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SUR LES COMPLEXES DU SECOND ORDRE. : 2
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Mémoire de Géométrie vectorielle sur les complexes du second
ordre qui ont un centre de figure; '

Par M. GENTY.

CHAPITRE 1.

NOTIONS GENERALES.
1. L’équation vectorielle d’une droite étant

B(x—a)u=o,
ou bien
‘ Vxv=WPav=v,

une droite est déterminée par les vecteurs v et ¥au ou v, qui don-
nent sa direction, celle de la normale au plan mené par 'origine de la
droite, ainsi que la distance de l'origine & la droite. Nous appellerons
ces deux vecteurs les vecteurs coordonnés de la droite, et nous dési-
gnerons par (u, v) la droite qui a pour vecteurs coordonnés u et v.

Si I'on a v=o, la droite (o, v) est située tout entiére a l'infini
dans un plan normal 4 v.

Si I'on a, au contraire, v=o, la droite (u, o) passe par l'origine :

_c'est la droite indéfinie dirigée suivant le vecteur v.

2. Réciproquement, étant données quatre conditions simples aux-
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quelles une droite doit satisfaire (ce qui suffit pour la déterminer), il
est possible de calculer ses vecteurs coordonnés.

En effet, v, pouvant avoir un module quelconque, ne dépend que de
deux conditions, et entre les vecteurs v et v il existe la relation né-
cessaire

$ uv=o, .

qui, jointe aux quatre conditions données, permettra de les déter-
miner. '

3. Ceci posé, une équation
(1) - A F(u,v)=o, ' ’

algébrique et homogéne par rapport aux vecteurs v et v, représente le
compleace des droites, en nombre infini, dont les coordonnées satisfont
a cette équation,

Si 'équation (1) est d’ordre r, le complexe qu’elle représente est lui-
méme d’ordre n,

4. Comme application, cherchons I'équation du complexe des droites
qui rencontrent toutes une droite donnée.

Soient u,, v, les vecteurs coordonnés de la droite donnée; u et v

ceux de I'une quelconque des droites du complexe; la condition du
probléme donne immédiatement

(2) Suv,+Ku,v=o,

équation d’un complexe linéaire spécial.

Si'I’on suppose que u et u, sont des vecteurs unitaires, le premier
membre de I'équation ci-dessus représente le produit de la plus courte
distance des deux droites (v, v) et (u,, v,), par le sinus de leur angle,
¢'est-a-dire le moment de 'une d'elles par rapport 4 I'autre.

Donc le complexe des droites dont les moments, par rapport 2 deux
droites fixes (u,,v,) et (u,, V;), ont un rapport constant, a pour équa-

tion
'(3) Suv,+ Suv, =k(Suv, + Su,v).
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Cette équation représente le complexe linéaire le plus général. Les
droites (uy, v,), (u,, v,)sont les directrices de ce complexe, et % son
module (DracH, #nnalen Mathematischen, t. 1), et I'on reconnait sans
peine qu'une droite arbitraire peut étre choisie pour I'une des direc-
trices d'un complexe linéaire donné.

5. Cherchons encore le complexe des droites qui coupent un ellip-
soide suivant des cordes vues du centre sous un angle droit.
Soit
Sx0x =1
P’équation de I'ellipsoide. ‘
Les points d'intersection A +£,v, A+ %, v d'une droite avec cette
surface seront donnés par I'équation

S(a+ku)0(a+ku)=1,

(4) Budu+ 2k Juda+Fada—1=0,

et la condition du probléme donne

S(a+kv)(a+kv)=o,
ou bien

Qo+ (ky+ k) Sav +£ £, u=0.

Si 'on porte dans cette équation les valeurs de &, + k, et de 4,4,
tirées de I'équation (4), il vient

TASUdu— 284 0u Fac+ F204 Qv — o= o,

ou bien

() SVau(P0av +Wadu) — v =o;

orona :
VOru+Wadu=(m,— D) Yauv=Vv,

en posant

m,—®=w,
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et I'équation (5) devient
(6) - Q@u-JvWv=o,

équation d’un complexe du second ordre extrémement intéressant,
mais qui n'est qu'un cas particulier de celui que nous étudierons plus
loin. ‘

6. Cherchons enfin, comme derniére application, 1'équation du
complexe des droites qui coupent harmoniquement deux quadviques
concentriques données.

Soicent
Sxbx=1, [x¥x=1

les équations de ces deux quadriques : leurs points d’intersection avee
une droite seront donnés par les équations

S(A+ku)®(a+ko)=1,
Sa+kv)¥(a+ku)=1,

qui, développées, prennent la forme

BPISuOu+2k820u+8ada—1=0,
BSuYs +2AFAVYu+Fa¥a—1=o0,

et la condition du probléme donne .
Svou(Sa0a—1)+SuVu(Fada—1)— 202 JuVa=o,

ou bien

(7) - Bu(@+YV)u+Jv(PeuVYa+PVYuda)=o.

Or on peut poser

YVOouVa+V Yuoa=o0Bua=oev (')

(*) On a en effet

VOXTY + YU by = (m, ®)[(m,, ¥&~1) &1 — &1 W&~ Pxy
=(m,¥)[(m,, 1) ¥ —¥-1oW-1]Pxy,
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et ’équation (7) prend la forme

(8) Su(?+ ¥)u— Jvev=o,
équation d’un complexe du second ordre.

