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DEVELOPPEMENT APPROCHE DE LA FONCTION PERTURBATRICE. 39I

Sur le développement approché de la fonction perturbatrice
dans le cas des inégalités d’ordre élevé,

Par M. Mavrice HAMY.,

Lorsque I'inclinaison relative vy des plans des orbites de deux pla-
nétes P, P, est petite, la partie principale de la fonction perturbatrice
s’exprime au moyen d’une série procédant suivant les puissances de

sin? ;i » dont les termes cessent trés rapidement d'étre sensibles. Les

coefficients des puissances de sin? l; sont de la forme

u lo
Fo (L, ¢) = LEAED,

E désignant la base des logarithmes népériens; ¢ le symbole  —1;
C et {, les anomalies moyennes respectives des planétes P, P,; u et u,
les anomalies excentriques; f( E*) une fonction réelle entiére de sin
et cos u; f, (E™) une fonction réelle entiére de sinu, ¢t cosz,; s un
nombre de la forme §, 2, 3, ..., peu élevé danslesapplications; Al'ex-
pression du carré de la distance des planétes, ou I'on a fait y = o.

On rencontre aussi, dans le calcul des inégalités lunaires d’ordre
élevé causées par l'action des planétes, des expressions de méme
forme ().

(1) Hir, American Journal of Mathematics, t. VI;. — Ravav,. Recherches
concernant les inégalités planétaires du mouvement de la Lune (Annales de
U'Observatoire, t. XXI).
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. . [ 1] '
La connaissance des coefficients de sin(m?; +m,¢,) dans le déve-

loppement trigonométrique-de F, suffit donc aux besoins de I’Astro-
nomie lorsque l'inclinaison v est petite.

J’ai entrepris de rechercher 'expression asymptotique de ces coef-
ficients lorsque les entiers 7 et m, sont grands.

Dans le présent Mémoire, je suppose nulle I'excentricité de la pla-
néte P,, 'excentricité e de la plan¢te P pouvani prendre une valeur
quelconque. Je considére le cas ou I’orbite circulaire de P, enveloppe,
sans la rencontrer, 'orbite elliptique de P.

Un cas particulier du probléme ainsi posé a été examiné par
M. Poincaré ().

M. Poincaré a pris f = f, = 1, s = §, asupposé I'excentricité e trés
petite et la valeur de ,%L—l voisine du rapport des moyens mouvements
des deux planétes.

4 1 . (X m
Je ne fais aucune hypothése particuliére sur les valeurs de — et de
1
e, et je laisse a f, f|, s leur signification générale.

Les travaux de M. Darboux, concernant I'approximation des fonc-
tions de grands nombres (*), m’ont conduit & reconnaitre qu'une cer-
taine fonction, désignée dans le texte par ¢(z), fonction qui est
entiérement explicite, devait jouer un réle important dans les discus-
sions; j’ai procéd¢ de fagon & faire apparaitre dés le début cette fonc-
tion ¢ (z). Si je me suis ainsi écarté de la méthode proposée par
M. Poincaré, 'Ouvrage de l'illustre géométre m'a néanmoins été d'un
secours indispensable pour mener & bonne fin la tiche que je m’étais
imposée (*).

Les divisions principales de mon travail sont les suivantes :

IntroDUCTION. Sur ’approximation des fonctions de trés grands nombres; mé-
thode de M. Darboux.
I. Expression des coefficients éloignés du développement d’une

(1) Les méthodes nouvelles de la Mécanique céleste, t. 1.

(*) Journal de Mathématiques pures et appliquées; 1878.

(®) Le présent Mémoire a fait I’objet de deux Communications dans les
Comptes rendus de U’ Académie des Sciences (numéros du 25 décembre 1893
et du 27 mars 1894.
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fonction périodique de deux variables au moyen d'intégrales
T et J, 4 limites imaginaires.
1. Définitions de la fonction ¢(z) et de la fonction F(z, 2); points
singuliers et valeur asymptotique de la fonction J.
HI. Etude de la dérivée ¢’ (3).
1V. Etude de |¢(5)].
V. Remarques concernant les équations cui fournissent les points
singuliers de J.
V1. Valeur de | dans quelques cas particuliers, Décomposition de I,
dans les autres cas, en deux parties I' et I”. Expressions de I".
VII. Transformation de expression de la distance des planétes et de
la fonction F(, 5).
VIII. Transformation de V. Définition de la fonction ®(x).
IX. Développement de la fonction @ ().
X. CalculdeTI’.
XI. Conclusions.
Résumé des formules.
Applications.
Addition.

INTRODUCTION.

_SUR L'APPROXIMATION DES FONCTIONS DE GRANDS NOMBRES.
METHODE DE M. DARBOUX.

1. Considérons, dans le plan représentatif d’une variable complexe,
un contour BCD (fig. 1) et un point @. Admettons que les circon-

stances suivantes se présentent simultanément : 1° les extrémités B, D
du contour sont plus ¢loignées de l'origine que le point @; 2° le
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contour rencontre la droite Oa en un point unique, compris sur le seg-
ment Og, ou satisfait 4 cette condition aprés des déformations conve-
nables. Nous dirons alors, pour abréger le langage, que le contour
BCD est de premiére espéce par rapport au point a.

Nous désignerons par contour de seconde espéce par rapport au
point @ un contour dont toutes les parties sont plus éloignées de I'ori-
gine que le point a.

Les contours de seconde espéce jouissent de la propriété suivante :

Lintégrale
. 1 ds
M = E/—___z"fq)(Z);m)

supposée finie, étant prisele long d’un contour C, de seconde espéce
par rapport a un point dont la distance a Uorigine est R, le pro-
duit R"n?M tend vers zéro lorsque n augmente indéfiniment, q de-
signant un nombre fini quelconque aussi grand que Uon veut.

Cette proposition joue un rdle essentiel dans I'établissement des
théorémes qui vont suivre et que nous nous hornerons & énoncer.,

Tatoriue 1. — Etant donnée Uintégrale
dz
217\/"'"] ( ) 5"4'1

priselelong d’un contour BCD ( fig. 1), dans laquelle n désigne un
entier positif trés grand, on peut en général obtenir une expres-
sion approchée de M en mettant & profitla grandeur de n, lorsque
le contour d’intégration est de premiére espéce par rapport ¢ un ou
plusieurs points singuliers de la fonction ®(z). On suppose d'ail-
leurs 1° que ces points singuliers particuliers sont isolés les uns

des autres par des espaces finis; 2° que le contour ne rencontre
aucune singularité de ®(z).

Premier cas. — Admettons que le contour d’intégration soit de
premiére espéce par rapport & un certain nombre de points singuliers
de ®(z). Appelons a l'affixe de celui de ces points particuliers qui
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approche le plus prés de I'origine et supposons que l'on puisse écrire
dans le domaine de ¢

Q(zj:q;(z)-!—A.(n - §>“‘+A2<I - S)G’-k...
+ Ap(l — §>a’+(1 — 7:-)“%2);

la fonction ¢ étant holomorphe et la fonction ¢ finie dans le domaine
de a; A,, A,, ..., A, désignant des comstantes; & un rombre supé-
rieur @ — 1, vérifiant les inégalités

oy <o << Loy e

Les binomes affectés d’exposants entiers rentrent dans la fonction ¢;
on peut donc admettre que la svite «,, a,, ..., @,ne contient pas d’en-
tiers positifs.

Dans ces conditions, le coefficient N de 3%, dans le développement
de la fonction

F(3) =A,<1 — S)a'-i—Ag(l — 2)«,'_!—. .ot A,,(I - g)q",

difféere de M d’une quantité N’ dont P'ordre de grandeur ne dépasse

pas I'ordre de ﬁ'; ;l,—l,(? en faisant R = | a|. Il faut entendre par la que,

si ['on pose

M=N-+N,

le produit R” »'+*| N’ | ne dépasse pas un nombre fixe, lorsque » aug-
mente indéfiniment.

Il'y a exception lorsque la fonction ¢(z) est identiquement nulle.
Il arrive alors que le produit R n¢ N’ tend vers zéro, lorsque » aug-
mente indéfiniment, quel que soit le nombre g, si grand qu'il soit,
pourvu qu'il soit fini.

Cette circonstance se présente lorsque @ est un pdle de ®(z).

Conséquences du théoréme précédent. — On utilise le théoréme
précédent en se fondant sur ce que le coefficient T, de z” dans le déve-

2\% \
loppement de (I - = ) ", pour »n trés grand, esj del’ordre de RL'» ;{Fi?;.’

Journ, de Math. (4* série), tome X. — Fasc. 1V, 1894. 51
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c'est-a-dire que le produit R”»'+% T reste fini et différent de zéro
lorsque n devient infini.

Formons |'expression de N et portons-la dans'équation qui précéde.
M se trouve décomposé en un nombre fini de termes qui décroissent
de telle sorte que le rapport d'un terme au précédent tend vers zéro,
lorsque r croit indéfiniment :

M=AT, +AT,+AT, +...+A, T, +A,T,+N.

On voit ainsi qu'en prenant A, T, comme valeur approchée de M,

I 1 ’ e
on commet une erreur de 'ordre de 7 ——; on peut écrire
2

n n
M=AT,(+e¢),

e, étant infiniment petit de 'ordre de ———
Si T'on prend A, T, + A,T, comme valeur approchée de M, on

commet une erreur de 'ordre de — on peut écrire

n Ll-(-a’
M=(AT, +AT,) (1 +¢),

"¢, étant infiniment petit de 'ordre de
Ete. ....
Sil'onprend A, T, + A,T, +...

' 1 { TP
chée de M, on commet une erreur dePordrede 7~ 5 on peut écrire

nE—%

A, T, ,, comme valeur appro-

M=(AT +AT,+...+A,_ Tn)(1+5¢),

p ¢tant infiniment petit de I'ordre de ——

Enfin, si 'on prend N comme valeur approchee de M, on commet
une erreur de 'ordre de N'; on peut écrire

M=N(l+£),

le produit n*-% |¢| demeurant au-dessous d’un nombre fixe, lorsque
n croit indéfiniment.
Sila fonction { (5) est identiquement nulle, le produit n% tend vers
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zéro, lorsque n augmente indéfiniment, ¢ désignant un nombre fini
quelconque, aussi grand que I'on veut.

Remarque 1. — La fonction { (z) est, en général, développable
suivant les puissances positives ascendantes de 1— %. On peut alors

augmenter & volonté I'exposant « et réduire € autant qu'il est nécessaire.
Mais, le plus souvent, il est suffisant de prendre A, T, comme valeur
approchée de M.

Remarque II. — Ce qui vient d’étre dit suppose essentiellement
1° que la variable d’intégration chemine sur le contour de fagon &
tourner autour du point a dans le sens rétrograde (sens des arguments
décroissants); s'il en était autrement, il faudrait changer le signe des
résultats obtenus d’aprés la régle qui vient d’étre donnée; 2° que les
constantes A,, Ay, ..., A, ont été choisies de fagon que la valeur des

. Z\% s . . .o
binomes (1 — a‘) B (1 - E) 'y +-« soit réelle et positive, lorsque z

désigne I'affixe d’un point du segment de droite oa ( fig. 1).

DeuxikMe cas. — Admettons que le contour d'intégration soit de
premiére espéce, par rapport 4 un certain nombre de points singuliers
de @ () et supposons que ceux de ces points qui ont pour affixes a,
b, c, ..., soient 1° & la méme distance, R, de I'origine, 2° plus rap-
prochés de I'origine que les autres singularités, par rapport auxquelles
le contour est de premiére espéce.

Chacun de ces points singuliers @, b, ¢, ...apporte alors un appoint
a la valeur approchée de M.

Cette valeur s'obtient en appliquant, successivement & chacun des
points @, b, c, ..., larégle donnée dans le premier cas et en faisant la
somme S des résultats. .

On détermine pour chacun des points a, b, ¢, ... l'ordre de gran-
deur des termes négligés d’aprés la régle donnée dans le premier cas.
La plus grande des valeurs obtenues donne I'ordre de l'erreur com-
mise, lorsque I'on remplace M par son expression approchée S. On
peut écrire '

M =S(1+¢),
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‘ . . 1 .
¢ étant un infiniment petit, en méme temps que —, d’autant plus petit

que la différence entre l'ordre du terme le plus important de S et
I'ordre de I'erreur commise est plus accusée. .

Ce théoréme étend les résultats obtenus par M. Darboux, dans son
beau Mémoire sur Papproximation desfonctions de grands nombres(*).
Il a été découvert par M. Flamme (*), qui s’est placé dans I'’hypothése
ou le développement de la fonction ®(z), autour de ses points singu-
liers, peut étre prolongé indéfiniment.

Je me bornerai ici 4 indiquer qu'en exprimant, au moyen de la
fonction eulérienne de seconde espéce, les factorielles contenues dans
T,, T,, ..., on obtient une expression approchée de M qui est valable
pour les valeurs positives entiéres ou fractionnaires de n.

" Généralisation du théoréme précédent. — Revenons au premier
cas du théoréme I et supposons que I’on puisse écrire dans le domaine
du point singulier ¢ de ®(z) .

0(s)=9(z) + A, (1= 2)" Log (1 - 2)
+A2<I—§>G’Log"=(| —2)—1—. . |
+Ap(l ——g)a"Log"p(\l —-2) + (I - Z-)uLogq(n — (5;) $(3);

la fonction ¢ étant holomorphe et la fonction ¢ finie dans le domaine
d.e a; Ay, ..., A, désignant des constantes; g,, g5, ..., ¢, g des en-
tiers positifs ou nuls rangés dans un ordre quelconque; a élant un
nombre supérieur & —1 vérifiant les inégalités

o <ol L, <L

La fonction ¢ (z) comprenant la partie holomorphe de ®(z), dans
le voisinage de @, nous admettrons que si la suite des entiers

QAln

Giryqay ooy qp

(M) Loc. cit. '
(%) Thése de doctorat. Paris, Gauthier-Villars, 1887.
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contient des termes nuls, les termes de méme rang de la suite
a” aa’ t.a, a‘,

ne sont pas des entiers positifs.
Dans ces conditions, le coefficient N de 2" dans le développement
de la fonction

F(z) =A,<l—-§>alL0g?‘ (- ) ek Ay (1- 2)" Logt (1-2)

Re pt+a

Login
demeure au-dessous d'un nombre fixe, lorsque 7 augmente indéfini-
ment.

différe de M d’une quantité N’, dont le module multiplié par

Conséquences. — Les applications de ce théoréme sont fondées sur
ce que
1° Le coefficient de 3" dans le développement ( 1— ~) Log* (1 — Zz)’

I Loo
l+/l-

est de l'ordre de &3 %, si h est un entier positif ou nul (k entier

L
positif non nul), ou de l'ordre de & R" :,g_k,‘ » si b n'est pas un entier

positif ou nul (k entier positif ou nul);

2° Toute puissance positive de Logr est infiniment petite par rap-
port & toute puissance positive de 7 si petite qu'elle soit, pourvu qu'elle
soit finie, lorsque n croit indéfiniment.

Il résulte de 13 que I'on peut, comme dans le théoréme I, décom-
poser M en un nombre fini de termes, qui vont en décroissant de telle
sorte que le rapport d’un terme au précédent tend vers zéro en méme

temps que ;'; En prenant comme valeur approchée de M un certain
nombre de ces termes, on commet une erreur de 'ordre du premier
terme négligé et cette valeur approchée tend asymptotiquement vers
M, lorsque » augmente indéfiniment ('). ‘

Lorsque le contour d’intégration est de premiére espéce par rapport

(') Aux remarques faites deux pages plus haut, on doit ajouter que la déter-
mination de Log(l—— Zz) » considérée ici, est réelle et névauve, lorsque 5 est

Iaffixe d’un point de oa (fig. 1
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4 un certain nombre de points singuliers de ® (z) et que, parmi ceux-
ci, plusieurs sont équidistants de 1'origine et plus rapprochés que les
autres de I'origine, on doit considérer tous ces points singuliers par-
ticuliers, et leur appliquer la régle donnée dans le deuxiéme cas’du
théoréme I ().

2. Voici un corollaire important des propositions qui précédent,
applicable seulement lorsque » est entier :

Corollaire. — Supposons que 'intégrale M soit prise le long d'un
contour fermé D (fig. 2), et que la fonction ®(z) reprenne sa valeur

Fig. 2.

* lorsquela variable complexe z, aprés avoir décrit le contour en entier,
revient au point de départ.

Supposons que ®(z) ait, 4 V'extérieur du contour D, un certain
nombre de points singuliers et soit a I'affixe de celui de ces points qui
est le plus rapproché de l'origine. Admettons que ce point singulier
soit de la nature de ceux que nous avons considérés jusqu’ici.

Il est aisé de voir que la valeur approchée de M s’obtient en appli-
quant au point @ la régle déduite du théoréme I.

