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DEVELOPPEMENTS EN SERIE DES FONCTIONS D’ UNE VARIABLE. 291

Sur les développements en série des Jonctions d'une seule
variable ;

Par M. G. DARBOUX.

I.

On donne ordinairement, dans les cours de Calcul infinitésimal,
différentes formes du reste de la série de Taylor qui s’appliquent seu-
lement au cas ot la variable suivant les puissances de laquelle on dé-
veloppe demeure réelle. Je vais d’abord montrer que les mémes formes
demeurent applicables avec de trés-légéres modifications, quand la
variable et la fonction prennent des valears imaginaires.

Je m’appuierai sur le lemme suivant :

Imaginons qu’un mobile M se déplace surla droite AB, toujours dans
le méme sens, de A vers B par exemple ; et qu’un point m dont le mou-
vement est lié a celui du premier décrive d’un mouvement continu une
. courbe ach quand le point M va de A & B. Je dis qu’il y aura au moins
une position des points correspondants M, m pour laguelle le rapport
des chemins infiniment petits ds,, dp, décrits en méme temps, ds, parle
point m, dp, par le point M, sera supérieur ou égal au rapport de la
corde ab a la droite AB.

En effet, si 'on avait toujours
ds, ab ab
2;—[ < —A—E’ tif, < -A—ﬁ dp,
on aurait, en intégrant entre les limites extrémes,

B
arcach < :—; f dp, oun arcach< ab,
A

ce qui est évidemment absurde.
37..
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Le lemme est donc démontré. Nous ferons remarquer que, si la
démonstration suppose que M se meuve toujours dans le méme sens,
elle demeure valable alors méme que le point m rétrograderait sur la
courbe qui lui sert de trajectoire, I'intégrale fds, représentant la lon-
gueur totale du chemin décrit par le point m, et cette longueur totale
étant toujours supérieure a la corde ab.

Imaginons que les points M, m servent de représentation 4 deux
fonctions de variables imaginaires: M a une fouction ¢ (z), m a une
autre fonction f(z). Admeltons que, lorsque 3 varie de 2, 4 z, d’une
maniére déterminée, le point 3, qui représente v {2), décrive un seg-
ment de droile AB toujours dans le méme sens. On aura ici

ab (2.,) —f(3)

o s =Sl
a8 = - TR =)

ds, . . . s
Quant au rapport & il est évidemment égal a
]
S(z)
¥ (3)
1l existe donc, d’aprés le lemme, au moins une valeur £ de z, corres-

pondant & une valeur de p(z), représentée par un point M du seg-
ment AB, pour laquelle on a

mod.

S () Slz) = Sfl=)
mod. $rigy = ™ Ve = e
On peut donc poser
fla)=rflz) L&)
) P —¢la) ¥

X désignant ici et dans foute la suite de ce travail une quantité ima-
ginaire inconnue dont le module ne dépasse pas I'unité.
Appliquons cette formule générale au cas ou l'on prend

p(z)=(2z — 7}

Quand le point z variera de z, 4 z, suivant la droite z, z,, le point qui
représente ¢(z) décrira aussi une droite. Nous sommes donc dans les
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conditions supposées, et, en appliquant la formule (1), nous trouvons

Sy =ria) S

(o) T T plE )

La valeur de £, qui figure dans le second membre de cette équation,
est représentée par un point du segment rectiligne z, z, ; elle est donc
de la forme

Zy + (1 — ) (2, — z,),

§ étant réel, positif et plus petit que I'unité. On a donc

(3) Am)=Slm) = Bk flr 4+ (= )5, — )
Pour p =1, on trouve
(3)  Sfls)=J(z) =2(5, — 2)S [0 + (1 —0) (2, — 3,)].

Cette formule ne différe de celle des accroissements finis pour les fonc-
tions réelles que par la présence du facteur ), de module ne dépassant
pas l'unité.

Appliquons ces résultats & la fonction suivante :

VY{x)=¢(a+h)—pla+ b — E)—xg @+ h—x)—...