7. Les droites d'un complexe qui passent par un point donné sont

situées sur un cone qu’'on appelle cdne du complexe.
Si

(9) F(u,¥av)=o0

est 'équation d’un complexe, on reconnait sans peine qu’on obtient
I’équation du cone de ce complexe qui a son sommet au point A, rap-
portée & ce point pris pour origine, en remplacant dans I'équation (¢)
U par x, ce qui donne

F(x, ¥ax)=o0,

équation algébrique d’ordre . Donc, les droites d'un complexe d’ordre n
que passent par un point donné engendrent un céne d'ordre n.
Si I'on rapporte le cone i I'ancienne origine, son équation devient

F(x —a,¥ax)=o,
ou, en posant
A=al,
L étant un vecteur unitaire,
F(x—al,a¥Vrx)=o0,
et si dans cette équation on suppose @ = =, elle devient

F(r, ¥rx) =0}

elle représente alors le cylindre du complexe paralléle au vecteur L.

en désignant par (1, ) U'invariant m de la fonction linéaire ®, par (m;, ¥d—!)
I'invariant 72, de la fonction linéaire W&—1, etc. (Laisant, Introduction ¢ la mé-
thode des quaternions, n° 126).
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8."De méme, les droites d’'un complexe qui sont situées dans un
plan enveloppent une courbe qu’on appelle courbe du complexe, et il
est facile de démontrer que les courbes d’un complexe d’ordre » sont
de la classe n.

Soit, en effet,

Syx=1
I'équation du plan donné.

Pour qu’une droite du complexe soit située dans ce plan, il faut
qu’on ait
Sxa=1, JNv=o.

U=Y(Pav.N)=Yvn.

On a, par suite,

Si I'on porte cette valeur de v dans I'équation du complexe, celle-ci

devient
F(¥vN.v)=o,

et si maintenant, dans cette équation, on regarde v comme vecteur va-

riable, elle représente un cone d’ordre n. Or ce cone est évidemment

le réciproque de celui qui a son sommet a P'origine et pour base la

courbe enveloppe cherchée; donc cette courbe est bien de la classe n.
Si le plan donné passe par ’origine, son équation est

SNx =o,

et 'on reconnait sans peine, par un simple déplacement de I'origine,
que la courbe polaire réciproque de la courbe du complexe située dans
le plan donné a pour équations

Sxx=o,

F(¥xn, x)=o0.

EQUATIONS GENERALES DES COMPLEXES DU SECOND ORDRE
QUI ONT UN CENTRE DE FIGURE.

9. L’équation générale d'un complexe du second ordre est évidem-
ment de la forme

(1) Sudu+ 28veWav + SYav¥ Yav =o,
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dans laquelle @ et ¥ sont des fonctions vectorielles linéaires conjuguées
4 elles-mémes, et @ une fonction du méme genre, mais qui, en général,
u'est pas conjuguée  elle-méme.

Si, dans cette équation, on change A en — 4, elle devient

(2). Sudv—28ve Yav+ SVauv¥ Pav=o,

et si l'origine. est un centre de figure, les équations (1) et (2) doivent
étre identiques, ce qui exige que 1'on ait

(3) ®=o0,
ou bien

(4) d=¥=o.

On a donc ainsi deux genres de complexes du second ordre ayant un
centre de figure. En prenant ce point pour I'oxigine des coordonnées,
les complexes du premier genre ont pour équation

(5) Sudu+ SYav ¥ WPau =o,
et les complexes du second genre,
(6) SuvePav=o.

Si maintenant 1'on transporte 'origine en un point quelconque &,
ces équations prennent la forme

Sudu+ SV(a+E)v ¥Y¥P(s +E)u =0,
Svo(a+E)u=o,

ou encore, aprés le développement des premiers membres,

(7) Su(®+ Ve ¥Wue)+ 28Yev ¥Vav + SWav ¥YWPav =o,
(8) SvoVev + SveWav=o,

Journ. de Math. (3¢ série), lome VIII. — Sepreusre 1882, . 39
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ou enfin

(9) So(d+ VeV Yue)— 28ve,Vav + 31“1‘“1‘-1"{%0':: o,

(10) Sud, v+ SuvePav=o,

en posant

(11) . 8, Yau=—VEeY Yay,

(12) q’.U:@uEU-—WE@'U.
2

Si donc la fonction 6 qui entre dans I'équation générale (1) est de la
forme définie par la relation (11), cette équation représente un com-
plexe du premier genre, ayant pour centre de figure le pointE; en
transportant 'origine en ce point, I'équation du complexe prendra la
forme (5).

De méme, si la fonction ¥ n’entre pas dans I'équation d'un complexe,
et si la fonction @ s’y trouve sous la forme définie par la relation (12),
cette équation représente un complexe a centre dua second genre, et
elle pourra se réduire 4 la forme simple (6) par un simple déplacement
de Yorigine.

10. Rappelons enfin que 'on appelle surface singuliére d’un com-
plexe du second ordre le lieu des points pour lesquels le cone du com-
plexe se réduit & un systéme de deux plans, ou bien encore I'enve-
loppe des plans dans lesquels la conique du complexe se réduit 2 un
systéme de deux points. Cette surface du quatriéme ordre et de la qua-
triéme classe est une surface de Kummer; elle a seize points singuliers
pour lesquelsle cone du complexe se réduit & deux plans coincidents,
et seize plans tangents singuliers dans lesquels la conique du complexe
se réduit & deux points coincidents.
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CHAPITRE II.

PREMIER GENRE DES COMPLEXES DU SECOND ORDRE QU ONT UN CENTRE
DE FIGURE. SURFACE DE KUMMER RELATIVE A CES COMPLEXES.

11. Equation générale. — D'aprés ce qui précéde, le premier genve
des complexes du second ordre qui ont I'origine pour centre de figure
est représenté par I'équation générale )

(1) Svdv— SVav¥ Vav=o,

danslaquelle @ et ¥ sont deux fonctions vectorielles linéaires conjuguées

“a elles-mémes. '
La fonction ¥, qui ne change pas quand on déplace 'origine des
coordonnées, est la fonction caractéristigue du complexe. Nous appel-
lerons en outre, d’aprés Plicker, surface caractéristique la quadrique
qui a pour équation
: m,Sx¥V'x =1,

dans laquelle 72, est l'invariant 7 de la fonction @, invariant que nons
supposerons différent de zéro dans tout ce qui va suivre.

12. Equations vectorielles de la surface de Kummer. — Le céne du
complexe qui a son sommel au point x, a pour équation

Sxbx — FVx,x¥¥x,x=0,
ou
Sxex=o,
en posant

0x=0x — ¥x, ¥ Yxx,.