En effet, la fonction ®(z) reprenant sa valeur lorsque la variable
parcourt en entier le contour D, ce contour peut étre déformé d’une
fagon quelconque, a condition d’éviter de rencontrer les points singu-
liers de ®(z) et Porigine. On peut prendre, en particulier, comme
nouveau contour d'intégration, une circonférence D’, ayant l'origine
pour centre, de rayon supérieur 4 | a|, déformée comme il est indiqué

) Ces propositions sont applicables lorsque ®(2) dépend de n, a condition
que cette fonction demeure finie lorsque n croit indéfiniment.
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(fig. 2), de fagon 4 laisserle point @ & I'extérieur du contour; lerayon
de la circonférence doit, en outre, étre choisi de fagon que les points
singuliers de ® (z), plus éloignés de l'origine que &, soient extérieurs
au nouveau contour (*).

En prenant, comme extrémités du nouveau contour, un point B, C
de la circonférence, on obtient un contour de premiére espéce par
rapport au point a. Il faut donc appliquer & ce point la régle donnée
précédemment. C. Q..F. D.

S'il y avait plusieurs points singuliers de ®(z), également éloignés
de Porigine, 4 'extérieur du contour D, et plus rapprochés de l'origine
que les autres points extérieurs, on devrait utiliser tous ces points sin-
guliers particuliers pour obtenir la valeur approchée de M.

Conséquences. — 1° Supposons ®(z) développable par la série de
Mac Laurin a I'intérieur d’une circonférence de rayon R et admettons
que la convergence du développement cesse au dela de ce cercle, parce
que la fonction ®(z) posséde, sur la circonférence R, un ou plu-
sieurs points singuliers de la nature de ceux qui ont été considérés
jusqu'ici. M représente alors le coefficient de " dans le développement
de @(z). La considération des points singuliers dont il s’agit permet
d’obtenir la valeur approchée de ce coefficient.

C’est cette proposition trés importante qui a fait I'objet du beau
Mémoire de M. Darboux.

2° Si la fonction @ (z) est développable, non par la série de Mac
Laurin, mais par la série de Laurent, & 'intérieur d’une couronne cir-
culaire limitée extérieurement par une circonférence de rayon R, la
considération des points singuliers situés sur cette circonférence per-
met d’obtenir la valeur approchée du coefficient de z".

. ’ . I
Pour obtenir la valeur approchée du coefficient de -,» posers = -,
~

I
~

et chercher la valeur approchée du coefficient de z".

3. 1° Soit A, le coefficient de z” dansle développement de (l - g)".

(1) Si le contour D renferme des singularités, & une distance de Porigine
supérieure a | a |, dilater la circonférence D' de fagon qu’elle les contienne.
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On a
ot T(n—h)
Ay = a" T(=h)T(n+1)

On peut prendre pour n trés grand

(&) A,,:——’——i-i-[x—*—’—’(i"—i)-i—...].

F(—4) a* nt+h 2n

2¢ Soit ¢ un entier positif. Appelons Bi?’ le coefficient de z” dans le

développement de <l - —) Log? ( )

On a, si h n’est pas un entier positif,

B — 1 1 ar T(n—h)
a* T(n+1) dhd T(—h)

Il est facile de développer cette expression suivant les puissances
descendantes de n. En particulier, B} a pour valeur approchée

Bm 1 !

_a" T(— lz)m
() xg fi=7) — Logn

[lz(h-kr)r(—— k) h(h+1)Logn+2lz+|]+... .

Si & est un eatier positif ou nul il convient d’écrire

B 1 1 d? sinmh

T @ T(n+n)dht w L(1+A)T(n—h).

On a, en particulier,

B“) . ('—' l)h+1 I‘(/&-|-1)I‘(n——h)
T g T(n+1) ’

ou, approximativement,

a* ni+h an

(@) ~B£I‘)=(-I)h+l T(h+1) [I+Il(/l+l) +'”]'

Les développements asymptotiques qui précédent se déduisent de
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Pexpression approchée

12n

I‘(n-l-p) VarE™n "+’I1+———[l+bp(1’+1)]+ 2

ou n désigne un grand nombre positif quelconque, p un nombre fini, .
E la base des logarithmes népériens. '

Ce développement asymptotique de I'(2 + p) jouit de la propriété
de pouvoir étre diffe'rentié par rapport & p; en sorte que le développe-

r'(r+p) o

ment asymptotique de @ ——‘—l—,—- s'obtient en dérivant r fois, terme a

terme, le développement de T'(2 + p), par rapport & p.

4. M. Darboux a étendu, dans son Mémoire, le résultat de Laplace
concernant la valeur approchée des intégrales de la forme

[ 15 (z)ds,

ou il entre un facteur élevé 4 une haute puissance, au cas des inté-
grales & limites imaginaires.

Tukorine 1. — L’intégrale f f(5)9"(3)dz étant prise le long
d’un chemin d’intégration donné, supposons que U’on puisse dé-
former ce chemin de facon a le faire passer par un point a, autre
quune des limites de Uintégrale, jouissant des proprictés sui-
vantes : 1° la plus grande valeur de |9 (z)| le long du nouveau con-
tour a licu en a; 2° ¢'(a) = 0; 3° les fonctions ¢(z) et f(z) sont
holomorphes autour du point a. Dans ces conditions la valeur
asymplotique de U'intégrale est la suivante

J7a) ¢y ds

\/—2 o"\/n M f+—<5lil—v—-%f?‘$fz+f;m f>]+}

Dans cette expression, n désigne un grand nombre positif quel-
conque; les lettres f, f', ..., 9, 9", ... sont mises & la place de
f(a), f'(a), ..., 9(a), 9"(a), ....

Journ. de Math. (4* série), tome X. — Fasc. IV, 1894, 52

(®)
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Le nouveau contour passe quelquefois par plusieurs points, ana-
logues & @, dont les affixes satisfont a 1'équation |¢(z)| = |e(a)|. Il
faut alors calculer le second membre de la formule (®) pour chacun
de ces points. La valeur asymptotique de l'intégrale est égale & la
somme des résultats (*).

Le radical \/ — %}iest susceptible de deux déterminations. La régle

suivante donne le moyen de choisir entre ces déterminations. Soit &
I'angle que fait, avec la partie positive de I'axe des abscisses, la tan-
gente menée au contour au point @, dans le sens du mouvement de la
variable d’intégration.

T

Si » est compris entre — jett Z»la partie réelle de \/ — %; est

4 .
_ positive.
- Qs . ® . 3m st s o . 2¢
Si o est compris entre A la partie imaginaire de \/ —~ o est
positive. ,
Si o est compris entre%et%t »la partie réelle dey/ — 3{; est né-
gative,

Si w est compris entre 5—1:5 et Z[:—t, la partie imaginaire de \/ — 22est

(5”
- négative. '

5. Avant de quitter ce sujet il y a lieu de donner quelques indica-
tions sur la facon dont varie |¢(z)| dans le voisinage d'un point «
pour lequel ¢’(a) = o.

Il existe deux droites rectangulaires passant par a et divisant le
plan en régions jouissant de propriétés différentes. Dans I'une de ces
régions CaB’, BaC’, par exemple (fig. 3), |¢(3)| passe par un
maximum pour z = a, lorsque z suit un contour tracé danms cette
région, au moins dans le voisinage de @. Dans la seconde région,
CaB, C'aB’,|¢(3)| passe, au contraire, par un minimum pourz = a.
Lorsque la variable complexe z suit I'une des droites CC’ ou BB’,
|2 ()| s"infléchit pour z = a.

(') Ce théoréme est applicable lorsque f(z) et ¢(3) dépendent de n, 4 condi-
tion que ces fonctions demeurent finies lorsque n croit indéfiniment.
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Il résulte de 13 que, quel que soit le contour qui passe par @, la dé-
rivée de |¢(z)|, par rapport & la variable indépendante réelle dont
dépend le point z lorsqu’il chemine sur ce contour, devient nulle
lorsque cette variable atteint la valeur qui rend sz égal & a.

Fig. 3.

Réciproquement, considérons une fonction ¢(z), holomorphe dans
le voisinage d’un point d’affixe a, et deux contours C, C’ passant par
ce point dans des directions différentes. Formons I'expression de
|9 (%) lelong du contour C et admettons que la dérivée de |¢(z)]c, par
rapport au paramétre réel dont dépend la variable complexe z le
long de ce contour, soit nulle lorsque ce paramétre recoit la valeur qui
rend z égal a a.

Admettons que les mémes circonstances se présentent pour le con-
tour C'.

Il arrive alors que a estracine de I'équation ¢'(z) = o.

J’ai dit me borner 2 énoncer ici les propositions sur lesquelles sont
fondées mes recherches présentes sur le développement approché de
la fonction perturbatrice.

Je me propose de revenir sur ces méthodes d’approximation qui
peuvent étre étendues de maniére a fournir, dans des circonstances
trés générales, la valeur approchée des intégrales définies ou il entre
un facteur élevé a une haute puissance.

I.

6. Etant donnée une fonction réelle F,(%,,¢) de période 2 par
rapport & chacune des variables {,,{, on peut la développer sous la
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forme suivante, en appelant B,, , et C,,, des coefficients constants,

Fo(,8) = ZZB,,“,,cos(p.C +p?:)+ZEC,,n,,s1n(p,C + p0).

P mop

Si I'on remplace les lignes trigonométriques en fonction d’exponen-
tielles imaginaires, il vient, en désignant toujours par E la base des

logarithmes népériens et par i le symbole — 1,

(l> FO(Z-H‘C.) =22APUPE"(I),5.+M},
' PP
en posant
Bl"’p l("l’ pP- 2Ap, P

B, p+iCpp=2A

Si donc on développe F,(,, {) sous la forme (1), lc double de la
partie réelle de A, , donne le coefficient B, , et le double du coeffi-
cient de — i dans A, , donne le coefficient C, ,.

En particulier, pour résoudre le probléme énoncé dans l'avant-
propos du présent travail, il faut calculer A, .

Nous supposerons, dans la suite, 12, > o0, le nombre m pouvant étre
positif ou négatif.

7. Posons
(2) =0, Ef=i ES=oh, e 0)=0FQ,D.

Considérons les intégrales

(¢
© [
(4) Cee = =11, dl .

2¢m
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prises, la premiére le long de la cixconférence |z |= 1, la seconde le
long de la circonférence | ¢| = 1.
On a, d'aprés les formules (1) et (2),

. dx
— p—Op~+ 1. p—m,
J,——ZZA,,“,J " 25#/._{0' 'z
nop =1

L’intégrale est nulle tant que p, 22, et a pour valeur 2im pour
P = m,. On peut donc écrire

(3)/ . J‘ — ZA’"UD”)-Oml—i,

o

ou, en observant que Om, == m, d'aprés la premiére formule ( 2),

(5) J, :—__EAmhpﬁ-—m—l.

’l

Remplagons J, par cette expression dans la formule (4). 1l vient

. dt
. I p-"! —
1= EA,,,“,, air f ! ¢

P =1

L’intégrale est nulle tant que p2 nz; elle a pour valeur 2iw lorsque
p=m. '
On a donc
[=A,

La détermination de A, , est ainsi ramenée au calcul de l'inté-
- grale (4); c’est ce qui va maintenant nous occuper.

Voici d’abord quelques remarques qui seront utilisées dans la suite
du présent travail.

La valeur de Vintégrale (4) ne dépend pas de la determmatlon de
1~ adoptée dans les formaules (2 ) (ces déterminations sont au nombre
de.m, lorsque m et m, sont premiers entre éux). On en voit la raison
en examinant la formule (3), ot 2-° se trouve élevé a la puissance m,.
Afin de fixer lesidées, nous pouvons convenir de partir du point ¢=1,
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dans le plan de la variable ¢, avec la détermination de +~® qui a pour
valeur 1.

Le développement (1) est valable pour les valeurs réelles de ¢, et
de {. En y introduisant les nouvelles variables ¢ et z, au moyen des
formules (2), le développement converge donc forcément lorsque
|t|=1 et Iw'|=1.

D’aprés les formules (1) et (2), le développement de F,(z, ¢) ne
contient que des puissances entiéres de la variable z. Cette fonction
reprend donc sa valeur lorsque le point , aprés avoir parcouru la cir-
conférence [ |=1 en entier, revient au point de départ.

Dans le calcul de J, on pourra par suite déformer la circonférence
|x]|= 1 arbitrairement, 4 la condition d'éviter de faire traverser a ce
Fi(2,¢)

xmﬁ-!

contour variable les points singuliers de
de z.
Voici une autre remarque qui a également une grande importance.
La formule (5) donne le développement de la fonction J,, suivant
les puissances de z. Ce développement, qui est valable pour [¢|= 1, con-
tient uniquement des puissances entiéres de ¢. J, reprend donc sa
valeur lorsque la variable £, aprés avoir décrit la circonférence | ¢|=1
en entier, revient au point de départ. Dans le calcul de I on pourra
~ donc déformer la circonférence | ¢| =1 d’une facon arbitraire, pourvu
quel'on évite de faire traverser 4 ce contour variable les points singu-
liers de J,.

en tant que fonction

8. Dans le probléme qui doit nous occuper, { et {, sont les anoma-
lies moyennes des deux planétes P, P,.
A la variable ¢ nous allons en substituer une autre, z, définie par

z = E®,

L’équation de Kepler u — esinz = { donne en faisant ¢ = sin{ et
tenant compte de la seconde formule (2),

sin 1
( ) ’ El‘(____t:zE“T(" z)’
6 .
de __ sind/ o.i»‘ i AN
7_———2—5;<&——tan°2)(4—cot;)dn.
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Les formules connues du mouvement elliptique (') (w anomalie
vraie, r rayon vecteur, @ demi grand axe de P),

rcosw = a(cosu — e),

rsinw = a1 — e’sinu,

r=a(1 — ecosu),
se changent en

\
acos’z o2
- JUY —_— 2
rEv = (z t.ang2> )
U
o) LT
rE™= - (: — cot—) ,
] 2
int J "
p—=_ 230% (z - tang3> (: - cot'—)-
23 2 2

Ces formules seront bient6t utilisées.

Effectuons dans l'intégrale (4) le changement de variable défini par
les formules (6).

Aux valeurs réelles de { correspondent pour z des valeurs réelles;
il en résulte que | z|=1 lorsque | ¢|=1.

Le contour d'intégration que doit suivre la variable nouvelle z est
donc la circonférence |z|=1 qui est la transformée de la circonfé-
rence | £|=1. En posant

—’n-’—;-l = 0’ E‘/_'Tzzl-_—; ZE—E‘_:_‘!I(S"E), E;/:TC,= t_ow,
(8) _
F(2,5)=— 55 (s — tng) (s — cord) Fu(X,, 1),

252 2

on peut écrire 'expression (4) de 1

(9) 1= [ Jds,

|sl=1

(1) Tisseranp, T'raité de Mécanique céleste, t. 1, p. 101 et 103.
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en faisant

(10) J_—.—’_f E& ) g,
=1

2im

Nous avons fait observer que J, est une fonction uniforme de ¢ dans
le voisinage de la circonférence |¢|=1. En remplacant, dans cctte
fonction, ¢ par sa valeur (8), uniforme en z, J, devient une fonction
uniforme de z dans le voisinage de la circonférence [5|=1. Or on q,

d’aprés les formules (10), (8), (3), (2),

J=— ﬂ(z - tang%) (z - cot%’)lJ,;

252

donc J est une fonction uniforme de z dans le voisinage de la circonfé-
rence | 5| =1, c’est-a-dire reprend sa valeur, lorsque la variable s,
apres avoir décrit en entier la circonférence | z|= 1, revient au point
de départ.

II.

9. Appliquons les considérations qui préctdent au probléme parti-
culier énoncé dans 'avant-propos de ce Mémoire.

Appelons @, et ¢, le rayon vecteur et 'anomalie moyenne de la pla-
néte P, qui décrit 'orbite circulaire; 7, @, ¢ =sin{, ¢, u, w, le rayon
vecteur, le demi grand axe, I'excentricité, I'anomalie moyenne, I’ano-
malie excentrique, 'anomalie vraie de la planéte P. On peut supposer,
puisque P'excentricité de P, est nulle, que le périhélie de cette planéte
et celui de la planéte P ont méme longitude.

Le carré de la distance de P, et de P a ainsi pour valeur

A =a} +r*— 2a,r(cost, cosw + sin{, sinw).

r, w, u étant supposés exprimés en fonction de {, on a dans le cas
actuel

FO(ZHC)‘—“ [ fi(E‘rn)f(Elu)

at+ 12— aa,r(eost, cosw -+ sinf, sinw)]*
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On en déduit, aprés I'introduction des notations (8),

F(w,z):—[ . = ; ]

a rE-ve-b a3 (0l + 1)z — a rE O
Sin
S 21041( cot"“)( — tang )f (%) f(3),

r, w, ¢ étant maintenant des fonctions de s définies par les for-
mules (7).

Posons, eu égard aux formules (6) et (7),

(11)

a , 1
(J.:ta-’—_lE‘“= )

?(5)

]

v=alEe= L0

_ . 9(5) ai’

(12) { a

&= a’ <I,
1
sin? Y

v =0 et e ¥

Lorsque |[z|=1,0na
k1> I<E

car, wet r étant alors réels et | 1| =1, ona, puisque I'orbite de P, enve-
loppe 'orbite de P,

lpl=2>1, \w=%<n

En introduisant ces notations dans F (z, z), il vient, en tenant compte
des formules (7),

(Y Fo3)=| ot | i/ (9 @)

ou

(1Y F(z,z)= —ze(5) 1l s 2 fi(22) f(2).
—a§[£9(z)—1][x<p(z)—a?;l.

