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PURES ET APPLIQUÉES. 337 

SUR DIVERS POINTS 

13 IL LA 

THÉORIE DES INVARIANTS, 

PAR M. EDOUARD COMBESCI RE 

I. 

On me permettra de rappeler que l'on nomme invariant toute fonc-
tion ψ des coefficients a, b, c,... d'une ou de plusieurs fonctions homo-
gènes données, qui jouit de la propriété caractéristique de rester iden-
tiquement la même en a, b, c,..., lorsque, après avoir soumis les 
fonctions considérées à une substitution unimodulaire [*], on rem-
place les coefficients dont il s'agit par les expressions nouvelles que la 
substitution leur a fait acquérir. 

De cette définition découle immédiatement, comme l'a fait voir 
M. Sylvester (On the Calculus oj Forms, sect. IV) [**], l'existence de 
certaines équations différentielles que doivent vérifier les invariants. 
Je vais établir ces équations par un procédé qui me semble plus simple 
que celui de l'habile analyste, à qui j'emprunterai seulement l'emploi 

[*| Si dans une fonction de trois variables , χ, y, ζ par exemple, on remplace 

■X par α χ β r -+- y ζ, 

ι par α! χ -+- ψ y -+- y' ζ, 

ζ par χ |3 γ —f- y ζ, 

le determinant α p! y" — ay' fi" + ... est appelé, comme on sait, le module de la sub-

stitution, laquelle devient unimodulaire quand ce déterminant est égal à un. 

[** ] Cambridge and Dublin mathematical Journal; iHot 
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338 JOURNAL DE MATHÉMATIQUES 
ries substitutions partielles successives en lieu et place d'une substitu-
tion immédiate tout à fait générale. Je prendrai dès l'abord le cas 
d'une fonction homogène d'un nombre quelconque p de variables χ, 
γ, ζ,..., u. Une pareille fonction est généralement représentée par 

■ώπ(λ)π(μ)...π(ρ) j "■ ' 

11 (λ) désigne, à l'ordinaire, le produit continuel 1.2.3... λ; les a. ^ 

sont ce qu'on est convenu d'appeler les coejjicients, et le ̂  se rap-

porte à toutes les solutions, en nombres entiers nuls ou positifs, de 
l'équation 

λ p. -f- .. . -i— p — 72, 

η étant le degré de la fonction. 
Si l'on remplace, dans cette fonction, y par y -4- εχ, toutes les 

autres variables restant intactes, il est facile de voir que le coefficient 
α\,

μ
 ,

 P
 (lu ' répond à x' y"'... up, après la substitution, sera donné 

par la relation 

a

\...p ~
 a

X...p + ^
α

Χ-ι, μ+ι,,:-. ,p
Z

 +
 A(j.

2

 l) α
ΐ-9.,

μ +
 ·ϊ,,...ο

ί2

 + ·■ · 

-4~~ Cl · £ ". 

d'où résulte 

. . .p ^ — ι J V. .. Ρ — 2, μ -+■ 2, y... p ^ * " ) 

c'est-à-dire 

—— *«1-1,(1+1,,.. .p-

Actuellement, si l'on demande qu'une fonction φ des coefficients α
χ r 

persévère dans sa composition primitive lorsqu'on vient à remplacer 
ces quantités par les expressions précédentes des a\ , il sera néces-
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saire que ε disparaisse du résultat de cette substitution; et il est clair 
que ε ne pourra disparaître sans entraîner la disparition des quantités 
qui multiplient ses diverses puissances dans les expressions mentionnées 
des ,

p
. Donc la condition nécessaire et suffisante pour qu'une 

lonction φ des a. se réduise à la même fonction des α. , sera 

Σ (ί ψ day ρ 
da'y ρ de 

c'est-à-dire 

ν -, ι <1ω 

et comme les aj désignent des quantités tout à fait quelconques qui 
peuvent parfaitement remplacer les αχ , rien ne s'oppose à ce qu'on 
supprime les accents et qu'on écrive en conséquence 

Σ- d(s> 

Au reste, cette suppression d'accents revient à effectuer un changement 
de variables au moyen de la relation qui lie les a! aux a et donne ré-
ciproquement les a par les a' moyennant la substitution de — ε ά ε. 

