' 

+\/-2Ι©)ψ(ζ-'·)?™'(ζ-')](ι+£)' 

Κ' restant fini lorsque mK
 augmente indéfiniment. 

Remarque. — Les radicaux qui entrent dans les formules (37) et 
(37)' ont un sens bien défini d'après la règle qui a été donnée dans 
l'Introduction. Il reste à choisir la détermination du facteur {a] — r2)~s 

qui fait partie de Ψ. 
On peut prendre l'argument de a2 — r2 égal à zéro pour | ζ | = r, 

car (a2 — ζ'2)-4 est alors réel et positif (2). Or on a (7) et (12) 

a2 — ζ*2 =— —i [asin'|^2 + 2(1 — ct)z -h α sin ψ] 

χ [αβίηψ*2— 2(ι ■+· α )ζ -ι- α sin ψ]. 

Les deux facteurs entre crochets sont les premiers membres des 

(1 ) Se reporter au n° 17. 
(') Se reporter au n° 11 et au n° k (note). 
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équations (i3). Figurons leurs racines en z^ *
s

, z'
v

 et joignons un 
point Ρ du plan à ces points et à l'origine (fig· 6). L'argument de 
à\ — r2 lorsque la variable ζ occupe la position Ρ a pour valeur 

Ω — ϋ), + 0)j -f- (ΰ
2
 (*), — 20) îC. 

En effet, si le point Ρ vient sur l'axe des abscisses a une distance de 
l'origine égale à ι (P est alors, soit entre z

2
 et z\, soit entre z, et z

s
), 

Ω est bien nul. 
Fig. 6. 

x, ω, x2 ω, ο ω x^ Oj ω, xj ω, 

Des relations faciles entre les angles marqués sur la figure permet-
tent d'écrire 

Ω = ω, — ω'ί -+- η' — η. 

Mais, dans le triangle ζ, Ρ z\, on a 

ω, 4- η -h η'-H ω, <π; 

on peut donc écrire a fortiori 

|Ω|<u 

Si le point Ρ est sur un contour assujetti à rencontrer l'axe des 
abscisses seulement entre les points z

if
 z

9
 et entre les points z'it z'

2
, 

condition que réalise un contour équivalent, pour l'intégrale I, à la 
circonférence \z\ = i, cette inégalité a lieu dans toutes les positions 
de P. 

Le véritable argument du facteur (a] — r2)~s s'obtient donc en 
multipliant par — s l'argument de a\ — r8 compris entre — π et -h π. 

20. Lorsque |Z| ou |Ζ,·| n'est pas compris entre | zK | et | z2|, on peut 
encore prendre la circonférence D comme nouveau chemin d'intégra-
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tion, à condition de la déformer comme on l'indiquera bientôt. Mais 
on n'arrive plus aussi directement que précédemment à la détermina-
tion de l'intégrale I. 11 convient alors de décomposer I en deux parties 
et d'évaluer séparément chacune de ces parties. 

Supposons d'abord | Ζ | ou | ZJ supérieur à | s, | (| z
t
 | étant supérieur 

à i, cette hypothèse correspond nécessairement à 0 > 0") ('). Le nou-
veau chemin d'intégration doit être construit de façon à ne pas ren-
fermer le point z,. 

Décrivons {fig. η) du point z, comme centre une demi-circonfé-
Fig. 7. 

&"/ ft β' \ 
Q" à 

Y'fTr 4 i 

rence β'Μγ', avec un rayon très petit. Menons à l'axe des abscisses 
les parallèles β'β", γ'γ", limitées à la circonférence D. Prenons, sur ces 
droites, des points β, γ, symétriques par rapport à l'axe des abscisses 
et à distance finie du point z„ mais assez rapprochés de ce point pour 
qu'un développement que nous rencontrerons plus loin, qui converge 
dans le domaine de zn soit valable jusqu'en β, γ. 

Le rayon de la circonférence β'Μγ' étant très petit, les angles β^, M, 
γ*, M sont voisins de π. 

Le contour Μγ'γγ"Ββ''ββ'Μ, que nous désignerons par C, est équi-
valent à la circonférence | ζ \ — 1 pour l'intégrale I. Toutefois, ce nou-
veau contour, qui contient toujours la plus petite racine z

2
 de la 

seconde équation (i3), ne doit pas renfermer la plus grande racine 
z\ de cette équation. Cette circonstance peut se présenter lorsque 
0>·ο ('); mais nous verrons au n° 21 qu'il n'y a pas lieu de s'en 
préoccuper. 

(D Se reporter aux nos 14 et 18. 
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Supposons maintenant | Ζ | ou | Z
t
· | inférieur à | z

2
1 (| z21 étant infé-

rieur à i, cette hypothèse correspond nécessairement à θ < ο) (1 ). Le 
nouveau contour doit être construit de façon à renfermer le point z%. 

Décrivons {fig. 8), du point z2 comme centre, une demi-circonfé-
rence β'Μγ', avec un rayon très petit. Menons, à l'axe des abscisses, 
les parallèles β'β", γ'γ'' limitées à la circonférence D. Prenons sur ces 

Fig. 8. 

Χ 
β' β /f" \ 

~Tj 5 Ο I 
r~TT fj 

droites des points β, γ, symétriques par rapport à l'axe des abscisses 
et à distance finie du point z2> mais assez rapprochés de ce point pour 
qu'un développement que nous rencontrerons plus loin, qui converge 
dans le domaine de zaj

 soit valable jusqu'en β, γ. 
Le contour Μγ'γγ"Όβ"ββ'Μ que nous désignerons par C, comme 

précédemment, est équivalent à la circonférence | ζ | = ι pour l'inté-
grale I. La circonférence D renferme en effet, dans notre hypothèse, 
la plus petite racine^ de la seconde équation (i3) et ne contient pas 
la plus grande racine z\ de cette équation ( ' ). 

Nous désignerons dorénavant par Cy le contour ββ'Μγ'γ et par C" 
le contour γγ"Ββ"β (fig. 7 et 8). Nous appellerons Γ la partie de 
l'intégrale I qui correspond au contour G', et I" la partie de l'inté-
grale I qui correspond au contour C//. 

Détermination de I". — Tous les points du contour C" sont à dis-
tance finie du point z

1 (fig. 7) ou du point ζ2 (fig. 8). On peut donc, 
dans l'intégrale 

F=s f J dz
1 

(1 ) Se reporter aux 14 et 18. 
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remplacer J par sa valeur (i5), ce qui donne 

<38> I"=SX^)['+^r]r^)^ 

Avant d'évaluer I", il convient de remarquer que la plus grande 
valeur de | <p(*) | le long de β"β et de γ"γ, savoir |<ρ{β) | = | φ(γ) |, est 
inférieure à |<p(^)| (fig. η) ouk\y(z

2
)\(fig. 8). |φ(^)| croît effecti-

vement lorsque ζ décrit le segment M (fig. η) puisque le point M, 
très rapproché de z„ est compris entre z, et — ι (*). De même, |φ(*) | 
croît lorsque ζ décrit le segment Qs, M (fig. 8), le sens M étant 
le sens des abscisses décroissantes (1). 

Ainsi on a, dans le cas de la fig. 7, 

l*(P')l<|ç<P)l<l?(*.)l<l?(M)|, 

I<?(Ï")I<IÎ<T)I<1?(îI)KI,P(m)I; 
dans le cas de la fig. 8, 

Ι?(β")Ι<Ι?(?)Ι<Ι?(«»)Ι<Ι?(Μ)!> 
Ι?(γ")Ι<ΐ9(γ>Ι<Ι<ρ(*>)Ι<Ι?(Μ)|. 

Rappelons enfin que la plus grande valeur de | <p(s) |, le long de la 
circonférence D, est [ <p(Z) | si l'équation U = ο a ses racines réelles 
et | <p(Z

{
) | si cette équation a des racines imaginaires (2). 

Pour donner à l'expression de 1" sa forme définitive, nous distingue-
rons trois cas. 

PREMIER CAS. — I° La plus grande valeur de | φ (ζ) | le long du con-
tour C" est inférieure à |φ (-Sj)| (fig. 7) dans les deux hypothèses 
suivantes : 

0' > θ > θ" (U a ses racines réelles) et Ζ < z
{
 ; 

θ > 0' ( U a des racines imaginaires), | Ζ,· | > | ζ, | et | φ (Ζ,·) | < | φ (ζ, ) |. 

(*) Se reporter au n° 16. 
(5) Se reporter au n° 17. 
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2° La plus grande valeur de | φ (*)| le long du contour C" est infé-
rieure à |φ(^

2
)| (fig' 8) dans les trois hypothèses suivantes : 

ο > ô > Θ" (U a ses racines réelles ) et Ζ > z
%
 ; 

0"> ô > Θ'" (U a des racines imaginaires), |Z/|< |s
a

| et |φ(Ζ/)]< |ç(z
a
)|; 

ô < G'" (U a ses racines réelles), Ζ <\z
t

\ et φ(Ζ) < |<p(*
a
)|. 

Pour obtenir I", dans ce cas, nous appliquerons un théorème dû à 
M. Darboux ( * ). En désignant par τ un facteur de module inférieur à ι, 
par l" la longueur du chemin C" et par ξ Taffixe d'un point convenable 
de ce contour, l'intégrale (38) peut se mettre sous la forme 

(38)' Ι" = ̂ '^Ψ(ξ)[ι + ^τ]Γ'(ξ)· 

Il importe de remarquer que l'on a : 
Dans le cas de la fig. η 

l?(5)l<l?(*«)h 
dans le cas de la fig. 8 

Ι?(Ξ)Ι<Ιί(*:>)|; 
ces inégalités ne pouvant d'ailleurs pas se transformer en égalités. 