Dans ces formules le premier facteur élevé & la puissance s est

I'expression de — en fonction de z et de .

Journ. de Math. (4* série), tome X. — Fasc. 1V, 1894, 53
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10. Les points singuliers de F(«, 5) en tant que fonction de z sont
pour | 5|=1: les points z = o et # = ., & I'extérieur de la circonfé-
rence |x|=1, et, & l'intérieur de cette circonférence, les points
X =v,Z=0.

Cela étant, considérons 'intégrale (10)

. F(z, s
2] = I(z, 5) dx.
xlll‘-f-l
jarl=1

J est une fonction uniforme de z lorsque | z] est voisin de 1 (').
Quels sont les points singuliers-de cette fonction? Ces points singu-

liers s'obliennent en écrivant que deux des points singuliers de

F(x, s . o i -,
%——) en tant que fonction de x, I'un intérieur, 'autre extéricur au

TR
.contour d’intégration, se confondent (*). Ils vérificnt par suite les
équations
wW=0, V=%, .=V

On doit y joindre les valeurs 5 = o, 5 = o pour lesquelles le poly-
r 1 ’ e ’
nome — f(3), en 5 et - devient infini. Ces valeurs sont également des

points critiques pour # (8) et, par suite, pour f,(#°x) pour u et
pour v (12) qui rentrent dans I'expression de F(«, 5).

L'é¢quation g = o ¢équivaut (12) & ¢(5) =% qui n’admet pas de
solulions en dehors de 5 =0, 5 = w.

L’équation v = oo, comme on s’en assurc aisément cn partant des
formules (12) et (7), n'est vérifiée que par 3 =o et 5 = .

L’équation @ = v se décompose en deux

r=a, ct r=—a,,
ou,
(13) ( pour 1= a, asing s+ 2(1 — a)s + asiny = o;
l pour r=—wea,,  asinys®—2(1+a,z+asing =o.

(') Se reporter au n° 7.
(*) Poincare, Les nouvelles méthodes de la Mécanique céleste, t. 1, p. 282.
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En résumé, les points singuliers de J sont: 3=10, =2 et les
valeurs de z qui vérifient les équations (13).

11. Application de la méthode de M. Darboux ¢ J. — Nous ferons
ultérieurement suivre & z un chemin coupant 'axe des abscisses en
deux points qui séparent respectivement les racines de chacune des
équations (13). Ce chemin s’obtiendra en déformant la circonfé-
rence |5|=1, d'une fagon continue, sans jamais rencontrer les points
singuliers de J.

Pour ces valeurs de z, le point g ne reste plus nécessairement &
Iextérieur de la circonférence |z |= 1, ni le point v & I'intéricur. Mais
on peut, & tout instant, déformer le contour le long duquel est prise
'intégrale J, de fagon que w demeurc & l'extérieur, v et I'origine &
I'intérieur de ce contour. Effectivement, les passages compris entre
Porigine et le point ., entre le point v et 1w, entre les points p et v,
que le contour traverse lorsque |s|=1, demeurent constamment
libres, puisque z ne rencontre aucun des points singuliers de J. 1l
convient d’ajouter que le point v ne peut venir se placer sur le pro-
longement de la droite qui joint 'origine au point g (*). Le point v,
en circulant, nc peut donc pas enrouler, autour du point ., le con-
tour le long duquel est prise I'intégrale J. Il en résulte que ce contour
rencontre, en un seul point, la droite qui joint au point . Iorigine
des z. Ce point peut done servir 4 évaluer I'intégrale J, en appliquant
la méthode de M. Darboux.

Le développement de F(z, z), dans le voisinage de u, est, en rem-

lacant 2 — par sa valeur déduite des formules (12
P w P )

” | o) =2 LA @) (@ —r) (1= )
14
( X [l -+ des termes ou (I — E) entre en facteur].
(*) Cela résulte de l'expression v —p=—p(a?—r?) [form. (12)], qui

permet de construire le point v en partant du point p, et de ce que celui des
arguments de a} — 7? qui est nul, lorsque ce binome est réel, est toujours infé-
rieur & = et supérieur & — = (n° 20, Remarque).



414 MAURICE HAMY.
. -5 . N -
Le produit (a] — r?*)~* (1 - 'E) est susceptible de deux détermi-

. . 1 3 . . .
nations puisque s est de la forme -, =, ---; il faut donc faire un choix

préalable entre ces déterminations. Placons-nous & cet effet dans
Ihypothése o1 | z|=1, cas o1 r est récl. Les formules (12) montrent
que . et v ont méme argument. Figurons ces points dans le plan, Ia
circonférence |z|=1 et le point M (fig. 4) o la droite v la ren-
contre. Lorsque x varie sur la droite wv, entre @ et v, I'argument

Fig. 4.

de z, celui de & — p. et celui de z — v demeurent invariables. L’expres-
sion (11)’ de F(z, z) montre de suite que I'argument du facteur élevé
a la puissance s est lui-méme invariable. Or, lorsque  vient en M, le
facteur en question est réel et positif comme égal 4 la distance réelle
des planétes; il est donc réel et positif lorsque x est I'affixe d’un point
quelconque du segment pv. ,

En convenant de prendre dans le développement (14) la détermi-

-s . 1 o, o .
nation de (1 — :—:) qui est réelle et positive le long de o, la condition

a laquelle nous venons d'arriver conduit & prendre celle des détermi-
nations de (a; — r*)~* qui est positive et réelle pour |z]|=1.

En partant de la formule (14), on a, d’aprés la méthode de M. Dar-
boux (*),

J=12 fi(1%) f(5)(a; —12)
. m‘ _ ‘E -8
x [coefﬁc;ent de ™ dans (1 P)

ms

2
xx]’

+ un terme de Pordre de

]
m,

(1) Se reporter au n° 2,
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En remplacant dans la formule (&) (Introd.) o’ par ., & par —s et .
conservant seulement le terme principal, il vient, d’aprés les formules
(12) et (7), :

= m'*’ o™ (z)‘F(z)(x + 15 )

en faisant
. — !
w<z>=;';f.[ ; ]f<z> “"r(;) ’
asin? < < —cot = )

R restant fini lorsque 72, augmente indéfiniment.
Cettc expression de J n’est pas valable pour les valeurs z =o,
=oo ni pour les valeurs de z qui satisfont aux équations (13). Il

% qui rend p. infini, car la méthode de

(15)

faut y joindre la valeur z =cot

M. Darboux ne s'applique que lorsque le point y est & distance finie.

L’expression (15) de J est une identité, du moment ou R est une
fonction de z convenablement choisic. Nous répétons que cette
fonction R reste finie lorsque m, augmente indéfiniment, d’aprés le
théoréme de M. Darboux, sauf pour les valeurs de z qui viennent
_d’étre mentionnées.

La fonction 9(z) (12) est holomorphe pour toute valeur de 3,
sauf pour z= o0, 5=, et ne devient nulle que pour z=o0, 3 ==,

5= cot%- J est holomorphe pour toute valeur de z, sauf pour z = o,
s = oo et les racines des équations (13) (*). D’aprés l'identité (15), la
fonction ( o )‘F(~) est donc holomorphe pour toute valeur de z,
sauf pour z=o0, z=o, z=cot;, et pour les racines des équa-

tions (13). La fonction R¥'(2) jouit des mémes propriétés, la fonc-
tion ¥'(z) n’ayant manifestement pas de points singuliers en dehors

¢

de z =0, 2=, 3 = cot Set des valeurs de z qui annulent @} — r?,

c’est-a-dire des racines des équations (13).

() Se reporter au n° 10.
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En résumé, les fonctions ¢(z), ¥'(z), R¥(z) sont holomorphes,
sauf dans le voisinage des valeurs de  pour lesquelles ’expression (15)
de J cesse d’étre valable.

I1I.

12. La fonction ¢(z) joue un rdle essentiel dans la suite de cc
travail. Nous commencerons par ¢tudier sa dérivée.
On tire de I'équation (12)

, Y\ &' (s -
(16) 2;9(::— cot§> ‘ (. ) = U(z),

/ (%)

en posant
(17) U(s)= G.simla(: — tang%)(: - cot%)2 + 2:(3 + cot'-';f).

Discussion de Véquation U(z)=o0. — Cette équation, du troi-
sitme degré en 3, peut se mettre sous la forme

!
N :-(s—r—cot?-)
2 2

sin‘ ! \ 3;
i (,: ~ lang!> (s— cot‘5>
2 2
on en tire

~ (r'g » d{)_- -~ !{I = ‘P. p—, % 4 -4 ,'i> ’.—-l“%>
d_ e [(H t°2)<2,‘+cotgl 5 ..+col; z—cot > )—a3{s+ oot )| 318 .
dz siny (s _ [gg)z (s ——cot?>3

2 2

L4 de L 13 . !
Le numérateur de - du troisiéme degré en 5, a ses racines réelles,
mwr === ~f ¢ - ¥ -t
savolr 5 =3 -—ao<.,<——cota y 5=23 -—cot;<e <o

- = tan ‘l{.< _m< cotg{. R

Nous trouverons plus loin 3, 5", 5” et les valeurs correspondantes €,
f7,6"de .

En considérant 6 comme l'ordonnée d'une courbe dont z est
l'abscisse, on construit immédiatement la fig. 5, en observant que

w

I'ordonnée est maximum pour z = z’, minimum pour z=3"ets=z".

0= —
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En coupant la courbe par une paralléle & I'axe des abscisses, & une
distance de cet axe égale 4 la valeur de 0 qui figure dans I'équa-

Fig. 5.
o | :
! :
! :
' \
; '
1 1
\ H
[} 1
. )
1 1}
: |
A LY . .
—— W 3%t 2" o ilgF pv oty X
x e R
1 . H
8 E ;Ie!ll:
. : :
S
H ]
i '
‘ :
: !
: :
: H
: !

tion U = o, lesracines de cette équation sont figurées géométriquement
par les abscisscs des points de rencontre.

Le nombre m, des formules (2) et (8) est positif par hypothése.
Supposons: 1° m < o et par conséquent § < o.

On voit sur la fig. 5 que I'équation U = o a toujours une racine

positive supéricure & cotg qui croit lorsque 6 croit. Les deux autres

¥

- ’ . j } . . 9.
racines sont : réelles et comprises entre tang = et cot;i si O est inférieur
a I'ordonnée 0" du point C; imaginaires si 6 est compris entre §” et I'or-
donnée (" du point B (*); réelles et comprises entre — cotg etosif
est supéricur a §”. -

Supposons : 2° m > o0, d'oit 0 > o.
L’équation U = o a toujours une racine positive comprise entre o

U . . ,
et tangg qui eroit avec 0. Les deux autres racines sont : réelles et com-

prises entre — o et — cot% s1 0 <C 0'; imaginaires si 6 > 0"

(1) 0" est nécessairement inférieur a 8", sans quoi I'équation aurait plus de
trois racines pour les valeurs de 0 comprises entre 6" et 8",
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Faisons dans (17)
_ ¢ P41 )
(18) | z=cot> ~——
L’équation U = o devient
(19) o' —(1—20cos})e + 20 =o.

Remarquons que

o croissant de — o &4 — 1, s décroit de cot% ao,
(20) Id. —1 &+, Id. 04 — oo,
d. 414+, Id. +od +cott.
Cela étant, pour que I'équation U = o ait une racine double, il faut

et il suffit que I'équation (19) ait une racine double. ¢, 6", 6" vérifient
donc I'équation

(21) 2702%(1—20c0s¢)“,

que l'on peut écrire, en prenant la racine cubique arithmétique des
deux membres,

(21) [—'—]3 - —3; —2c0sy = o0,

1 1
93 03

. . 1 . Y . .
Cette équation en — a ses racines réelles : une racine positive et
0%
deux négatives.
Les formules de résolution de I'équation du troisiéme degré donnent

g 0= éséc‘ 2,

(22) (0=~ %séc“(60°-,— q—:;),

"=~ -é séc3(60"+ g)

On trouvera, & la fin du présent Mémoire, une Table donnant les
valeurs de ', 8", 6” en fonction de I’excentricité ¢ = siny.



DEVELOPPEMENT APPROCHE DE LA FONCTION PERTURBATRICE. 4I9

13. Résolution de l'équation U=o0:

1° Si 0 < 6" les trois racines de 1'équation U = o sont réelles et po-
sitives ; nous n’aurons, dans le cours de ce travail, & considérer que la
plus petite.

Si 0 >0 > 0”les trois racines sont réelles ; deux sont négatives. Nous
n’aurons & considérer que la plus petite de ces racines (la plus voisine
de — ).

Si 0 < 0< O les trois racines sont réelles; deux sont négatives. Nous
n’aurons & considérer que la plus grande de ces racines négatives (la
racine moyenne).

Dans ces trois hypothéses, la racine que nous venons de définir sera
désormais désignée par Z. Elle a pour valeur

(33) Z=cot! 2 EL,

en posant

(24) cosx:—-O['—:—Q%C—oﬁ'] ; 0° <L y < 180°,
ct

(25) v=—2\/1———2—§—co—sq’cos (60°+ §>

Pour la démonstration de ce résultat nous renvoyons a I'addition
annexée a ce Mémoire.

2° Lorsque les racines de I'équation U =0 ne seront pas toutes
réelles, nous-désignerons par Z; et Z_, ses racines imaginaires.

Si0">0>0" ou si <L

1 N . ,
> cosy ('), ces racines sont données

d’autre part, cosy=— 4cos3'1p~ —3cos¥. On

(*) On a trouvé 68'— :

s"w

1

bien o
a donc bien 8 < oo q’

Journ, de Math. (§° série), tome X, — Fasc. IV, 18g4.
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par les formules

' 3
. —20 2
sin2y = — 6‘-['—-—2?7&95&] ’ tangE = 3\/tang )

(26) p=— \/'—zgmq’ sinlzi -+ V=141 — 20 cos{cotai,

Z;=co tg :’ii—:, Z_;=1la conjuguée de Z,.

Si )> YT Z; et Z_; sont donnés par les formules

cotay =0 [3399%41:-5] »  tangf = \ftangy,
(26) o= \/Qecow cotz‘é—i—\/-l\/zecoss}/—t

[

ssz

;= cotg :—:—__L:-, Z_; = la conjuguée de Z;.

3° Lorsque 6 = &', §” ou §”, I'équation U = o a une racine double.
On peut en obtenir une expression simple.
En posant pour un moment

(28) 'T, — G/%, ,:// —_ er/':'f, ,cm —_ 0///;%’

on a, d’aprés les formules (22),

I , 1 " L "
(29) ;<= <-\7§-, —1<n <—Q§’ —wolt"L—I

On peut tirer la valeur de cosy de I'équation (21)' en fonction de 7/, 7
n ¢

ou t” ¢t exprimer, par suite, cot; en fonetion de ces paramétres. On
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trouve, en tenant compte des inégalités (29),
colg = E%\/;%——T’

(30) cotf = 15\ /5
cotq* — ::_:Z\/iE

Les équations (19) et (21) donnent comme valeur de la racine
double ¢ :

s pour 0 =190, p=1,
(31) pour 6=6", o=1,
( pour 6 =6", =",

Les équations (18), (30), (31) conduisent ensuite &

2= a1/ +1 o = 21”4—1 2t” -|—r
- 2t —1 - 27— 3= 27" —1
ou, en tenant compte des formules (28) et (22),

|
(32) F=-— cot%, 3" = — tang (50" g)) "=+ tang<30°+ g),

’
! M b

5’ correspondant & ©', 2" & 0", 3" a 0”. Telles sont les abscisses des
points A, B, C de la f££g. 5 qui ont pour ordonnées #', 0” et 0”.

14. Lorsque 0< 0", la plus petite racine réelle Zde I'équation U=o
est comprise entre tangg et 1 puisque 3"< 1.

Le produit des racines de I'équation U = o est indépendant de 0;
d’ailleurs, lorsque 0 croit de 0" 4 6”,]a racine réelle croit comme I'in-
dique la fig. 5; il faut donc, par compensation, que le module des
racines imaginaires Z; et Z_; décroisse. Le module de ces racines reste
donc compris entre z” et |z”|; il est inférieur 4 1.

’ -

Lorsque § est compris entre § et o, la plus petite racine réellc Z de

I'équation U = o est comprise entre — cot% et z”.
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De la, il résulte que, pour § < o, la valeur absolue de Z ou le mo-

dule de Z; et de Z_; est compris entre cot% et |z”|. Pour que ce module
¢, v,
2 2

cant z” par sa valeur (32 ), on reconnait que cette condition équivaut a
Y <L 45°, clest-a-dired e =sin{ < ;/’—_» ou e< 0,707. Clest ce quia lien

2

dans toutes les applications. Nous pourrons donc supposer la valeur
¢

2

soit compris entre tang% et cot %, il suffit que | 2”| > tang I- En rempla-

absolue de Z, oule module de Z; et de Z_;,compris entre tang * et cot g,

lorsque 6 < o.