"

¢"(a +h — x),

1.2...n

ou ¢, ¢, ...,¢" désignent les dérivées de 9. On a, comme on sait,

¥ (x) = " (a + b — x),

r.2...n
et, par suite, en appliquant la formule (2) et y remplagant z, z, par
les valeurs zéro et & de x,

W (k) — ¥(o) =)

Jintt [ — Qir—p+1 ,
1.2(.3. . .)n.p ?n*_‘ka + 6}‘)’

ou bien

hn \
n \
1.2...n 4 (a,

‘ pla-h)=o(a) + ke'(a) + l—’ff;qo”(a)+...+>

)\ ],n+x (I — e}u—p-]-l

—~ ™' (a + 6h).

1.2, .0.p
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En remplagant @ par zéro et & par x, on obtient -

il o (0) + 2 S U Ml o™ (Gx).

1.2...0.p

!

(5) o(x)=glo)+x¢'(0)+...+

1.2...n

Ces formules ne différent que par la présence de X de celles qui sont
relatives aux fonclions réelles de variables réelles.

11 est trés-facile de faire des applications des résultats qui précédent.
Les fonctions €2, sinz, cosz, L(1 + z), (1 + 2)™ peuvent étre définies
directement. Leurs dérivées s'obtiennent sans difficulté. Les formules
que nous proposons permettent d’étendre, pour toutes ces fonctions
traitées dans les éléments, les développements en série au cas ou la va-
riable indépendante prend des valeurs imaginaires. Si 'on considére
en particulier (1 + z)™, on retrouvera tous les résultats donnés par
Abel, dans son Mémoire sur la série du binéme. Iétude du reste ne
laisse subsister qu’un seul cas douteux, celui ot le module de z est
I'unité, et ot en méme lemps la partie réelle de m est comprise entre
— 1 et zéro. Mais un théoréme donné par Abel, précisément pour cet
objet, permet de lever la difficulté, et la série du bindme se trouve
ainsi établie dans toute sa généralité.

1I.

Avant de passer a d’autres applications, nous allons déduire unc
conséquence nouvelle de la formule (1).
Considérons V'intégrale rectiligne

[ S (@) (@) dx,

dans laquelle on suppose les limites réelles, f (x) positif et ¢{x) une
fonction imaginaire quelconque. Alors, en désignant par x, une valeur
intermédiaire entre a et x, on aura, d’apres la formule (1),

¢ x)gl{x)dx
[ ri=1ete) _ stael

)
T = e
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Ainsi 'on a
©) | faxf(‘”?(x)dr:M(w.)faxf(x)dx.

Clest 'extension d’une formule connue relative aux variables réelles,
et il est facile de la démontrer directement.

En effet, soit x, la valeur de x qui donne 4 g (x)la valenr de plus
grand module p.. I’intégrale

[ (@) p(a)de

ne peut qu’étre augmentée, f(x) étant positif, si I'on remplace p!a'
par u,. Elle est donc plus petite que

[ Sy

et, comme p, est le module de ¢ (x, ), elle est par conséquent é;gale a

Mo () [ fx)da,

A désignant une quantité imaginaire dont le module ne peut dépasser
'unité.
Cela posé, considérons la fonction de ¢

¥ (8) = ") f (x + ht) — ko™ (O f (xx + ht)
+ Brem2(0)f" (x4 he)— o+ (=Yg (1) f*(x + he),

ou ¢(¢) désigne un polyndme du degré n, et ¢', 0", ..., ™', 4" les dé-
rivées successives de ce polynome. Quant a f{x), c’est une fonction
quelcenque réelle ou imaginaire ainsi que les variables x et %. On aura

V(1) = (= 1P R (0 f75 (4 )

et, par suite,

1

¥ (1) — ¥ (0) = (— .)wmf. 2(£) F (x + ht)de.

]
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Si nous substituons les valeurs de ¥(1), ¥ (o), nous obtenons la
formule

‘ ?"(0)[ /(= + &) —f(x)]
) 1 = hle™ (1) f'(x + k) — 9" (0) f*(x)]
‘ ( _—h2[¢p""(l\f”(x+h)——¢"'“ o) f"{x)] +...
+ (— 1)y R [o(1) f*(x + h) — @(0)f"(x)] + R,

ou V'on a

R, = (_ ')n}l”+'flp([>f"+|<x+ ’lt) dt.
0

Cette formule servira de base a nos recherches. En faisant diverses
hypothéses sur le polynodme ¢(¢), nous allons obtenir la plupart des
séries connues et d’autres nouvelles, avec des formes du reste appli-
cables au cas ol les variables sont imaginaires.

