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DÉVELOPPEMENTS EN SÉEIE DES FONCTIONS D'DNE VARIABLE. 291 

Sur les développements en série des fonctions d'une seule 

variable; 

PAR M. G. DARBOI V 

I. 

On donne ordinairement, dans les cours de Calcul infinitésimal, 
différentes formes du reste de la série de Taylor qui s'appliquent seu-
lement au cas où la variable suivant les puissances de laquelle on dé-
veloppe demeure réelle. Je vais d'abord montrer que les mêmes formes 
demeurent applicables avec de très-légères modifications, quand la 
variable et la fonction prennent des valeurs imaginaires. 

Je m'appuierai sur le lemme suivant : 

Imaginons qu'un mobile M se déplace sur la droite AB, toujours dans 
le même sens, de A vers Β par exemple; et qu'un point m dont le mou-
vement est lié à celui du premier décrive d'un mouvement continu une 
courbe acb quand le point M va de Κ à B. Je dis qu'il γ aura au moins 
mie position des points correspondants M, m pour laquelle le rapport 
des chemins infiniment petits ds,, dp, décrits en même temps, ds, parle 
point m, dp, par le point M, sera supérieur ou égal au rapport de la 
corde ab à la droite AB. 

En effet, si l'on avait toujours 

^<âb' 1 <ÂB Ρ 

on aurait, en intégrant entre les limites extrêmes, 

arc acb < ou arc acb < ab, 

ce qui est évidemment absurde. 
3
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Le lemme est donc démontré. Nous ferons remarquer que, si la 
démonstration suppose que M se meuve toujours dans le même sens, 
elle demeure valable alors même que le point m rétrograderait sur la 
courbe qui lui sert de trajectoire, l'intégrale fds, représentant la lon-
gueur totale du chemin décrit par le point m, et cette longueur totale 
étant toujours supérieure à la corde ab. 

Imaginons que les points M, m servent de représentation à deux 
fonctions de variables imaginaires: M a une fonction φ (z), m a une 
autre fonction f{z). Admettons que, lorsque z varie de z

0
 à z, d'une 

manière déterminée, le point M, qui représente φ(ζ), décrive un seg-
ment de droite AB toujours dans le même sens. On aura ici 

°± = mod/_Mr/y. 

Quant au rapport il est évidemment égal à 

mod» (») 

Il existe donc, d'après le lemme, au moins une valeur ξ de z, corres-
pondant à une valeur de φ (z), représentée par un point M du seg-
ment AB, pour laquelle on a 

mod
.4^>mod.44^j. 

On peut donc poser 

M /(»■)-/(«■) ->/'(*), 

λ désignant ici et dans toute la suite de ce travail une quantité ima-
ginaire inconnue dont le module ne dépasse pas l'unité. 

Appliquons cette formule générale au cas où l'on prend 

φ{ζ) = {ζ - ζ„γ. 
Quand le point z variera de z

0
 à z, suivant la droite z

0
 z,, le point qui 

représente φ(ζ) décrira aussi une droite. Nous sommes donc dans les 



DÉVELOPPEMENTS EN SÉRIE DES FONCTIONS D'UNE VARIABLE. IÇFI 

conditions supposées, et, en appliquant la formule (i), nous trouvons 

/(»■)-/(».) ζ_λ /'(£) 

La valeur de ξ, qui figure dans le second membre de cette équation, 
est représentée par un point du segment rectiligne z

a
 s, ; elle est donc 

de la forme 
z

0
 -+- (ι — θ)(ζ, — z

0
), 

θ étant réel, positif et plus petit que l'unité. On a donc 

(^) A*,) -/(*.) = ;$
î
=^k/'

[

5
· + (> - *)(«. - ν;]· 

Pour ρ — i, on trouve 

(3) /(*<) ~/(z«) = λ0· - zo)/'[zo + (ι - 0) (*, - *»)]· 

Cette formule ne diffère de celle des accroissements finis pour les fonc-
tions réelles que par la présence du facteur λ, de module ne dépassant 
pas l'unité. 