L'adjonction successive de y à chacune des autres variables z,..., u 
donnerait lieu, comme pour x, à autant d'équations analogues, et l'on 
obtiendrait d'autres pareilles équations en partant de chacune de ces 
mêmes variables comme on est parti de y. M. Sylvester, dont la mé-
thode laisse échapper, ce me semble, le type général des équations 
différentielles dont il s'agit, avertit qu'il suffit de prendre un nombre ρ 
de ces équations égal au nombre des variables x, y,···, «, et que le 
choix 11'est pas arbitraire. Mais n'ayant rien spécifié relativement à ce 
choix, il ne sera peut-être pas inutile de réparer son oubli. Or si l'on 
altère successivement, dans a. , deux indices contigus depuis le pre-
mier λ, par exemple, jusqu'au dernier p, pour retomber brusquement 
sur le point de départ, les substitutions partielles correspondantes 
atteignant de proche en proche toutes les variables et la supposition 
répétée d'une pareille opération aboutissant à une substitution uni-
modulaire tout à fait générale, les ρ équations qui répondront à cette 

43.. 
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alteration circulaire des indices seront évidemment suffisantes et ne 
se trouveront pas en excès. On aura donc en prenant quatre variables, 
pour fixer les idées, 

^d ). — ι, /i-M, ν, ρ da 

^ ^ ; ρ ~ U ' +■> Ρ daj 

2d " /λ, ν—ι, ρ-ί-ι da 

pa,+i ώ, °' 

le ̂  conservant toujours la signification qu'il a dans la fonction 

donnée. 
Si la fonction φ devait être composée avec les coefficients de plu-

sieurs fonctions, d'un même nombre de variables, on introduirait dans 

chacune des équations différentielles autant de nouveaux ̂  qu'il y a 

de fonctions nouvelles. Le cas d'un nombre inégal de variables donne 
nécessairement lieu à des conventions diverses qu'il n'importe pas 
d'énumérer, et qui n'offrent pas d'embarras pour le choix des équa-
tions. 

Dans le cas des substitutions orthogonales dont, à ma connaissance, 
les auteurs ne se sont pas spécialement occupés au point de vue des 
invariants, on trouve, par une analyse semblable à la précédente, 
que les équations ci-dessus, doivent être remplacées par les suivantes : 

_J_I +Ι,/Λ—1, J, ρ) cla, 

ρ —ι ν -ι-ι, ρ ^ , /λ-t-1, j — ι, ρ) da· 
....................... 

équations dont le nombre est égal à celui des variables, excepté pour 
le cas de deux variables où ce nombre se réduit à un, et qui sont en 
quelque sorte aux premières ce que sont, dans la statique, les équations 
des moments ou de rotation à celles de translation» 
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II. 

Je vais, dans ce qui suit, m'occnper exclusivement de la fonction 
à deux indéterminées, savoir 

^ ^ ( f{x, y) — a
0
 χ" 4- na, je"-1 4- a

2
 2

 J
2
 ■+ ■■■ 

4- na„__t xy"' 1 4- «„y" 

On a ici les deux équations différentielles 

i=n 

a <p w'-sr=0» 
i=i 

<»> i=n 
x I "T~ — Ο ? 
ï= r 

qui ont séparément pour intégrale, la première une fonction arbitraire 
des quantités α

0
, α,,..., a

n
, la seconde une fonction arbitraire des quan-

tités β0, β,,·.., β„, renfermées dans le tableau suivant: 

a. 0 — &0, 

l oc, = «, 4- α0
·η, 

/ _ «Λ j c-2 = o0 (fl2 + 2 a, τ, 4- u0vr), 

........................... 
, α„ = a"

t)
 ' (<7„ 4- rui

n
_, yj 4- ... 4- «α, y/'"' 4- <3

0
yj" !, 

! βθ = Ά; 7 

ι /5) — rz„_, 4- ε, 

j \ j βί = an {an-2 + 2 ; 4- an 1* h 

..................................... 
' /3„ = (a

0
 + ηα

κ
 ε + ... -ι- ="-■ 4- α

η
 ε"). 