En prenant ¢(t) = (¢ — 1)*, on retrouverait la série de Taylor: je
n'insiste pas sur cette hypothése déja examinée.

Remplagons n par 27 et prenons

¢ ()= t"(t— 1,
nous aurons
flx b — flx)
=2 fla ) — g e B ) +

an(2n—r1)
Q e\t nin—1)...(n—p-+1) h
\8} +( I) ""l’”—lj 2r—p+41)1 P

Uyl ) Pty e
"“ Lol 4+ )+ (— 1)~ f()] + Ro,

:zn(zn—-l) n+1

-+ \‘— l)"'
on le reste est donné par I'équalion
L
2...2nRyp = (- 1)"”2"“_[‘ (1= ) fr+ (e + ht)de.
[+]

Oron a

Yl — o _'2___
.£l<l t)dt = PR S PPy
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donc, en appliquant la formule (6), on obtient

A At f1n+l x4+ 0Ah
an ..___.< — )n ( )

2n 41 [(r+1}).. . 2n]

La formule (8) nous parait intéressante. Elle montre en effet com-
ment, en calculant seulement n dérivées, on peut obtenir une approxi-
mation de I'ordre h?"*', Par exemple, en y faisant successivement
h =1, 2, 3, on trouve les formules suivantes :

/(@ + h) —fla) = S () frla+ B = 2 apria om,
Slx -+ b)— f(z)
=21f@)+ Fla+ B~ E e by - fr(a]
+7%va(x+eh>, .
Sla k) — flx)
= [f(@) + 2+ B - DL+ by — fr ()]

A ” 1S (2 = O4)
+ 120 [ (o -+ k) +f (x>] " 100.800
Remarquons, de plus, que le reste est affecté d’un coefficient num é-
rique beaucoup plus faible que celui de la série de Taylor.
Si maintenant nous revenons & la formule fondamentale et que nous
prenions

1.2...n¢(t) = (t + 1:r>n,

nous aurons

S+ R —fla) = L[ f(x + h) — rf(x)]

(o) — e L R — ()

— ¥ L .
e )= rfy(a)] R,

R,= {:—;)—A;II (t + I—:—r)nf"*‘(x + ht)dt.

Journ. de Matk. (3° série), tome 1I. — SepTrMpRE 1856. 38
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Supposons, pour fixer les idées, r positif et fractionnaire. Le poly-
noéme ¢(¢) demeurera positif. On aura

[ (e 5= 125
A 1—r w41 (1—rpf

R, = (ST ISR pnen(p 4 h).

1.2.. .+ (1~—7r)

et, par suite,

La formule (g), 3 part la forme du reste, est une conséquence de
la série de Taylor. Elle sera surtout applicable quand les dérivées
successives seront telles que les différences qui figurent dans la for-
mule soient trés-petites pour une valeur convenablement choisie
de r.

11.

Nous allons examiner des applications d’un autre genre. La for-
mule (7) contient 27 coefficients qui sont les dérivées de p(¢) pour
t = o, t = 1. Cherchons, ¢'il se peut, 4 rendre égaux plusieurs de ces
coefficients. Voyous, par exemple, s'il existe une formule dans laquelle
figurent seulement les différences f,(x -+ &) — fo(x).

Pour qu’il en fit ainsi pour toutes les dérivées, il faudrait que les
dérivées du polynéme o(t) eussent la méme valeur pour ¢ =o, t =1,
ce qui est impossible; car on aurait alors ¢(1 + t) = p(¢), quel que
soit ¢, résultat absurde, aucun polynéme n’étant périodique. Mais
nous allons voir qu'on peut approcher beaucoup du résultat cherché
et rendre égales toutes les dérivées du polyndme ¢(¢) pour t =0, t =1,
sauf I'avant-derniére. Cherchons, en effet, un polyndme jouissant de
cette propriété. On aura

t o et A gt
p(0) = 50) + 140 ot ¥ O)+ T
! L) e n— "ot
Pt 1) = p() + 90 e e e )

Pour que toutes les dérivées soient égales pour t=o et t =1, sauf
la n — 17 il faut et 1l suffit que la différence ¢ (¢ + 1) — () ne con-

DETEEREN
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tienne que le terme en £*~'. Ainsi le polynéme cherché doit satisfaire &
I’équation fonctionnelle

pl@-+1) —p(x) = kx"!,

et, comme on peut le multiplier sans inconvénient par une constante,
nous écrirons

ol +1) — g(x) = nx™'. .