Soit maintenant § > o.

Sio< 8L 0, la rdacine moyenne Z de I'équation U =10 est com-
¥
2

Lorsque 6 croit & partir de ', on voit comme précédemment que le
module des racinesimaginaires Z; et Z_; décroit. Pour 6 = o0, ce module

prise entre — cot= et 2",

a pour valeur cotg‘

Ainsi, lorsque § > o, la valeur absolue de Z ou le module de Z; ct

. U
de Z_; est compris entre cot% ctcot§~

.

IV. — ErubE DU MODULE DE LA FONCTION ¢(3).

On a

Posons 5 = RE®. On en déduit

Rﬁ——chotq}coswq—cot’q—' _sind cos ‘1170
2 (‘rx)] .

(33) |p(s) =asint 2 [Re "

13. Etude de|¢(z)|le long de la circonférence de rayon R. —
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On tire de ’expression (33)

_ 1 _dle(s)]
fe(z)] do
(34) 4R? cotg —6sing(R*—1) (R’—-aRcot? cosw —+ cot’q-’)
= sinw 2 2

2R<R’ —2Rcot -i—‘ cosw -+ cot? %)
Le second membre a le signe de I'expression
(35) sinw[[;R’ cot% — Osin(R?— 1)(R“— 2R cot q;' cos + cot? g)]

Supposons d’abord § < o.
Si R > 1, le coefficient de sinw est toujours posmf l;f:)l a donc

le signe de sinw. II en résulte que, lelong de la circonférence R, | ¢ (2) |
devient maximum absolu pour @ = 7, minimum pour @ = o.

SiR<L I,d—l%—(wf)—lale signe de

(36) sinw (cosw + P), -
en posant .
? hi
P= —_ esinzw;:[——l’\’) - +co;2
2Bcot;

Lorsque R décroit de 1 4 o, P décroit de +o & — o, comme on s’en
assure aisément. Appelons R, la valeur de R pour laquelle P=—:
et R, la valeur de R pour laquelle P =1.

SiR>R,, cosw + P est essentiellement positif; 'expression (36)
devient nulle pour ® = o et » ==. Il en résulte que, le long dela cir-
conférence de rayon R, |¢(z)| devient maximum absolu pour w = =,
minimum pour ® = o.

SiR, >R > R,, I'équation cos®w + P = o a une racine w, entre o

. dle(z .
et T et une racine 27 — ®, entre T et 27, ——l%fo—)l apour racines © = o,

W=0,0="10=2%—0, Pour w=0, coso +P est positif; il
en résulte que, le long de la circonférence R, |¢(z)]| passe par deux
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maxima absolus égaux, correspondant & w =, et ® = 21 — w,, et
par deux minima qui correspondent 4 ©® = 0, v ==.
Si R <Ry, cosw + P est essentiellement négatif; les racines de

wt;,—(wf-)—l sont o et . |9 ()| est maximum absolu, le long de la ¢ircon-

férence R, pour ® = o, minimum pour & = .

Soit en second lieu 6 >o0. — Nous n’examinerons que le cas ol

¥

R> cot‘g- Lorsque R croit depuis cot * jusqu’a + oo, P diminue depuis

1 . 9
m — I jusqua — oo.
1 .
Lorsque ooy 1> P prend toutes les valeurs comprises entre
+ 1 et — 1 quand R s’éloigne assez de cotg- Appelons R la valeur de R

pour laquelle P =1, R} la valeur de R pour laquelle P = —1; on a

cot! <R, <R,

1
0 cosy

la valeur —1 quand R est suffisamment éloigné de cot g - Appelons

Lorsque 1 >

—1>—1, P ne peut devenir égal & 1, mais prend

encore R, la valeur de R pour laquelle P =—1;0na
cot % <R,.

Si cot 1—' <R <R,,|¢(z)]| est maximum absolu pour w ==, sur la

circonférence R, minimum pour w = o.

Si R regoit 'une des valeurs pour lesquelles P est compris entre
+1 et — 1, |¢(3)| passe par deux maxima égaux et absolus, le long
de la circonférence R, pour w =) et 0 =21 — 0,; 0, et 27 — W'
étant les racines de cosw + P =o. [9(z)| est minimum pour w =o
eto=m.

Si R> R}, |9(%)| est maximum absolu, sur la circonférence R,
pour ® = o, minimum pour ® = .

16. 1° Etude de ¢(z)| le long de la partie négative de Vaxe
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des abscisses. — Faisons » = = dans Péquation (33);il vient

(rreod) Trgbe-0]”,

- le(a) =esint g

On en tire

dlo(s)]

l?(’z)l dR
= - <R ! q)) [2R(R - cot'g) - Osinq;(R-t- tang%)<R+ cot%)’]-
2R} R +cot=
2

Le facteur entre crochets donne son signe a d—'{%‘ puisque R est
positif. Ce.facteur s’obtient en changeant z en — R dans U(z) (17).
Les valeurs absolues des racines réelles négatives de U(z), s'il yen a,

: ‘s dle(s)]
sont done racines positives de —=—-

Soit d’abord 6§ < o : Si 0 < 6", U(z) n’a pas de racines négatives

et, par suite, dl;i{z) | > 0; | ¢(z)| décroit donc lorsque la variable z

marche dans le sens des abscisses croissantes.

Sio > 0> 0", U(z)a toutes ses racines réelles et deux sont néga-
tives. | ¢(z)| décroit, lorsque z marche dans le sens des abscisses
croissantes, jusqu’a ce que z atteigne la plus petite racine Z, croit en-
suite jusqu’a la seconde racine négative de U(z) qui est inférieure & 1
en valeur absolue. Ainsi |¢(z)| passe par un minimum lorsque z, dé-
crivant I'axe des abscisses, passe par la plus petite racime Z de U(z)
qui annule ¢’(z). Cest 14 un point essentiel.

Soit en second lieu 0 >o0: Si 0 <0, U(z) a ses racines réelles,
deux sont négatives. | (z)| passe par un minimum lorsque z passe par
la plus grande racine négative Z [racine moyenne de U(z)]; | ¢(3)|
croit ensuite lorsque z va de Z & lorigine.

Si 8> 0, U(s) a des racines imaginaires et pas de racine néga-
tive; |¢(z)| croit lorsque z marche ‘dans le sens des abscisses crois-
santes.

2° Eiude de|¢(z)|le long de la partie positive de axe des
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abscisses. — Faisons » = o dans 'équation (33) ; il vient

—cott) N _
]?(z)|'='asin’§£l‘_Rﬁ[R \P R)] 0

On en tire

1 dleta)] (R_*'cmt?)“'“‘“‘?( —tangq‘>< —-cotgy
l¢(s)] dR QR’(R—cotg) .

Le numérateur du second membre donne son signe & I'expression
e G199,
TdR
Soit d’abord § < o : 1l nous suffira de savoir comment varie |9 (z)

¢
lorsque R < cot >

Ce facteur s'obtient en changeant z en R dans U(z).

et 0 <6”. U(z) a ses racines réelles et positives;

|9(z)| ou, ce qui revient au méme ici, p(z) décroit donc lorsque =
croit & partir de zéro et devient minimum lorsque z passe par la plus
petite racine Z de U(z), laquelle annule ¢'(z).

Soit en second liew 8 > o : 1l nous suffira de savoir comment varie

|9(z)]| lorsque R > cot “—: - U(z) n’a pas de racines supérieures a
¥,

cot g ; | 9(#) | crolt donc lorsque z croit & partir de cot

17. De cette discussion nous allons tirer quelques conséquences :

1° Admettons que l'équation U(z) =o ait ses racines réelles.
Comment varie | 9(z) | le long de la circonférence D ayant l'origine
pour centre et passant par le point Z (*).

On vient de voir que | ¢(z)| devient minimum lorsque z, décrivant
I’axe des abscisses, passe par le pointZ. Il en résulte, puisque ¢’ (3) =o,
que | ¢(%)| devient maximum pour z = Z, lorsque z décrit un contour
normal & ’axe des abscisses au point Z(*). Ainsi | p(z)| passe par un
maximum pour z = Z, lorsque z décritla circonférence D. Ce maximum
se produisant pour une valeur réelle de z est unique et absolu le long

(*) Se reporter au n° 1,
(2) Se reporter au n° 5.
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de la circonférence ('). Nous arrivons ainsi & cette conclusion capi-
tale que, lorsque la variable z suit la circonférence D, |¢(z) | prend
sa plus grande valeur au point Z pour lequel ¢’ (Z) = o.

2° Plagons-nous, en second lieu, dans ’hypothése ou I’équation
U = o a desracinesimaginaires. Figurons, dans le plan représentatif de
la variable z, les racines Z; et Z_; et désignons maintenant par D la
circonférence décrite de I’origine comme centre avec | Z; | pour rayon.

Je dis que | 9(z) | passe par des maxima égaux et absolus lorsque z,
cheminant sur la circonférence D, atteint les valeurs z = Z;, z = Z_;.

En effet, ¢’(z) étant nulle pour 5 =17, et z2=17Z_;, la dérivée de
|9(=)| par rapport & la variable réelle indépendante dont dépend le
point Z, le long du contour D, doit s’annuler lorsque cette variable
atteint les valeurs quirendent 2 =12;,z=172_;(*).

La variable indépendante le long de D est 'argument w de z, en

. : : dle(s) :
sorte que, si o, représente l'argument de Z,, _Io_| est nulle pour

w=uw, et 0 = 2% — w,. », est différent de zéro et de =; nous sa-

vons ('), dans ces conditions, que | ¢(z) | est maximum absolu le long
dela circonférence D pour les valeurs o =w,, =27 —®,. c. q. F. D.

Ainsi, lorsque la variable z décrit la circonférence D, |9 (z)| prend
sa plus grande valeur aux points s =Z; et z=2Z_;, pour lesquels

o' (Z;)=¢(Z_;)=o.
V.
18. Les racines des équations (13)

asings*+2(1— a)s + asin = o,

asingz®*— 2(1+a)s+asing =o

(13)

sont réelles, du moment.ou les orbites des planétes ne se rencontrent
pas en un point réel. Ces racines sont inverses deux a deux; celles de

(1) Se reporter au n° 18.
(2) Se reporter au n° 5,

Journ. de Math. (4 série), tome X. — Fasc. IV, 18g4. 55
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la premiére équation sont négatives et moins écartées de la circonfé-
rence | 5| =1 que les racines de la seconde équation qui sont posi-
tives.

e ! u N
o étant inférieur & 1, les nombres tangz, cotz sont intérieurs aux

. , . 0 !
racines de la seconde équation; les nombres — tangz, - cot% sont

intérieurs aux racines de Ja premiére seulement lorsque o < ;.

Cela étant, considérons une circonférence, de rayon variable, con-
centrique a I'origine, coincidant au point de départ avec la “circonfé-
rence | 3| =1 et venant se confondre avec la circonférence D du Cha-
pitre précédent. Cette circonférence variable ne rencontre pas, en
chemin, les racines des équations (13) si 0 < 0 et @ <<%, vu les limites
entre lesquelles sont alors compris|Z | ou |Z;| ('). Mais, si § et a ne vé-
rifient pas ces inégalités, la circonférence variable peut rencontrer
I'une des racines de chacune des équations (13). La premiére racine
rencontrée appartient nécessairement & la premiére équation (13),
puisque, des deux racines des équations (13) situées d'un méme coté
de la circonférence | z| =1, la plus rapprochée de cette circonférence
vérifie la premiére équation.

Définition. — Nous désignerons désormais par 3, et 3,(3, <3,<0)
les racines de la premiére équation (13) et par 3, z, celles de la se-

conde (3, >z, > o).
VL
Revenons & l'intégrale (9) prise le long de la circonférence |z |=1;
I=—— [Jda.
On a vu (*) que J est une fonction uniforme dans le voisinage de la

circonférence || = 1; ses points singuliers sont z = o0, s =wet les
racines des équations (13). On peut donc remplacer la circonférence

(') Se reporter au n® 14,
(?) Se reporter au n° 8.
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d’intégration | 5| =1 par un autre contour C, entourant l'origine, &
condition que, dans l'intervalle compris entre C et la circonférence
|z| =1, les équations (13 ) n’aient pas de racines.

19. En choisissant convenablement le contour C, on parvient rapi-
dement, dans deux cas particuliers que nous examinerons tout d’a-
bord, & 1'évaluation approchée de I.

1° L’équation U(z) =0 a toutes ses racines réelles (6 < 4" ou
"<0<L0) et de plus |z, |>|Z]|>]35.]-

On peut prendre, comme nouveau contour C, la circonférence D
décrite de l'origine comme centre avec |Z| pour rayon, Effective-
ment, d'aprés 'hypotheése, on a, a fortiori ('), z, >|Z|> z,.

Il s’ensuit que J n’a pas de singularités dans 1’espace compris entre
la circonférence D et la circonférence |z| =1, les intervalles compris
entre | z,| et |3,|, d’'une part, entre 3| et z,, d'autre part, compre-
nant 'unité.

L’expression (15) de J est valable pour tous les points de la circon-
férence D. On peut donc écrirg

= ':i;f‘["(z)<1 + ) i(z) dz.

Le maximum de |¢(z)|, lelong de D, correspond a la valeur z = Z
qui annule ¢'(5) (*). L'expression approchée de I s’obtient donc, sur-
le-champ, en appliquant le théoréme 1I de'Introduction. On trouve,
en conservant seulement le terme principal et remarquant que le pro-
duit R W(z) est fini pour z = Z(?),

B 1=/ 2 S0 [rw @) @) (1 + ),

K restant fini lorsque m, croitindéfiniment.
2° L’équation U(z) = o0 a des racines imaginaires (8”<0<0"
ou "< 0) et de plus|z,|>|Z;| >|2,].

(') Se reporter-au n° 18.
(*) Se reporter au n° 17,
(®) Se reporter au n° 11 et au n° & (note).
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On peut prendre comme nouveau contour G, pour les mémes raisons
que précédemment, la circonférence D ayant pour rayon |Z;| =|Z_,|.
En remplacant J par sa valeur (15), qui est valable pour tous les points
du contour D, on a

1= ";‘ﬂf‘l"(z)<l+ ) 9" (3) .

Le long de D, | ()| passe par deux maxima absolus égaux pour
z=1Z~;etz=12_;onaenoutre ¢'(Z;)=9'(Z_;) =o(').

Il faut donc, pour avoir I'expression de I, faire la somme des résul-
tats que 'on obtient en appliquant successivement le théoréme II de
I'Introduction aux points Z, et Z_;. Ainsi on a, en conservant seulement
le terme principal et remarquant que RW¥'(z) est fini pour z =7, et

3=2.(%)
’::; \/m, [\/‘" ”(z )‘F(Z ) o™ (Z)
/=2 S (1)

K’ restant fini lorsque n2, augmente indéfiniment.

(37)

Remarque. — Les radicaux qui entrent dans les formules (37) et
(37) ont un sens bien défini d’aprés la régle qui a été donnée dans
I'Introduction. Il reste a choisir la détermination du facteur (a$ — r?)~*
qui fait partie de W'.

On peut prendre P'argument de a} — r* égal a zéro pour |z| =1,
car (a} — r?)~* est alors réel et positif (2). Orona (7) et (12)

a; —rt=— [%[acsin'.[az"’—l- 2(1—a)z +asiny]

X [2singz® ~ 2(1 + &)z + asin}].

Les deux facteurs entre crochets sont les premiers membres des

(') Se reporter au n° 17.
(*) Se reporter au n° 11 et au n° & (note).
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équations (13). Figurons leurs racines en 3,, 3,, 3, 3, €t joignons un
point P du plan & ces points et & l'origine (fig. 6). L’argument de
a® — r* lorsque la variable z occupe la position P a pour valeur

Q =0, + 0, + 0, + 0, —20—7.
En effet, si le point P vient sur axe des abscisses 4 une distance de

Porigine égale & 1 (P est alors, soit entre z, et 3,, soit entre z, et z,),
Q est bien nul.

Fig. 6.

X, W X W oW X 0] 05 O

Des relations faciles entre les angles marqués sur la figure permet-
tent d’écrire
Q=0w,—0,+7 -7

Mais, dans le triangle z,P z,, on a
0+ + 9+ 0 <75
on peut donc écrire a fortiori

2] <.

Si le point P est sur un contour assujetti & rencontrer I’axe des
abscisses seulement entre les points z,, 3, et entre les points 2, z),
condition que réalise un contour équivalent, pour l'intégrale I, ala
circonférence |z | =1, cette inégalité a lieu dans toutes les positions
de P. ‘

Le véritable argument du facteur (a} — r?)~* s'obtient donc en
multipliant par — s 'argument de a3 — 7* comprisentre — = et +=.