DEUXIÈME CAS. — Supposons que l'une des deux circonstances sui-
vantes se présente 

θ>θ' (U a des racines imaginaires), |Z
t
|>|^,| et |ç(Zf)| > |φ(*,)|; 

0"> θ > ÔW(U a des racines imaginaires), |Z/[<|3
a

| et | <p(Z
t
-).| > |φ(ζ

3
)|. 

Les plus grandes valeurs de |φ(*)| le long du contour C" correspon-
dent alors aux racines ζ = Ζ,· et ζ = Ζ_

{
· de <p'(s). On peut donc 

obtenir l'expression de I" en appliquant le théorème II de l'Introduc-
tion à l'intégrale (38), comme on l'a déjà fait pour arriver à la for-
mule (37)'. 

(l) Cours de M. Hermite, 4* édition, p. 65; Hermann. 

Journ. de Math. (4* série), tome X. — Fasc. IV, 1894. 56 
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Ainsi on peut prendre comme -valeur de I" 

(38)" 
I'' =+\/-2Ι©)ψ(ζ-'·)?™'(ζ-')](ι+£)' 

+\Ζζ^ψ<ζ-θί"'(ζ-·)]('+Ε> 

Κ" restant fini lorsque m, augmente indéfiniment. 

TROISIÈME CAS. — On a 

θ < Qw (U a ses racines réelles), Ζ <|*a| et ç(Z) >|ç(s2)|. 

La plus grande valeur de |φ(s)| le long du contour C" correspond 
à la racine ζ = Ζ de φ '{ζ). On peut donc obtenir l'expression 1" en 
appliquant le théorème II de l'Introduction à l'intégrale (38), comme 
on l'a déjà fait pour parvenir à la formule (37). 

Ainsi, dans ce troisième cas, on peut prendre comme valeur de I" 

(38)" 1"= + g' 

K" restant fini lorsque m, augmente indéfiniment. 

Remarque. — On voit que I" est de la forme 

I''= +\/-2Ι©)ψ(ζ-'·)?™'(ζ-')](ι+£)' 

la fonction G" restant finie lorsque m
t
 augmente indéfiniment et l·" 

représentant, ξ dans le premier cas, Z,· dans le second cas, Ζ dans le 
troisième cas. 

On peut effectivement, dans la formule (38)", mettre φ/Λ» (Z/) en 
facteur et faire rentrer, dans G", le facteur 

-[®r· 

qui reste fini, lorsque m
K
 augmente indéfiniment, puisque 

|
?

(Z,.)| = |
?

(Z_,.)|. 
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21. Nous avons admis implicitement, lorsque 0>o, que la plus 
grande racine z\ de la seconde équation (i3) est extérieure à la cir-
conférence D. Il est facile de s'affranchir de cette restriction. 

Considérons le point g où la circonférence D ( fig. 9) rencontre la 
partie positive de l'axe des abscisses. On a | φ(#)| < |<p(Ζ)| ou 
I ?(éT)l < I ?(Z/)| puisque, suivant que U a ou non ses racines réelles, 
| φ (s)| estmaximum, le long delà circonférence D, pour s = Ζ ou pour 
z = Z( et ζ = L-i 

Fig- 9· 

Γ~\Λ_ 
-

Si g est plus éloigné de l'origine que le point singulier z\ de J, il est 

a fortiori à une distance de l'origine supérieure à cot ̂  ' ). On a donc, 
pour tout point ζ pris sur le segment z\g de l'axe des abscisses (2), 
I <?(z) I < 19(g01 et> Cl fortiori, 

|φΟ)|<|φ(Ζ)| ou |<p(*)| <|<p(Z,)|, 

suivant que l'équation U = ο a ou non ses racines réelles. Il en est de 
même si le point ζ est pris le long des droites g'g\, g"g"

Kl
 très voisines 

de l'axe des abscisses. 
Décrivons, autour de z\, une circonférence de rayon fini g\ g

K
 g\ 

rencontrant l'axe des abscisses en un point gK, situé à une distance 
de l'origine supérieure à cot^ · En vertu de la continuité de la fonc-
tion φ (ζ), on peut choisir le rayon de cette circonférence de façon que, 
pour tout point ζ pris sur cette ligne, la différence | φ (z) \ — | φ (z\)\ 

(') Se reporter au n° 18. 
(8) Se reporter au n° 16. 
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ne dépasse pas un nombre fini donné. On peut donc faire en sorte que, 
le long de l'arc g\g,g\, 

lî(*)l<lï(z)l °u l?0)KI?(z<)l> 

suivant que U a ou non ses racines réelles. 
En faisant subir à la circonférence D la déformation g'g\gKg\ g"t 

le point z\ reste à l'extérieur du contour G. Comme tous les points de 

cette déformation sont à distance finie du point z\ et du point cot^> 

l'expression (i5) de J est valable, comme auparavant, pour tous les 
points du contour C", modifié comme il vient d'être dit. 

Les résultats précédemment acquis, en ce qui regarde I", sont fondés 
sur ce que la plus grande valeur de | φ (s)|, le long de la circonférence D, 
est |φ(Ζ)| ou |φ(Ζ/)|. L'introduction dans le contour C" du chemin 
£g\gig\g"ile lonS duquel\y(z)\ est inférieur à | <p(Z)| ou à |<p(Z

t

·) |, 
ne modifie donc en rien nos conclusions. 

Il reste, pour avoir la valeur complète de I dans les cas énuinérés 
np 20 du présent Chapitre, à déterminer la valeur de I'. Cette ques-
tion va faire l'objet des Chapitres qui suivent. 

VII. — TRANSFORMATION DE LA FONCTION F(A?, z). 

Posons 

1 1 
λ <ρ(*ι) »(*«) 

Nous nous proposons de mettre la fonction F(.r, z) sous une forme 
particulière dans le voisinage des valeurs ζ = z

n
 χ =a?, d'une part, 

z = Ζ)>, x = x
2
 d'autre part. 

22. Supposons z voisin de z
x
 et χ de x

{
. 

La valeur (n)" de F(a;, z) contient l'expression du carré de la 
distance des planètes 

(40) +\/-2Ι©)ψ(ζ-'·)?™'(ζ-')](ι+£)' 

élevé à la puissance — s. 
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Δ est une fonction holomorphe de x — x
{
 et de z — z

y
 dans un cer-

tain domaine, r2 devenant égal à a* pour ζ = ζ, ('), cette fonction a 
deux racines égales à z, pour x = as,. 

Il résulte de là que, pour χ voisin de χ
κ
, Δ a deux racines σ'

;
 σ" voi-

sines de z, et que l'on peut poser identiquement (a) 

(4.) Δ = (z — <0(* - «*) x H(, — .,)· 

Dans cette formule, le polynome (ζ — <r')(s — et") a pour coefficients 

des fonctions holomorphes de χ — x
K
 ; la fonction

 χ_ϋ. ) est 

holomorphe en ζ — z, et x—x
ty

 dans un certain domaine, et ne 
s'annule pas pour χ = x

K
, z — z

{
. Il en résulte que H {z — ζ,, χ — χ,) 

ne s'annule pas pour χ = a?,, z = z, et est elle-même holomorphe en 
s — s,, x — x{ dans un certain domaine. 

Il est aisé de calculer les racines σ', σ" des équations 

*?(«)-i = o, »ç(»)-C = o, 

considérées comme équations en ζή lorsque x est voisin de x,. 
L'équation xf(z) — 1 = 0 peut s'écrire 

x =1 1 cl'(z)/cl(z) cl(z1 z-z1 

+\/-2Ι©)ψ(ζ-'·)?™'(ζ-')](ι+£)'+\/-2Ι©)ψ(ζ-'·)?™'(ζ-')](ι+£)' 

On en tire, en introduisant les notations (3g), 

_ îtfO 2-x,
=(s

_ i + ) +. I 

(*) Se reporter aux noe 10 et 18. 
(

A
) POINCARÉ, Les méthodes nouvelles de la Mécanique céleste, t. I, p. 316 et 

317. PICARD, Traité d'Analyse, t. II, P. A/JI· 
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d'où 

z~ z, =— %rr\ £H£L> j ι + Γ— 2 ^7^41 (a — s,)-l-... Γ'. 

On déduit de là ζ — ζ,, par la série de Lagrange, et 

(42)  =
 a)

_l<ï!l£r_îi
+

.... 

On obtient le développement de la racine σ" voisine de 7, de l'équation 

X ~~ «ï ?Γ*) = 0 en vrooèà^t d'une façon analogue. On commence 

par développer — (η) suivant les puissances de ζ — zt. En remarquant 

que ~ = ι pour 7 = zn on a 

r/a1 =1 a sin y/ 2z z21-1 -zz1 

d'où 

* = τ-h = -π - ΓΦΙ + -π ̂  :·)1 <» - *. )+· · ·· 

On en déduit, en raisonnant comme précédemment, 

(43) ®" = *,--ΓΓ^ UT Urfi+.... Ϊΰτ + -5Γ<~'-" 

Les coefficients des puissances de dans les développements 

(42), (43) de σ' et de σ", sont réels. En effet, r est une fonction réelle 
de ζ (η)\ et —· ont donc même argument lorsque ζ est 

réel. Mais il y a plus : étant donnée la forme de φ (ζ) (12), cet 
argument est invariable pour toutes les valeurs de ζ réelles néga-
tives; il est égal, par conséquent, à l'argument de x

{
 et de (39). 