Or le polyndine satisfaisant 4 cette équation fonctionnelle est bien
connu. Si x est entier, on déduit de 'équation précédente

et si I'on prend ¢(0) = o, on voit que pour x entier on doit avoir
g+ 1) =n[2" + (2 — 1 o - 2 .

Donc notre polyndme cherché est, 4 une constante prés, celui qui
donne la somme des puissances semblables des nombres naturels. On
voit par quelle voie naturelle nous allons étre conduits i 1a formule
de Maclaurin. ' o

La somme des puissances semblables des nombres naturels a été
donnée, pour les onze premiéres puissances, par Jacques Bernoulli,
dans I’ 4rs conjectandi. On pourra consulter le Traité de Caleul dif-
férentiel de M. Bertrand (p. 352), ou se trouvent établies les princi-
pales propriétés du polynéme de Bernoulli. En désignant par ¢,(x le
polynéme de rang n, on a

n ‘ ;
P Xy = a™ — 5 2" + 1, B, 2" — n, B, x4 nBy "0 — .,

le dernier terme contenant toujours x en facteur; n, ny, n, étant les

38..
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coefficients de la puissance niéme du bindme et B,, B,, Bs,... les nom-
bres de Bernoulli [*].

En substituant les valeurs des dérivées de ¢,(x), pour x =1,
x = o, dans la formule fondamentale, on retrouve la formule célébre
de Maclaurin

hf'(x)=f(x + h) — fla) — 2 [flo + k) = ['(2)]
(10) B e+ ) = fr(@)] e

R f o 1 )
(= 1YBas 55 |22 +-h)— 27" Z)]- R
on
—_ R+t 1 +
(1) Ry, = _;__Z;f Dan(£) f17+ (@ + het)dL.

On sait que @,,(2) garde son signe de zéro a 1. On connait son inté-
grale. En appliquant la formule (6), nous aurons
1B, b

1\ .
— frt x4 Gh),
1,2...2n0

Rzn — [)n-l-l

) pouvant étre supprimé dans le cas des variables réelles.

On ne parait pas avoir remargué que cette formule de Maclaurin
est, au fond, une formule de développement pour toute fonction im-
paire de x. Cest ce qu’il est aisé d'établir. Remplagons-y d’abord x
par — x, puis & par 2., elle deviendra, en réunissant dans le premier
membre les termes qui contenaient f*(x),

[ fimfl-a)
&) = fl-2) -+ P () — [ 2]
) Bﬁ.._s(zx)”'". [f3(x) — f=3(— 2)] + Ry,

1,2...2 — 2

ou

= -2 ..

R., = —E.x_\)ii l? (l\f’"*'(——x—}— 2.’!‘!)([[.
n an J, 2n\"% \

[*] La notation de ces nombres n'est pas bien fixée; plusieurs géométres les dési-
gnent par d’autres indices B, By, Bs,....
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Jot
Si nous changeons, daus le reste, £ en 1 — ¢, et si nous nous rappe-
lons que ,,(2) = 9,,(1 — £), nous aurons également

2 . .2m jo‘ an(t) f27+! (2 — 2t )dt

et, en faisant Ia demi-somme des denx expressions de R

20 pand
R 2 = T

p— /2.T)1n+l
Ryp==

2y

1.2...2n

[ w0l = 22y et aa

Les formules précédentes ne contiennent plus que la seule fonc-
tion f{x)— f(— ), qui est impaire, et ses dérivées. Remplacons
J{x)— f(~ x) par le seul symbole f(x), désignant une fonction im-
paire, nous aurons

» xf (@) = fl@) + 5 (22 f"(x) +...