Appliquons ces résultats à la fonction suivante : 

Ψ (χ) = ψ (a 4- h) — ψ (a -h h — χ) — χ φ'(a 4- h — χ) — ... 
: ψ"(α -+- h — x), 

ου ψ', ψ", ■■·,<?" désignent les dérivées de ψ. On a, comme on sait, 

JT** f**' (n -h h — X 

et, par suite, en appliquant la formule (2) et y remplaçant z
0
 z, par 

les valeurs zéro et h de χ, 

Ψ(Λ) - Ψ (ο) = λ
 ^7

 ?Μ+
'
(α + 6h)

' 
ou bien 

(4) ?{α+ Ιή=ψ{α) + k<p'{a) + ~φ"(a)
 τ ψ"(

α
'> 

+ λ *""(ι

 ?"+'(a -+- Qk). 
1f * 
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En remplaçant a par zéro et h par x, on obtient 

(5) ? (χ) = ψ (ο) + χψ' (ο) +... + ̂  (ο)·+ λ (βχ) ■ 

Ces formules ne diffèrent que par la présence de λ de celles qui sont 
relatives aux fonctions réelles de variables réelles. 

Il est très-facile de faire des applications des résultats qui précèdent. 
Les fonctions ez, sinz, cosz, L(i -t- z), (1 -+- x)"1 peuvent être définies 
directement. Leurs dérivées s'obtiennent sans difficulté. Les formules 
que nous proposons permettent d'étendre, pour toutes ces fonctions 
traitées dans les éléments, les développements en série au cas où la va-
riable indépendante prend des valeurs imaginaires. Si l'on considère 
en particulier (1 -t- z)m, on retrouvera tous les résultats donnés par 
Abel, dans son Mémoire sur la série du binôme. L'étude du reste ne 
laisse subsister qu'un seul cas douteux, celui où le module de ζ est 
l'unité, et où en même temps la partie réelle de m est comprise entre 
— 1 et zéro. Mais un théorème donné par Abel, précisément pour cet 
objet, permet de lever la difficulté, et la série du binôme se trouve 
ainsi établie dans toute sa généralité. 

II. 

Avant de passer à d'autres applications, nous allons déduire une 
conséquence nouvelle de la formule (t). 

Considérons l'intégrale rectiligne 

J j'(x)f[x)dx, 
a 

dans laquelle on suppose les limites réelles, /(x) positif et f(x) une 
fonction imaginaire quelconque. Alors, en désignant par x, une valeur 
intermédiaire entre a etar, on aura, d'après la formule (1), 

— =x/(x; .)f H =λ f(x, )■ 
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Ainsi l'on a 

(6) f f{x)<p(x)dxz=l<p(x,)f f(x)dx. 

C'est l'extension d'une formule connue relative aux variables réelles, 
et il est facile de la démontrer directement. 

En effet, soit x{ la valeur de χ qui donne à ψ (χ) la valeur de pl us 
grand module p.,. L'intégrale 

fXf{x)f(x)dx 

ne peut qu'être augmentée,y (x) étant positif, si l'on remplace ψ(χ) 
par μ,. Elle est donc plus petite cyie 

v-if*f(x)dx> 

et, comme μ, est le module de φ(χ, ), elle est par conséquent égale à 

λ? (x,) J rj(x)dx, 

λ désignant une quantité imaginaire dont le module ne peut dépasser 
l'unité. 

Cela posé, considérons la fonction de t 

ψ(t) = ιyn{f) j{x -t- ht) — hon"' (t)f{oc -+- ht) 
+ h2(p"~-(t)f"(x ht) — ... -H (— \)nh"φ (t)f"(x +- ht), 

où y(<) désigne un polynôme du degré n, et ψ, ο",..., Φ*"1, ψ" les dé-
rivées successives de ce polynôme. Quant à J\x), c'est une fonction 
quelconque réelle ou imaginaire ainsi que les variables χ et h. On aura 

ψ'(/) = (- i)ahn+lf{t)f"^{x -t- ht) 

et, par suite. 

Ψ (ι) — Ψ (ο) = (— ι)"Λ"+ι Ç. φ(ΐ) f"+' (χ + ht)dt. 
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Si nous substituons les valeurs de Ψ(ι), Ψ(ο), nous obtenons la 
formule 

(7) 

?m{°)[J{x + ù)-/(*)] 
= h + Λ) - φ"-> (ο )f'{x)] 

^ + Λ)- ?-»/»] +... 
+ ί — ι)"-1 hn[aii)fn{x + A) — <p(o)J"(x)\ ■+■ R,„ 

où l'on a 

R„ = (— i fh"*' f'(p(t)y+,(x + ht) dt. 

Cette formule servira de base à nos recherches. En faisant diverses 
hypothèses sur le polynôme ψ (<), nous allons obtenir la plupart des 
séries connues et d'autres nouvelles, avec des formes du reste appli-
cables au cas où les variables sont imaginaires. 