Pour que ce cone se réduise a un systéme de deux plans, il faut que
0x se réduise 4 une fonction linéaire 4 deux termes, c’est-a-dire qu'on
ait, pour un vecteur L convenablement choisi,
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ou bien
dL—¥x,¥¥rx,=o.

Si, dans cette équation, nous remplagons x, par x, nous aurons
(1) oL =Px¥¥VPrx.

Clest U'équation vectorielle de la surface singuliére du complexe,
c’est-a-dire de la surface de Kummer (K) relative i ce complexe.

Le vecteur L, qui entre dans cette équation, est complétement arbi-
traire. A chaque direction différente de ce vecteur, correspond un
pointde la surface (K); la ligne singulicre (*) du complexe qui passe par
ce point est paralléle & . -

13. En opérant sur I'équation (1) avec &.x < et . ¥ YLx X suc-
cessivement, il vient

(2) Sxdr=o,
2
SOLY Vrx = Frx¥drL=o.
Ces équations représentent deux plans dont I'intersection est le vec-
teur OX, du point de la surface (K ) correspondant au vecteur donné r.

Soient m un second vecteur déterminé par I'équation
(3) ‘ O = WLVYOr, ’

et x le point de la surface (K) qui correspond & ce vecteur. On aura
successivement
You=¥YPrLY0L=myP¥~'1 01,

M:@-'mLWL:mLmerm,

Vu¥odn = %ti‘lﬂ.iﬂ YL LYOLOVPL = (DL,
®

(*) Nous appelons ligne singuliére du complexe la droite intersection des deux
plans auxquels se réduit le cone du complexe. '



. SUR LES COMPLEXES DU SECOND ORDRE. 309

On a d'ailleurs
x,bm =o,

Sx,M¥DdM = o,
d’'ou
Sx,L¥dL = o,
X, 0L =o,
équations identiques aux équations (3) qui déterminent la direction
de x. Donc le point X, est situé sur le vecteur OX.

14. Les équations
Sxdr =0, Sxdbm=o0, JSLdM=o,

dont la derniére résulte immédiatement de I'expression de ®n, mon-
trent que les vecteurs L, M et x (ou x,) sont conjugués par rapport a la
quadrique (S), qui a pour équation

Sxbx=1.
On a aussi
SO YIL = Sm OTPM = o,

ce qui montre que les vecteurs L et M sont aussi conjugués par rapport
a la quadrique (S, ), qui a pour équation

SXPYIX = m,,.

Si donc on méne un plan quelconque par I’origine, les diamélires con-
Jugués communs auzx sections faites par ce plan dans les quadrigues (S)
et (S,) donneront les directions des vecteurs v et M, et le diametre con-
Jugué de ce plan par rapport ¢ (S) donnera la direction des vecteurs %
erx,.

13. Si maintenant, dans I'équation
oM = ¥x, ¥ Pux,,
nous remplacons  par sa valeur en fonction de 1, il vient

i LYoL =Wx VP(YPrd¥PrL.x,)= — Fx,0¥0LY(Vx, VYO r.x,);
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opérons avec ¥ &x, et nous aurons _
m,P(Px, YL ¥OL) = Fx, 0¥ ¥(¥x, ¥OrL.Px,),

ou enfin, en développant le premier membre et supprimant le facteur
commun &§x,d¥dr, -
m,L=¥(Bx, ¥or.0x,).

Ainsi donc I'équation vectorielle de la surface de Kummer se pré-
sente sous 'une ou I'autre des formes

(4) oL =YxW¥rx,
(5) m,L =W (Px, ¥or. Ix,).

Pour une méme valeur de L, ces équations donnent deux points
situés sur le méme vecteur et appartenant a deux nappes diffé-
rentes de la surface.

16. L’équation (5) développée donne
m,L = TPL Fx,dx, — %, Fx,0WPL;
et si nous opérons sur cette équation avec du, il vient
(6) m, L oL = Fx,0x, FLOYOL,

Cecl posé, soient OL, OM; OL’, OM' les demi-diamétres conjugués
communs en direction des sections faites dans les quadriques (S) et (S, )

X,

0 L

L T PN
ted

|

EJ

par un plan central quelconque; ON le demi-diamétre de (S) con-
jugué a ce plan.
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Nous aurons

SLbL=1,
—
$X|®x‘ == .C_)_:%-é’
oN:
——
SLovdL =m,9—_L_—§-
oL/

Donc I'équation (6) peut se mettre sous la forme

ox,  OL
ON X o’

{1 =

oun

oL’

On aura de méme

oM’
OX = ON x oM’

On a ainsi pour la surface de Kummer la définition géométrique
suivante :

Soient données deux quadriques concentrigues (S) et (S,); on méne un
plan central quelconque, et, dans ce plan, les diamétres conjugués OL
et OM, OL’ et OM', communs en direction, des sections faites par ce plan
dans les deux surfaces. Sur le diamétre ON de la surface (S) conjugue
par rapport au plan, on prend de part et d’autre du centre

ow

oL/
om’

OX =0ON oL

0X, = ON

le lieu des points X et X, est une surface de Kurnmer.

16. Coénes du complexe; directions conjuguées communes & un céne du
complexe et a la surface (S). — On peut encore arriver A cette con-
struction géométrique trés simple de la surface (K) par les considéra-
tions suivantes.

Le cone du complexe qui a son sommet au point /x du vecteur ON
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a pour équation

en posant :
Ox = dx — PYxTVxn,

et les directions conjuguées communes a ce cone et 4 la surface (S)
sont les racines de 'équation

Ox =1 Px,
ou bien
(7) Ox — PPN WPxN =1 dx.
Pour x =N, on a

ON=>0nN.