La seule conséquence vraiment utile qu'on ait, à ma connaissance, dé-
duite jusqu'ici de l'une ou l'autre de ces intégrales, consiste dans une 
remarque de M. Brioschi, en vertu de laquelle la somme des produits 
des indices des lettres qui entrent dans «,· par les exposants correspon-
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dants, ayant pour chaque terme une valeur constante et égale à i, la 
même propriété s'étendra à l'intégrale supposée une fonction homo-
gène des coefficients. Ainsi 

Σ A 'l 'l Jn 

étant cette intégrale et μ désignant une constante, on aura 

λ, + 2 λ
2
 + 3 -+-... + ΤΙ λ„ — ρ. [*]· 

Maintenant la seconde équation (2) se déduisant de la première par 
le changement de at en α

Λ
_,, la vérification simultanée de ces deux 

équations exige que 

a0a{ a2 ...an \ 

ainsi qu'on l'a remarqué depuis longtemps dans le Cambridge and 
Dublin mathematical Journal. On devra donc avoir 

n\ + (η — 1) λ, + ...' + λΛ_, = ρ, 

et par suite, en faisant 

λ0 -t- λ4 +... + λ„ — ρ ; 

et ajoutant les deux expressions de μ, il viendra 

μ = Τ' 

ce qui fait connaître l'indice, et exige que np soit pair. 
Avec le groupement nécessaire des termes ci-dessus indiqué, il est 

[*] La constante [/, a été appelée par M. Transon l'indice de la fonction homogène ̂  : 

elle indique, comme on peut le voir aisément et comme M. Brioschi l'a, je crois, établi 
le premier, le degré de la fonction par rapport aux racines de l'équation 

f(x, 1) — o. 
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clair qu'il suffit d'employer l'une ou l'autre des équations différen-
tielles (2) dans la recherche des coefficients A de la fonction intégrale. 

En adoptant la première, j'ajouterai une remarque qui ne contribue 
pas peu, dans l'application, à l'abréviation du calcul. Elle consiste en 
ce que, pour savoir ce que la fonction (3) fournit à la substitution dans 
l'équation mentionnée, il suffit d'opérer une sorte de differentiation 
mixte, portant à la fois sur l'exposant et sur l'indice de chaque lettre. 
Ainsi la lettre isolée a.' donnerait 

d.a'—iki.cit 

à étant le symbole de cette differentiation. Cette règle, d'une facile 
traduction en laugage ordinaire, dispense en particulier d'avoir l'équa-
tion différentielle constamment présente aux veux ou à l'esprit. Comme 
011 doit finalement écrire 

© = ο, 

on exprime une certaine condition de maximum dont la nature in-
time m'échappe, mais qui doit être soumise à de certaines lois déter-
minées. 

Pour faire une application, je rappellerai qu'on a l'invariant qua-
dratique de M. Cayley (η = an'), 

i_n 

I, = 2,->)' •'"t.'l'.r·'·" ». 
i — ο 

que fournit immédiatement l'emploi des coefficients indéterminés. Pour 
obtenir l'invariant cubique, comme u. = 3 n', on écrira 

t =. Il 

la = a2n' 2 "U ain'~t 2
 a

i ^4" · · ■ · 
i = ο i 

La differentiation par & diminuant les indices, il faudra que le à du 
premier ̂  donne un résultat identiquement nul, et comme on écrit 

alors les relations entre les A)
0

' qui correspondent a l'invariant qua-
dratique pour la fonction du n!iime

 degré, il faut que n' — 2 η", ce qui 
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constitue en passant un des beaux résultats de M. Cayley. Différentiarit 

ensuite le premier terme en dehors du ̂  et le second en dedans du 

^, on devra avoir 

2 " 2 a»'-' 2 (' di-\ d-n'+\-i + I — l.(li α„ι_ι) , 

ce qui fera connaître une seconde série de coefficients. La continuation 
de ces differentiations alternatives par t? donnera d'autres séries, et 
ainsi de suite. L'application de ces remarques très-simples m'a permis 
de calculer certains invariants beaucoup plus rapidement que je ne 
l'avais fait dans le principe où je substituais directement dans l'équa-
tion différentielle sans suivre un procédé empreint d'une certaine régu-
larité. 