En prenant ç>(t) = (t — 1)", on retrouverait la série de Taylor : je 
n'insiste pas sur celte hypothèse déjà examinée. 

Remplaçons η par m et prenons 

ψ (0 = - ')"> 
nous aurons 

j(x + h; —f{x) 

= -J \fU 4- h) +/'(*)] - ^ [fix + A) -/» J + ... 

_+_( _ ,\P-« "Ί* - 0-· ·("—/> + 1) hf 

χ [//>(·* + Λ) + (— ιΥ~'/ρ{χ)] +··· 

+' - ^(^4···^
 f/n(

-
r+Λ)+(- ir'f"ixy\+κ-

où le reste est donné par l'équation 

1.2...2nR
2
„ = (—i)"A2"+l f tn(i — t)njln+,(x + ht)dt. 

Or on a 

f l"(i — t)ncit = V'2 r~, 
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donc, en appliquant la formule (6), on obtient 

« — ! ,V λ·/ίΜ+' /*"·'(* +β*) 

La formule (8) nous paraît intéressante. Elle montre en effet com-
ment, en calculant seulement, η dérivées, on peut obtenir une approxi-
mation de l'ordre h2H+l. Par exemple, én y faisant successivement 
h = i, 2, 3, on trouve les formules suivantes : 

/(·*" ■+■h ) -/G*') = ^ l/V) + /'(·* + A)] - ~ λ/*(* + β A). 

f{x + k)-J{x) 

- \ U'I
X

) + /(■* + A)] - ~ [/"(.R 4- h) -/"(*)] 

720 Vi* âr 6h)> 

/(jp-Î-A)-/W 

= 5 [/» + /'(* + A)1 - £ [/'(X + A) -/'(X)! 

+ — [/"(* +h) +/"(*)] - · 

Remarquons, de plus, que le reste est affecté d'un coefficient numé-
rique beaucoup plus faible que celui de la série de Taylor. 

Si maintenant nous revenons à la formule fondamentale et que nous 
prenions 

ι.2...ηφ(ζ) = ίζ -+- ' 

nous aurons 

(9) 

f(x + h)-f{x) = ——[/'{x ■+· A) — rf'(x)] 

- V"{* + Λ) - '-2/"(^)j H ··· 

+ + *) - '*/»(*)! + »-» 

720 Vi* âr 6h)> 

Journ. tie Math. (3E série), tome II. — SEPTEMBRE 1876. 38 
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Supposons, pour fixer les idées, r positif et fractionnaire. Le poly-
nôme tp(t) demeurera positif. On aura 

Jo \ l —r/ «-ht (1 —rf 

et, par suite, 

R„ ~ d ! -fn+' (x -+- Oh). 

La formule (9), à part la forme du reste, est une conséquence de 
la série de Taylor. Elle sera surtout applicable quand les dérivées 
successives seront telles que les différences qui figurent dans la for-
mule soient très-petites pour une valeur convenablement choisie 
de r. 

III. 

Nous allons examiner des applications d'un autre genre. La for-
mule (7) contient 2 η coefficients qui sont les dérivées de φ(ΐ) pour 
t = ο, ί = i. Cherchons, s'il se peut, à rendre égaux plusieurs de ces 
coefficients. Voyons, par exemple, s'il existe une formule dans laquelle 
figurent seulement les différences_/

p
(.r -4- h) —fP(x)· 

Pour qu'il en fût ainsi pour toutes les dérivées, il faudrait que les 
dérivées du polynôme <p(t) eussent la même valeur pour t — o, t = 1, 
ce qui est impossible; car on aurait alors 53(1 -l- t) = y(t), quel que 
soit i, résultat absurde, aucun polynôme n'étant périodique. Mais 
nous allons voir qu'on peut approcher beaucoup du résultat cherché 
et rendre égales toutes les dérivées du polynôme ψ(ί) pour t — ο, t = i, 
sauf l'avant-dernière. Cherchons, en effet, un polynôme jouissant de 
cette propriété. On aura 

? (*) = ? (0) + 7 f' (o) + · · · + (°) + ÎS ' 

?(< + !) = ?(0+ 7 ?'(')+■■■+ '(')+ .T'
0

!' 

Pour que toutes les dérivées soient égales pour t ~ o et t — 1, sauf 
la η — il faut et il suffit que la différence ψ (f -t-1) — φ(ί) ne con-
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tienne que le terme en la V Ainsi le polynôme cherché doit satisfaire à 
l'équation fonctionnelle 

<p(x -M) — f(x) = kx"~', 

et, comme on peut le multiplier sans inconvénient par une constante, 
nous écrirons 

ψ[χ -t- 1) — y(x) — nx"~*. . 