Bus(2z) ., ,
\ +(—')nl.2...2n———z'/n (x) + Ran,y
ol

— 93 g2t

1
R,, == mf Pan(t) 2 (— 2 + 22t)dt,
(13) 22 Jo
Ryo = (— a2 fane g,

Prenons, par exemple, f(x) = sina. Nous aurons, en divisant tous
les termes par sin.,

xcotxr =1 - L

. (2 -

] A
1.2.3.4 (2)"...
B:n—a(2-l')"_’ o) g+t

cosxb
1.2...20— 2

1.2...272 " sing

On sait que la série est convergente tant que x est réelle et infe-

rieure & . Quant a I'erreur commise, elle est toujours égale au terme
auquel on s’arréte multiplié par

dxcosx®
sinx
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On voit que, si x est réelle, I'erreur commise est plus petite que le
» ” .z . .7 x
remier terme négligé multiplié par —-
P giige muluiphe par oo

. x
Si I'on remplace x par ';\/—— 1, on trouve

] 1 1 1\ B B, x? "
#\i—es "z 2/ 7a 123477

Cest le résultat de Cauchy, car la premiére des formules (13), don-
pant Perreur commise, montre qu’elle est toujours de méme signe
que le premier terme négligé. Etle est donc par conséquent inférieure
a ce terme.

On fait remarquer, d’ordinaire, que la série de Maclaurin est rare-
ment convergente. On peut préciser cette affirmation un peu vague de
la maniére suivante. On sait que

B

T2, .2m 22”-‘712"(' + s")‘

y 1 . : 2
¢, tendant vers zéro avec —- Il suit de 1a que le terme général de la

série (12) est de la forme
(= 1yt 2 (hm) ()

Dans le cas ou la série de Maclaurin est convergente, il doit tendre
vers zéro. On doit donc avoir

(ham)f¥ (@) = tn

5 I . N , e . .
u, tendant vers zéro avec ~- 1l suit de la que la série qui développe

Flz+ k) + flz— k) =2f1u(_t)},m Z . ( A )u
1.2...20

2 1.2...27 fzm

sera convergente pour toutes les valeurs de k. Ainsi =

Une condition nécessaire, mais non suffisante, pour que la série de
Maclaurin soit convergente, cCest que la fonction f (x + k) + Slxe—h)
soit développable en série convergente ordonnée suivant les puissances
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de h pour toutes les valeurs de h, et par conséquent qu’elle ne de-
vienne ni infinie, ni indéterminée pour aucune valeur finie de la va-

riable h. -

En revenant aux notations habituelles et a la formule (10}, on voit
qu’elle ne sera canvergente que si la fonction

Slx+h+k) +j(.r+/z—lc)—-f(x+/c)-—f(x—lr)

est développable en série convergente, suivant les puissances de %,
dans toute I’étendue du plan, et par conséquent ne devient jamais
infinie ou indéterminée quand % varie.

Ainsi la série de Maclaurin pourra bien étre convergente (et il est
facile de voir qu’elle le sera) pour des fonctions entiéres de ¢, sin.r,
cosx, sinf(x), e/ f(x) désignant un polynéme; mais elle sera di-

. . )
vergente pour les fractions rationnelles pourtangax: —,....
? sinz

Iv.

Revenons 4 la formule (7), qui nous a servi de point de départ, et
choisissons le polynome qui y figure, en le soumettant & d’autres
conditions. Exigeons, par exemple, que, daps la formule (7), So(x)
et f,(x + k) aient le méme coefficient et n’entrent que par leur
somme. Le polyndme ¥,(x), qui permettra d’obtenir ce résultat,
devra satisfaire & I’équation fonctionnelle

Voo + 1) -+ W, (x) = 22"
Cette équation, différentiée p fois, donne en effet, pour x = o,

Wr(1) = — ¥ (o).

3

1l reste 4 obtenir le polyndme satisfaisant a I'équation fonction-
nelle proposée. On Pexprime facilement au moyen de la fonction
¢n() de Jacques Bernoulli, employée dans l'article précédent. En
effet, si U'on pose

. L (& 41 [ x
(14) Y rz\x) = m[?n-fi (—2—) ™ Fna K;):I’
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on a un polynéme d’ordre n qui, comme on le vérifie aisément, satis-
fait 3 I’équation proposée. Si I'on remplace ¢,,, par son expression
connue comme dérivée n‘#™, on trouvera aussi

v 2 dvH ye™ .
@)= i g agy POUF =0

Or on sait que 'on a

" n anw

1 e —1 M1

+(— l)"-l——:—"'—_'?'(n’"— e 4.