J'invoquerai tout à l'heure un théorème de M. Cayley, publié par 
M. Sylvester et qui consiste en ce que le degré, quant aux coefficients, 
d'une fonction symétrique des racines x,, x

2
,..., x„ de l'équation 

fix, r) — ο 

(ou je supposerai, pour un moment, a
0
 — i), est précisément égal à la 

puissance la plus haute de l'une quelconque de ces racines dans la 
fonction symétrique considérée [*]. Ce théorème pouvant être utile 
dans d'autres circonstances, j'en donnerai la démonstration nouvelle 
suivante qui me paraît assez simple : 

P, désignant la somme des produits i à i des η — ι racines x·,, x
3
,..., 

x
n

, on a, abstraction faite du signe et des facteurs binomiaux, 

a s — jc, -1— 1\, 
a2 X| Ρ, -Ρ Ρ2, 
.............................. 

β·π—\ — X\ 2 ~P ffl—M 

a
n
 := P„_„ 

[*] Philosophical Magazine, mars i853. Je crois que M. Sylvester a établi seule-

ment que cc degré ne pouvait pas surpasser la plus haute puissance, etc. 



PURES ET APPLIQUÉES. 345 
d'où 

a1 a1... a n — χί11 + λ'"+" " '+ 'n P;"' pJ 1,. . Ρ' " -j- .... 

Les puissances de x
i allant en diminuant dans la partie non écrite, le 

degré du terme a\.. aest précisément égal à la plus haute puissance 
de .r, dans la fonction symétrique qui lui répond. D'ailleurs, dans un 
autre terme a*. ■ .a" pour lequel on aurait 

λ j λ 2 ~f~ ■ ■ . λ, "t— . . . -4- \
n

, 

les λ'2,λ'3,..., λ'„ ne pouvant être égaux respectivement aux λ2, λ8,. 
sans quoi ce terme coïnciderait avec le premier, les produits 

P;\..P'" et P;2...P;" , 

ou l'on peut prendre P
)5 P2,..., P„_, pour variables tout à fait indé-

pendantes, seront parfaitement dissemblables, et il ne pourra s'opérer 
aucune réduction dans les deux premiers termes des fonctions symé-

triques qui correspondent à ci \ .. a " et à a\ . .a ". Donc, dans un 

polynôme Αα,'.. . a" , le degré sera bien égal à la plus haute puis-

sance de l'une quelconque des racines dans la fonction symétrique 
correspondante. 

III. 

M Brioschi a eu le premier l'idée de faire dépendre immédiatement 
les invariants des racines .r,, x„ [*]. Il fait usage, à cet effet, 
d'une formule de transformation qu'on peut déduire sur-le-champ des 
relations précédentes. Ces relations donnent effectivement, en remettant 

les facteurs binomiaux, et écrivant ensuite Λ, pour —' a
<5 

'É! - +p. 

c'est-à-dire que -j1 est égal au coefficient de xl dans le quotient —· 

[*1 Annales de Math. et de Phys. de M. Tortolini, juin I85/L· 
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Ainsi 

— ;— (bi-t 4- 4;·_2 χ, -+- bi_3 χj -+- ... -+- b0 χ\ '). 

De là, par les relations qui ont lieu entre les racines et les sommes de 
leurs puissances semblables, on déduit tout de suite, avec M. Brioschi, 

~r~ H— ~— -h . . . ~{— -,— — ( &
Q

 —— -}- 1 Cl
i
 — . . . —7lCl

n
_i —— 1 » 

. , \ •r^ + ·" +Χ" [a{d^
t

 + ■■■ + a"da) 

I + (» - 0 + (« - 2) α3- + {η- 3}αΑ 

où S, — χ, + χ
2
 + ... + χ

η
. Puis, en supposant φ homogène et de 

degré p, par rapport aux coefficienls a
0

, aa„ et se reportant aux 
équations différentielles (2), on voit que leurs transformées sont 

, ί i dx 1 dxt dxn 

I + + = + ^
2
+... + .r„)

9
. 