Donc v est une solution de I'équation (7), et la valeur correspondante
deveste=1.
Soient L et M les deux autres solutions (supposées réelles) de cette
équation, L et M étant, comme ci-dessus, des points de la surface (S).
En faisant x = u dans I'équation (7), on aura

dn — LYNTYPMN =, PM.
Or; L, M et N étant trois demi-diamétres conjugués de (S), on aura
PuN = Juy L,
et I'équation ci-dessus devient
(8) (1—1,)0M = EF N YNT Py,
d’ou V'on tire .

SOM WL = FMPYOL = o.

Donc r et u sont paralléles aux diameétres conjugués communs aux
sections faites dans les surfaces (S) et (S,) par le plan diamétral con-
jugué de ON par rapport a la quadrique (S).
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Opérons maintenant sur I'équation (8) avec &, et nous aurons
1 — = 3(S1uv ) FLoOWOL,

ou bien, en se reportant 4 la figure,

—~—2
1—d= [’_()—:I:—,,
. oL
d’out
6—]:‘!
G=1— 12:‘2.
oL/
On voit donc que, pour
. O
- oL’

on aurat, == o, ét le point /x5 correspondant est le point X, déterminé
par I'équation

oL’
OX,=0Nx —O—l:

Le cone du complexe qui a son sommet en ce point se réduit & deux
plans, dont I'intersection est paralléle 2 OM.
On trouvera de méme

et 'on aura un second point de la surface de Kummer pour

[ om
T o’
c’est-a-dire en prenant sur ON
oM’

Le céne qui a son sommet au point X se réduit 4 deux plans dont I'in-
tersection est paralléle au vecteur OL.
Nous retrouvons ainsi les résultats obtenus précédemment.

Journ, de Math. (3¢ série), tome VIII. — Seprenche 1882, 4o
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7. Formes diverses de I’ équation algébrique de la surface de Kummer.
— 1l est facile d’oblenir I'équation algébrique de la surface (K) &
l'aide de I'une ou l'autre de ses équations vectorielles. Soit, par
exemple, la premiére ’

(9) : L = Px¥Prx,
et posons
¥Prx =Q .
d’on
YVix =v-q.

Si nous opérons sur I'équation (9) avec ¥.0x, nous aurons

m, &' Yrx = Y(PxQPx),
équation qui se préte sans peine aux transformations suivaates :

m,d ' ¥ =qQIFxdbx — x Jq bx,
(Sxdx —m, ' ¥')q=x S dx,
Q=SQ0x(JFxPx — m, d~'¥')'x.

Opérons enfin avec &.0x et nous aurons, aprés avoir supprimé le
facteur o ox, :

SOx(FxOx — m, d'¥-")'x =1,
ou bien

(10) Sx[0' FxOxm, (WD) ]'x =1,
premiére forme de I'équation algébrique de la surface de Kummer.
18. L’équation (g) peut encore se mettre sous la forme

L =m, W(x WY LT 'x),
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et 'on aura les transformations suivantes :

Or = m, (¥ 'LIx¥'x — P 'x Fx¥-'L),
(M, SxW-'x W' — Q)L =m, ¥-'x Fx¥'1,
L=m,Sx VY 'L(m, Fx ¥ 'x ¥ ' — @) ¥'x,

L=m,SX¥'L(m, Sx¥'x — ¥0)'x,

et en opérant avec &.0x et se rappelant qu'on a

SLdx =o,
{11) - Sx(my Fx ¥ 'x ' — W) 'x =o,

autre forme de I’équation de la surface de Kummer.
19. Prenons maintenant la seconde équation vectorielle
m,L =P (Px¥PrL.0x).
Développée, elle donne successivement

m,L = JxdxFOL — FxPYPL x).
(BxPx¥P — m, )1 = JFx ¥ Pr.x,
L=SxOVPL(Fx Px ¥® — m,) 'x,

et, en opérant avec &.9x,
(12) Sx(Bx0x ¥— myd')'x =0,
troisiéme forme de I'équation algébrique de la surfice de Kummer.

20. Les équations (11) et (12) se déduisent I'une de V'autre par le
simple changement de ® et ¥ en ¥~' et = respectivement.
Donc les deux complexes qui ont pour équations

(13) Svds —~Jv¥v=0
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et

(14) Svr-'v—8vd-'v=o0

ont la méme surface singuliére.
On aurait pu d’ailleurs le reconnaitre directement de la maniére

suivante :
I.équation vectorlelle

m,L=P(Px ¥IL.bx)
donne successivement
‘DL = m‘(Q—‘mx' llj'(DLox‘ )y
m,oL = Y(Yox, d¥PLY, ),
et si maintenant nous posons
) L=0"'¥"'g,,
il viendra ’

AIF_'L, = %(x, Q"”I;.X. )!

équation vectorielle qui ne dilfére de I'équation (4) qu'en ce que les
fonctions @ et ¥ sont remplacés par ¥~* et ~' respectivement.

" En faisant cette méme transformation dans ’équation (10), on ob-
tient une quatriéeme forme de I'équation algébrique de la surface de

Kummer,
(15) | $x<$x‘lf“fxll)’— e

21. 1l est facile de développer les équations algébnques obtenues
ci-dessus pour la surface de Kummer.
Soit, par exemple, I'équation (12),

Sx(FxOx¥ —m,d~') 'x =o.
On peut‘ la mettre sous la forme

sxq)(w e )”x=o.
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On a d’ailleurs, & un facteur prés,

" "l._ mé My ‘ Y~
(W«p—m) = Grag — Bras [(mar YO —W0) + (m, )]0~ ¥,

‘en désignant par (m, ¥0) et (m,, ¥®) les invariants m et m, de la
fonction Wo.

En portant cette expression dans I'équation de la surface, celle-ci
devient

(16) my — m,[(m,, TO)Fx0x — JxdWdx]
+ (m, ¥0) Fx ox Fx¥-'x =o.

On transformerait de méme les autres équations de la surface.

22. Plans diamétraux conjugués de la surface de Kummer. Sections
de la surface par ces plans. — Soit x un vecteur ayant méme plan
conjugué par rapport aux quadriques (S) et (S,); on pourra poser

(1) PYPX = sOx.
Mais on tire immédiatement de cette équation
(2) Ox = sW-'x.