En multipliant par e et prenant la dérivée n + 1“me. qui sera le
coefficient de ™' multiplié par 1.2.3...n + 1, on trouvera

zB.(

a® —)nx™' +...
1.2

Y, lr)=x" —

2B,y (27 —1) -
+(—1)P——;"—2-$iTn(n—l)...(n—np-}- 2) "I 4L

On déduit de ]a les dérivées de ¥, pour & = o, et, en substituant
dans la formule (7), on obtient

Sla+ 1) —f(#)
= 2L DR (@) + f =+ B

<15\ B,{2'— 1)4° " .
/ ' _E_x%_a’%)—[f (x) + f(x - R)] +...
o= 2_13,,_,2(__%__1_!#_' [f2=" (@) +f 2" (x + B)] + Rany
ou
R,, = _l__lnn-o-‘ f v,, ”fma-l(x + ht\dt

Remplagons ¥, (¢) par son expression (14), nous aurons

o 27 [ T (52) = s (&) Vet i
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expression que 'on raméne facilement, par des changements dé va-
riables, & la forme

_ —(J}I)”H"
Ry, = 1.2.3...2n

f;?znq @[ f2+ (@ + 28t) + f27 (2 + b — 2ht)]dt.

» A . * I .
Le polynome g,,.,,(t) conserve son signe entre zéro et 5> et son in-
~ tégrale entre ces limites est, comme on sait,

(— 1) [

n—+4 1)22"""

am+r __ g
2n414

On a done

" A fpnt ( oln1___y ] B:u+|

1.2.3...2+2

B2n=(“ I) U2u+|(x_l_h6)+f2n+l(x+h_h9>]_

La formule (13) est due 4 Boole, qui I'a donnée, je crois, sans se
préoccuper du reste. Comwe la formule de Maclaurin, on peut la
transformer de maniére qu’elle ne contienne qu'une fonction impaire
de z. 11 suffit d’y remplacer x par — g, k par 2x, et f(x) — f(— x)
par f{x). Elle devient alors

Hla) =22 (2 = amf(x) - 2BLE=) pnigy

(16) ' ™ )2t
+ (=t 2ol VO s 4) 4 R,

1.2...2n

n lB,,.....(z"""—- ,) (z_z.)m+

Ry =(—1) 1.2.3.. .22+ 2 lfzn“(em)'

Comme vérification, prenons f(x)==sinx. Nous trouverons, en
divisant par cos.,
2B, (22— 1)
1.2

2B, (2> —1) {ax)mt
1.2.,.27

AJ—.
tangx == 2x + 2’;(273—’) (22) + ...

+ + R,,.,

R == (22)+ (2+? —1)B,,,, cosfz
T 2.3 l2n-+a cosz

Journ. de Math. (3° série), tome II. — Serremsag 1876, 39
20
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[ ]
Ce reste tend vers zéro toutes les fois que le module de x est infé-

. » T . 3
rienr & -, ce qui est conforme aux résultats connus. En remplagant x

x
par Y \/—— 1, on trouve

e —1 2B,(27--1) 2B;(2* —1)
-_— x_..____.___
&+t 1.2 5.2.3.4

xt+...,

série convergente tant que le module de x est inférieur 2 n. La forme,
du reste, nous apprend d’ailleurs que, dans tous les cas, |'erreur est de
méme signe que le premier terme négligé, et par conséquent quelle est
inférieure & ce terme.

La convergence de la formule de Boole donne lieu aux mémes re-
marques que celle de la série de Maclaurin.

V.

Supposons maintenant que, dans la formule (7), on prenue pour
() un polyndme satisfaisant 4 I'équation fonctionnelle

, —r )"
U7) ?(‘T -+ I)——I‘Cp(x)—": (1'.2..).11’

ou nous supposerons, pour plus de précision, r positif et frac-
tionnaire.
On aura, en différentiant p fois,

?P(l) = "‘Pp(o%
et notre formule ne contiendra plus que les différences
rf?(x -+ k) — fr(x).

Voyons d'abord comment on résoudra I'équation fonctionnelle (17,
Posous

(l-—-r)l."‘

(18) 1.2 ..mp(x—;—l):;‘% — = bour u=0o,
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on trouvera

.

g{x+1)—ro(x)

f

(+—r)e™ pour u=o,

Donc le polynome défini par la formule (18) sera le polynéme
cherché. Proposons-nous de trouver son expression développée. Soit
I—7r u n? u?

s =l ey~ Ay — — 6y —
Pp— L ’r.2 $1.2.3

(19) +ad

on verra facilement que a, est de la forme

_ Je(r)
a, = (Ti'r‘jpa

ou f,(r) est un polynéme dont tous les coefficients sont positifs. Cela
résultera d’silleurs de la suite de notre étude.