Or le polynôme satisfaisant a cette équation fonctionnelle est bien 
connu. Si χ est entier, on déduit de l'équation précédente 

<p(x 4-1) — φ(χ) = nx"~\ 

ψ(χ) — φ (χ — ι) = n(x — ι)"*', 
.......................... 

φ(2)-φ(ΐ) = ηιΗ-', 

?(ι) ?(o) — ο, 

et si l'on prend φ(ο) = ο, on voit que pour χ entier on doit avoir 

γ(χ 4- Ι) = N[X"-' + (Λ- — Ι)"-1 4-...4- 2"'' 4-

Donc notre polynôme cherché est, à une constante près, celui qui 
donne la somme des puissances semblables des nombres naturels. On 
voit par quelle voie naturelle nous allons être conduits à la formule 
de Maclaurin. 

La somme des puissances semblables des nombres naturels a été 
donnée, pour les onze premières puissances, par Jacques Bernoulli, 
dans l'Ars conjectandi. On pourra consulter le Traité de Calcul dif-
férentiel de M. Bertrand (p. 352), où se trouvent établies les princi-
pales propriétés du polynôme de Bernoulli. En désignant par ψ

η
(χ le 

polynôme de rang n, on a 

Φ„(χ) = χ" — ςχ"~1 4- η
2
Β,χ"-2 — ra

4
B

3
j:"-i + η

6
Β

5
.ΐ"~" —..., 

le dernier terme contenant toujours χ en facteur; n, n
2

, n
t
 étant les 
38.. 
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coefficients de la puissance niime du binôme etB,, B
3

, B
Sf

... les nom-
bres de Bernoulli [*]. 

En substituant les valeurs des dérivées de <p„(x), pour χ — ι, 
χ — o, dans la formule fondamentale, on retrouve la formule célèbre 
de Maclaurin 

(IO) 

+ h) -/(*) ~ \ [fix + h) ~ f'{x)\ 

A) -/'(*)] 

+ (- ')"B— lr»-*ix+h)-p-> x)]-R
s

,„ 

où 

(") ^21 I .2. . .2it j' 

On sait que y
t
„(t) garde son signe de zéro à ι. On connaît son inté-

grale. En appliquant la formule (6), nous aurons 

- 'Γ' /ΪΛ+,(χ+ Oh), 

λ pouvant être supprimé dans le cas des variables réelles. 
On ne paraît pas avoir remarqué que cette formule de Maclaurin 

est, au fond, une formule de développement pour toute fonction im-
paire de x. C'est ce qu'il est aisé d'établir. Remplaçons-y d'abord χ 
par — x, puis h par 2X, elle deviendra, en réunissant dans le premier 
membre les termes qui contenaient f'(x), 

ter /•(*)+/(-*)] 

-/(*) -/( - *) + [/"(*) *)] + -
feÏrE if2n--2(*) -/2"-2(- *)] + R=„, 

OÙ 

R,
n
 = —— f χ-H 2xt)dt. 

[*] La notation de ces nombres n'est pas bien fixée; plusieurs géomètres les dési-
gnent par d'autres indices Β,, B„ B

IV
... 
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Si nous changeons, dans le reste, t en ι — i, et si nous nous rappe-
lons que φ

2
„(ί) = <p2«(' —

 ')»
 llous aurons également 

Ra" - T.TT^T X (χ ~ 2 xt )Λ 

et, en faisant la demi-somme des deux expressions de R
2
„, 

R2
" ~ ΓΓJ

u
 - 2·**) + /2"+'(~ * + 2Λ7 )|<&. 

Les formules précédentes ne contiennent plus que la seule fonc-
tion —*")> qui est impaire, et ses dérivées. Remplaçons 
f{x) — f{— x) par le seul symbole/(.r), désignant une fonction im-
paire, nous aurons 

(12) 
·*/'(*■) =/(*) + ~{2X)V(X) +■■· 

9 12/1—J 2/1—9 (J:) 4- R 2/Î1 

OÙ 

(i3) 
Rjn==

 i.a...an j
0

 X ^ 2Xt)dt, 

R
2
«= (- 0"+' — ρη+,;οχ). 

Prenons, par exemple, j(,r) = sin.r. Nous aurons, en divisant tous 
les termes par sin.r, 

XCOtX = 1 — Ι 2Λ7"]1 _ —Βί (ji)1... 