20. Lorsque |Z| ou | Z;| n’est pas compris entre | z,| et | z,], on peut
encore prendre la circonférence D comme nouveau chemin d’intégra-
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tion, & condition de la déformer comme on l'indiquera bientdt. Mais
on n'arrive plus aussi directement que précédemment & la détermina-
tion de 'intégrale I. 11 convient alors de décomposer I en deux parties
et d’évaluer séparément chacune de ces parties.

Supposons d’abord | Z | ou | Z;| supérieur a | 3, | (| 3, | étant supérieur
a 1, cette hypothése correspond nécessairementa 9 > 0”) (*). Le nou-
veau chemin d’intégration doit étre construit de facon & ne pas ren-
fermer le point z,.

Décrivons (fig. 7) du point z, comme centre une demi-circonfé-

Fig. 9.

_rence My, avec un rayon trés petit. Menons & I'axe des abscisses
les paralléles 38, v'y”, limitées & la circonférence D. Prenons, sur ces
droites, des points @, y, symétriques par rapport 4 I'axe des abscisses
et & distance finie du point z,, mais assez rapprochés de ce point pour
qu'un développement que nous rencontrerons plus loin, qui converge
dans le domaine de z,, soit valable jusqu’en §, v.

Le rayon de la circonférence B"M+’ étant trés petit, les angles $z, M,
v3, M sont voisins de =.

Le contour Mvy'yy”D@”3'M, que nous désignerons par G, est équi-
valent 4 la circonférence | z| =1 pour I'intégrale 1. Toutefois, ce nou-
veau contour, qui contient toujours la plus petite racine z, de la
seconde équation (13), ne doit pas renfermer la plus grande racine
3, de cette équation. Cette circonstance peut se présenter lorsque
0 >0 ('); mais nous verrons au n° 21 qu'il n'y a pas lieu de s’en
préoccuper.

M Se reporter aux n° 14 et 18.
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Supposons maintenant |Z| ou |Z;| inférieur a |2,| (| 5, | étant infé-
rieur & 1, cette hypothése correspond nécessairement & 6 <o) ('). Le
nouveau contour doit étre construit de fagon & renfermer le point z,.

Décrivons ( fig. 8), du point z, comme centre, une demi-~circonfé-
rence §'M¢y’, avec un rayon trés petit. Menons, a 'axe des abscisses,
les paralléles 337, y'y” limitées & la circonférence D. Prenons sur ces

Fig. 8.

droites des points @3, y, symétriques par rapport & I'axe des abscisses
ct & distance finie du point z,, mais assez rapprochés de ce point pour
qu'un développement que nous rencontrerons plus loin, qui converge
dans le domaine de z,, soit valable jusqu'en B, y.

Le contour My yy"D@”B3'M que nous désignerons par C, comme
précédemment, est équivalent a la circonférence | z| = 1 pour Vinté-
grale I. La circonférence D renferme en effet, dans notre hypothése,
la plus petite racine z, de la seconde équation (13) et ne contient pas
la plus grande racine 7' de cette équation (').

Nous désignerons dorénavant par C’ le contour 33'My’y et par C’
le contour yy"DB’B (fig. 7 et 8). Nous appellerons I la partie de
I'intégrale I qui correspond au contour C, et 1’ la partie de I'inté-
grale I qui correspond au contour C”.

Détermination de I'. — Tous les points du contour C” sont 4 dis-
tance finie du point z, (fig. 7) ou du point z, (fig. 8). On peut donc,
dans l'intégrale

I'={Jds,
v

(') Se reporter aux n°s 14 et 18.



434 MAURICE HAMY.

remplacer J par sa valeur (15), ce qui donne

(38) = 2C L‘F(z) [1 + R%T)] o™ (3) da.

2T

Avant d’valuer I’, il convient de remarquer que la plus grande
valeur de | ¢(z)|le long de 3" et de y"y, savoir [o(B) |=¢(Y)], est
inférieure & [¢(z,)| (fig. 7) oud|9(z.)|(fig.8). |9(z)| croit effecti-
vement lorsque z décrit le segment Qz, M ( fig. 7) puisque le point M,
trés rapproché de z,, est compris entre z, et — 1 (). De méme, |¢(z)]
croit lorsque z décrit le segment Qz,M ( fig. 8), le sens Qz,M étant
le sens des abscisses décroissantes (*).

Ainsi on a, dans le cas de la fig. 7,

le(B)I<e(B) <oz < (M),
le(Y) <o)<l e(z) | <le(M)];

dans le cas de la fig. 8,

lp(B) <o)< ]e(z) | <|e(M)},
le(Y) <o < e(5) | <|e(M)].

Rappelons enfin que la plus grande valeur de |¢(z)], le long de la
circonférence D, est |@(Z)| si 'équation U = o a ses racines réelles
et|o(Z;)| si cette équation a des racines imaginaires (*).

Pour donner & I'expression de 1” sa forme définitive, nous distingue-

“rons trois cas.

Premier cas. — 1° La plus gfande valeur de | ¢ (5)|le long du con-
tour C” est inférieure & | (5,)| (fig. 7) dans les deux hypothéses
suivantes :

>0 >;:0” (U a ses racinesréelles) et Z < z,;
6 > 0'(U a des racinesimaginaires), | Z;| > |z, | et | (Z,)| < |9 (7,)].

(1) Se reporter au n° 16.
(*) Se reporter au n° 47.
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2° La plus grande valeur de |¢ ()| le long du contour C” est infé-
rieure & [9(2, )| (fig. 8) dans les trois hypothéses suivantes :

0>0>0" (U a ses racinesréelles) et Z>z,;
0”> 0> 8” (U a des racines imaginaires), |Z;|<<|z,| et |o(Z,)]<|9(5,)5
0 < 0” (U a ses racinesréelles), Z <|z,| et 9(Z)<|9(3,)|-

Pour obtenir I”, dans ce cas, nous appliquerons un théoréme di a
M. Darboux ('). En désignant par t un facteur de module inférieur a1,
par [ 1a longueur du chemin C” et par £ 'affixe d'un point convenable
de ce contour, l'intégrale (38) peut se mettre sous la forme

/ n [ sl—1 R m
(38) r=o 2w [+ S e t).

Il importe de remarquer quel'on a :
Dansle cas de la fig. 7

| lp(®)I<Ie (sl
danslecas dela fig. 8

le ) <le(z)ls

ces inégalités ne pouvant d’ailleurs pas se transformer en égalités.

DEeuxiime cas. — Supposons que l'une des deux circonstances sui-
vantes se présente

8 >0' (Uadesracinesimaginaires), {Z;|>[z,| et [o(Z)|>|9(3)l;
0> 0 > 6” (Uades racines imaginaires), |Z;| <|[z,| et |9(Z‘-),[>|9(z,)[.

Les plus grandes valeurs de |¢(z)| le long du contour C’ correspon-
dent alors aux racines z2=2; et 3=2_; de ¢’(z). On peut donc
obtenir I'expression de 1’ en appliquant le théoréme II de 'Introduc-
tion & l'intégrale (38), comme on I'a déja fait pour arriver a la for-
mule (37).

(*) Cours de M, Hermite, 4° édition, p. 65; Hermann.
Journ. de Math. (4* série), tome X. — Fasc. IV, t8g4. 56
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_Ainsi on peut prendre comme valeur de I”
I" = mi” ¢(Z:) m,
H=Val Vosgreea

ey v )5

K" restant fini lorsque m, augmente indéfiniment.

(38)"

TroisiiME cas. — Ona
6{ 0” (U ases racinesréelles), Z<|3,| et ¢(Z)>|9(3)l|-

La plus grande valeur de |¢(z)] le long du contour C” correspond
A la racine z =Z de ¢'(z). On peut donc obtenir I'expression 1" en
appliquantle théoréme II de I'Introduction & I'intégrale (38), comme
on I'a déja fait pour parvenir & la formule (37).

Ainsi, dans ce troisi¢tme cas, on peut prendre comme valeur de I”

m "o___ ’n.\'-—l ?(Z m K
(38) 1_;;.-1;\/ 2 30 lP‘(Z):p (@) (1+ 5 )
. K" restant fini lorsque m, augmente indéfiniment.

Remarque. — On voit que I” est de la forme
Ir/ — 'n.:-t GII (EI/) ?ml (Eu);

la fonction G” restant finie lorsque me, augmente ind¢finiment et §”
représentant, & dans le premier cas, Z; dans le second cas, Z dans le
troisiéme cas. _

On peut effectivement, dans la formule (38)", metire ¢ (Z;) en
facteur et faire rentrer, dans G”, le facteur

skl

qui reste fini, lorsque m, augmente indéfiniment, puisque

|9(Z;)| = |9(Z)]-
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21. Nous' avons admis implicitement, lorsque > o, que la plus
grande racine z, de la seconde équation (13) est extérieure 4 la cir-
conférence D. Ilest facile de s’affranchir de cette restriction.

Considérons le point g ou la circonférence D ( fig. 9) rencontre la
partie positive de 'axe des -abscisses. On a |¢(g)|<|9(Z)| ou
l9(8)| <|9(Z;)| puisque, suivant que U a ou non ses racines réelles,
| ¢ (3)| estmaximum, le long de la circonférence D, pour 5 = Z ou pour
-4 =Z,' etz = Z_,'.

Si g est plus éloigné de l'origine que le point singulier z, de J, il est
a fortiorii une distance de l'origine supérieure & cot%’ (').Onadonc,

pour tout point z pris sur le segment z, g de I'axe des abscisses (),

le(2) | <|9(g)|et, afortiori,
le(2)I<I9(Z)] ou  [o(2)|<L]9(Z))],

suivant que I'équation U = o a ou non ses racines réelles. Il en est de
méme si le point z est pris le long des droites g’ g, g”g", trés voisines
de I'axe des abscisses.

Décrivons, autour de z, une circonférence de rayon fini g; g, g*
rencontrant l'axe des abscisses en un point g,, situé i une distance
¥
2
tion ¢ (z), on peut choisir le rayon de cette circonférence de fagon que,
pour tout point z pris sur cette ligne, la différence |9 (z)| — |9 (2))]

de Yorigine supérieure & cot<. En vertu de la continuité de la fonc-

Se reporter au n° 18.
Se reporter au n° 16.

()
(*)



438 MAURICE HAMY.

ne dépasse pas un nombre fini donné. On peut donc faire en sorte que,
le long de l'arc g 2, g%,

le(D)<le@)] ou |9(a)|<]|9(Z)l,

suivant que U a ou non ses racines réelles.
En faisant subir 4 la circonférence D la déformation g'g’ 2,2, 2",
le point z| reste a 'extérieur du contour €. Comme tous les points de

cette déformation sont & distance finie du point 2 et du point cotg,

Pexpression (15) de J est valable, comme auparavant, pour tous les
points du contour C”, modifié comme il vient d'étre dit.

Les résultats précédemment acquis, en ce qui regarde I”, sont fondés
sur ce que la plus grande valeur de| ¢ (z)|, le long de la circonférence D,
est |q>(Z)| ou [9(Z,)|. L'introduction dans le contour C’ du chemin
g'g.8.8.8" lelong duquel |9(3z)| est inférieur & |¢(Z)|ou a|e(Z;)],
ne modifie donc en rien nos conclusions.

Il reste, pour avoir la valeur compléte de I dans les cas énumérés
n° 20 du présent Chapitre, & déterminer la valeur de I'. Cette ques-
tion va faire I'objet des Chapitres qui suivent.

VII. — TransrormaTioN DE LA fFoNnction F(z, 3).
Posons
3 ' xr, = ! g = L.
( 9) ! ‘P("x)’ 2 2(353)

Nous nous proposons de mettre la fonction F(.z, 2) sous une forme
particuliére dans le voisinage des valeurs 3 = 3,, x = x, d’une part,
3 = 3y, & = x, d’autre part.

22. Supposons z voisin de 3, el x de x,.
La valeur (11)” de F(a, z) contient 'expression du carré de la

distance des planétes
o N L >_.][ G,M]

élevé a la puissance — s.
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A est une fonction holomorphe de # — x, et de 2 — z, dans un cer-
tain domaine. r* devenant égal & a} pour z = z, ('), cette fonction a
deux racines égales & 3, pour z = ,.

1l résulte de la que, pour z voisin de z,, A a deux racines ¢’, g voi-
sines de z, et que I'on peut poser identiquement (?)

(41) A=(z—0)(z—0") % H(z—z]

b &— &)

Dans cette formule, le polynome (z — ¢’) (5 — ¢") a pour coefficients
I
H(z— 3,2 —2)
holomorphe en z — 3, et £ — x,, dans un certain domaine, et ne
s'annule pas pour x =z, 5 = z,. I en résulte que H (z — z,, # — )
ne s’annule pas pour x = z,, z = z, et est elle-méme holomorphe en
3 — 3,, & — x, dans un certain domaine.
Il est aisé de calculer les racines o’, ¢” des équations

est

des fonctions holomorphes de  — z, ; la fonction

z9(z) —1=0, x¢(3)— :—;=0,

considérées comme équations en z, lorsque  est voisin de z,.
L'équation x9(z) — 1= o peut s'écrire

U S B A 1Y) .
TE @ T G0 ’(zl)(" 5)
2 (51) 9" (51) —39"%(s
_ 1 SHFl(z' 1) (z_”)z

On en tire, en introduisant les notations (3g),

_ o(3) a—x, . ¢"(3,) ¢'(2,) .
N R e ey —2 55 )

(') Se reporter aux n** 10 et 18.

(?) Poincarg, Les méthodes rouvelles de la Mecamque céleste, t. 1, p. 316 et
317. Picarn, Traité d’Analyse, t. 11, p. 241,
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PR [ L IS CONEICY) R -1
% ®'(34) t [2‘?’(51) 2‘?(51)](Z ,)—}-... )

On déduit de 14 z — 3,, par la série de Lagrange, et

(-fll) o":::z, ‘?(51))39'—3"‘1 +

par développera (7) suivant les puissances de z — 3. En remarquant

r
quea =1pourz=23,ona

e D [CEED R

o 1 [es) 1 asing S .
x“af 9(3) —?(51) [?’(5‘) +(?(;,") 5{ ( 1 I)](" ~'|)+....

On en déduit, en raisonnant comme précédemment,

, I Zz —
(43) o =z,— : x‘x‘ e

v e . xr —x ]
Les coefficients des puissances de ', dans les développements

1
(42), (43) de o’ et de c” sont réels. En effet, r est une fonction réelle
r?
de z (7); $(_l~—) et ( 7y ont donc méme argument lorsque = est

réel. Mais il y a plus : étant donnée la forme de @(z) (12), cet
argument est invariable pour toutes les valeurs de z réelles néga-
tives; il est égal, par conséquent, & 'argument de z, et de z, (39).
Cela posé, en donnant & ¢’ une valeur réelle négative quelcongue
voisine de z,, 'équation (42) doit étre identiquement vérifiée lorsque

l'on -y remplace z par la valeur, —- ( N » qui a méme argument que z,.
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OrZ — Z1 est alors réel; il faut donc, puisque le premier membre est
1

réel, que les coefficients du développement soient eux-mémes réels.
De méme les coefficients de ¢” sont réels ainsi que les coeffieients
des développements

—cr_*_all_’ 1> 9(%) 1 T —x
== ““'"3[?'(z.)+«p'(z.) wsing ] & T
o

[~| 9 (z,) + asind

e(2y) =H

La formule (41) peut s’écrire

alze(s)—1] [‘”?(3)“ %] (s—h)—

x9(3) T He—s,z—a)

(45) A=-—

Lavalear H(o,0) de H(z — z,,z — ,), pour 5 — 3, =x — ', =o,
s'obtient en tirant H(z — z,, z — #,) de l'identité (45), faisant x =,
et levant I'indétermination, pour z = z,, en appliquant deux fois la
régle de 'Hospital. On obtient, en tenant compte des formules(39),

L e(e) [ sl—
(1) ey =— A TRy + wsing A

23. La fonction F(z, z) (11)" peut s’écrire, d’apres la formule (45),

F(s, z>=[“‘{:;‘;;,f =2 1L (0e) £ (3)

ou

A - oo MB35y, — )
(4/> F(‘p")“" [(z—h)—k] ’

A(z — 3,, ¢ —,) étant holomorphe pour les valeurs assez petites
de x — x, et de z — z,. Cette fonction est définie par

(48) N”(Z—wn%-w«)——[H(z—znw- w5 At w)f(Z)
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Sa valeur pour x =, et z =3, est, en tenant compte des for-
mules (46), (39), (12), (8), (7) etse rappelant que r=a, pour z=3,,

(49) 1“’(0,0)=[H(o,0)]‘;§-,f«[ T q,)a]f<2-)-

x sin’% (z,— cot

2

Nous définirons en temps utile la détermination du facteur [H (o, 0)}*
qui rentre dans cette formule.

A9(z — 3, x — x,) est développable suivant les puissances de
s — 3, et de x — x, et h suivant les puissances de x — i, ; cette fonc-

tion est donc développable suivant les puissances de z — & puisque £
se réduit a z, pour = x, (44). Ainsi on peut écrire

. D, +(5 — / 5—h)YDy+...
(50)  F(z,z)= 2= p)Buolso Dt

les fonctions de «, Dy, D, ... étant holomorphes en x — z,.
La valeur dela fonction D, pour # = &, n’est autre que A)(o, 0)(49),
puisque, pour x = z,, h se réduit a z,.