Gela posé, en donnant à σ' une valeur réelle négative quelconque 
voisine de z

ty
 l'équation (42) doit être identiquement vérifiée lorsque 

l'on y remplace a? par la valeur, qui a même argument que x
K

. 
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Or x
 χ

 Χχ· est alors réel; il faut donc, puisque le premier membre est 

réel, que les coefficients du développement soient eux-mêmes réels. 
De même les coefficients de σ" sont réels ainsi que les coefficients 

des développements 

σ'_1_σ" ι Γcp(s,) ι ~λχ — xx 

h =2 -*· ^ îl(£i) ^ —0 Ιx1 +.., 

(44) 

, z\ ι*' /£-£,y\ 2 / 4 . αδ1ηΨ/.ΐ ,χ \ «I / 

La formule (4i) peut s'écrire 

aa2 xcl(z)-1a2 xcl(z)-12 xcl(z)-1 
^ - xo(z) H(s — s

{
, χ — x

x
) 

La valeur H(o, o) de H(s — z„x — a?,), pour s — = x — x, =o, 
s'obtient en tirant H(s — s,, χ — χ

κ
 ) de l'identité (45), faisant x — x

K 

et levant l'indétermination, pour z = z
t
, en appliquant deux fois la 

règle de i'Hospital. On obtient, en tenant compte des formules(39), 

(46)πτ^K(S+*sto*V]· 

23. La fonction F(ar, ζ) (1 i)"peut s'écrire, d'après la formule (45), 

Ρ(ν·)=[5ίρ^]^/,('-'χ)/(
3

) 
ou 

(4/) b(j?,*)— » 

X(,)(s — x
lt
 x — a?,) étant holomorphe pour les valeurs assez petites 

de χ — χ
Λ
 et de ζ — s,. Cette fonction est définie par 

(48) 1®(ζ-ζ
η

χ — χ<)= [H(* — Ζι,χ-Χχ)Υ\-
α
/%(ϊ*χ)/{ζ). 
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Sa valeur pour χ = x
t et z = z, est, en tenant compte des for-

mules^), (39), (12), (8), (7) etse rappelant que r=a
i
 pour z = z

n 

(49) λ«(ο,ο)=[Η(ο,»)]·£/, Γ— rrd/<«,). 

Nous définirons en temps utile la détermination du facteur [H (ο, o)]* 
qui rentre dans cette formule. 

λ(ί)(ζ — s,, χ — a?,) est développablc suivant les puissances de 
ζ — z, et de χ — χ, et A suivant les puissances de χ — χ, ; cette fonc-
tion est donc développable suivant les puissances de ζ — h puisque h 
se réduit à z, pour χ — x

x (44)· Ainsi on peut écrire 

r KQ\ Y(X ~ ^ Pi +(g — A)*D« + ... 

les fonctions de a?, De, D,, ... étant holomorphes en χ — a?,. 
La valeur de la fonction D

0
 pour x = x

{ n'est autre que λ(ί)(ο, ο) (49), 
puisque, pour x= a?,, h se réduit à z,. 

Remarque. — Les formules (16) et (17) donnent 

/ *
 γ
 \ φ'(5) L (

z
) 

cl(z) 2z2 (z-coty 

φ Le rapport L est donc réel lorsque ζ est réel. 

Reportons-nous à la fig. 7 qui est relative au cas où l'on a |Z| > | ζ, | 
si U (z) a ses racines réelles ou | Z

t
· | > | ζ, | si U(z) a des racines ima-

ginaires. Appelons y l'affiie d'un point quelconque pris sur l'axe des 
abscisses entre les points Q et z,. Il est aisé de voir que l'on a 

u(r)<° ('); 
il en résulte 

nn>0. 

(*) Se reporter aux définitions de la circonférence D (n° 17) de Z et de Z
f
· 

(n° 14) et s'appuyer sur ce que (17) U(— 00) a le signe de — ô. 
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On a donc, en observant que y < z
t
 < — ι, 

(52) o< < ΚΜηψ 1
 %

 1 4-cl'(y)/cl(y) 

Ces inégalités sont d'ailleurs applicables pour y = Il en résulte 
que Η(ο, ο) < ο (46) lorsque | Ζ | ou | Z/1 est supérieur à | z

K
 |. 

24. Le développement de F(a?, z) dans le voisinage de χ = x
a
 et 

de ζ = za se déduit du développement (5o) en y changeant a?, en x
2 

Gtx»| 011 Ζ^ψ 
La nouvelle constante λ(ί,(ο* o) se déduit de la formule (49) en y 

changeant x
K
 en x

a
 et z

{
 en z

a
. La nouvelle constante H(o, o) se dé-

duit de la formule (46) en y changeant xt en xa et z, en za\ elle est 
négative lorsque | Z ] ou | Ζ,· | est inférieur à | za |. 

Si, en effet, on se reporte à la fig. 8 et que l'on désigne par y l'af-
fixc d'un point quelconque pris sur l'axe des abscisses entre les points 

Q et za, on a U(y) > o et, par suite, < °· On a donc, en ob-
servant que — 1 < z2 < y < o, 

(52) f ν ■ 1 r 1 1 ? (Y) ?(/) T y ?(7 

Ces inégalités sont applicables pour y = z
a

. Il en résulte bien 
H(o, o) < 0, comme précédemment. 

VIII. 

23. J est défini par l'intégrale (10) prise le long du contour \x | = 1, 
lorsque | ζ | = 1. Dans cette hypothèse, l'élément différentiel de J, en 
tant que fonction de a?, possède à l'intérieur du contour [ a? | = 1 deux 
points singuliers, l'origine et le point ν et, à l'extérieur, le point μ 
et l'x>. Si l'on donne à z des vaLeurs de module différent de 1, à l'ex-
ception des valeurs 2 = 0, z — oc et de celles qui satisfont aux 
équations (13), on peut toujours modifier le contour de façon que le 

Jouvn. de Math. (4* SÉRIE), LOME X. — FASC. IV, 1894. 57 
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point ρ ne paisse y pénétrer ni le point ν et l'origine en sortir (*), 
C'est en particulier ce que l'on peut faire, lorsque ζ est l'affixe 

d'un point du cliemin C' (2), qui a été obtenu en déformant la circon-
férence |*| = i, sans rencontrer les racines des équations (i3). * étant 
alors voisin de l'une des racines des équations (i 3), on peut faire suivre, 
dans le plan des χ, à la variable d'intégration de J, une circonférence 
ayant son centre à l'origine et de rayon supérieur aux quantités voi-
sines | p|, | ν |, à la condition de déformer cette circonférence, dans le 
voisinage des points p. et v, de façon que p, soit à l'extérieur et ν à l'in-
térieur de ce contour. Effectivement, à part α? = ο, a?=oo, les seuls 
points qui limitent la déformation du contour, le long duquel est prise 
l'intégrale J, sont les points p. et v. 

Voici encore une remarque qui sera utilisée dans le cours de ce 
Chapitre. 

Prenons, dans le plan de la variable s, un point quelconque M sur la 
partie négative de l'axe des abscisses, entre les points z

K
, z

2
. Au ζ de M 

correspond, dans le plan de la variable a?, un point p. et un point v qui 
sont en ligne droite avec les points x

n
 x

2
 et l'origine (3). Soit Ν un 

point quelconque de cette droite p.v pris entre les points p. et v. Je dis 
que le facteur^ qui fait partie de F(a?, ζ) ('), que l'on peut écrire 

1 ux 
Δ* L—Ç Λ* — μ. ) ( ΛΤ — "^ ) J ' 

est réel et positif lorsque l'on y remplace χ par Y χ de Ν et ζ par le * 
de M. 

En effet, l'argument de ̂  est indépendant de la position de Ν sur le 

segment de droite dont les extrémités sont p. et v, les arguments dear, 
χ — ρ, χ — v demeurant invariables lorsque le point Ν se déplace sur 
le segment. 

L'argument de pi et de v conserve aussi la même valeur quelle que 

( ') Se reporter au n° 11. 
(*) Se reporter au n° 20. 
(3) Se reporter au n° 22 après la formule (43). 
(k) Sè reporter au n° D. 
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soit, dans le plan de la variable*, la position de M sur le segment zK
z2 

de l'axe des abscisses. 
Cela étant, prenons un point M particulier, le point ζ =— ι. Les 

points (A et ν qui correspondent, dans le plan de la variable a?, à *=— ι 
sont séparés par la circonférence | χ | = ι ; on peut donc prendre le 
point Ν à la rencontre de cette circonférence avec la droite a?, a?2. 

Or ~est réel et positif pour |a?| = ι et | * | = ι, .comme égal à la 

distance réelle de deux points pris sur les orbites des planètes P, P<. 

- = est donc bien réel et positif pour l'a? de Ν et le ζ de M. 

26. Ces principes posés, occupons-nous de P. Considérons le cas où 
le contour C' est voisin du point *, ( ·). On a vu que 

cl(B) < cl(z) < cl(M) 
et que 

cl(B) < cl(z) < cl(M) 

Figurons, dans le plan de la variable*, l'axe des abscisses, les points 
s,, s

2
 et le contour C (fig· ίο). A chaque point * pris sur ce contour 

Fig. r». 

Ρ 0' 
/M xt

 ο 
7 y 

correspondent, dans le plan de la variable a?, des positions particulières 
pour les points p, v. Nous allons construire le lieu de ces points 
lorsque * décrit le contour C' et mettre à cet effet les expressions 
de p. et de ν sous des formes particulières. 

i° * est un point de la très petite circonférence β'Μγ'. —■ La for-
mule de Taylor et les expressions (12), (7), (3p) donnent, en obser-
vant que r — an pour * = *,, 

Xl <D(Zi) ' z/z1 
(53) 

1^1 =_ Γΐ^4 + £i!ft_ ,)](,
s
,). 