BiwIJI)*"1 COSx9 

On sait que la série est convergente tant que χ est réelle et infé-
rieure à π. Quant à l'erreur commise, elle est toujours égale au terme 
auquel on s'arrête multiplié par 

λ X COS χ θ 

sinx 
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On voit que, si χ est réelle, l'erreur commise est plus petite que le 

premier terme négligé multiplié par 

Si l'on remplace χ par - y* — ι, on trouve 

x\t— e~' X 2) 1.2 1.2.3.4 

C'est le résultat de Cauchy, car la première des formules (13), don-
nant l'erreur commise, montre qu'elle est toujours de même signe 
que le premier terme négligé. Elle est donc par conséquent inférieure 
à ce terme. 

On fait remarquer, d'ordinaire, que la série de Maclaurin est rare-
ment convergente. On peut préciser cette affirmation un peu vague de 
la manière suivante. On sait que 

B

—' = Ϋ
,
-·Π"(Ι «,), 

ε„ tendant vers zéro avec i· Il suit de là que le terme général de la 

série (12) est de la forme 

(- I)"
+
' ~r1{lixnfnfin{x). 

Dans le cas où la série de Maclaurin est convergente, il doit tendre 
vers zéro. On doit donc avoir 

(4 XNY"F2N(X) = U
N

, 

u
e
 tendant vers zéro avec Il suit de là que la série qui développe 

/(x + h)+f(x-h) _ y/''(χ)*" = y », ( h y 

sera convergente pour toutes les valeurs de h. Ainsi : 

Une condition nécessaire, mais non suffisante, pour que la série de 
Maclaurin soit convergente, c'est que la Jonction j[x -H h) +J(x — Λ) 
soit développable en série convergente ordonnée suivant les puissances 
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de h pour toutes les valeurs de h, et par conséquent qu'elle ne de-
vienne ni infinie, ni indéterminée pour aucune valeur finie de la va-
riable h. -

En revenant aux notations habituelles et à la formule (10), on voit 
qu'elle ne sera convergente que si la fonction 

J'\x -t- h -t- k) -t- f{x -+- h — k) — j\x -+- k) — f{x — k) 

est développable en série convergente, suivant les puissances de k, 
dans toute l'étendue du plan, et par conséquent ne devient jamais 
infinie ou indéterminée quand k varie. 

Ainsi la série de Maclaurin pourra bien être convergente (et il est 
facile de voir qu'elle le sera) pour des fonctions entières de e*, sinar, 
costr, sinf(x), ef{x)f{x) désignant un polynôme; mais elle sera di-

vergente pour les fractions rationnelles, pourtanga: 

IV. 

Revenons à la formule (7), qui nous a servi de point de départ, et 
choisissons le polynôme qui y figure, en le soumettant à d'autres 
conditions. Exigeons, par exemple, que, dans la formule (7),fp(x) 
et j

p
[x-\-h) aient le même coefficient et n'entrent que par leur 

somme. Le polynôme Ψ„(;τ), qui permettra d'obtenir ce résultat, 
devra satisfaire à l'équation fonctionnelle 

Ψ
η
(χ -ι- L) -t- Ψ„(Λ·) — 2X". 

Celte équation, différentiée ρ fois, donne en effet, pour χ — ο, 

»{(l)=— Tî(o). 
« 

Il reste à obtenir le polynôme satisfaisant à l'équation fonction-
nelle proposée. On l'exprime facilement au moyen de la fonction 
ψ„(χ) de Jacques Bernoulli, employée dans l'article précédent. En 
effet, si l'on pose 

('4) li
"V

X
) — „

 + 1
 [?"+' (

 2
 ) (2)]' 
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on a un polynôme d'ordre η qui, comme on le vérifie aisément, satis-
fait à l'équation proposée. Si l'on remplace ψ

η+ι
 par son expression 

connue comme dérivée niimt, on trouvera aussi 

Ψ„(χ) ~ pour M = o. 

Or on sait que l'on a 

a η au « Β, ν* , , ■ 

_tB—■ (a"-0«
M
 + ..·. 

En multipliant par e*" et prenant la dérivée η ■+■ qui sera le 
coefficient de «Λ+ι multiplié par i.a.3...n -+- i, on trouvera 

= x" — ^ (a* — 

+ (- ~ 1 )-(" - + -H··.. 