Enfin, on trouve par la même formule de transformation 

w *<%+·-··+*·£-α<7ί+π» 
et, en s'appuyant sur cette équation 

β· ώ, + a a> dît + · · ·+ = τ 

que M. Cayley a fait voir être une conséquence des équations (2), on 
en conclut 

( C ) OC 1 — h OC λ — -f- 0C
n

 —— = — φ ' 

tels sont les résultats obtenus par M. Brioschi. De l'inspection des 

[*] Si l'on remplace a, par comme une fonction quelconque y, dépendant succes-
sivement des variables x, et a-, est exactement de même degré par rapport à ces deux 
systèmes de variables, on obtient immédiatement, par ce seul fait, l'équation (β). 
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équations transformées, ce géomètre conclut sur-le-champ que toute 
fonction symétrique des racines qui est en même temps une fonction 
des différences des racines, dans chacun des termes de laquelle toutes 
les racines entrent 1111 même nombre de fois, est un invariant de la 
fonction f (χ, γ). 

Il restait à faire voir que, réciproquement, tout invariant est réduc-
tible à une pareille fonction des différences. 

J'étais arrivé à ce dernier résultat et aux précédents en faisant usage 
de l'analyse suivante, avant d'avoir eu connaissance du Mémoire de 
M. Brioschi. 

La fonction (i) étant mise sous la forme 

(a) j (χ,y) — a(jc —
 χ\ y) ix — xî7) ■ ■ ■ (χ ~ xnf)i 

si l'on reprend la substitution 

oc — χ — ty, y =y, 

son unique effet est de changer χ,, x3,..., x
n
 en 

x\ = x
t
 + s, 4s = ̂ j-|-£

r
.., x'

n
 = x„ -t- ε, 

a restant le même. Il faut donc que l'on ait 

tfy (g',,... , x'„) _ 

c'est-à-dire 

do do do 

ou, en supprimant les accents, 

^ + ̂  + ···+^;== °· 
Ensuite, la seconde substitution partielle 

χ =z χ, y — y — EX, 

transforme y dans 

f = fl (ι + ε*,)· · -(ι + εχ„) (
x
 - 7^; /)·"(*- ' 

44·. 
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et n'a conséquemment d'autre effet que de changer Λ, χ,, x2,..., x„ 
respectivement en 

a — a{\ h- ε ar4 )... 11 -h ε jpJ; = 5 ···> = 

II faut donc aussi que l'on ait 

da' de dx, d ε 

Mais 

— = a (xt + x2 + ... -t- x
n
), — = —χι,...·> 

par conséquent, en substituant et supprimant les accents (ce qui cor-
respond toujours à un changement de variables, si l'on veut), on aura 

<*') x"%+--+xt % = <x> +- + <r«)â· 

Lorsqu'on suppose <p une fonction homogène des coefficients de J, 
les racines χ, , x

2
,..., dépendant uniquement des rapports arbi-

traires représente la dérivée partielle de la fonction Con-

sidérée en tant que a n'entre point dans ces rapports, et il importe de 

ne pas la confondre avec On a donc dans ce cas 

adï = P^ 

ρ étant toujours le degré de ψ par rapport aux coefficients. L'équation 
précédente devient alors la seconde (b). 

La première équation (b) faisant dépendre © arbitrairement des dif-
férences 

OC 1 \ ^1 ? 3 \ W 2 ν ' * 1 ^n ^ * "rt—1 ï 

en introduisant ces hi — ι) variables dans la seconde, il viendra 

N, (M, -f- 2 X,) + M„_, (u„-t H- ΊΧί) 

= ρ (it, + .. .+ «
π
^, -f- ηχ,)ψ', 
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et comme ψ ne peut dépendre que de u,, u

2
,..., et que x, reste 

conséquemment tout à fait arbitraire, cette équation se partage dans 
les deux suivantes : 

4 2 , “î + ~T~~ =/'(«! +•••+"»-.)«, ai««-! 

do do np 

La dernière, à cause de 

c/x, rfii, efifa ' ' ' , ' 

ί/χ2 rftt, ' 

........................... 

dy dy 

redonne l'équation (c) [*]. 
Maintenant je considère la première équation (b) et l'équation (&'), 

qui sont tout à fait générales et ne préjugent rien sur l'homogénéité 
de ψ. J'introduis encore dans (b') les variables u,,..., u

n
_
t
, et, à cause 

que χ, reste toujours arbitraire, j'obtiens les deux équations 

u
< ÂT, + -(».+··· + «»-·)«5-» 

η,ρ. + =-ap [**]. 