Si dgns Ja formule (19) on change u en — u, r en ; et que lon
()

—1
— e

pose b, = » on aura

u up
:l-}—b,-;"!—.--“f'bpllz‘i;—f—...;

multiplions par r et retranchons de la formule (19), nous trouvons

0= [rb, —(—17a,] 2,

Tap

c’est—z‘a-dir(;
C = (e, fn=rg(2):

Ainsi le polyndme f;, (r) est réciproque et de degré p.
~ Multiplions la formule (19) par le développement de e, et prenons
le coefficient de ", nous aurons ¢ (x + 1). On trouve ainsi

I
1.2.0.7

(20)  @a(x41)= (2" —nya,x™* + nya, ™% —...).

39.
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Le second wmembre n’ayant que des variations ¢ (1 — x) n’est jamais
nul si x est positif; donc le polyndme ¢ (x) conserve son signe
de zéro a 1.

L'expression du polynéme étant trouvée, la formule (7) devient

f@+h—flz)=—ah[f @+h)~Lf @]
(21) —-a,%[f’(x—i-h)—;f”(x)]—...
[/ @+ )= L @] + Ba,

—a
A l.2..n

ou

R, =(— l)nhn+1f ' ¢a (1) ! (x + ht) dt.
Le polynoéme ¢, (2) ne change pas de signe entre zéro et 1, et la for-
mule (20) montre d’ailleurs que ¢, (¢) est la dérivée de ¢, (). On a
done

fol 9n (£) At = Quy (1) — Pare (0)5

et comme, en vertu de I’équation fonctionnelle,

np
—
1.2...n7 +1

Pnsr (0) = ; Prrs (1) Pagy (1) = (— 1)
on a

1—r  a,,, R
ro o1.2...m+41

(22) R,= — S (x4 0h).
Telle est I'expression de I'erreur commise.
Examinons ces coefficients a, fonctions de r qui figurent dans le dé-
veloppement. On peut d’abord les développer en séries qui mettent
en évidence leurs propriétés. On a

1—r

=1——r+2(1 —r)rf e,
) P
En prenant le coefficient de «*, on trouve

1—re™

Q=1r"+2"—1") 4+ (3"—a") r* +....
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Ce développement montre bien qu’ils sont positifs, croissants avec r
et avec #; si nous multiplions cette série par (1— r}* nous aurons l'ex-
pression finie des coefficients a,. On trouve ainsi

a(1—r*=r+or*+... +a, ,rm

Gy =p'—m+1)(p =17+ (B +1),(p— 3)* +...
+(— 1P (r+ 1), 1,
(rn + 1), désignant toujours le coefficient de rang ( + 1) de la puis-

sance n + 1*m¢ du bin6me.
Voici le calcul fait des n coefficients :

(1—r) a, =r,

(x—r)a,="r+ 2,

(1—rYa,=r+ 4r* + 12,

(r—rta;=r+1rP 4110 +r,
(1—rfas=r+26r*466r* + 26r* + 13,
(1—nras=r+ 571"+ 30ar® + 3o2r* + 57:° + r°.

Ce calcul se fait avec une extréme facilité. Les coefficients des poly-
némes sont les n2 différences " du tableau

..0001"2" 3%, 0"

prolongé vers la gauche avec des zéros autant qu'il est nécessaire pour
obtenir n différences n’*"e,
Les numérateurs des quantités 4, peuvent étre définis par la

formule
I—r ___2 Siuk
1 — resit—r) T 1.2... 4

. al a 1 . -
Le premier membre pour r = 1 se réduit 2 = Ainsi la somme des

coefficients de f; est 1.2... 4, ce quil est facile de vérifier sur le
tableau précédent. ;
Je ne terminerai pas cet arlicle sans montrer que les polynomes

20
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¢n () considérés ici donnent la solution d’un probléme assez inté-
ressant :
& étant un nombre entier, proposons-nous e trouver la somme

' +rx— 1+ e— 2+

A cet effet, dans P'éqnation fonctionnelle (17), remplagons succes-
sivement X par &, & — 1, £ — 2, ..., OUS aurons

o(x+1)— re(x)=(1—r)x",
gla)—relxr—1)=(1-— ry(x —1Y,
gla)—re(1)=(1—r)1%

el, par suite, en multipliant ces équations par 1, r, .. ,r" ', et les
ajoutant
1) — =
(53) LN = el g e e —a)
i—r
Ainsi la somme qui figure dans le second membre s’exprime par un de

nos polynomes angmenté d’un terme en 7%, Ce résultat nous parait
nouveau; il justifierait ‘une étude plus détaillée des polyndmes ¢, ().