On déduit de là les dérivées de Ψ„ pour χ — ο, et, en substituant 
dans la formule (7), on obtient 

(t5) 

/(* -H /1) -f[x) 

= aB,(,a'
a
-1)*r /'(«)+/'(x + A)l 

14 »■M»'-')* y (X) +/•(* + Ai] 

+(-'Ζ'" 2ΒΤ'ϋ3·Τ·
3
Γ" ζ/2"" (*) (*+*)] +R-

où 

*- = + Αί)Λ· 

Remplaçons Ψ
!;ι

{ί) par son expression (r4), nous aurons 

R
*" - T^T^n £ \?

1π
+' (~ï~) ~~

 ?2
"
+

' (
3
)]-Z

J,,+,
^
r + ht)dt

' 
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expression que l'on ramène facilement, par des changements dé va-
riables, à la forme 

R

>» = ,~
(

.3
Λ
Π £ (* + *ht) + / (x + h- ihi)\dt. 

Le polynôme φ
2
„
+ι

 (<) conserve son signe entre zéro et et son in-
tégrale entre ces limites est, comme on sait, 

<· 1 [n+ 1)^-1-' D*w 
On a donc 

R-=(-')" v™ (* ■+■+fin+i (·*·+h -

La formule (i5) est due à Boole, qui l'a donnée, je crois, sans se 
préoccuper du reste. Comme la formule de Mnclaurin, on peut la 
transformer de manière qu'elle ne contienne qu'une fonction impaire 

de sc. Il suffit d'y remplacer χ par — h par 2X, et f(x) — /(— x) 
par J(ec)· Elle devient alors 

(16) 
a*)=S(

22
 - · ww - 2B'(al~.'I(2J)7»+-

V- (- o- i.a...2 « /Sw(a:) + R 

OÙ 

κ»=(-·)· "*Γ·',Τ"άι"Γ f-'^· 

Comme vérification, prenons f(sc) — sin χ. Nous trouverons, en 
divisant par COSJT, 

tangar = — zx-i , .2.3 H+-

, I)(A*)"-· , „ 

•jj (2Λi),lM", (ϊ"""1 — Ι)Βλ+ι IcosSx 
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Ce reste tend vers zéro toutes les fois que le module de χ est infé-

rieur à ce qui est conforme aux résultats connus. En remplaçant χ 

par ^ y'— ι, on trouve 

e* — I 215,(2'-- l) 2BJ(24 —l) , 

série convergente tant que le module de χ est inférieur à π. La forme, 
du reste, nous apprend d'ailleurs que, dans tous les cas, l'erreur est de 
même signe que le premier terme négligé, et par conséquent qu'elle est 
inférieure à ce terme. 

La convergence de la formule de Boole donne lieu aux mêmes re-
marques que celle de la série de Maclaurin. 

V. 

Supposons maintenant que, dans la formule (7), on prenne pour 
φ (a?) un polynôme satisfaisant à l'équation fonctionnelle 

(17) y(jr-t-i)-ry(j?)= 

où nous supposerons, pour plus de précision, r positif et frac-
tionnaire. 

On aura, en différentiant ρ fois, 

?,<(>) = '·<Ρ/-(°)> 

et notre formule ne contiendra plus que les différences 

rfP(x k) -f{x). 

Voyons d'abord comment on résoudra l'équation fonctionnelle (171 

Posons 

(18) i.a ..ηφ(χ + ι) = ~ l,our " = °> 
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on trouvera 

φ(χ + ι)-,·φ(χ)=
 t n

 ijL(,-r)é™ pour u = o, 

— —1—— xn. 
1.2.../? 

Donc le polynôme défini par la formule (18) sera le polynôme 
cherché. Proposons-nous de trouver son expression développée. Soit 

( ιq) — ι — ctt —ci2 —■ — ~—-f-... ; 

on verra facilement que ap est de la forme 

Λ"-(7 -r)>' 

ou J
p (r) est un polynôme dont tous les coefficients sont positifs. Cela 

résultera d'ailleurs de la suite de notre étude. 

Si dans la formule (19) on change u en — M, r en ^ et que l'on 

pose ùp = ^°n 31ΙΓί1 

- — ι -f- b, —(- ... 4~b
p 1~ ... ; 

multiplions par r et retranchons de la formule (19), nous trouvons 

T7ÎT7' 
c'est-à-dire 

rb
P
 = ( - ι)' a

p
, f„ (r) = /"/e (7) · 

Ainsi le polynôme f
p

(r) est réciproque et de degré p. 
Multiplions la formule (19) par le développement de e*", et prenons 

le coefficient de unous aurons φ (χ -+- ι). On trouve ainsi 

(20) <p„ (x -t- 1) = —-[χ* — «ι at
3c"-1 H- n

s
«

2
2^-2 —...). 