Remarque. — Les formules (16) et (17) donnent

. '(3) U(z)
(51) 22— :
(P(‘) e ~ q’
. 22 (»—COI;)

' '
Le rapport % est donc réel lorsque z est réel.
Reportons-nous 4 la fig. 7 qui est relative au casoul'on a |Z| > |3,]
si U(z) a ses racines réelles ou |Z;|>|3z,| si U(z) a desracines ima-
ginaires. Appelons y I'affite d’'un point quelconque pris sur I'axe des
abscisses entre les points Q et z,. Il est aisé de voir que I'on a

U(y)<o (*);

il en résulte

(1) Se reporter aux définitions de la circonférence D (n° 17) de Z et de Z;
(n® 14) et s'appuyer sur ce que (17) U(—~— ) a le signe de —6.
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On a donc, en observant que y < 3, <— I,

¥ () (y) + 2,
(52) o< Ty y < aasmtp + 0

Ces inégalités sont d’allleurs apphcables pour ¥ = 3,. Il en résulte
que H(o, 0) < o0 (46) lorsque | Z| ou | Z;| est supérieur & |3, |.

24. Le développement de I'(x, z) dans le voisinage de =z, et
de z = 3, se déduit du développement (50) en y changeant z, en «z,
et 3, en z,. :

La nouvelle constante A (o, 0) se déduit de la formule (49)en y
changeant z, en z, et 5, en z,. La nouvelle constante H(o,0) se dé-
duit de la formule (46) en y changeant z, en 2, et z, en z,; elle est
négative lorsque |Z | ou | Z;| est inférieur & | z,|.

Si, en effet, on se reporte 4 la fig. 8 et que I'on désigne par y l'af-
fixe d’'un point quelconque pris sur I'axe des abscisses entre les points

Qet 55, on a U(y) > o et, par suite, 2 (y) < 0. On a donc, en ob-
servant que — 1< 5, <y<o,

) S asi n‘]; + &),

(32) °> K16

‘?()

Ces inégalités sont applicables pour y =z,. Il en résulte bien
H(o, 0) < 0, comme précédemment.

VIII. .

23. J estdéfini parl'intégrale (10) prise le long du contour || =1,
lorsque | z| = 1. Dans cette hypothése, I'élément différentiel de J, en
tant que fonction de x, posséde & 'intérieur du contour |#|=1 deux
points singuliers, I'origine et le point v et, & I'extérieur, le pomt
et I'w. Si l’on donne a z des valeurs de module différent de 1, & I'ex-
ception des valeurs z=o0, z=o et de celles qui satlsfont aux
équations (13), on peut toujours modifier le contour de fagon que le

Journ. de Math. (4 série), tome X. — Fasc. 1V, 18g4. 57
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point | ne puisse y pénétrer ni le point v et I'origine en sortir (*').

C’est en particulier ce que I'on peut faire, lorsque z est l'affixe
d'un point du chemin C' (), qui a été obtenu en déformant la circon~
férence | 5| =1, sans rencontrer les racines des équations (13). 7 étant
alors voisin de 1'une des racines des équations (13), on peut faire suivre,
dans le plan des z, 4 la variable d’intégration de J, une circonférence
ayant son centre & I'origine et de rayon supérieur aux quantités voi-
sines | |, |v|, 4 la condition de déformer cette circonférence, dans le
voisinage des points p. et v, de facon que p. soit & I'extérieur et v & I'in-
térieur de ce contour. Effectivement, a4 part £=o, r=0, les seuls
points qui limitent la déformation du contour, le long duquel est prise
I'intégrale J, sont les points w et v.

Voici encore une remarque qui sera utilisée dans le cours de ce
Chapitre. - C

Prenons, dansle plan de la variable z, un point quelconque M sur la
partie négative del’axe des abscisses, entre les points z,, 2,. Au sde M
correspond, dans le plan de la variable x, un point g et un point v qui
sont en ligne droite avec les points z,, @, et I'origine (*). Soit N un
point quelconque de cette droite pv pris entre les points p et v, Je dis

que le facteur %, qui fait partie de F(z, z) (*), que I'on peut écrire

1= po ]
ae [-—ai(w—r»)(w-ﬂ ’

est réel et positif lorsque 'on y remplace x par 'z de N et z par le 5
de M.
En effet, 'argument de Z'; est indépendant de la position de N sur le

segment de droite dont les extrémités sont p et v, les arguments de z,
x — (&, # — v demeurant invariables lorsque le point N se déplace sur
le segment.

L'argument de p. et de v conserve aussi la méme valeur quelle que

) Se reporter au n° 11,

) Se reporter au n° 20,

) Se reporter au n° 22 aprés la formule (43).
*) Se reporter au n° 9.

(
(
(
(
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soit, dans le plan de la variable z, la position de M sur le segment 3z, z,
de I'axe des abscisses.

Cela étant, prenons un point M particulier, le point z=— 1. Les
points p et v qui correspondent, dansle plan de la variable z, 4 5 =—1
sont séparés par la circonférence |x|=1; on peut donc prendre le
point N & la rencontre de cette circonférence avec la droite x, z,.

Or\%est réel et positif pour (z|=1et |3|=1, comme égal a la
distance réelle de deux points pris sur les orbites des planétes P, P,.

7:'? = WT:-]’? est donc bien réel et positif pour 'z de N et le 5 de M.

26. Ces principes posés, occupons-nous de I'. Considérons le cas ot
le contour C' est voisin du point z, (*). On a vu que

leB) <o)< e(M)|
(N I<]e(z) <o (M)].

Figurons, dansle plan de la variable z, 'axe des abscisses, les points
3.5 5o et le contour C (fig. 10). A chaque point z pris sur ce contour

et que

Fig. ro.
8 B’
xL )
/M X, ©
7 Y

correspondent, dans le plan de la variable #, des positions particuliéres
pour les points g, v. Nous allons construire le lieu de ces points
lorsque z décrit le contour C' et mettre & cet effet les expressions
de p et de v sous des formes particuliéres.

1° z est un point de la trés petite circonférence f’'My'. — La for-
mule de Taylor et les expressions (12), (7), (3g) donnent, en obser-
vant que r = @,, pour 3 = 3,,

(33)

(') Se reporter au n® 20.
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2° 2z est un point de BB'. — Appelons ¢ I'ordonnée positive du
point z, qui est constante le long de Bf’, ety son abscisse; on a

En appelant (é) le résultat obtenu en remplacant 5 par y dans la
Yy

derniére formule (7) et posant

54) 2=,
(34) .x ¢(y)

on peut écrire, en développant les formules (12) et (7) suivant les
puissances de la trés petite quantité ¢,

A X V.0 I
(35) | =— T
v—a'  (r\? P G | o' (y
557 =) el 5 (2), B,
3° 5z est un point de yy. — Changer ¢ en — ¢ dans les for-
mules (55).

Remarque. — Les coefficients de ey/— 1 dans les formules (55)
sont réels puisque y est réel (51). On a d’ailleurs les inégalités

L iy =8 (1) ]S ¥)
(56) (‘H)y[a sm‘l‘ v (‘h)y ‘?()’)]> > o
En effet, elles sont vérifiées en vertu desinégalités (52) lorsque 'on

y remplace ( ) par l'unité. Elles le sont donc @ fortiori lorsqu'on

laisse (;) ) car (;) est supérieur & 1 lorsque y est inférieur 4 z,.
1/y 1/y

Cela résulte de ce que

—_—_ 1=

ay

r ____asiny(s —‘“l)(““""!) ()

expression évidemment positive pour les valeurs réelles de z infé-
rieures 4 3,.

(*) Se reporter aux formules (7) et au n° 18,
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Au surplus, on peut supposer @ assez prés de z,, tout en restant &

distance finie de ce point, pour que la plus grande valeur de . ((; ))
lorsque z chemine sur Bf’, soit inférieure & la plus petite valeur de

empange, L ()56

Cela posé, tragons dans le plan de la variable z la droite qui joint
I'origine au point z, = ( 5 et construisons le lieu du point w, S,,

lorsque z décrit le contour C’ (fig. 10),

L’argument de @(z) est invariable pour toutes les valeurs réelles
et négatives de z ('). Lorsque z chemine sur 3@, le point 2’ (54)
chemine sur Oz, 4 une distance de 'origine supérieure & O z, puisque,
y étant inférieur 4 z,,|9(y)|<<|9(3,)|- Cela étant, le point p dé-
crit, dans le plan de la variable xz, une courbe 3,8, trés voisine

de oz, (55) (fig. 11), lorsque z décrit Bf"; w décrit ensuite une demi-

circonférence autour de z, (53), lorsque z décrit la demi-circonfé-

rence B’My’. Le correspondant du point M sur la demi-circonférence

LY est situé sur ox, entre z, et l'origine, car [¢(M)|>|¢(z,)| Le

; diamétre {37, est d’ailleurs perpendiculaire sur ox,. Lorsque z dé-

crit 'y, p décrit une courbe YT tres voisine de oz, et symetnque
de 8, par rapport & ox,.

On construirait de la méme fagon le heu (‘}, BY27: du point v. En

vertu des inégalités (56) et des remarques qui les suivent, les points

(') Se reporter au n° 22, aprés la formule (43).
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de B,f; sont tous plus éloignés de oz, que les points de 8, 8} ; le rayon
de la demi-circonférence 3y, est supérieur au rayon de la demi-circon-
férence @ v,.

De ce qui précede il résulte que les trajectoires S, S, des points p
ct v sont ouvertes en B,, vy, P, 7, et n'ont pas de points communs (*).

27. Le contour le long duquel est prise, dans le plan de la va-
riable z, I'intégrale qui définit J doit étre déformé, pour chaque valeur
de z, prise sur le chemin C', de telle sorte que le point i soit & I'exté-
rieur, le point v et P'origine a l'intérieur du contour. Dans le cas
actuel, I'intégrale J peut éire prise le long d'un contour S, invariable
quelle que soit la position du point 3 sur le chemin C'. Ce contour S
est constitué par une circonférence, décrite de I'origine comme centre
avec un rayon supérieur & ox, (?), déformée de facon que la courbe S,
soit & 'intérieur de S et la courbe S, a l'extérieur.

La partie du contour S voisine de x, est représentée en traits
pleins ( fig. 11). Dansla fig. 12 le contour S est représenté en entier.

Fig 12.

V4

N 5

Le point N ou ce contour rencontre oz, est trés prés de z,, entre ,
et 'origine.
On peut écrire (*), en remplacant J par sa valeur (10), (11),

;T 1 F(z, z)
U= [ digs [ omd do

F(z,3)
M+

La fonction est bien déterminée, finie et continue le long des

(") 1l aurait pu arriver que le point p, correspondant & une certaine valeur
de s, coincidit avec le point v correspondant & une autre valeur de z,

(*) Se reporter au n° 25,

(*) Se reporter au n° 20.
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contours C’ et 8 (fig. 12). Cette circonstance, jointe & ce queles inté-
grations par rapport aux variables complexes sont au fond des inté-
grations par rapport & des variables réelles, rend légitime le chan-
gement de I'ordre des intégrations. Effectivement, le contour S ne
dépendant pas de z, les limites de I'intégrale relative & = sont des
constantes, aussi bien que les limites de l'intégrale relative a z. Ainsi
on peut écrire

(57) = (2 gy,

3 m o+
2l s '
en faisant

®(z)= -2—:.;[0"1?(90, z)ds.

On est ramené & trouver, pour m, trés grand, la valeur de l'inté-
grale (57).

Le probléme est complétement transformé au point de vue analy-
tique : la déformation du contour S n’est plus limitée. maintenant,
dans le voisinage du point z = x,, que par les points singuliers de la
fonction @ (z).

Je dis que le point z = x, estun point singulierde ® (x). Pour I'éta-
blir il faut montrer que, lorsque z tend vers x,, deux points singuliers
de F(x, z), en tant que fonction de z, séparés par le contour C, ten-
dent I'un vers I'autre (').

ey . . . . . 1
Considéronsla partie irrationnelle de F(z, z), a savoir le facteur -

Pour z voisin de z, et z voisinde z,, A est donnée par la formule (45)

(z—Ah)2—k
H(z =, a—a)

A=

Les valeurs de z voisines de 2, qui annulent le numérateur sont des
points singuliers de F(x, z), en tant que fonction de z.

Remplacons, dans cette expression, x par l'affixe de N (fig. 12);
k et k ont alors des valeursréelles (*).

(1) Poincart, Les nouvelles méthodes de la Mécanique céleste, t. 1, p. 282,
(*) Se reporter au n° 23 et a ee qui a été dit & propos des formules (42),

(43), (44).
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%—;—’)) étant réel (51), le premier terme de la seconde formule (44)
est positif; k est donc positif puisque I'z de N est trés voisin de . Il
enrésulte que les racines ¢’ et ¢” (42) et (43) dunumeérateur de A sont
réelles. Figurons-les sur I'axe des abscisses, dans le plan de la va-
riable z (fig. 13), en ¢ et a” (*).

Fig. 13.

—_—

Lo/ o X, 0

D ———— il
Y — Y

Pour démontrer que le point M, ot le contour C’ rencontre I'axe des
abscisses, est compris entre o’ et ¢”, il suffit d’établir que le z de ce
point rend négatif le trinome (z — /i )* — k.

A est réel et positif lorsque 'on y remplace z par 'affixe de N et 5
par l'affixe de M (*); il faut donc établir que la valeur de la fonction
H(z — 5, z — x,) pour 'z de N et le 5 de M, qui est nécessairement
réelle, est négative. Or, comme M est trés prés de z, et N de x, le
signe de H(z — z,,  — «,) est le méme que celui de H(o, 0) etl'on a
démontré que H(o, 0) < 0, & propos des inégalités (52). c. q. F. p.

Cela étant, si I'on fait tendre x vers z,, en suivant Nz, ( fig.12), les
points singuliers ¢’ et ¢’ de F(x,s) tendent I'un et I'autre vers le
point z,, en restant sur l'axe des abscisses. Il devient impossible
d’empécher ces points de venir sur le contour C' ( fig. 13), lorsque «
arrive en z, ; le point £ =, est donc un point singulier de ® (). -

IX. — DEvELOPPEMENT DE LA FoNcTioN ®(x).

28. Nous supposerons pour obtenir commodément ce développe-
ment que le point représentatif de la variable z coincide avec le
point N dela fig. 12 placé trés présde x,, sur ox,, entre x, etl’origine.

(') En partant des inégalités (52) et en tenant compte de ce que le point N
(fig. 12) est plus prés de I'origine que z,, on reconnait aisément que les points
5y, o', ¢" occupent la position indiquée fig. 13.

(%) Se reporter au n° 23.
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En remplacant F (=, z) par son expression (50), il vient

@(.’L‘): 1 Do+(5 — h)Dy+(5 — h) Dy .. dz’

air J, [(z—h)2— k]

D,, D,, ... étant des fonctions holomorphes de z — , et D, n’étant
pas nul pour z = x, (50).

En posant
: o __ ¥ (s —h) ~
(38) Jfo)—mfcj[@_—h)r:rj;dé,
on a
p:@
(59) ®(z)= 3, DI
p=0

Les miégrales J' peuvent s’exprimer en fonction des intégrales Js,j’i).
On a en cffet I'identité '

-1 .

. o _ 2 2 d7T o
(6o) J(P)— 1.3...(25—2) dk -ng’I)'

29. Calcul de J(2) ('). — Ona

ds

md = [ 2
aimd] cV(z—h)2—k

= log[z —h+(z—h)*— /C]}c..

VA est réel et positif lorsque P'on y remplace z par le z du point M

(fig- 13) (*); il en résulte, pour les valeurs particuliéres de x et de z
(que nous considérons, -

Vie—nh)Y¥—k 3
VH(o,0) >0( >

Les deux termes de la fraction sont des imaginaires sans parties
réelles; si donc on convient de prendre comme détermination de

(1) Celte intégrale a é1é étudiée par M. Poincaré, loc. cit., t. I, p. 32a.
(*) Se reporter au n° 25,
(*) Se reporter aux n°s 23 et 27,

Journ, de Math. (4° série), tome X. — Fasc. IV, 18¢4. 58
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vH(o, 0) celle dont le coefficient de /— 1 est positif, on devra prendre
aussi pour détermination de y(z — &)* — k au point M celle dont le
coefficient de \/— 1 est positif, c’est-a-dire celle qui a g pour argument.

Le contour C’ (f£g. 13) renfermant le point singulier ¢ duradical et
les points 3 et y étant trés prés de I'axe des abscisses par rapport a fo”,

4 > 1 ] \. n l‘ b . \J l‘
I'argument du radical au point 8 est supérieur de -» & trés peu prés, a

I'argument de cette fonction au point M. La valeur du radical au
point 3 est donc, & trés peu prés, réelle et négative; de méme la valeur
du radical au point y est, a trés peu prés, réelle et positive.