VI

Enfin, dans une derniére application, nous emploierons une suite
de polynémes qui sont les dérivées les uns des auntres et qui sont des
cas particuliers de la série hypergéométrique. Pour que notre formule
fondamentale donne paissance 2 un développement infini, il est indis-
pensable que les dérivées des mémes degrés soient égales pour t = o
et t = 1 pour tous les polynémes employés. Cette condition sera rem-
plie si les polynomes sout les dérivées les uns des autres.

Considérons V’équation différentielle

(26) ’x(l—x)%’;—;-[1—b~n+x(n+ﬁ+k—n)]%
—np+h+k—1)y=o.

o
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Cette équation admet comme intégrale le polynéme
4 o r(h+ ") n+h . n+k_’li %k _ .-—k
(23) = rnorEsari—a % O xpt (=

ot 'on a choisi un coefficient tel que, dans le développement, le coef-
1

ficient de 2" soit - - On vérifie sans peine, en différentiant I'équa-

tion (24), que la dérivée de y, satisfait & une équation qui n’en differe
que par le changement de 7 en n — 1. Ainsi 'on a une suite de poly-
nomes

f(n ]"H"'a fn

qui sont les dérivées les uns des autres, le premier étant égal a 1.

Si, daps la formule (25), on développe la dérivée n“™ par la formule
de Leibnitz, on trouvera facilement, en faisant & == 0, x =1, les va-
leurs de y, dans ces deuvx cas. On a aiusi

h{h+1)... (A+n—1){—1)
1.2...e(h+k}... (A+bk+n—1)
_ A{k+1)o.. (ktn—)
Jn= se20 0 r(h4-k).u  {(A+K4-n—1)

n

pour x = o,

pour X = 1.

Enfin on reconnait aisément, d’aprés tout ce que I'on sait sur I'équa-
tion différentielle (24), que ’on peut poser

h 4k ! .
{27) Tu= f_(E!;((AW(IZT:],L (1 — 2 (o — z2) da.

Cette formule n’a toutefois de sens que si Pon suppose % et £ positifs.
ce que nous ferons dans la suite.

Eile montre que les polynomes de rang pair n’ont pas de racines
réelles; par conséquent, ceux de rang impair, dérivées des précédeants,
n’en ont qu’une, évidemment comprise entre o et + 1.

Enfin, pour compléter I'étude de ces polynomes, cherchons une
fonction génératrice. Or considérons la fonction

F=(x+u(1—a—u,

et développons-la suivant les puissances de u. Nous aurons

u* d"
— ~A ity ek
F—Zx.z...n g AL
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Posons u = tx (1— x). On aura

F=x?(1—x)(1+t—tx)?(1— tx)™*

.—‘ ‘l_":n(l_x)n d* Y &
_2 v2n dm T (r—a)™,
ou bien, en divisant par &~ (1 — x),

(1+t—tx)1—tx) =3 ,.:.. n

=3Z"(n+h+k—1)...(h+ k)7,

n: & —
(1 —xf M — )

(a8)

Aipsi la fonction
(1+t—tx)™?(v — tx)™*

est la fonction génératrice de nos polynémes.
Substituons le polynéme y, dans la formule (7) et, pour plus de
précision, faisons & = & = . Cette formule deviendra

Fla+ by —flx)=21f"(x)+ [ (x + 4)]

—(I,;f).'ﬁ[f”(xﬂuh) —f ()] + .

(29) { 1.3.5...2n—1 A"

+ (—l)n_' (r.2.3...np 2n

X [f"(x+ k) + (=1 f(x)] + Ry,

Ry = (— 1 b [ ya(2)f (2 + Be)d.

Supposons 7 pair. On trouvera pour I'expression approchée dn reste

(30) R, =12 % [f™ (@ -+ k — OR) + f** (x + O ).
. La formule (29) est sensiblement plus convergente que la série de

Taylor.
On pourrait en obtenir de semblables en trés-grand nombre.