3
9

. 
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Le second membre n'ayant que des variations 9(1 — x) n'est jamais 
nul si χ est positif; donc le polynôme 9 (x) conserve son signe 
de zéro à 1. 

L'expression du polynôme étant trouvée, la formule (7) devient 

(21) 

j {x + h) —/(*) = - a, h [/' {x 4- h ) - If (x)] 

a*rk[f”(x+h)-7f”(x) -••• 

- «« -^—
n
 [y(x+ h) - ~f (x)] -+- R„, 

OÙ 

R„ = (— i)"hn+i f 9n{t)fM (*-+- ht)dt. 

Le polynôme 9„(<) ne change pas de signe entre zéro et 1, et la for-
mule (20) montre d'ailleurs que ψ

η
 (t) est la dérivée de 9„+, (t). On a 

donc 
f 9„(*) dt = 9„

+l
 (1) — φ„+, (o); 

et comme, en vertu de l'équation fonctionnelle, 

(°) = 7 (0. îw. (o = (- iy+' l 2°^„ +,' 
on a 

(22) ^ = - T^T\J
n+{

 (* +
 θ/

')· 

Telle est l'expression de l'erreur commise. 
Examinons ces coefficients a

n
 fonctions de r qui figurent dans le dé-

veloppement. On peut d'abord les développer en séries qui mettent 
en évidence leurs propriétés. On a 

=1 ~ R +Σ (' -R) * E'P"· 

En prenant le coefficient de u", on trouve 

a„ = 1* r" -t- (2" — i»),-2 + (3"_ 3«)^ + .... 
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Ce développement montre bien qu'ils sont positifs, croissants avec r 
et avec n ·, si nous multiplions cette série par (i— r)" nous aurons l'ex-
pression finie des coefficients a„. On trouve ainsi 

a„ (ι — r)" = r -h a, r2 + ... 4- r" 
où 

«Ρ-. =P"~ («-+-!), {p — i)* + (n + i),(p-a)'+... 
+ (— «y-1 (n + I,V-! in> 

(« 4- i)a désignant toujours le coefficient de rang (k 4- i) de la puis-
sance n -+- i,ime du binôme. 

Voici le calcul fait des n coefficients : 

(i- r) a, — r, 
(i — r)s a

2
 — r 4- r\ 

(i — r)'a} = r 4- 4fî -+- r3» 
(r — r,* a, = r 4- 11 r' 4- 11 r* 4- r\ 
(i — r)sa

5
 = r+ 26/·* 4- 66e3 4- a 6r* 4- /■*, 

(i — r)° a
t
 — r 4- 5-jr3 4- 3oar1 4- 3oar4 4- ΒηιΛ 4- r'. 

Ce calcul se fait avec une extrême facilité. Les coefficients des poly-
nômes sont les n différences n'im" du tableau 

... 000 1"a" 3n... n" 

prolongé vers la gauche avec des zéros autant qu'il est nécessaire pour 
obtenir n différences n'""". 

Les numérateurs des quantités a
n
 peuvent être définis par la 

formule 

1 — r ft n* 

Le premier membre pour r = 1 se réduit à · Ainsi la somme des 

coefficients de fk est 1.2... k, ce qu'il est facile de vérifier sur le 
tableau précédent. 

Je ne terminerai pas cet article sans montrer que les polynômes 

20 « 



3ΙΟ G. DARBOUX. 

φ
η
 (x) considérés ici donnent la solution d'un problème assez inté-

ressant : 
x étant un nombre entier, proposons-nous de trouver la somme 

x" ~h r(x — ι " -h r* (χ — 2)" -+-

A cet effet, dans l'équation fonctionnelle (17), remplaçons succes-
sivement χ par χ, χ — 1, χ — a, nous aurons 

γ (χ -+- ι) — r<p(x) = (1 — r)x", 
ψ(χ) — Γψ (χ — ι) = (ι — r) (x — 1)", 

?(Λ·)-Γ?(ι) = (Ι-Γ)Ι", 

et, par suite, en multipliant ces éqnatious par 1, r, r3,.. , Γ'-',βΙ les 
ajoutant 

(a3) —-Îîi-1^ = χ"-u r(x — i)"-t- r*(x — a)" -+-... -1- r*-1 1". 