Il résulte de ce qui précéde que

1= h =R —k
B—h—V(B—Rh)Y—k

2w J(%) = log

en convenant de prendre, pour détermination des radicaux, cclle dont
la partie réelle est positive.

Le point z = / étant compris au milicu du segment s’¢”, les parties
réelles de v — &,  — & sont négatives; donc le dénominateur de la
fraction est fini, méme pour x = x,, puisque sa partie réelle est finic.

Multiplions les deux termes de la fraction par I'expression finie
v —h— \/G————T)"——Tf, il vient

2fn J(#) = loghk —log[8 — h — (B = L — k]|

(61) ot
—log[y — b =y =Fy —F].

Les deux derniers logarithmes népériens céerits dans le second
membre sont des fonctions holomorphes de x — x,. Lin effet, pour
x =x,, h se réduit & z, et k & zéro; donc, pour x — x, assez pelit,
les radicaux sont des fonctions holomorphes de  — x,, les différences
.B — 3, v — =, étant finies, Ainsi les fonctions sous les signes log sont
holomorphes et non nulles pour « =x,. Il en résulte bien que ces
logarithmes sont des fonctions holomorphes de x —x, pour des va-
leurs de # — #, suffisamment petites, mais finies.

Maisil y a plus: les dérivées de ces logarithmes par rapport & & sont
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aussi des fonctions holomorphes de & — x,. C’est ce qu'on voit sur-le-
champ en remarquant que les dérivées delog[B — A — (B — Ay — &),
par exemple, sont formées d'une somme d’expressions contenant en
numérateur un coefficient numérique et en dénominateur le produit

d’une puissance positive dey(B — £)? — kpar une puissance positive

de[B — h — V(B —h) — k]

30. Calcul de J'. — 1° p est impair.
On a
3—h

. . xee Y : t
(()2) Zlﬁ«]a’——f ’ de:— 2(3—1)

I Y
[(c —hyE—kT'g

J'" est unc fonction holomorphe de x — x, puisque [(z— h)* — k]~*
devient une fonction holomorphe de z — x, lorsqu’on y remplace s
par 8 ou par v.

En partant de P’identité

%(Z—Iz)P*‘ [(z - h)g-——k]—'JH

_(p—2s+1)(s—h)P—(p—1)k(s—h)P2
- (=2 —kF ’

on trouve, en intégrant entre les limites 3, v,
(p— 28+ 1) 30— (p—1) kT2,
) = sz [ (s = Ay (= = kI
T aim " “ Ip-

Le second membre de cette équation est holomorphe en x — ,.

En partant de la formule (62) et calculant de proche en proche
Jy pour p=3,5,7, ..., au moyen de l'équation (63), on reconnail
aisément que J};' est holomorphe en z — x,, lorsque p est impair.

2° p est pair. — Faisons s = } dans I'équation (63). Il vient

pI) — (p—)k I8 = ;= [(s — k)" (s = By = k[;.

En multipliant par des facteurs convenables les relations obtenues
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en faisant dans cette équation de récurrence successivement

pP=2 4 6, ... P

il vient

13.5...(p=1) 43 ;(§)
2.4...(p—2) kz']

_ 1 y[e=0(p—3). (q+1) o T —;;——r:]y,
= S| EG2GGL T — hr VG
le nombre ¢, dansle second membre, devant prendre toutes les valeurs

entiéres paires depuis 2 jusqu’a p. Cette équation et 'équation (61)
donnent

pJ(T)_

3) = —-—-—-——-—4 (=) 4 logk + ®(2),
en posant

— — Y
+2 [(P N(p—3).. (7'*" ,{ 3 (- Ry (5 — k) — k]@’
r

rpip—2)..

o et . 1
En vertu d'une remarque déja faite, cette fonction @ﬁ,ﬂ) est holo-

morphe en x — x, ainsi que ses dérivées par rapport a k. La for-

mule (60) permet donc d’écrire

S—-=

T 22 t.3...(p—1) d
2mJl"—1.3...(2s~-2) 2.4...p d/ﬂ_(k’logk)

+ fonction holomorphe de z — z,.

Le calcul de la dérivée qui fait partie de cette expression comprend
deux cas :

. 1
Soit£2s— 1, 0ona
2 2

di (W 1001;) = logk "; * k¥ 4 fonction entiére de k
— f(g _ .).. (5 s+ )k” *3logk

+ fonction holomorphe de x — z,,

b o=t iog[g — b — (B Ay— K[y — b —VG— 1) 4]
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et
p=2s41

Lo 13...(p—1) p(p—z)...(p.—-zs+3)
sz‘P)“A.S...(zs—a) p(p—2)...2 K+ logh

+ fonction holomorphe de x — z,,

ou, en remarquant que logk peut s'écrire, en vertu de la seconde
formule (44),
logk = 2log( 1 — =) + fonction holomorphe de  — ,,
) z,

.y 2s(as+2)...(p—1) pots+t . -
(64) 2lﬂJ{p— 2~4"-([)_‘23+1) 2]{ 2 lob(l—a)

+ fonction holomorphe de x — z,.

Cette formule convient, méme lorsque s = } et p = o, mais & condi-
. 2s(2s+2)...(p—1)
tion de remplacer, dans ce cas, le facteur b (P2t par 1.

. . 3
Soit en second lieu oS g Ss— 3 Ona

I 1

dz 4 S-S 2
: (]fa logk)= £(£ _,)..., d_=*l_lo,'g/l
dks-—’- 2 \2 I-3-% .

-+ fonction holomorphe de 2 — z,

-+ fonction holomorphe de x — x,.
H en résulte

1.p
o e 19— (—2) 357 3 _p 1
2wl = (p+1)(p+3)~--(2s—2)1'2”’(8_ __) ¢

+ fonction holomorphe de  — «,,

2.4...(25 —3—p) (—1)“‘%

e ]9— o
(64) 240, o’(p+1)(p+3)...(2s——2) .

~+ fonction holomorphe de x — 2.

Cette formule convient, méme lorsque s =13 et p = o, i la condition

de remplacer alors le facteur 7 _:'g (p_(:; )_ 3 (—2 f )_ 2y bar Punité.
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31. Les formules (64), (64) et (59) conduisent au ﬂéveloppemcnt
suivant de ®(x) dans le domaine du point z = z,,

[)_.23 -3 3_p

L (2s—3—p) (=138
2t ®(x) = 2 2(p N(p+3)...(as—2) o1& D,
(65) ¢ P=e p=e

o x 29(2c+2 (p—1) Ly »
+lo <1—-—-> 2 R TR TEEY K D,+®,(x)

p=2s

®, (z) désignant une fonction holomorphe dans le domaine de « =,
et U'entier p ne devant recevoir que des valeurs paires positives, y
compris zéro.

Cherchons, dans la partie non holomorphe du développement (65),
le terme qui contient la plus petite puissance de z — z,.

Ce terme correspond évidemment & p = o; il y a d’ailleurs deux cas
a distinguer :

1° Sis =73, le premier signe X disparait du développement (63) ct
le premier terme du second signe X a pour valeur

2D, log(l - %) ( = %)

D, est une fonction holomorphe de £ — z,; son terme constant,

pour s = 3, a pour valeur At )(o 0) (49) et (50). Le terme que nous
cherchons est donc

2)\(‘1‘)(0, o)log(l - %1)

Ainsi on peut écrire le développement (65) pour s =3,

(66) “1’( )“m@‘(x)q—k_g_)(_m_)]ob( ‘5})
l x [1 +-(1 - B’,)X fonction holomorphe de (1 _ 3;, >]

2° Sis21, le terme du développement (65) qui correspond 4 p = o
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est sous le premier signe Z. Il a pour expression

ah.. (as—3) (—1)"1 b

1.3...(23—2) ks-lz- o

2

Le terme que nous cherchons s'obtient en remplacant D, par son

terme constant A¥ (0, 0) (49), et k par son premier terme (44).
Le terme demandé est donc

SN o

(LN |

LS 2h.(25—=3) a—3 I_'_z:zsinq;(z’—l) 9(3y) 1 )
2 (71 (00) 1 () (1-2)"
2 ¢'(3) Zy
Ams1 nous pouvons écrire pour s2 3,
— 3) A1 (o,
B(z) = = ,(z) - = ‘(ii_2 2 (- )T
B Z? o' (21)"
l+asin¢(z’:-—l)_9(z:) 1
6 ~ Lol Z )
(©2) ¢ | ¥ () (‘ -%)
X LI + (1 - -—) x fonction holomorphe de (1 — 5—)
1
-+ (1 — %)25 log (1 - %) X fonction holomorphe de (1 - -‘:7)]

) . : 3 (23 )
Nous rappelons que pour s =13 le facteur——-——m—;—;-)
remplacé par 1.

Le facteur ¥'(o, o) qui rentre dans les développements (66), (67)
est susceptible de deux déterminations. On a en effet (49g)

mo,o):m(o,o)]s;;_‘f.[ >]f<c.>,

doit étre

o sin? t (zl —cot

et le facteur [H (o, 0)]* a deux déterminations.
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I est aisé de faire un choix entre ces déterminations. On peut écrire
[H(o, o)} = [VH(e, 0]".
vH(o, o) ayant pour argument g (), on déduit de Ia

[H(o, 0)f = i(— 1)’ "*[— H(o, o)},

[— H(o, 0)] étant pris dans le sens arithmétique.
Il en résulte

- "“%)\(s) ,0) ¢ \. 3
= o)?IA—H(O,O)]‘;';f-[ q,a]f(a)-
—COL;)

!
asin?l 5
2

En posant

51 R AT b
Bo — (=1 e, asing(si—1) ¢(31)
i 1 9(5)
2 9'(5)

on a, d’aprés les formules (46) et (12),

25} ]""“( [(?'(:,)]’ oy 9'(35) 5] —1 !
—— | —2 asiny *
a5, [smt‘g(s}—l) } %(5) + sl ¢9(z,) 32 (

On en déduit : pour s = 3,

B(z) =-1 @, () + 5(,;%—)108(1 - %)
C [, +<| _ }‘””-‘)x fonction holomorphe de<1 ~ %)],

1

(66)

(') Se reporter au n° 29.
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>3
pour s2 3,

(I)(.z;) __@‘( )_&2{; 2.9——3 1

251
1.3...25—2 (1 z \"

—

Z,

X [I + ( - —)  fonction holomorphe de ( — _..)
+ (l - ;)25_ log( 1— —) x fonction holomorphe de ( 1— wﬁl )],

®,(z) étant une fonction holomorphe dans le domaine de # = =,.

®7)'

X. — Carcur bE I'.

52. I’ est défini par l'intégrale (57)
2,1-: f‘@(x) xlll +1.

Le contour d'intégration S. (fig. 12) est une circonférence de
rayon supérieur & |z, |, déformée le long de la droite ox,, de facon &
laisser le point singulier z, de ®(x) & l'extérieur du contour. Dés
lors le point , est de tous les points singuliers de ®( ), extérieurs au
contour S, le plus rapproché de I'origine. La considération de ce
point singulier conduit donc & la valeur asymptotique de I’ (*).

- En partant des développements (66)’, (()7) lapphcatlon de la
méthode de M. Darboux donne : pour s =3,

B X [coefﬁcient de =™ dans log (l - %)] (l * E)’

I — B 2.4...256—3

T 1.3...25—2 R
. i » \ 1-2¢ ’
b [coefﬁcmnt de ™ dans (1 — %) ](1 + 2 )
. S my
K’ et K” restant finis lorsque m, augmente indéfiniment.

(*) Se reporter au n° 1 (généralisation du théoréme T). :
Journ. de Math. (§* série), tome X. — Fasc. 1V, 1894. 59
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Le coefficient de 2™ dans log (1 — xﬁ) est
1

11

—_—
"

my &

——

{—
et dans (1 - f—) n,

Z'y
1 1 I K™ (1
. — 1+ — ),
mi=s) g T (25 —1) m,y

On peul donc écrire, en remplacant (39) x, par ?-—(l.—y
“1

. ' B m K
(()9) I'= :1—s) ? '(51) (l + ‘,‘,T;)’

T a[1.3. . as—a]t M

K restant fini lorsque m, augmente indéfiniment. Cette expression
convient au cas ol s = 3.

33. La valeur de I, que nous venons d’obtenir, correspond au cas
ol le contour C' est voisin du point z = z, (2).

Le cas ou le contour C’ est voisin du point z = 3, (*) donne lieu &
des raisonnements identiques & ceux qui ont été exposés dans les Cha-
pitres VII, VIII, IX. Les extrémités §8, y du contour C’ ( fig. 8) sont,
dans ce cas, plus rapprochées de I'origine que le point z,; d’autre
part les inégalités (52)' remplacent les inégalités (52). Il n'en résulte
pas de modifications essentielles.
~ En définitive, la valeur de I, lorsque le contour C' est voisin du
point z = z,, s’obtient en remplacant z, par z, dans les formules (Gg)
et (68).

XI. — Concrusions.

34. 11 est facile maintenant de conclure la valeur de I dans les cas
énuméreés au n°® 20.
I’ et I” sont en effet de la forme

=l G/ (%) g"(%),
I// — ’)l?' G” (Eu) ?m' (En ), |

(
(

1) Se reporter au n° 2.
*) Se reporter au n° 20,
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les fonctions G’ et G” restant finies lorsque m, croit indéfiniment;
q' et g" étant des nombres fixes; § reprérentant, suivant les cas,
3, ou 3,; £’ représentant, suivant les cas, §, Z ou Z;.

Cela étant, supposons

1* |9(§)1>[9(¢)] Ona ”
I=TI+1"=m7 3 G'(E')+ m7=7 G (&) ['«?(i ))]"'l}:?"‘i(i").

o(¢

Lorsque m, croit indéfiniment, le produit /7" [%%]'n' tend vers
zéro méme si ¢” > ¢’. On a donc asymptotiquement I =1

22 |9(8)|>[9(&)]. On a asymptotiquement I = 1", pour le méme

motif.
RisunME.

35. Nous nous proposons, dans ce qui suit, de résumer tout ce qui
est essentiel pour déterminer pratiquement la valeur de I.
Nous commencerons par rappeler I'énoncé du probléme.

On considére deux planétesP, P, se mouvant dans le méme plan.
P décrit une orbite elliptique (u, anomalie excentrigque; r, rayon
vecteur; e =siny, excentricité; a, demi grand axe; { anomalie
moyenne); P, décrit une orbite circulaire qui enveloppe lorbite
de P (a,, rayon vecteur et demi grand axe; ¢, anomalie).

On se propose, m et m, désignant deux entiers trés grands
(m, >o0), de trouver la valeur asymptotique des coefficients de

% (m + m,t,) dans le dévelbppem,ent de

sin

S(E™) fi(E%)
AS
[E, base des logarithmes népériens; i = —1; f(E®), fonction en-
tiére réelle de sinu et de cosu; f,(E%), fonction entié¢re réelle de
sing, et cosl,; A, carré de la distance PP 55 =13,3,3, ...].
" Le coefficient de cos(m% +m,{,) a pour valeur la partie réelle, et
le coefficient de sin (n{+m, {,) est égal au multiplicateur de — v—1,
dans une certaine imaginaire I, qui se calcule comme on va I'indiquer;
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11 est aisé de prévoir que ce dernier coefficient est nul, lorsqué la fonc-
tion & développer provient d’un premier développement de la fonction
perturbatrice ordinaire effectué par rapport a l'inclinaison,

Il convient, pour simplifier I'exposition, d'introduire quelques no-

tations, '
36. Posons
2 =0
. N ) l .
0 = %Séé’g, 0"=—.%séc3(69°—g>, b _-—-gsec’(Go + ) ');
. . ,
= :Z-; <1;

P == — 3_52%’_45 (5 — tang%) (z - cotq—;);

o |2 <,,_m¢>:] S

Faisons
- =_E_£ a,—;z) s .3;_%\/23( m,

Pour les valeurs qui seront substituées & z, dans H(z), I'argument
du facteur (a} — r?)~¢ s'obtient en multlphant par —s l’argument de
a}— r? compris entre — et -+ ms

La détermination de \/%f s'obtient d’aprés la régle suivante : si

'argument w de z est compris entre — %et +

1adlcal est. posmve sl <w< =7, la partie imaginaire du radical est

1[: » la partie réelle du

M On trouvera plus loin une Table donnant 0’ 87, % en. fonctxon de l’excen-
tricité e =sin¢.

. *(?) L'expression entre crochets, écrite aprés f,, n'est pas un facteur; c'est ce
que Yon doit substituer & E% dans la fonction f; (E%),
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posmve 5id® <m< ,la partie réelle du radical est négative; si

T T L ) la partle imaginaire du radical est négative.