Donc un vecteur x, qui satisfait & 'équation (1), a aussi le méme
plan conjugué par rapport & la quadrique (S) et 2 la caractéris-
tique (S,). En d’dutres termes, les trois surfaces (S), (S,) et(S,) ontun
systéeme de trois plans diamétraux conjugués communs : deux de ces
plans peuvent d'ailleurs devenir imaginaires.

[.a forme méme de I'équation (16) de la surface (K) montre que ces
plans sont des plans diamétraux de cette surface elle-méme.

23. Soient alors OA, OB, OC les demi-diametres conjugués sup-
posés réels de la surface (S), dont les directions sont aussi conjuguées
par rapport a (S,) et (S,). '
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On aura
D4 = Pre Ve _ Vs
: A= g Sisc’ Sanc’
d’otr

Seex VB¢ + ScaxVea + Ganx Wan
- Px = .
(548c)?

De sorte que 'équation de la surface (S) peut s’écrire sous la forme
- (DBox)?+ (Fcax)? + (Jasx)? = (Fanc).

On a d’ailleurs

m‘b:__ﬁdu@n@c: ro
: Saxc (548c)?
Ensuite on pourra poser
OYPA=m,s, DA =m..,§§'-:i§§,
OY & = m{%%—g,
[T

d'our -
5. SBcx VB + 5, SeaxVea + 5, Sanx Vas
(8axc) ’

en sorte que I'équation de la quadrique (S,) pourra se mettre sous Ia
forme ’

oV dx=m,

5, ?BCX + 5, F2cax + 5, % ax = S%aBC.

Si OA,, OB,, OC, sont les demi-diamétres de cette surface dirigés
suivant OA, OB, OC, on aura

OA=0A,J5;,, OB=O0B,yJs;, OC=0C,fs,.

On a encore
q)A =M, W-‘ ‘A,
d’ou

P3e $a8c ‘
X R —_—
Fia= Mmes, SABC 5, Wzc,
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et de méme .
$ABC _ 5 ABC
Y-'p="""%cr, ¥ 'c=— s,
32 33
d'ou

yig = Ssex Dse + scaxiea + '5ABX”AB_,
§y Sa Sa

et I'équation de la surface caractéristique (S,) pourra s'écrire sous la
forme
2 2 2
($8cXx) + ($cax) " ($aBx) =($ABC),'
S Sa S8

Si OA,, OB, et OC, sont les demi-diamétres conjugués de cette sur-
face dirigés suivant OA, OB et OC respectivement, on aura

OA,= OAyfs,,
OB, = OB y/s,,
OC, = OC y/s,,

d’our ‘
OA, < OA,=O0A,
OB, % OB, = OB ,

0C, > 0C,=0C .
On aura d’ailleurs

1 S ABc §185953
my= = = .
¥ me-n T SW-IAW-1BW-Ic T (SABC)*

Enfin, on reconnait sans aucune difficulté que (S,) est la polaire ré-
ciproque de (S, ) par rapporta (S).

24. Ceci posé, I'équation vectorielle (4) du § XV peut $'écrire sous
la forme
PL=m,B(xPY¥'L ¥ 'x),

ou bien; en développant le second membre,

L =my(Bx Y x ¥ — Fx ¥ LY 'x).
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Si nous faisons maintenant
dans cette équation, il vient
Pa=m(xV'x¥ 'L —~ FxT'a¥'x),

ou, en tenant compte des notations et résultats du paragraphe précé-
dent,

Sx¥-ix SXBC
QA =my———Pa—m, y-ix
S Mg S g

Cette équation ne peut étre vérifiée que si I'on a séparément

Sxsc=o,

__ Sime. (S.um)’ ,
my $283

Sxv-'x

équations d'une conique située dansle plan OBC et semblable i la sec-
tion faite par ce plan dans la surface (S,). Les demi-diamélres de cette
courbe dirigés suivant OB et OC ont respectivement pour valeurs

OB _ OB, et 0oC _ 0C,

V5 Van o Vm mes

25. Prenons maintenant 'équation
m, L= P(Px WYL Ox)
et faisons dans cette équation & = 4; il viendra
m,a Y (VxPOADX).
Or on a
WOA=1m,54,
et 'équation ci-dessus peut s'écrire

A= s.?ﬂ.('ﬁlx ADx)=1s5,(FxPx.a — Fx Pax),
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N Mdr,
d’oti ot .tﬁ‘é’up

e
\ N
\t

édiatement

Sxda = [Fgxc=o,
s, Jx0x =1,

; SN '
éunu/m seconde conique située dans le plan OBC, et sem-
blable 4 la section faite par ce plan dans la quadratique (S). Les demi-
diamétres de cette courbe dirigés suivant OB et OC ont respectivement
pour valeurs | ‘

A

93 et (.)_g .
Vi Vs,
Le plan diamétral OBC coupe donc la surface (K) suivant deux co-

niques; il en est de méme évidemment pour les deux autres plans dia-
métraux conjugués de la surface.

26. Les deux coniques, sections de la surface par I'un de ses plans
diamétraux, se coupent en quatre points, qui sont des points coniques
de la surface.

La surface (K) a ainsi douze points coniques & distance finie, situés
quatre par quatre dans ses trois plans diamétraux conjugués.

L’équation (16) du n° 21 montre, en outre, que Vintersection de la
surface avec le plan situé tout entier 4 I'infini se compose également
de deux courbes : ce sont les sections 4 Vinfini des cones asymptotes
des quadratiques (S) et (S,). Ces courbes se coupent elles-mémes en
quatre points qui complétent les seize points doubles de la surface.

Nous reviendrons plus loin sur la détermination des points doubles
a distance finie.. |

27. Plansiangenis de la surface (K) aux pointsX etX,. — Cherchons
le plan tangent au point x déterminé par I'équation

oL =W (x¥ Prx).

