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Nouveau théorème concernant ία fonction numérique F {h) ; 

PAK M. J. LIOUVILLE. 

Nous désignons, à notre ordinaire, par 

F{k) 

le nombre des formes quadratiques binaires, primitives ou non, de 
déterminant — A, dont un au moins des coefficients extrêmes est impair. 
Soit m un nombre entier donné, impair et premier à 5, et t un entier 
variable, dont les valeurs successives sont celles de la suite naturelle 

r 2 3 \ 5 

en s'arrêtant au moment où l'on cesserait d'avoir 

io/îî — 25 ί2 > o. 

Cela posé, le théorème que je veux énoncer ici consiste en ce que l'on 
a toujours 

F(iom) 4-2Σ F(iom — 251-) = 2ζ, (m), 

équation où je représente, comme d'habitude, par 

S.í'w) 

la somme des diviseurs de m, et où le signe sommatoire porte sur les 
valeurs de t. 

Vérifions cette équation sur quelques exemples. Et d'abord, soit 
m — i. Elle se réduit alors à 

F(,o) = 2, 

ce qui est exact. 
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Pour m = 3, elle donne 

F(3O) + 2F(5) = 8, 

ce qui est vrai aussi, attendu que l'on a, par un procédé direct, 

F{ 5) =2 

et 

F( 3o) = 4-

D'après notre énoncé même, nous ne pouvons pas prendre 

m = 5. 

Mais pour 

m = 7, 

il nous viendra 

.F(7°) -f- 2 /^(70 —
 2

5. ι2) = 2 Ç, (7), 

c'est-à-dire 

/^(70) + 2F(45) = 16. 

Or on a d'une part 

F(45) = 6, 

et d'autre part 

F(l°) = 4-

La vérification cherchée a donc lieu. 
Il en serait de même pour 

m = 9, 11, i3, 17,...; 

mais à quoi bon pousser plus loin ces calculs? 
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L'équation 

F(iom) -t- 2Σ F(iom — (*) — ζ, (m), 

ou l'entier ni est premier à 10, nous a paru mériter une mention spé-
ciale; mais elle peut être généralisée : je veux dire qu'il y a une for-
mule analogue, quoique naturellement un peu moins simple, poul-
ie cas d'un entier donné quelconque. Ce sera le sujet d'un autre 
article. 