(*) Se reporter au n° 20. 
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2° ζ est un point de β β'. — Appelons ε l'ordonnée positive du 
point ζ, qui est constante le long de ββ', et y son abscisse; on a 

^ = v+eV—ï"· 

En appelant ^β-j le résultat obtenu en remplaçant ζ par y dans la 

dernière formule ( 7) et posant 

(54) =1/cl(y) 

on peut écrire, en développant les formules (12) et (7) suivant les 
puissances de la très petite quantité ε, 

u-x' cl'(y) 
x< cp (y) V » 

(55) 
^ι£

=
(£γ_

Ι
_Γ

α8ίη
ψ^+('Λ iM\(L)e-1 

3° ζ est un point de γγ'. — Changer ε en — ε dans les for-
mules (55). 

Remarque. — Les coefficients de ε y/— 1 dans les formules (55) 
sont réels puisque / est réel (5i). On a d'ailleurs les inégalités 

<56) fâ, [α 5ίηψ V+> °· 

En effet, elles sont vérifiées en vertu des inégalités (52) lorsque l'on 
y remplace ̂ par l'unité. Elles le sont donc a fortiori lorsqu'on 

laisse >car est supérieur à 1 lorsque / est inférieur àz1 

Cela résulte de ce que 

/· ι _ α sin ψ (-5,— g
t
) (s —-sQ(1) 

a, 2js \ 

(*) Se reporter aux formules (7) el au n° 18. 

expression évidemment positive pour les valeurs réelles de ζ infé-
rieures à zK. 
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Au surplus, on peut supposer β assez près de z
K1
 tout en restant à 

distance finie de ce point, pour que la plus grande valeur de » 

lorsque ζ chemine sur ββ', soit inférieure à la plus petite valeur de 

(il) Γ
α 8

ίηψ +(ϋ) ψΆ 
le long de ββ'. 

Cela posé, traçons dans le plan de la variable χ la droite qui joint 

l'origine au point x
%
 = et construisons le lieu du point μ, 8

μ
, 

lorsque ζ décrit le contour C' (fig. 10). 
L'argument de φ(ζ) est invariable pour toutes les valeurs réelles 

et négatives de ζ ('). Lorsque ζ chemine sur ββ', le point x' (54) 
chemine sur Ο a?, à une distance de l'origine supérieure à Ox

x
 puisque, 

y étant inférieur à z
n

 | φ (y) | < | ) |. Cela étant, le point p. dé-
crit, dans le plan de la variable x, une courbe β, β', très voisine 
de οχ

λ
 (55) (fig. 11), lorsque ζ décrit ββ'; ρ décrit ensuite une demi-

Fig. it. 

\ s 

circonférence autour de x
K
 (53), lorsque ζ décrit la demi-circonfé-

rence β'My'. Le correspondant du point M sur la demi-circonférence 
,jëj; est situé sur ox

{
 entre x

{
 et l'origine, car | φ(Μ)| >| <p(^f

4
) |. Le 

i diamètre β^γ, est d'ailleurs perpendiculaire sur ox{. Lorsque ζ dé-
crit γ'γ, p. décrit une courbe γ, γ, très voisine de oxK et symétrique 
de β, β', par rapport à ox

K
. 

On construirait de la même façon le lieu β2 PaTaTs du P°int v· En 
vertu des inégalités (56) et des remarques qui les suivent, les points 

(*) Se reporter au n° 22, après la formule (43). 
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de β
2
β

2
 sont tous plus éloignés de oa?, que les points de β

 t
 ; le rayon 

de la demi-circonférence β2γ2
 est supérieur au rayon de la demi-circon-

férence β', γ',. 
De ce qui précède il résulte que les trajectoires 8μ8

ν
 des points p. 

et ν sont ouvertes en β,, γ,, β2, γ2
 et n'ont pas de points communs ('). 

27. Le contour le long duquel est prise, dans le plan de la va-
riable χ, l'intégrale qui définit J doit être déformé, pour chaque valeur 
de z, prise sur le chemin C', de telle sorte que le point JA soit à l'exté-
rieur, le point ν et l'origine à l'intérieur du contour. Dans le cas 
actuel, l'intégrale J peut être prise le long d'un contour S, invariable 
quelle que soit la position du point ζ sur le chemin G'. Ce contour S 
est constitué par une circonférence, décrite de l'origine comme centre 
avec un rayon supérieur à ox

K
 (a), déformée de façon que la courbe Sv 

soit à l'intérieur de S et la courbe à l'extérieur. 
La partie du contour S voisine de x

K
 est représentée en traits 

pleins {fig. 11). Dans la fig. 12 le contour S est représenté en entier. 

Fig 12. 

(Ζ) 
Le point Ν où ce contour rencontre ox% est très près de xi} entre ar, 
et l'origine. 

On peut écrire (3), en remplaçant J par sa valeur (10), (11), 

Γ = ~ f dz-^- f dx. 

; La fonction £ est bien déterminée, finie et continue le long des 

(*) Il aurait pu arriver que le point jx, correspondant à une certaine valeur 
de s, coïncidât avec le point ν correspondant à une autre valeur de z. 

(*) Se reporter au n° 25. 
(3) Se reporter au n° 20. 
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contours C' et S (fig* 12). Cette circonstance, jointe à ce que les inté-
grations par rapport aux variables complexes sont au fond des inté-
grations par rapport à des variables réelles, rend légitime le chan-
gement de l'ordre des intégrations. Effectivement, le contour S ne 
dépendant pas de s, les limites de l'intégrale relative à χ sont des 
constantes, aussi bien que les limites de l'intégrale relative à ζ. Ainsi 
on peut écrire 

(5?) 1 ~ 2 fit Jf °X' 

en faisant 
φ(*) = ΪΚ λρ(*·*>ώ· 

On est ramené à trouver, pour m
%
 très grand, la valeur de l'inté-

grale (57). 

Le problème est complètement transformé au point de vue analy-
tique : la déformation du contour S n'est plus limitée maintenant, 
dans le voisinage du point χ = x

{
, que par les points singuliers de la 

fonction Φ (χ). 
Je dis que le point x = x

t
 est un point singulier de Φ (a?). Pour l'éta-

blir il faut montrer que, lorsque χ tend vers xn
 deux points singuliers 

de F(a?, 5), en tant que fonction de z
}
 séparés par le contour C', ten-

dent l'un vers l'autre (1 ). 
Considérons la partie irrationnelle de F (a?, ζ), à savoir le facteur --

Pour χ voisin de x
K et ζ voisin de zt, Δ est donnée par la formule (45) 

A =^ _ (s —A)»—* 
H (s — zu χ — Λ?,) _ 

Les valeurs de ζ voisines de z
K
 qui annulent le numérateur sont des 

points singuliers de F(x
)
 s), en tant que fonction de z. 

Remplaçons, dans cette expression, œparl'affixe de Ν (fig* 12); 
h et & ont alors des valeurs réelles (2). 

(*) POINCARÉ, Les nouvelles méthodes de la Mécanique céleste, t. I, p. 282. 

(*) Se reporter au n° 25 et à ce qui a été dit à propos des formules {&), 
(43), (44). 
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cl'(z1)/cl(z1)étant réel (5i), le premier terme de la seconde formule (44) 
est positif; k est donc positif puisque l'a? de Ν est très voisin de a?,. Il 
en résulte que les racines σ' et σ" (42) et (43) du numérateur de Δ sont 
réelles. Figurons-les sur l'axe des abscisses, dans le plan de la va-
riable ζ (fig. i3), en σ' et σ" (*). 

Fig. ι3. 
β β' 

_ ζ,αηΜ α· ο 
, ^ 

y «— ν 

Pour démontrer que le point M, où le contour C' rencontre l'axe des 
abscisses, est compris entre σ' et σ", il suffit d'établir que le ζ de ce 
point rend négatif le trinôme (ζ — Λ)2 — k. 

Δ est réel et positif lorsque l'on y remplace χ par l'affixe de Ν et s 
par l'affixe de M (2); il faut donc établir que la valeur de la fonction 
H (ζ — z

n
 χ — x{) pour l'a? de Ν et le ζ de M, qui est nécessairement 

réelle, est négative. Or, comme M est très près de z
{
 et Ν de a?, le 

signe de H (ζ — s,, χ — x
{
) est le même que celui de H(o, o) et l'on a 

démontré que H(o, o)<o, à propos des inégalités (02). c. Q. F. D. 

Cela étant, si l'on fait tendre χ vers x
{

, en suivant Νa?, (fig. 12), les 
points singuliers σ' et σ" de F(a?,s) tendent l'un et l'autre vers le 
point s,, en restant sur l'axe des abscisses. Il devient impossible 
d'empêcher ces points de venir sur le contour C' (fig. 13), lorsque χ 
arrive en χ, ; le point χ = x

t
 est donc un point singulier de Φ (a?). 

IX. — DÉVELOPPEMENT DE LA FONCTION Φ(Χ). 

28. Nous supposerons pour obtenir commodément ce développe-
ment que le point représentatif de la variable χ coïncide avec le 
point Ν delà fig. 12 placé très près de a?,, sur ox

it
 entre a?< et l'origine. 

(J) En partant des inégalités (Ô2) et en tenant compte de ce que le point Ν 
{fig. 12) est plus près de l'origine que on reconnaît aisément que les points 
sl5 a', a" occupent la position indiquée fig. i3. 