[*] De ce que φ est une fonction symétrique des racines x
t
,. . ., a-,,, homogène 

par rapport à ces racines, on peut conclure tout de suite la constance de Vin-

dice (/. dont il a été question au § II. Il suffit de remarquer que - étant du degré ί, 

quant aux racines, I — I sera de degre r/,·, et consequemment ^An α, .. a„ du 

degre constant -4- 2 Xj ... -t- π 

[**] Dans le cas très-particulier de η — ι, ce partage n'est plus nécessaire à cause 
du facteur χ, + x, qui apparaît dans les deux membres. 
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La seconde oblige ψ à dépendre, arbitrairement de 

z, = a" u,.., Zn__, = a" un_{, 

et dès lors, en introduisant les z, dans la première, et faisant, pour 
abréger, 

0 — z> + z
2
 + z„_,, 

il vient 

B/V) i2«-"? <lZn-\ 

Le second membre de cette équation étant nul, il suffit de trouver η — ι 
fonctions particulières qui la vérifient : ce qu'on obtient tout de suite en 
prenant les divers produits des différences symétriques 

= a2 (χ, — x2) (x2 — x3). ,.(x„ — χ,), 
®

2
 = a2 (x

2
 — χ,) (x, — x

3
)...(x„ — x

2
), 

.......................... 

Ces quantités, parce qu'elles vérifient l'équation {d), sont finalement 
réductibles à τι — % variables indépendantes, et pas à un moindre 
nombre; car en conservant ®,, par exemple, on en déduit, par la di-
vision, des expressions de la forme 

X2 — &■> Xi — 

et l'on voit bien qu'en attribuant pour un moment, à χ,, x
2

, x
3

, des 
valeurs fixes quelconques, et donnant à i les valeurs Zfi 5,..., η, on 

pourra déduire de ces expressions des valeurs arbitraires des ——- ré-

pondant à des valeurs aussi arbitraires des jr
(
. On aura donc, en y 

comprenant®,, η — ι fonctions intégrantes parfaitement indépen-
dantes. 

Les ®,, ®2,···, qu'on peut considérer comme les vrais éléments qui 
doivent concourir à la formation des invariants, renfermant indivi-
duellement toutes les racines et chacune un même nombre de fois, de 
quelque manière qu'on les combine à l'effet de former des fonctions 
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entières et homogènes des racines, ce double caractère se transmettra 
inlégralement aux fonctions résultantes. Cela découle de la parfaite 
indépendance de η — % de ces quantités. Et si l'on admettait même la 
disparition possible de certains termes, qui tendrait à détruire cette 
double propriété, rien n'empêcherait de les réintroduire comme des 
forces capables de se neutraliser. Il est inutile de dire que, dans la 
combinaison des fonctions élémentaires dont il s'agit, on ne doit pas 
toujours exclure la division. On peut donc établir ce théorème, qui 
n'est pas, ce me semble, sans importance dans la présente théorie : 

Pour qu'une fonction symétrique des racines représente un invariant, 
il faut et il suffit quelle soit réductible à une fonction homogène des 
différences des racines dans les divers termes de laquelle toutes les 
racines apparaissent, sans exception , et chacune un même nombre de 
fois. 

Ce nombre commun de fois indique précisément, d'après le théo-
rème de M. Cayley, le degré de l'invariant par rapport aux coefficients. 
On voit à quel problème de partition des nombres on se trouve par là 
ramené. On en traduit les conditions primordiales par l'emploi des 
exposants indéterminés. Ainsi α,, a

2
,..., a„_, étant les exposants qui ré-

pondent àr
(
 - x

2
,..., χ, — χ

η
·, j3,,. ., |S

n
_

2
, ceux qui répondent à 

x
2
 — ·τ

3
,..., x

2
 — x

n
, etc., ρ le degré de l'invariant par l'apport aux 

coefficients, on doit avoir 

~h (/.<1 . . . -f~ — p) 
+ βι βη—

2
 — P> 

.................... 
0·η-\ + βη-·χ +···.+ κ, — ρ, 

ce qui, par l'addition totale, redonne ~ pour le degré, quant aux 
racines. 