Les valeurs Z,Z;ou Z_; qui seront substituées 4 z dans H(z) annu-
lent 'expression

Osind (z — tang-%\) (zﬁ — cot§>,+ 2z(z + cot %),
aussi doit-on faire dans H(z) | |

'(2) esin*l!(z-;cotg)[a(z——t&.mgg)+z—cm%]+4z~+2col%

Valeursde Z,Z;,Z_;. — .Si 0 < 0" ou si 6”"<< 0 < 0, on aura a sub-
stituer & 2, dans H(z), la valeur réelle

2

Z"‘COlql v+l)“
2 ¢ —

en posant

cosx#—e (L:fi‘fﬂﬂ) : 0<X<[800;H

v=—2\/ l——:—2%)-99-5-?cos(60°-l—’—‘,f)-

Z est positif lorsque 6 < 6", névatif lorsque 0”< 0.

Si6"<H <6 ousiV <O 2o q‘, on aura a substltuer 3 3, dans
H(z), les valeurs ‘

q:v+x
2 v—-l

Z;=cot=

Z_; ='imaginaire conjuguée de Z,

en posant

slmzx =—c (l—_—2—§-c-9-5-$> ’ tangE \/tang)(_,

‘ — v 7 i'.
:.v—_—.u\/l 200(?‘!‘51;25+\/—I\/I—-2OCOS§IICOtQE ?@___. SU—

v /
Si0> — acosy’ 00 AUra é substltuer az, dans H(z), les valeurs

(‘2 o S g e e I e . .
Z;=cot! b 2o L= l'imaginaire conjuguée de Z;, g
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en posant

=g

e
Coog} e Z . ‘;=\/zﬂcoss¢—[c

tangt = ytangy,

I ]
sina§
1l convient de rappeler, pour achever de dlre ce qui se rapporte & la
fonction H(z), que

P()=Vr, T@) =ivr, T@) =iz, T()="%r,

37. Nous aurons aussi 4 considérer la fonction

%(5).'-:“ wa [siwt::—n)]“- %[9(2))] +asing Z((; = I%H

><f, 5 £(3) mis=t om(z) (").
[asm*d’(o—cot )] n(1.3...25—2)"

Les valeurs de z que I'on aura a substituer dans cette fonction sont

[}

7 — 1—a+\/(|—-cz)’-—a’sm’qa 2 —
' asing 1T

!—

(2]

Pour ces valeurs de z le facteur élevé & la puissance s —1 dans E(3)
a une valeur réelle et positive.

. (D, F1 .
L’expression de 212 o5t Ia suivante

¢(2)

¢(s) _ Bsing (z——tangg) (z—col%{)z+ 2;(5+cot"—g).

#s) 25’(z-—cotg)

38. Ces définitions données, voici les valeurs de I, dans tous les cas

: . K : .

possibles, en appelant ¢ une quantité de la forme — K restant fini
1

lorsque m, augmente indéfiniment.

\

(*) L'expression entre crochets, écrite aprés f;, n’est pas un facteur; c’est ce
que Pon doit substituer & E%: dans la fonction f, (E%),



DEVELOPPEMENT APPROCHE DE LA FONCTION PERTURBATRICE, 465

Tasteav L
1°Si Z> |5, ona
I=H(Z)(1+¢); ‘
20 Si Z< |5l etsi|o(Z)|>]¢(2)],0na
I=H(Z)(1+¢);
3¢ Si Z<|zs|etsi|e(Z)]<|9(z)],0na
I=%(3,)(1+4c¢).

0 <<6”

4o Si |Z;| >3], 0ona
1=[H(Z;)+ H(Z-)] (1 +¢);
50 Si |Zs|<<| ] otsi |9(Z)|>|9(s)], ona
1=[H(Z)+H(Z_)] (1+¢);
6 Si.|Z:| <|a] et si |9(Z)|<|¢(52)] on a
IT=2(3)(1+c¢).

6" <<0 < 0"

7° Si || <[|Z]<|%],ona
I=H(Z) (1+¢);

8 Si |Z|>[z],0na
I=2(%)(1+¢);

9° Si|Z|<]|z4],0na
T=2(5) (1 +¢).

0"<0<0'

10° Si |Z;| <]z |,0ona
L= [H(Z)+H(Z_)] (1 +9);
1o Si |Z;|> |5 ]etsi]|g(Z)|>]9(z)|,ona
L= [H(Z)+ H(Z-)] (1 + €3
12° Si |Z;| >3] etsi]o(Z;)|<]|p(5)], ona
I=2(z)(1+¢) (*).

0> ¢

Lorsque 0 < 0 et @<}, on tombera toujours, suivant la valeur
de 0, dans 'un des cas 1°, 4°, 7°.

(*) Ges expressions sont tirées des formules (37), (37)', d’une part, et, d'autre
part, des formules (38)”, (38)",(69), en observant ce qui a été dit au n° 3k,
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8,

0,00
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09
0,10
0,11
0,12
0,13

0,14

»

0,13
0,16
0,17
0,18
0,19

0,20

2cosg

0,500
0,500
0,500
0,500
0,500
0,501
0,501
0,501
0,502
0,502
0,503
0,503
0,504
0,504
0,505
0,506
0,507
0,507
0,508
0,509
0,510

6.

0,125
0,125
0,125
0,125
0,125
0,125
0,125
0,125
0,125
0,125
0,125
0,125
0,125
0,125
0,125
0,125
0,126
0,126
0,126
0,126
0,126

0",

—1,000
—0,983
—o0,966
—0,950
—0,934
—0,919
—0,903
—o0,889
—0,874
—o0,860
—0,846
—0,833
—o0,819
—0,806
—0,794
—o0,782
—0,769
—0,757
—0,746
—o0,735
—0,724

. MAUBRICE HAMY.,

TABLBAII 1.

6. . e -
—1,000 0,at
—1,018 0,22
—1,035 - 0,23
—1,054 0,24
—1,073 0,25
—1,092 0,26
—1,112 0,27
—1,133 0,28
—1,153 0,29
—1,176 0,30
—1,198 0,31
—1,22I 0,32
—1,244 0,33
—1,269 0,34
—1,293 0,35
~1,319 0,36
—1,346 0,37
—1,373 0,38
—1,401 0,39
—1,430 "0,40
—1,460 :

APPLICATIONS.

Table donnant la valeur de ——

,6'

04'

(Argument e = smq;)

2c0s9

0,511
0,513
0,514

0,515

0,516
0,518
0,319
0,521
0,522
0,524
0,526
0,528
0,530
0,532
0,534
0,536

0,538

0,540
0,543

0,545

Lorsque 6 >o0 et a> 5 on tombera toujours dans
11°ou 12% .

, 07,

0,126
0,126
0,126
0,126

‘0,126
0,126

0,127
0,127
0,127
0,127
0,127

0,127
0,127
‘0,128

0,128

‘0, 128

0,128
0,128
0,128

0,129

'un des cas
6. 6".

—o0,713 —1,490
—o0,702 —1,522
—o0,691 —1,555
—0,681 -—1,589
—o0,671 —1,624
—o0,661 —1,661
—o0,652 —1,608
—0,642 —1,737
—0,633 —1,777
—o0,624 —1,819
—0,615 —1,862
—o0,606 —1,907
—o0,597 —1,953
—0,588 —2,002
—0,580 —2,052
—0,572 —2,104
—0,364 —a2,159
—0,556 —2,215
—0,548 —2,274
—0,541 —2,335

Nos formules permetlent de tenir compte, dans le calcul d'une iné-
galité d’ordre élevé, de I'excentricité de la planéte intérieure et de
I'inclinaison des orbites; elles fournissent, avec une faible érreur rela-
tive, la partie du coefficient de I'inégalité qui est indépendante de
Pexcentricité de la planéte extérieure. Cette partie, il est vrai, peut
différer du coefficient exact, parce que les termes qui contiennent en
facteur l’excenmclte ‘négligée sont multipliés.par de grands fac-
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teurs ('); mais, si elle est notable, il ya ‘des chances pour que l’me—
galité compléte ait elle-méme une valeur sensible, et il y aura lieu de la
déterminer par les méthodes ordinaires.

1° Application & Mercure. — Proposons-nous de trouver le coef-
ficient de I'inégalité de la longitude moyenne de Mercure, dont I'ar-
gument dépend de huit fois le moyen mouvement de Vénus moins
cing fois celui de Mercure.

Cette inégalité se trouve dans les Tables de Le Verrier (Araales de
P’Observatoire, t. V) qui a tenu compte seulement de I'excentricité de
Mercure. D’aprés Le Verrier, le coefficient de la fonction perturbatrice,
multiplié par le demi grand axe de Vénus, a pour valeur — (71,815) ¢?,
celui de I'inégalité — 0”,007 ou, plus exactement, — 0”,0067 (p. 189,
colonnes a’'R, et A,).

Nous avons fait le-calcul de nos expressions approchées, en tenant
compte seulement de 1'excentricité de Mercure, comme Le Verrier,
c’est-i-dire en y faisant

 f=fi=yn s=1
Dans le cas actuel il faut prendre
m=—5 6 m=8, 0=—0,625 e—smap—0205()18

D’aprésle Tableau II, 0 est compris entre §’ et 6” pour ¢ =0,205.,...

Tl faut donc choisir, dans le Tableau I, entre les cas 7°, 8° et ¢° .et a

cet effet calculer Z, z, et z,= —

Sy

En prenant

a = distance moyenne de Mercure = 0,3870987,
a,= » - Vénus =0,7233322,

on trouve

Z=—(o,12104), sz, ':%_(0792059)§

(*) Voiracesujet une Note de M. Callandreau (Comptes rendus,du5 septem—
bre 18g2).

Journ. de Math. (§* série), tome X. — Fasc. IV, 18g}. 6o



468 MAURICE  HAMY.

les nombres étant représentés par leurs logarithmes écrits entre paren-

théses. Ona |3,| <|Z| < |3,|; on tombe par suite dans le cas 7°.

On trouve successivement, en faisant 2= Z dans les formules du

n* 36, :
. -

: _Zz-,=("8'255)’

(@t —1?) ¥ = (0,25962),

‘K\/I;l_: =(1,05.130),

\/% == (0,57379),

" =—(2,44773)-

(e

\/?;f est affecté du signe —, parce que Z est réel et négatif et a, par

suite, © pour argument. On trouve ensuite

I=— (379944)

Tel est le coefficient de cos(81 — 57) dans le développement de la
fonction perturbatrice. Le coefficient de sin(82 — 57) est nul puis-
‘que I n’a pas de partie imaginaire, ce & quoi on pouvait s'attendre en
s'appuyant sur la forme de I'argument dans le développement ordi-
naire de la fonction perturbatrice. '

L’inégalité correspondante &p a pour valeur, en appelant 1, la masse
de la planéte perturbatrice qui est ici Vénus (logp, = 6,39594), n le
moyen mouvement de la planéte troublée (Mercure), », le moyen
mouvement de la planéte perturbatrice (Vénus),

. . 3apm I
89'—— sin1” . n,
(m—i—m, 7{)

en prenant pour origine des longitudes I'un des nceuds des orbites.
Tout calcul fait on trouve

8p =— 0",0084 sin(— 51+ 81,).

s sin(ml+m, 1) ("),

(i) Voir Tissenanp, loc. cit., Chap. XI. -
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En comparant le coefficient de &p & celui de Le Verrier, on voit que
I'erreur relative du résultat est % = '% L'approximation est satisfai-
sante, bien que, dans le cas actuel, le nombre 7 ne soit pas trés élevé.

2° Seconde application & Mercure. — En développant en fraction

. dyoee 23
continue le rapport =, on trouve la réduite =
ny 9

Proposons-nous de chercher I'ordre de grandeur du coefficient de
I'inégalité de la longitude moyenne de Mercure dont 'argument dé-
pend de vingt-trois fois le moyen mouvement de Vénus, moins neuf
fois celui de Mercure.

Cette inégalité a été considérée par M. Newcomb dans son étude
sur les passages de Mercure (Astronomical Papers, t. I).

Nous négligerons I'excentricité de Vénus et l'inclinaison de 1'orbite
de Mercure sur celle de Vénus qui, en raison de leur petitesse, n'ap-
portent vraisemblablement pas un fort appoint & la partie du coeffi-
cient qui dépend de la grande excentricité de Mercure.

Le calcul se conduit comme pour I'inégalité d’argument 8/, — 5/,
en partant des mémes données. On rentre encore dans le cas 5 du
Tableau I.

On trouve

I = (8,7230)
et
3p = o",015sin(a3 1, — g 1).

L'inégalité est donc extrémement faible. _

3° Application & Jupiter et & Junon. — La théorie de Junon a été
entreprise par Damoiseau (Connaissance des Temps, 1846 en te-
nant compte de I'action de Jupiter et de Saturne et en se limitant,
dans les approximations, aux quantités du 5° ordre.

Nous avons reconnu qu'il faudrait calculer, dans une théorie pré-
cise de Junon, une inégalité du 12° ordre, affectant la longitude
moyenne de cette planéte, et provenant des perturbations de son
moyen mouvement causées par Jupiter. L’argument de cette inégalité
est 19, — 74 (!, longitude moyenne de Jupiter, / longitude moyenne
de Junon, comptées & partir de I'un des nceuds des orbites).

Les éléments de calcul empruntés & U'Annuaire du Bureau des
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Longitudes sont les suivants :

Pour Jupiter. Pour Junon.
n, =1299",1284 n =814",0766
a; = 5,202 800 a = 2,668256
. 1 .
Masse = p,, = ol e = 0,257857
On a d'ailleurs
m=-—n, m =19, 0=—%=——0,368....

On reconnait que I'on tombe encore dans le cas 7° du Tableau I.
En conduisant le calcul comme précédemment et tenant compte
seulement de I'excentricité de Junon, on trouve ‘

1= (7,5240)
0p =10",7sin(19l, — 7 1).

et

La période de I'inégalité est de 235 ans.
Le coefficient serait vraisemblablement modifié si 1'on ne négligcait

. pas l'inclinaison des orbites et surtout 'excentricité de Jupiter qui est
notable. ’

i © B—

ADDITION AU MEMOIRE PRECEDENT.

Les racines de I'équation U(z)=o0 (17) sont données (18), (19)
par

(70) 3 =cot< —
¢ étant définie par I'équation

(71) ' — (1~ 20cosy)v + 26 =o,
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Nous nous proposons de déterminer la valeur de Z, c'est-a-dire,

lorsque I'équation U = o a toutes ses racines réelles, la plus petite
racine de cette équation si § < o, ou la racine moyenne si § > o.

Lorsque o croit de —sd — 1, 3 décroit de cot,% a o,

(72) id. —rA 4, id. o 4-—w
\ id. + 1 4+, id. +» & cot%-
Supposons d’abord ) < o.
L’équation (71), dont nous supposons les racines réelles, est vérifice
par
o= a2 eosl,
— 20
(73) Dy = — 2\/'——3§fﬁcos<60°—- §>,
o, = 2\/' - 230054' Ccos <Go° + g),
en posant X
— a0cosy\ ™2
(74) cosy, =— 0<'~—33~w—ﬂ'> » o< 9ol

« " A .
Les inégalités o < 5 < 30° entrainent les suivantes
Py >0 >0y > 0y

1° 0 < 0". U(5) = o a ses trois racines positives : la plus grande est
y J . K
supérieure a cotz et la racine Z que nous nous proposons de calculer

est la plus petite.

Le Tableau (72) montre que la racine plus grande que cot g ne peut
étre donnée que par ¢,, et que ¢, et ¢, sont forcément compris entre
— 1 et — oo, sans quoi ces parameétres ne fourniraient pas pour z des
valeurs positives. La plus petite valeur de z correspond d’ailleurs & ¢,,
qui est inférieur & ¢, en valeur absolue.

Il faut donc, pour avoir Z, substituer dans la formule (70) le
nombre o,. o S
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2° 0> 6> 0. U(z) = o adeux racines négatives et une racine po-
sitive supérieure & cot - ¥, La racine Z que nous nous proposons de

calculer est la plus petlte.
La racine supérieure & cot g ne peut étre donnée que par ¢,. o, et ¢,

devant donner des valeurs négatives pour z, ces paramétres sont com-
pris (72) entre o et — 1. La plus petite valeur de z correspond & v, qui
est inférieur en valeur absolue & ¢,.

I1 faut donc pour avoir Z substituer ¢; dans ’équation (70).

Supposons, en second lieu, 4> 0 >o.
L’équation U(5) = o a deux racines négatives et une racine positive

Y

comprise entre o et tang -
La racine Z que nous nous proposons de calculer est la racine

moyenne.
Les racines de 'équation (71) sont encore (73) ¢,, ¢,, ¢,, en posant

_ abcosg\ "}
cosx:—O(L-—ngﬁﬂ> s 900 <Ly, < 18o°.

. Les inégalités
Joe L % < 6a®
entrainent les suivantes
0y >0 > 0> 0,
. [ - . . [ ) q’ A
La racine positive de U(z), qui est inférieure & tang > ne peut étre
donnée par o, qui est négatif (72).
0, et v, devant donner & z des valeurs négatives, on a (72)
1> 0, >v, >o0.
La racine négative de U(z), la plus voisine de zéro, est donc donnée

par og. ‘
11 faut donc encore, pour avoir Z, substituer le nombre ¢, dans I’¢-

quation (70).
Ainsi se trouvent établies les formules (23),(24),(25) données dans

" ce.Mémoire sans démonstration.
, D