. Opérons avec SL, et nous aurons

SLPrL=Prx¥ Prx.

Journ. de Math. (3» série), tome YI'l, — Seprempre 1882. 4I
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Si nous différentions cetie équatibn, il vient
SdLor=SVdrx¥¥WPrx + SYrdx¥Prx

=8dLoL + SVrdx ¥ Prx,
d’ou
SVdxLdYrx =o0.

Si donc p est un vecteur paralléle 4 la normale au point x, on aura

(1) Pl V(LY Prx) || YL ¥ Ou,

d’ou .
S pL =o0;

donc le plan tangent au point X contient la paralléle 4 OL mené par ce

point, c’est-a-dire la droite singuliére du complexe, intersection des

deux plans auxquels se réduit le cone du complexe pour ce point.
Mais la relation vectorielle (1) peut encore se mettre sous la forme

>'p || O'VLUYONM || YOLOY Om.

Or @~'p est le diamétre conjugué par rapport a (S) du plan tangent
cherché. Donc le diameétre conjugueé par rapport a (8) du plan tangent
de la surface (K)aupoint X est parallele a la trace du plan tangent a la
surface (S,) au point M sur le plan MON ( fig. 1).,

"~ Deméme le plan tangent en X, contient la droite singuliére du com-
plexe déterminée par ce point, et son diamétre conjugué par rapport &
(S) est paralléle a la trace du plan tangent en L.’ 4 la surface (S, ) sur le
plan LON. -

28. Poinis coniques; cones des tangentes en ces points. — En se
reportant a la construction géométrique de la surface (K), qui a fait
I'objet du § 16, on voit que, si un plan central coupe les surfaces (S)
et (S,) suivant deux coniques semblables, le systéme -des diamétres
conjugués communs i ces deux courbes sera complétement indéter-
miné. On pourra donc prendre pour OL ou OM un vecteur quel-
conque situé dans le plan de ces coniques, etle rapport OL : O/ restera
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constant. Ainsi, aux vecteurs en nombre infini situés dans le plan en
question correspondra un point unique de la surface (K) : c’est un
point double de cette surface, et les considérations qui précédent mon-
trent que la recherche des points doubles de la surface (K) situés a
distance finie revient a celle des plans centraux qui coupent (S)et (S,)
suivant deux coniques semblables.

29. La solution de ce probléme est des plus simples. En effet, si un
plan coupe les quadriques (S) et (S,) suivant deux coniques sem-
blables, on pourra déterminer la constante / de telle sorte que l'inter-
section de (S,) avec la quadratique semblable & (S) ayant pour équa-
tion .

ISxdx=1

se compose de deux courbes planes, c’est-a-dire de telle sorte que le

cone
PUP
S'X(lq)— —’;;')X =0

se réduise 3 un systéme de deux plans. Mais I'équation de ce cone peut
s’écrire sous la forme

(I —s, )(Sincx)*—i— (I~ 8,)(Veax)?+ ({—s,)(Jaex)* =0,

et, pour qu’il se réduise & un systéme de deux plans, il faut que / soit
égal 4 I'une ou l'autre des trois constantes s, s, et s,.
Soit, par exemple, [ = s,; 'équation ci-dessus devient

(8, — 83)(Bcax)? + (s, — 8, ) (JaBx ) =0,

et elle représente un systéme de deux plans passant par le diamétre OA.
On trouvera de méme deux plans analogues passant par chacun des
deux autres diamétres conjugués de la surface.

30. 11 est facile de reconnaitre analytiquement que, lorsque le vec-
teur L se meut dans P'un des plans que nous venons de déterminer, les
points correspondants X ne changent pas, et que ce sont deux points
doubles de la surface de Kummer. :
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En effet, de I'équation vectorielle

L =¥ (x¥ Yirx),

on tire
x| P(OLY ¥ L)
ou
X || LSLOVOL — YOL JLPL,
et
(1) Ox || oL SLI¥PL — OFDL SL DL

Mais l'équation de I'ensemble de deux des plans qui coupeﬁt les
quadratiques (S) et (8, ) suivantdeux courbes semblables étant

Sx(PYP — mysP)x = o,
on peut poser, si les plans considérés sont réels,
Ix (¥ —m,s0)x = 2m, g SEx DFX,
E et F étant les vecteurs unitaires normaux a ces plans, et 'équation
SxOV0x = m,
de la surface ($,) pourra s'écrire sous la forme

s&xPx +2gFexJrx =1,
et 'on aura

m’—¢®‘lf¢x =s0x +g(FSEX+ESFx).

Soit maintenant L un vecteur de la surface (S) situé dans le plan
SEx —o0; on aura
SEL=o,
et, par suile,

I
’—n;@W(I)L =sPL + gL & vr,

SLOVOL =mys SEDL =m,s.

(&)
~—
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L’équation (1) donnera donc

Ox || sOL — — OWOL || E,
me

ou
x| &'k,

Aipsi le point x est bien situé, quel que soit L, sur le diamétre con-
jugué par rapport a (S) du plan dans lequel se meut ce vecteur.
On a d’ailleurs [équation (6) du § 16]

meSudn 1

SxOx = Fovew = 5

’
en vertu de 1'équation (2); donc le point X est bien un point fixe.

31. Cherchons maintenant I'équation du cone décrit par la normale
a la surface (K) en ce point. -
Si v est 'une des normales, on aura

Y| Y ¥OL | Y(VEdL. WOL),
ou
Y| L SEVYOL — ESLOVOL.
Orona
SV =m,gSeL FEd ',

SLOTDL = m,s;
donc on a
Y| g SFL&ed ' EdL — sE,

et I’on pourra poser
Y=Fk(gSrLSEO'EDL — 5E).
Opérons sur cette équation avec §.L et $.97'E, et nous aurons

Sy =kgSrLSed'E,
Y 'E= ~ksJed ',
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-d’ou, en éliminant £,

SSLY + gL YFO ' =0,
On a d’ailleurs
SEL = o,

SeYdL = o.