(s) Se reporter au n° 25. 
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En remplaçant F (a?, z) par son expression (5o), il vient 

Φ0)=4- ~rV
)D

'tl
5
 ~,i

r D'+ ·· dz, 

D
0

, D,, ... étant des fonctions holomorphes de χ — x
t
 et D„ n'étant 

pas nul pour χ = xt (5o). 
En posant 

^ ' ρ aίτ J
G
,[[s — h)* — k]sdz, 

on a 
ρ zz «o 

(5g) Φ(^) = 20Λ"· 
e-· 

Les intégrales peuvent s'exprimer en fonction des intégrales . 
On a en effet l'identité 

(<*>) J'"= , '7 r —, J(». 

29. Calcul de J(£) ('). — On a 

a is J(s) = £^(z_^)t_k = i M
2
 - à + i/(z - A)» - A] j

c
. 

VÂ est réel et positif lorsque l'on y remplace z par le z du point M 
{fig- i3) (2); il en résulte, pour les valeurs particulières de χ et de z 
que nous considérons, 

y/(g — h)*—k /3\ 
V/H(o,o) 

Les deux termes de la. fraction sont des imaginaires sans parties 
réelles; si donc on convient de prendre comme détermination de 

(l) Cette intégrale a été étudiée par M. Poincaré, loc, cit., t. I, p. 322. 
(s) Se reporter au n° 25. 
(3 ) Se reporter aux nos 23 et 27. 

Jour η. dz Math. (4* série), tome X. — Fasc. IV, 1894. 58 
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N/HRÔTÔ) celle dont le coefficient de \/— ι est positif, on devra prendre 
aussi pour détermination de \/(z — h)'1 — k au point M celle dont le 
coefficient de \/ — ι est positif, c'est-à-dire celle qui a - pour argument. 

Le contour C' ( fig. 13) renfermant le point singulier σ" du radical et 
les points β et γ étant très près de l'axe des abscisses par rapport à βσ"', 

l'argument du radical au point β est supérieur de à très peu près, à 
l'argument de cette fonction au point M. La valeur du radical au 
point β est donc, à très peu près, réelle et négative; de même la valeur 
du radical au point γ est, à très peu près, réelle et positive. 

Il résulte de ce qui précède que 

2 i* J<„i> = log Τ-*HV(TT, 

en convenant de prendre, pour détermination des radicaux, celle dont 
la partie réelle est positive. 

Le points = h étant compris au milieu du segment σ'σ", les parties 
réelles de γ — Λ, β — h sont négatives; donc le dénominateur de la 
fraction est fini, même pour χ — x

t
, puisque sa partie réelle est finie. 

Multiplions les deux termes de la fraction par l'expression finie 
γ — h — >/(γ — h)'- — A·, il vient 

ii-iz = log/c — log [β — h — \/(β — h)2 — k | 
(60 

- log [γ - Λ - ν/(γ - ày - A·]. 

Les deux derniers logarithmes népériens écrits dans le second 
membre sont des fonctions liolomorphes de χ — &\. liai ellet, pour 
x = χη h se réduit à et k à zéro; donc, pour χ — xt assez petit, 
les radicaux sont des fonctions liolomorphes de χ — x

t
, les différences 

β — zn γ — ζ, étant finies. Ainsi les fonctions sous les signes log sont 
holomorphes et non nulles pour χ = x

t
. Il en résulte bien que ces 

logarithmes sont des fonctions holomorphes dex — x
{
 pour des va-

leurs de χ —x{
 suffisamment petites, mais finies. 

Mais il y a plus : les dérivées de ces logarithmes par rapport à k sont 
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aussi des fonctions holomorphes de χ — x
K

. C'est ce qu'on voit sur-le-
champ en remarquant que les dérivées de log [β — h — γ^(β — h)2 — /τ], 
par exemple, sont formées d'une somme d'expressions contenant en 
numérateur un coefficient numérique et en dénominateur le produit 
d'une puissance positive de ^(β — à)2 — kpar une puissance positive 
de [β-h-W-ky-k]. 

50. Calcul de J^. — ι °p est impair. 
On a 

(62) 2ÎTtJ(i)= f r " . J1 dz— J—^ r | Γΰ-ϊΓ* 

J';" est une fonction hoiomorphe de χ — xx puisque [(s— h)2 — &]-·* 
devient une fonction hoiomorphe de χ — x{ lorsqu'on y remplace ζ 
par β ou par γ. 

En partant de l'identité 

d/dz z-h p-1 z/h -k 

(ρ — 2î + I)(4J—h)p— (ρ—— Λ)p~î 

~ [(Λ —Λ)»~ Λ]' ' 

on trouve, en intégrant entre les limites β, γ, 

(p-2s+1 j p-1 
(63) 

= 1/2iu z-h p-1 z-h2 -k 

Le second membre de cette équation est hoiomorphe en χ — xt. 
En partant de la formule (62) et calculant de proche eii proche 

J£' pour/> = 3,5, 7, au moyen de l'équation (63), on reconnaît 
aisément que J£' est hoiomorphe en χ — a?n lorsque ρ est impair. 

20 ρ est pair. — Faisons s = ~ dans l'équation* (63). Il vient 

pj(r>_ (p —i)frj$=1/2iu (z-h) p-1 z-h2 -k 

En multipliant par des facteurs convenables les relations obtenues 
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en faisant dans cette équation de récurrence successivement 

p=z 2, 4, 6, ..., ρ, 
il vient 

pL 1.2.3.5.p-1/2.4..p-2 

= Y ί(P Γ 0 (P ~ 3) "η9 + hy-> \j(z — A)2—Ar]Y) 

le nombre y, dans le second membre, devant prendre toute s les valeurs 
entières paires depuis 2 jusqu'à p. Cette équation et l'équation (61) 
donnent 

217:= 1 '··0*—Ο /f?log-fr -+- Φ^) 
en posant 

φ<
^

 =
~ 2*.4

3
.'.'.'(f-à)Ρ

 fcbog[p — h — ν/φ - h)2— *] [γ - h - V(v - h )· - Λ] 

<^ =~ 2*.43.'.'.'(f-à)Ρ fcbog[p — h — ν/φ - h) 

En vertu d'une remarque déjà faite, cette fonction Φ^ est holo-
morphe en χ — x

t
 ainsi que ses dérivées par rapport à k. La for-

mule (60) permet donc d'écrire 

2 ί
π

 J»' = a"' ■ .3 (/>-■) , ή 

4- fonction holomorphe de χ — χ,. 

Le calcul de la dérivée qui fait partie de cette expression comprend 
deux cas : 

Soit - > s — - j on a 

r \ k2 logAy = log/r r àa -h fonction entière de k 

= f(f -')■"(£ _ s+ ;)kp/2-s log k 
-h fonction holomorphe de χ — a?,, 
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et 
ai, JJ1 = '-3 ■■·(/'-') log /s 

-f- fonction holomorphc de χ — a?,, 

ou, en remarquant que log A peut s'écrire, en vertu de la seconde 
formule (44)? 

log A* = 2 log^ ι — H- fonction holomorphe de a; — a?,, 

2iu
JI;

,
 =

 »(,, +a)...(
f

—) , _ » \ 
(64) 

-4- fonction liolomorphe de χ — x
K

. 

Cette formule convient, même lorsque s = ^ et ρ = ο, mais à condi-
tion de remplacer, dans ce cas, le facteur ^ P

ar 1
 · 

Soit en second lieu ο < - S s — - · On a 

-^ί(ΐ-)···'·.-··Η-ΐ)-^ί(ΐ-)···'·.-··Η-ΐ) 

-f- fonction holomorphe de χ — χ, 

-^ί(ΐ-)···'·.-··Η-ΐ) 

-h fonction holomorphe de χ — χ,. 
11 en resuite 

(P+I)(/)4-3)...(2S —2) · 2 2) ks-\-'l 

+ fonction holomorphe de χ — x{, 

azir Τ(ί)= ο a-4...(a^-3-^) (-i)J2/3 p/2 
' ^ 3)... (2S-2)ks-1/2 p/2 (64)' 

-h fonction holomorphe de χ — χ,. 

Cette formule convient, même lorsque s = f et/? = o, à la condition 
de remplacer alors le facteur ,—\ ' ^2f ~~3 7"^—- par l'uni té. 
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31. Les formules (64), (64)' et (59) conduisent au développement 
suivant de Φ( χ) dans le domaine du point χ = χK, 

2ίτ:φ(χ)= y 2 (-1)· » «D2ίτ:φ(χ)= y 2 (-1)· » «D 
1«) 

*n(-î) Σ2ίτ:φ(χ)= y 2 (-1)· » «D /> = 2S— ί 

Φ
ί
(χ) désignant une fonction holomorplie dans le domaine de x = x, 

et l'entier ne devant recevoir que des valeurs paires positives, y 
compris zéro. 

Cherchons, dans la partie non holomorplie du développement(6.5), 
le terme qui contient la plus petite puissance de χ — xK. 