Ainsi la somme qui figure dans le second membre s'exprime par un de 
110s polynômes augmenté d'un terme en r*. Ce résultat nous paraît 
nouveau; il justifierait une étude plus détaillée des polynômes φ

Λ
(Λ"). 

VI. 

Enfin, dans une dernière application, nous emploierons une suite 
de polynômes qui sont les dérivées les uns des autres et qui sont des 
cas particuliers de la série hypergéométrique. Pour que notre formule 
fondamentale donne naissance à un développement infini, il est indis-
pensable que les dérivées des mêmes degrés soient égales pour t — ο 
et t = 1 pour tous les polynômes employés. Cette condition sera rem-
plie si les polynômes sont les dérivées les uns des autres. 

Considérons l'équation différentielle 

(*4) 
1j^' — *) % + ¡> - Ä - « + X(#» -+- A -4-A - a)] £ 

— π (n 4- 4 -t- k — 1 )jr = o. 
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Cette équation admet comme intégrale le polynôme 

(a5) r
n
 = — r~i——■tt—; 1

 x"+r' (1 — x)n+li -7- x~h ( 1 — xYk, 

où l'on a choisi un coefficient tel que, dans le développement, le coef-

ficient de xn soit —-· On vérifie sans peine, en différentiant l'équa-

tion (a4), que la dérivée dey
n
 satisfait à une équation qui n'en diffère 

que par le changement de η en η — ι. Ainsi l'on a une suite de poly-
nômes 

/0 , /. I · · · , Jn 

qui sont les dérivées les uns des autres, le premier étant égal à 1. 
Si, dans la formule (a5), on développe la dérivée n'eme par la formule 

de Leibnitz, on trouvera facilement, en faisant χ — ο, χ — ι, les va-
leurs de_y„dans ces deux cas. On a ainsi 

ΑίΑ + ι) ... (A 4- η — ι) ( — 1)" 
JR»=,.

A
...,(*T*)-(A + * + » —) P°UR*- = °> 

A (A + 1} ... (k -ι-/< — 1 ) 
^=..2·..«(Α + Α)...(Α + *4-»-Γ) = 

Enfin on reconnaît aisément, d'après tout ce que l'on sait sur l'équa-
tion différentielle (24), que l'on peut poser 

(27) In = Γ (Â) Γ
(

ίΪΓ«^)Χ ' *
A

~'
 (L

 ~ ^ ~
 Z)N DZ

· 

Cette formule n'a toutefois de sens que si l'on suppose h et k positifs, 
ce que nous ferons dans la suite. 

Elle montre que les polynômes de rang pair n'ont pas de racines 
réelles; par conséquent, ceux de rang impair, dérivées des précédents, 
n'en ont qu'une, évidemment comprise entre ο et + 1. 

Enfin, pour compléter l'étude de ces polynômes, cherchons une 
fonction génératrice. Or considérons la fonction 

F = (λ1 + u)~h (1 — χ — m)-*, 

et développons-la suivant les puissances de u. Nous aurons 

F — V — ~- x~h (1 — xfk. 
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Posons u = tx{ ι — or). On aura 

F - (ι — ar)~* (i 4-1 — tx)~* (1 — lx)~* 

Σ  Ρ Χ" ( ι — χ)' d' , , ,1 

ou bien, en divisant par x~h (1 — x)~*, 

(a8) 
(1 +1— tx)-*[i — tx)-*='£

t |
 ̂

 n
χ"**(ι — χ)π+*χ-"(r — 3?)-* 

= Σΐ"(η -+- h + k — 1)... (Λ+ k)y
n

. 

Ainsi la fonction 
(i + l— fcr)- A(i — tx)~* 

est la fonction génératrice de nos polynômes. 
Substituons le polynôme j

n
 dans la formule (7) et, pour plus de 

précision, faisons h — k = %. Celte formule deviendra 

(29) 

j {χ + h ) -f(x) = \ y (χ)+/' (χ -t- A) ] 

1i (Tfl). £[/'(* +A) "/»I 

_+. ( .\n-l 1·3-5· ··2" — 1 

Χ [/" (χ + Λ) + (— iy f\χ)] -+- R„, 

R« = (- f J„{t)jn+' (χ + ht)dt. 

Supposons η pair. On trouvera pour l'expression approchée du reste 

(3O) R„ = ̂  1;^;;^ υ
η

+' (χ ■+ * - **) (Χ+ο *)I. 

La formule (29) est sensiblement plus convergente que la série de 
Taylor. 

On pourrait en obtenir de semblables en très-grand nombre. 