En éliminant enfin L entre les équations qui préceédent, il vient pour
I'équation du cone cherché

SE0WEev(sv + grSv'e) =0,
ou

sSWEvOPey + g VO 'e SVer®¥Pey =o,

équation d'un cone du second ordre, réciproque du cone enveloppe
des plans tangents 4 la surface au point X.

32. On voit, d'aprés ce qui précéde, que si x, est le vecteur de ce
point singulier, I'expression

ox = &x — Y(x, ¥ Vxx,)
se réduit a zéro pour tout vecteur situé dans le plan
(r) SEx =o0.

La fonction 6x est alors une fonction linéaire 4 un seul terme, et le
cone du complexe qui a son sommet au point singulier considéré se
réduit 4 un systéme de deux plans coincidents paraliéles au plan (1).
Ainsi donc les plans singuliers de la surface de Kummer sont les points
pour lesquels le céne du complexe se réduit 4 un systéme de deux
plans coincidents.

33. Equations tangentielles de la surface de Kummer. — Soit

(1) Jxy =1 |



SUR LES COMPLEXES DU SECOND ORDRE, 327

I'équation d’un plan; nous appellerons, comme d’habitude, équation
tangentwlle d’une surface une équation en y vectorielle ou algébnque,
qui exprime que le plan (1) est tangent 4 la surface.

I’équation (1) représente le plan polaire du pomt Y par rapport 4 la
sphére de rayon égal & I'unité ayant son centre i l'origine; donc, si
dans I'équation tangentielle d’une surface on regarde ¥ comme le vec-
teur d'un point variable, elle représentera I'équation de la polaire réci-
proque de la surface considérée par rapport 4 la sphére unitaire.

34. Ceci posé, on sait que la surface (K) est 'enveloppe des plans
dans lesquels la courbe du complexe se réduit 2 un systéme de deux
points. Nous obtiendrons donc l’equatlon tangentielle dela surface de
Kummer en écrivant la condition qui exprnme que la courbe du com-
plexe située dans le plan (1) se réduit a un systéme de deux points :
cherchons cette condition.

Si dans |’équation du complexe

Sudv —JvPv=o,

nous remplagons v par Yvy, il vient
(1) SVvydPvy —Svedv=o,

et l'on sait que, si 'on regarde v comme un vecteur variable, cette
équation représente le cone réciproque de celui qui a son sommet a
Porigine, et qui passe par la courbe du complexe située dans le
plan (1).

Si cette courbe se réduit 2 un systéme de deux points, le cone (2) se
réduira lui-méme 4 un systéme de deux plans, c’est-a-dire que pour
une valeur L convenablement choisie de v, on pourra poser

(3) Yo=Y (r0¥ry).

Cette équation est une équation tangentielle dela surface de Kummer.
On voit qu'elle ne différe de I'équation ponctuelle

(I)],%'ﬂ]()( ‘FmLX)
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que par le changement de ® en ¥ et de ¥ en @. Nous pourrons énoncer
sans démonstration les résultats corrélatifs de ceux obtenus précédem-
ment.

La surface a une seconde équation tangentielle vectorielle qu’on
peut écrire sous la forme

myL= Y(Vy7,0¥L¥y,).

On peut encore, en utilisant une remarque faite précédemment
(n° 20), écrire les équations tangentielles de la surface sous la forme

o't =Vv ' Yry,
L=m, W (Vy, T '0-'Ld'y,).

L’équation tangentielle algébrique peut s'écrire sous 'une ou I'autre
des quatre formes

SY(¥'FYVY —m, V'O )y =,
- ! e
$Y($Y® ’Y‘D—TMQ)‘I@) Y=1I,

SY(m, YOy W) — @) Y. =0,
SYITYY? - m,¥-')y=o.

Et Yon voit que les surfaces singuliéres des complexes ayant pour
équations
Suvdv —FJv¥v =o,

Sudtu— FvU-iv=o,
sont polaires réciproques par rapport 4 la sphére unitaire.

35. 1l est facile de revenir de V'une des équations tangentielles de
la surface & I'ane de ses équations ponctuelles, ce qui fournira, pour
le cas particulier que nous étudions, une démonstration du théoréme
général de Pliicker cité plus haut, & savoir que la surface liew des
points singuliers d’un complexe du second ordre est identique a la surface
enveloppe de ses plans tangents singuliers.
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Prenons, par exemple, I'équation

| (4) SY(%’Y‘FYIF“Q—m.vllf“Q-'llf")“yz I,
et posons :
(SYWYV' — m, W' 0~ W)~y = ¥'r,
d’ou '
(5) Y=8Y¥y.T— m, W' d'r.

L’équation (4) devient alors,

(6) SY¥r=1,
ou bien
(7) SYUrSTUr — m, F1d't = 1.

329

Si maintenant nous différentions I'équation (5), et que nous opérions

sur le résultat avec &. W', il vient

SdYVr — 28dy ¥y STUT — SYVY Sdr¥r +m Fdr 't = o.

Différentions également I'équation (7), et nous aurons
Sde Ty FTUT + Y Vv FdrWdr — m, Fdrd' 1 =o.

En ajoutant les deux équations qui précédent, il vient

S‘dv‘P‘T — S8dy Uy 8T¥T =0,
on

Sdy(¥r — Sr¥r¥y)=o.
On a d'ailleurs, quelle que soit la différentielle d,

Sxdy=o;
donc, on peut poser
' kx =8T¥r¥y—¥r.

Journ. de Mathk. (3° série), tome VIII, — OctoBRe 1882. 42
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En opérant sur cette équation successivement avec &.1et &§.¥'x,
elle donne, en tenant compte des résultats qui précédent,

Sxr=o,
ESxT-'x =81 VYr.