Ce terme correspond évidemment à ρ = ο ; il y a d'ailleurs deux cas 
à distinguer : 

i° Si s — le premier signe Σ disparaît du développement (65) et 
le premier terme du second signe Σ a pour valeur 

2
D

c
log(l-|)s=1/2* 

D
0 est une fonction holomorphe de χ — xK ; son terme constant, 

pour s — a pour valeur λ (ο, ο) (49) et (5o). Le terme que nous 
cherchons est donc 

3λ(ί)(θ, °)log(l - jJ· 

Ainsi on peut écrire le développement (65) pour s =1/2, 

·(*) = ϊ7Ϊφ'(*)+ X-^r£->1°s(I - £) (66) 
x 1+(1-x/x1)fonction holomorphe de — — jj· 

20 Sis>§, le terme du développement (65) qui correspond à ρ = ο 
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est sous le premier signe Σ. Il a pour expression 

2.4>.· (a* -3) (—1)* » n2.4>.· (a* -3) (—1)* » n 

Le terme que nous cherchons s'obtient en remplaçant D
0
 par son 

terme constant λ(ί)(ο, ο) (49)» et k par son premier terme (44)· 
Le terme demandé est donc 

αδϊηψ(3»- ι) φ(Λι) I ' 2.4>.· (a* -3) (—1)* » n 

Ainsi nous pouvons écrire pours=3/2 

φ(®) = 4- Φ,(as) - 31 λ''"(0'0) (- i)" "« 

x[
Ι +

 __£ΐ_ΐ^£ι)Τ
$

"
1

1/1-x/x1 2s-1 

(β7) 

χ j^i 4- (^i — ~~j X fonction holomorphe de1-x/x1 

-l· ̂ ι — log ^ χ fonction holomorphe de -

Nous rappelons que pour s = f le facteur 2'\" ' ^ doit être 
remplacé par i. 

Le facteur λ(5)(ο, ο) qui rentre dans les développements (66), (67) 
est susceptible de deux déterminations. On a en effet (49) 

X«(O,o) = [H(OIO)]';4/1 Γ-~^ /(,,), 

et le facteur [H (ο, ο)]·* a deux déterminations. 
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Il est aisé de faire un choix entre ces déterminations. On peut écrire 

[H(o
)
o)l, = [v/H(^7ô)]a'. 

\lH(o, o) ayant pour argument ^ (* ), on déduit de là 

[H(
0
,o)T = i(-irJ[-H(

0
,o)]'

f 

[— H(o, o)]' étant pris dans le sens arithmétique. 
Il en résulte 

(-'rir(0,O) = ι-H(°> »)]* 5k /. Γ—^rr îvV("' >· 

Ln posant 

β(ί) _ (—Ο *λ!ο,ο) α»ΐηψ(*? —ι) ?(gt) I 

on a, d'après les formules (46) et (12), 

B(s)=α2·^, |_sin^(5* —1) J | L<?(^ι) J ^ <?(3ι) Ss-1 
(68) 

x/« Γ ΥΓ ψΓ.1/(^). 

On en déduit : pour s =1/2 

Q(x== Ï7Ï*'<X>+ 1ο?(' - S) (66)' 
χΜ'-£)χ fonction holomorphe de^i — ~jy 

(') Se reporter au n* 29. 
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pours= 2/2 

&(#) = -Γ- Φ, (x) = -, -χϊΓΤΪ 

(67)' x 1+ 1-fonction holomorphe de j 

4- 1 log^i — X fonction holomorphe de J» 

*,(*) étant une fonction holomorphe dans le domaine de a? = x
x

> 

X. — CALCUL DE Γ. 

52. Γ est défini par l'intégrale (57) 

I' = 1/2iu Q(x) dx/x''''+1 

Le contour d'intégration S (fig. 12) est une circonférence de 
rayon supérieur à \xx |, déformée le long de la droite οχde façon à 
laisser le point singulier a?, de Φ (a?) à l'extérieur du contour. Dès 
lors le point x

x est de tous les points singuliers de Φ(%), extérieurs au 
contour S, le plus rapproché de l'origine. La considération dè ce 
point singulier conduit donc à la valeur asymptotique de Γ (f). 

En partant des développements (66)', (67)', l'application de la 
méthode de M. Darboux donne : pour s — \ 

Γ = χ ^coefficient de χ™< dans log^i — ^1 4-K'/m 

pour s = |e 

J, B<s> 2.4 · · · 25— 3 
11 I .3 ... 25 — 2 

X ^coefficient de χm» dans ^1 — j (î 4-; 

K' et K.'' restant finis lorsque m, augmente indéfiniment. 

(*) Se reporter au n° 1 (généralisation du théorêmè I). ; 

Jourit. de Math. (4* série), tome X. — Fasc. IV, i8g4. ^9 
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Le coefficient de a?m> dans log1 est 

I I 

m. χ'!1*' 
et dans > 

1 1 1 K'' (1) ■ χfjiiJ 

On peut donc écrire, en remplaçant ( 39) x
K
 par pry 

(<i9) 1
 - ~

 r
'
<Zl)

('
+

£)' 

Κ restant fini lorsque τη, augmente indéfiniment. Cette expression 
convient au cas où s =1/2* 

55. La valeur de Γ, que nous venons d'obtenir, correspond au cas 
où le contour C' est voisin du point ζ — z

t
 (s). 

Le cas où le contour C' est voisin du point ζ = z2 (2 ) donne lieu à 
des raisonnements identiques à ceux qui ont été exposés dans les Cha-
pitres VII, VIII, IX. Les extrémités β, γ du contour C7 (fig. 8) sont, 
dans ce cas, plus rapprochées de l'origine que le point d'autre 
part les inégalités (52)' remplacent les inégalités (02). Il n'en résulte 
pas de modifications essentielles. 

En définitive, la valeur de Γ, lorsque le contour C est voisin du 
point ζ = ζ

Λ
, s'obtient en remplaçante, par za dans les formules (69) 

et(68). 

XL — CONCLUSIONS. 

54. Il est facile maintenant de conclure la valeur de I dans les cas 
énumérés au n° 20. 

Γ et I" sont en effet de la forme 
Ι' = /<α'(ξ')φ'«.(ξ'), 
Γ' = ^?'0"(ξ")φ'Μ.(ξ"), 

(') Se reporter au n° 2. 
(s) Se reporter au n° 20. 
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les fonctions G' et G" restant finies lorsque m
t
 croît indéfiniment; 

q' et q" étant des nombres fixes; ξ' représentant, suivant les cas, 
z

i
 ou *

a
; ζ" représentant, suivant les cas, ξ, Ζ ou Ζ,·, 

Cela étant, supposons 

·* !?(?')!> I?(?)!·0na 

I = I' + I" = < j G'(?') + /><->· 0'(ξ") |φ».(ξ'). 

Lorsque m, croit indéfiniment, le produit mf~? [r^Fy] tend vèrs 

zéro même si q" > q'. On a donc asymptotiquement I = Γ. 
2° | φ (ξ") I > [ φ ( ξ' ) |. On a asymptotiquement I = Γ', pour le même 

motif. 

RÉSUMÉ. 

55. Nous nous proposons, dans ce qui suit, de résumer tout ce qui 
est essentiel pour déterminer pratiquement la valeur de I. 

Nous commencerons par rappeler l'énoncé du problème. 

On considère deux planètes Ρ, P, se mouvant dans le même plan. 
Ρ décrit une orbite elliptique (M, anomalie excentrique; r, rayon 
vecteur; e = sin ψ, excentricité; a, demi grand axe; ζ anomalie 
moyenne); P, décrit une orbite circulaire qui enveloppe l'orbite 
de Ρ (α,, rayon vecteur et demi grand axe; ζ,, anomalie). 

On se propose
y
 m et m

{
 désignant deux entiers très grands 

(m, > o), de trouver la valeur asymptotique des coefficients de 
cos sin(mX, -h m, ζ, ) dans le développement de 

/(Ε^),Α(Ε^) 
Δ5 

[Ε, base des logarithmes népériens; i = \J — ι ; /(E'"), fonction en-
tière réelle de sin M et de cos M; f

{
 (Ε'ζ<), fonction entière réelle de 

βίηζ, et οοβζ, ; Δ, carré de la distance PP, ; s = J, f, f, ...]. 
Le coefficient de cos(wi -4- m

{
 ζ,) a pour valeur la partie réelle, et 

le coefficient de sin (m ζ ·+■ m
{
 ζ, ) est égal au multiplicateur de — \j—\, 

dans une certaine imaginaire I, qui se calcule comme on va l'indiquer. 
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Il est aisé de prévoir que ce dernier coefficient est nul, lorsque la fonc-
tion à développer provient d'un premier développement de la fonction 
perturbatrice ordinaire effectué par rapport à l'inclinaison. 

Il convient, pour simplifier l'exposition, d'introduire quelques no-
tations. ' 

36. Posons 

— =Ô; 

0' = iséc3|, Θ" =—^ séc3^6o°—|)t 0" =—|séc3^6o°-+-|j ('); 

« = -<i; 

'·=- {* -
tan

^) [
z

 -
cot

!); 

?"·(
ζ

) = [—(
z
 -

 cot

!)'_ [
îE ,Φ

'
;

""·
)

] · 

Faisons; 

H(.3)=·— r-f Γ — _!/(*) τη\~-κ/^j-r <pw,,(*) (*). 2* a I «sin'*(s-cot*Yj 4 yywY J-K 

Pour les valeurs qui seront substituées à ζ, dans H(z), l'argument 
du facteur (aJ — r*)~s s'obtient en multipliant par — s l'argument de 
aJ— ra compris entre - π et + π/ 

La détermination de y^ï s'obtient d'après la règle suivante : si 

l'argument ω de ζ est compris entre — | et -h la partie réelle du 

radical est positive; si ^ <ω< —> la partie imaginaire du radical est 

(') On trouvera plus loin line Table donnant θ(, 8", 6^ en fonction de l'excen-
tricité e = sin ψ. 
. ·(*) L'expression entre crochets, écrite après /,, n'est pas un facteur; c'est ce 
que l'on doit substituer àrE^1 dans la fonction /, ( E'S«). 
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positive; sila partie réelle du radical est négative; si 

5u/4< ω < la partie imaginaire du radical est négative. 

Les valeurs Ζ, Z,· ou Z_,· qui seront substituées à z dans H(z) annu-
lent l'expression 

θβίηψ (ζ — tang~\/*— cot
t)

 2Z
(

Z
 ■+"

 cot
2)' 

aussi doit-on faire dans H (2) 

cl(z) 4z2 (z-cot y/2 

2^ ô sin ψ —·
 cot

~^ —
 tan

^ 2)
 + z

 —
 COt

 a J -+" 4* +
 2 cot

~j 

Valeurs de Z, Zh Z_
t
·. — Si θ < θ'" ou si θ"< θ < 0', on aura à sub-

stituer à-2, dans H(,z), la valeur réelle 

L = cot- ) 
2 V — I 

en posant 

C0S£ = -6^—, ο<χ< ι8ο°; 

ν = — 21/* C081^ cos^60°4-1)· 

Z est positif lorsque θ < θ'", négatif lorsque θ"< θ < (Κ 
Si θ" < θ < θ" ou si θ' < θ < ——Γ> on aura à substituer à z. dans 

H(*)> les valeurs 

Z,· = cot^ ~zri^ Z_,· == l'imaginaire conjuguée de Z,, 

en posant 

βΐη^χ = — ι ί' ^o^y, tangÇ=Vtangx, 

V
 = — \f*—

 C
°

S
*~ + V~

 1
 — 26 cos ψ c°t 2ξ. s- ~~~ —j 

Si θ >
 ac

^
8
^> on aura à substituer à z

)
 dans H(z), les valeurs 

Z, = cot ^ Z_, = l'imaginaire conjuguée de Z,·, 
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en posant 

cot2x=»^i^îîi—tangÇ = v'tang·/, 

(
._^/aecoM;—ι

 0Οΐ2ξ + ν/ΙΓ7ν/29(.Ο8ψ_1^Ι__. 

J1 convient de rappeler, pour achever de dire ce qui se rapporte à la 
fonction H(*), que 

Γ«)=ν£> r(l)=ïVit> Γ(|)=|^, r(i)=¥VS, ···· 

57. Nous aurons aussi à considérer la fonction 

E(z)=--L. Γ T'-1 i Γΐ^Τ α sind, TL·! ζ±=ϋΓ 

E(z)=--L. Γ T'-1 i Γΐ^Τ α sind, TL·! ζ±=ϋΓ 

Les valeurs de ζ que l'on aura à substituer dans cette fonction sont 

z1 = ι — α+^/(ι — α)1—α'βίη'ψ a sin y z2 = 1/z1 

Pour ces valeurs de ζ le facteur élevé à la puissance s — ι dans S (z) 
a une valeur réelle et positive. 

L'expression de est la suivante 

^ ^ β sin ψ (
5
 - tang (ζ - eot + col Î) 

f(5)_ .,»(«-« otl) 

38. Ces définitions données, voici les valeurs de I, dans tous les cas 

possibles, en appelant ε une quantité de la forme — > Κ restant fini 

lorsque m
%
 augmente indéfiniment. 

(') L'expression entre crochets, écrite après/„ n'est pas un facteur; c'est ce 
que l'on doit substituer à E^1 dans la fonction/i(E'S'). 
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TABLEAU I. 

i° Si Ζ > |*| |, on a 

Ι = Η(Ζ)(Ι + Ε); 

a° Si Ζ < j-s, | et si | <p(Z) j > | φ (s,) |, on a 
θ < ô" 

I = H(Z)(i + e); 

3° Si Ζ <|-5,| et si ] <p(Z) ) < | γ(-5,) J, on a 

I = S(s,) (ι -+- ε). 

4° Si |Z<|>|*,|, on a 

1== [H(Z/)+ H(Z_/)] (ι 4- ε); 
5° Si | Z

t
-1 < | -5, | et si | <p(Zf) | > 1 <?(*,) I, on a 

θ*<6<β' I = [H(Z/)+H(Z_i)](I + 0; 
6° Si.|Z/|<|*,| et si | <p(Z

t
) | < | <p(5,) J, on a 

I = H(Z)(i + .); 

γ Si |et|<|Z|<|«,|, on a 

I = H(Z)(i + .); 

8° Si |Z|>|*,|, on a 
θ"<θ<β' 

I = S<^i) (ι ε); 

9° Si |Z[ < |.5, |, on a 

Ι = Ξ(*,)(ι + ε). 

ίο® Si | Ζ* | < j-st |, on a 
Ι = [Η(Ζ,)+Η(Ζ_,)](ι-Ηε); 

H® Si |Z| | >-1 1 et si | <pCz<) l > 1 |> ona 
0 > 6' 

I=[H(Zi)+H(Z
RI

)](I + .); 

la® Si | Z
{
· | > | S| | et si J?(Z,) |< I<p(^,) |, on a 

Ι = Β(Λι)(Ι + .) (■). 

Lorsque θ < ο et α < on tombera toujours, suivant la valeur 
de Θ, dans l'un des cas i°, 4°, 7°· 

(l) Ces expressions sont tirées des formules (37), (37)', d'une pari, et, d'autre 
part, des formules (38)", (38)r, (69), en observant ce qui a été dit au n° 34. 
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Lorsque θ>ο et α>£, on tombera toujours dans l'un des cas 

8°, 11° OU 12°. 

TABLEAU II. 
Table donnant la valeur de—ï—r> 8r, Θ". S". 

(Argument e = sint^). 

e. —1—7
. 6'. Ô\ 6#. e. ■ —i-r· 6*. «"· 

ο,οο ο,5οο o,ia5 —ι,οοο -—ι,οοο 0,21 ο,5ιr 0,126 —0,7^3 —ι,49ο 
ο,οι ο,5οο ο,ΐ2δ —o,g83 —ι, οι 8 ο,22 ο,5ι3 0,126 —0,702 —1,522 

ο,02 ο,5οο ο,ΐ25 —0,966 —ι,ο35 ο,23 ο,5ι4 0,126 —0,691 —ι,555 

ο,ο3 ο,5οο ο,ΐ25 —ο,95ο —ι,ο54 0,24 ο,5ι5 0,126 —ο,68ι —1,589 

ο,ο4 ο,δοο ο,ΐ25 —0,934 —1,073 0,25 ο.,5ι6 0,126 —0,671 —1,624 
ο,ο5 ο,5οι ο,ΐ25 —0,919 —ι>092 0,26 ο,5ι8 0,126 —ο,66ι —ι,66ι 

ο,ο6 ο,5οι ο,ΐ25 —ο,9θ3 —ι,ιΐ2 0,27 o,5ig 0,127 —0,652 —1,698 

0,07 ο,5οι ο,ΐ25 —0,889 — ι, 133 0,28 ο,52ΐ 0,127 —0,642 —1,737 
ο,ο8 Ο,5Ο2 ο,ΐ2δ —0,874 — ι, 153 0,29 0,522 0,127 —ο,633 — ι >777 
ο,09 Ο,5Ο2 ο,ΐ25 —ο,86ο —1,176 ο,3ο ο,524 0,127 —0,624 —'>819 
ο,ίο ο,5ο3 ο,ΐ25 —ο,846 —1,198 ο,3ι ο,526 0,127 —ο,6ι5 —1,862 

0,11 ο,5ο3 ο,ΐ25 —ο,833 —1,221 0,32 0,528 0,127 —ο,6ο6 —1,907 
ο,ΐ2 ο,5ο4 ο,125 —0,819 — Ι,244 ο,33 ο,53ο 0,127 —0,597 —!>963 
ο,ι3 ο,5ο4 ο, 125 —ο,8ο6 —1,269 °>34 ο,532 0,128 —ο,588 —2,002 

ο, 14· ο,5ο5 ο, 125 —ο,794 —ϊ>293 ο,35 ο,534 0,128 —ο,58ο —2,ο52 

ο,ι5 ο,5ο6 0,125 —0,782 —Ι,3r9 ο,36 ο,536 0,128 —0,572 —2,ΙΟ4 
ο,ι6 Ο,5Ο7 0,126 —0,769 —ι,346 ο,3η ο,538 0,128 —ο,564 —2,Ι59 

0,17 ο,5ο7 0,126 —0,767 —ι,373 ο,38 ο,54ο 0,128 —ο,556 —2,2ΐ5 

ο,ι8 ο,δοδ 0,126 —0,746 —!>4ΟΙ 0,39 ο,543 0,128 —ο,548 —2,274 
0,19 °»6ο9 0,126 —0,735 — ι,43ο ο,4ο ο,545 0,129 —ο,54ι —2,335 

ο,2ο ο,5ιο 0,126 —0,724 —ι,46ο — 

APPLICATIONS. 

Nos formules permettent de tenir compte, dans le calcul d'une iné-
galité d'ordre élevé, de l'excentricité de la planète intérieure et de 
l'inclinaison dès orbites ; elles fournissent, avec une faible erreur rëla-
tive, la partie du coefficient de l'inégalité qui est indépendante de 
l'excentricité de..la planète extérieure. Cette- par-tier il est vFai, peut 
différer du coefficient exact, parce que les termes, qui contiennent en 
facteur l'excentricité négligée sont multipliés par de grands fac-
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teurs ((); mais, si elle est notable, il y a des chances pour que 1 iné-
galité complète ait elle-même une valeur sensible, et il y aura lieu de la 
déterminer par les méthodes ordinaires. 

i° Application à Mercure. — Proposons-nous de trouver le coef-
ficient de l'inégalité de la longitude moyenne de Mercure, dont l'ar-
gument dépend de huit fois le moyen mouvement de Vénus moins 
cinq fois celui de Mercure. 