On a donc enfin
ST
WX—%TWTWY—WT.
d’ou
U

X
Ry = R TT T

h( P-ix

" < = v-ix T
t = Bxv-Ix T Sxvr

1 1
Sx r-1x + S5T¥T

SY‘FY:

En portant ces valeurs de v et de §v Wy dans 'équation (5), il
vient
x=(¥—mIFx¥'x0 "1,
d’otr
T=(¥—m, Sx¥'x0')'x,

ou enfin, en opérant avec §.x, .
‘Sx(m.,.,%'xllf“ x0~' — ¥)'x = o,
équation identique & I'équation (11) de la surface (K) du § 18.

36. La construction géométrique de la surface (K) & I'aide de ses
plans tangents se déduit sans peine de ce que nous avons exposé plus
haut relativement & la construction de la surface par points; il nous
parait donc inutile d'y insister.

Nous nous bornerons de méme & faire remarquer que la surface a
seize plans tangents singuliers, dont quatre passant par le centre, qui
la touchent suivant des coniques. Ce sont les plans singuliers dans les-
quels la courbe du complexe se réduit 4 deux points coincidents.
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37. Equation générale des complexes du second ordre qui ont la sur-
Jace (K) pour surface singuliére. — La droite singuliére du complexe

1) Sudv — Jvdv=o,

qui touche la surface (K) au point M, n'est pas déterminée par la sur-
face elle-méme : c'est I'une quelconque de ses tangentes en ce point.
Nous allons démontrer qu'on peut choisir & volonté une autre des
tangentes de la surface (K)au point M et déterminer un nouveau com-
plexe du second ordre ayant cette tangente pour ligne singuliére et la
surface (K) pour surface singuliére, ou, en d’autres termes, que la
surface (K) est la surface singuliére d'un nombre infini de complexes
du second ordre.

Soit (U, v) la droite singuliére du complexe donné (1) qui corres-
pond au point M de la surface (K). On reconnait sans peine (§ 27)
que le plan tangent au point M contient non seulement cette droite
elle-méme, mais encore celle qui a pour coordonnées — Wv et ®u. De

sorte qu'une tangente quelconque de la surface (K) au point M a
pour coordonnées

U, =c¢U — Wv,
(2)

v,=¢v + dv,

¢ étant un nombre arbitraire.
On a, d’ailleurs,

(3) : Sou¥v = o;

on voit donc que les lignes singuliéres du complexe donné forment
une congruence du quatriéme ordre, représentée par l'ensemble des
équations (1) et (3). .

Ceci posé, les équations (2), résolues par rapport 4 u et v, donnent

I

(¥ + 6*)~' (¥v, +6U,),

‘ U
@) (v= (¥ +6*)"*(ov, — Du,). -

v

Il
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L’équation (3) peut d’ailleurs se mettre sous la forme
(5) - Su(d¥ +a?)v=o.
_Eliminons enfin u et v entre les équations (4) et (5), et nous aurons

S(¥v,+0u,)(P¥ + ¢ (ov, — 0U,) =0,
ou bien

O$U‘(¢W.+ o")—i du, — aSv.lp‘(qnp 4 c’)"‘v,
+3‘ITV.(@‘P'+ qﬁ)—iqm‘ — G’SU.(Q‘F+ G?)—-iv' =0,

ou enfin, aprés des réductions faciles et en supprimant les indices,
(6) Su(P¥+0?) ' Pu— 2680 (P¥+c*)'v— SVW(Q¥ +6*)'v==0.

Pour une valeur quelconque de o, cette équation représente un com-
plexe du second ordre qui a évidemment la surface (K) pour surface
singuliére.

L’équation (6) est du quatriéme ordre par rapport & ¢; donc il y a
quatre complexes du second ordre ayant la surface (K) pour surface
singuliére, et contenant une droite donnée quelconque (u, v).

Pour ¢ = » , I'équation (6) devient

Sudv - Jv¥v=o,
et, pour ¢ = 0,
Sv¥'v—-Jvdiv=o.
Nous retrouvons ainsi le complexe donné et celui que nous avons déja
obtenu prééédpmment : la droite singuliére relative & ce dernier com-
plexe a évidemment pour coordonnées — W'v et ®v.

38. Parmi les complexes en nombre infini que représente I'équa-
tion (6), il y en a six qui se réduisent 3 un complexe linéaire.
En effet, si on développe le premier membre de I'équation (6) en
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suivant la marche indiquée au § 23, on obtient sans difficulté

(S8cu)? (Scau)? (S asu)?
Mes, + o Mg Sy~ of Mo Sy—+ o?
SBcu Sav Sicav Sav
{4+ Sanc ’ ’ SABU Scv
mes,+ 6 MySq—+ 0 Nty S3—+ o?
8 (Sav)? $;(Snv)? s3(Sev)
Mmes +a* * Mesy+0t | mesy+ot

(7)

00

Si I'on pose
m,s,+ ¢*=o,
cette équation devient

(&BcU)? — 26 & aBc FvcU Fav + ¢*(Fanc)? (Fav)? =o,
ou .
(SBcU — ¢ Fanc Fav)’ =o,

et I'on voit qu’elle représente I'ensemble de deux complexes linéaires
réunis en un seul.

Les complexes linéaires qu’'on obtient ainsi en remplagant, dans
I’équation (7), ¢ par 'une quelconque des valeurs tirées des équations

m,s, + 6*=o,
m,s, + 62 =o,

myS;+6*=0

sont ceux que M. Klein appelle les complexes fondamentaux. du sys-
téme des complexes du second ordre représentés par I'équation (6), et a
l'aide desquels il démontre d'une maniére trés élégante les propriétés
des complexes généraux du second ordre et de la surface de Kummer
(Mathematische Annalen). Nous reviendrons dans un prochain Meé-
moire sur cette importante question.

39. Si nous supposons.que T'une des fonctions @ ou ¥ devienne
égale 4 'unité, les résultats qui précédent fourniront une démonstra-
tion des propriétés bien connues de la surface des ondes de Fresnel :
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I'équation vectorielle de cette surface se présente alors sous les formes
simples

dL=¥x 'ﬁl LXx,

L=Wxo0'WYrx,

»

qui ne nous paraissent pas avoir été remarquées.