Cette inégalité se trouve dans les Tables de Le Verrier ( Annales de 
VObservatoire, t. V) qui a tenu compte seulement de l'excentricité de 
Mercure. D'après Le Verrier, le coefficient de la fonction perturbatrice, 
multiplié par le demi grand axe de Vénus, a pour valeur — (7,8i5) e9, 
celui de l'inégalité — ο",οοη ou, plus exactement, — 0^,0067 (p. 189, 

colonnes a'R, etA, ). 
Nous avons fait le calcul de nos expressions approchées, en tenant 

compte seulement de l'excentricité de Mercure, comme Le Verrier, 
c'est-à-dire en y faisant 

/=/. = I, * = î· 

Dans le cas actuel il faut prendre 

m = —5, m, = 8, 0—— 0,625, e = βίηψ == o,2o5 618. 

D'après le Tableau II, θ est compris entre Θ' et Θ" pour e = o,2o5.,... 
Il faut donc choisir, dans le Tableau I, entre les cas 70, 8° et 90 et à 
cet effet calculer Z, zK et s2 = — · 

En prenant 

a = distance moyenne de Mercure = 0,3870987, 

a
K

— » Vénus =0,7233322, 

on trouve 

Z=-(o,i2io4), Z, = — (0,92059); 

(1 ) Voir à ce sujet une Note de M. Gallandreau (Comptes rendus
r
du 5. septem-

bre 1892). " v ' '· 

Journ. de Math. (4* série), tomeX. — Fasc. IV, 1894. 6θ 
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les nombres étant représentés par leurs logarithmes écrits entre paren-
thèses. On a | z

t
 | < | Ζ | < \z

{
 |; on tombe par suite dans le cas 70. 

On trouve successivement, en faisant ζ = Ζ dans les formules du 
n° 36, 

A=(1,81255), 

(a';-rs)"2 = (0,25962), 

—=( 1 ,o5.i3o), 
τ: y m. 

γ/p =-(O,5
7

3
7

9), 

φ'". =—(2,44773). 

y/p· est affecté du signe —, parce que Ζ est réel et négatif et a, par 

suite, π pour argument. On trouve ensuite 

1=-(3,9944)· 
Tel est le coefficient de cos(81' — 51) dans le développement de la 

fonction perturbatrice. Le coefficient de sin(8— 5Z) est nul puis-
que I n'a pas de partie imaginaire, ce à quoi on pouvait s'attendre en 
s'appuyant sur la forme de l'argument dans le développement ordi-
naire de la fonction perturbatrice. 

L'inégalité correspondante δρ a pour valeur, en appelant [À, la masse 
de la planète perturbatrice qui est ici Vénus (logp., = 6,39594), η le 
moyen mouvement de la planète troublée (Mercure), n

{ le moyen 
mouvement de la planète perturbatrice (Vénus), 

sp =- , 1 v sin(m/ + m, l, ) (1 ), 

en prenant pour origine des longitudes l'un des nœuds des orbites. 
Tout calcul fait on trouve 

δρ = — ο",οο84 sin(— 51 + 8/,). 

(') Voir TISSEIUND, loc. cit., Chap. XI. 
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En comparant le coefficient de δρ à celui de Le Verrier, on voit que 

l'erreur relative du résultat est | = ^ · L'approximation est satisfai-

sante, bien que, dans le cas actuel, le nombre m ne soit pas très élevé. 
2° Seconde application à Mercure. — En développant en fraction 

continue le rapport — > on trouve la réduite — · 

Proposons-nous de chercher l'ordre de grandeur du coefficient de 
l'inégalité de la longitude moyenne de Mercure dont l'argument dé-
pend de vingt-trois fois le moyen mouvement de Vénus, moins neuf 
fois celui de Mercure. 

Cette inégalité a été considérée par M. Newcomb dans son étude 
sur les passages de Mercure (Astronomical Papers, t. I). 

Nous négligerons l'excentricité de Vénus et l'inclinaison de l'orbite 
de Mercure sur celle de Vénus qui, en raison de leur petitesse, n'ap-
portent vraisemblablement pas un fort appoint à la partie du coeffi-
cient qui dépend de la grande excentricité de Mercure. 

Le calcul se conduit comme pour l'inégalité d'argument 8/, — 5/, 
en partant des mêmes données. On rentre encore dans le cas ψ du 
Tableau I. 

On trouve 
1 = (8,7230) 

et 
δρ = o",oi5 sin(a3 — 9 /). 

L'inégalité est donc extrêmement faible. 
3° Application à Jupiter et à Junon. — La théorie de Junonaété 

entreprise par Damoiseau (Connaissance des Temps, 1846*) en te-
nant compte de l'action de Jupiter et de Saturne et en se limitant, 
dans les approximations, aux quantités du 5e ordre. 

Nous avons reconnu qu'il faudrait calculer, dans une théorie pré-
cise de Junon, une inégalité du 12e ordre, affectant la longitude 
moyenne de cette planète, et provenant des perturbations de son 
moyen mouvement causées par Jupiter. L'argument de cette inégalité 
est 191

{
 — 71 longitude moyenne de Jupiter, l longitude moyenne 

de Junon, comptées à partir de l'un des nœuds des orbites). 
Les éléments de calcul empruntés à VAnnuaire du Bureau des 
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Longitudes sont les suivants : 

Pour Jupiter. Pour Junon. 

nx — 299",12 84 « = 8i4">0766 

a, — 5,202800 a = 2,668256 

Masse = μ, — ^ e =. 0,267857 

On a d'ailleurs 

m — — 7, m
{ =19, 0 = — — — — o,368.... 

On reconnaît que l'on tombe encore dans le cas 70 du Tableau I. 
En conduisant le calcul comme précédemment et tenant compte 

seulement de l'excentricité de Junon, on trouve 

1 = (7,5240) 
et 

op = 10",7 sin(i91, — η l). 

La période de l'inégalité est de 235 ans. 
Le coefficient serait vraisemblablement modifié si l'on ne négligeait 

. pas l'inclinaison des orbites et surtout l'excentricité de Jupiter qui est 
notable. 

ADDITION AU MÉMOIRE PRÉCÉDENT. 

Les racines de l'équation U(s) = o (17) sont données (18), (19) 
par 

(70) s = cot1 > 

ν étant définie par l'équation 

(71) Ρ3 —(1 — 2θθ08ψ)ρ-h 2Θ = O. 



DÉVELOPPEMENT APPROCHÉ DE LA FONCTION PERTURBATRICE. ί\ηΐ 

Nous nous proposons de déterminer la valeur de Z, c'est-à-dire, 
lorsque l'équation U = ο a toutes ses racines réelles, la plus petite 
racine de cette équation si θ < ο, ou la racine moyenne si θ > ο. 

Lorsque ρ croît de — oo à — i, s décroît de cot ^ à o, 

(7 2) id. — ι à + ι, id. ο à — oo, 

id. -ι- ι à +00, id. + o© à cot-· 

Supposons d'abord 0 < o. 
L'équation (71), dont nous supposons les racines réelles, est vérifiée 

par 
P'= 2

V 3—^C0s3' 

(?3) P2 =
 _

2V
/'^£Û

cos
(

6O

O_Ï)
) 

,
3
 = -

2v
/iz^

cos
(6oo

+
|)

; 

en posant 

(74) cosx = —θ(-—, 0
 </„< 9

0<>
· 

Les inégalités ο < | < 3o° entraînent les suivantes 

P, >o>Pa>Po. 

i° 0 < 9W. U(s) = o a ses trois racines positives : la plus grande est 
supérieure à co t ^ et la racine Ζ que nous nous proposons de calculer 
est la plus petite. 

Le Tableau (72) montre que la racine plus grande que cot ^ ne peut 
être donnée que par p,, et que p

2
 et t>

3 sont forcément compris entre 
— 1 et — GO, sans quoi ces paramètres ne fourniraient pas pour z des 
valeurs positives. La plus petite valeur de ζ correspond d'ailleurs à p3, 
qui est inférieur à p2 en valeur absolue. 

Il faut donc, pour avoir Z, substituer dans la formule (70) le 
nombre P3. 
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2° o > ft > 0". U(s) = o a deux racines négatives et une racine po-
sitive supérieure à cot 4 · La racine Ζ que nous nous proposons de 
calculer est la plus petite. 

La racine supérieure à cot î ne peut être donnée que par p,. p
a
 et p

3 

devant donner des valeurs négatives pours, ces paramètres sont com-
pris (72) entre ο et — 1. La plus petite valeur de ζ correspond à P3 qui 
est inférieur en valeur absolue à p2. 

Il faut donc pour avoir Ζ substituer P
3
 dans l'équation (70). 

Supposons
f
 en second lieu, 0'> 0 >0. 

L'équation U(s) = 0 a deux racines négatives et une racine positive 
comprise entre ο et tang J· 

La racine Ζ que nous nous proposons de calculer est la racine 
moyenne. 

Les racines de l'équation (71) sont encore (73) Ρ,, P
2

, P3, en posant 

cos^= — θ cos4^
 t

 9o°<£<i8o°. 

Les inégalités 
3o° < | < 6o° 

entraînent les suivantes 
E» >P»>O>P

2
. 

La racine positive de U(s), qui est inférieure à tang-> ne peut être 
donnée par P

2
 qui est négatif (72). 

p, et P
3
 devant donner à ζ des valeurs négatives, on a (72) 

I > P, > P
3
 > O. 

La racine négative de U(s), la plus voisine de zéro, est donc donnée 
par c3. 

Il faut donc encore, pour avoir Z, substituer le nombre p
3
 dans l'é-

quation (70). . 

Ainsi se trouvent établies les formules (23), ( 24), (25 ) données dans 
ce Mémoire sans démonstration. 