Si l'on conçoit la fonction la plus générale des différences des racines, 
dont les exposants vérifient les relations ci-dessus et que l'on suppose 
écrits sur une même ligne horizontale les termes où, les racines étant 
dans le même ordre, les exposants constituent des solutions distinctes 
des équations précédentes, de telle sorte qu'en permutant, dans cha-
cun de ces termes, les racines de toutes les maniérés possibles, les 
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diverses séries des termes déduits ne puissent avoir en commun aucun 
de ces derniers termes; en supposant enfin ces mêmes séries écrites 
chacune en colonne verticale, et affectant individuellement chaque 
terme d'un coefficient spécial, on aura le tableau de la fonction la plus 
générale des différences remplissant les conditions voulues. Si, main-
tenant, cette fonction n'est qu'une seconde forme donnée à une fonc-
tion symétrique des simples racines, elle devra, comme celle-ci, rester 
indifférente aux permutations imposées aux dites racines. Et comme 
ces permutations imposées simultanément et de la même manière aux 

_ diverses colonnes verticales, n'ont d'autre effet que d'y changer res-
pectivement les termes les uns dans les autres, sans les transporter 
d'une colonne à l'autre, l'indifférence nécessaire de forme devra se 
manifester séparément et librement dans chacune des colonnes men-
tionnées; c'est-à-dire que chacune d'elles devra représenter une fonction 
symétrique des racines. 

On aura donc autant d'invariants distincts qu'il y aura de pareilles 
fonctions symétriques. 

Dans la recherche du terme fondamental de chacune de ces fonc-
tions , il ne suffira pas que la permutation de deux racines quelconques 
ne reproduise pas ce terme au signe près. Il faudra de plus que ce signe 
ne change pas quand on changera le signe de toutes les différences; ce 
qui veut dire que le nombre des exposants impairs devra être pair. 
Cette condition résulte immédiatement de l'inspection des équations 
précédentes qui montrent que la fonction cherchée doit se réduire à 
la même fonction des racines réciproques quand on la divise par la 
puissance ρ du produit des racines. C'est ce qui découle encore du 

groupement nécessaire A I ? ] signalé au § II. Bien que la so-

lution du problème arithmétique précédent entraîne généralement dans 
des longueurs que je n'ai pas encore trouvé le moyen d'amoindrir, on 
peut en déduire néanmoins certaines conséquences immédiates rela-
tivement à l'existence de certains invariants. D'ailleurs les ro

2
,..., 

donnent tout de suite par l'addition de leurs puissances ι i des inva-
riants de degré 4 i (par rapport aux coefficients) pour les fonctions 
de degré quelconque n. Et l'on voit aisément que, par d'autres com-
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binaisons de ces quantités, ou, ce qui est aussi simple, par des grou-
pements directs des racines, on peut former d'autres types pour les 
invariants du degré mentionné. 

Pour reproduire l'invariant quadratique qui se rapporte aux fonc-
tions de degré pair, il suffit évidemment deprendrede deux en deux les 

différences des racines. Le produit de ces^ différences donnera par son 

carré le terme fondamental de la fonction symétrique cherchée. (On 
peut d'ailleurs obtenir ce terme, comme cela doit toujours être, en 
combinant les τζ,, ra

2
,..., par simple multiplication et division.) 

Dans le cas très-particulier de quatre racines, on peut former le 
groupe 

{x, — x
2
)2 (x

3
 — X

k
)2 (x, — X2) (jCj, — X,}, 

qui correspond à l'invariant cubique pour la fonction du quatrième 
degré. Soit actuellement n — Si l'on partage les η racines en 
i groupes contenant chacun quatre racines distinctes, le produit 

[(x, — x
2
) (x

3
 — X,)]1"' [(x, — x

3
) {x2 — Xs,)f 

± [(.r
5
 - x

6
) (x

7
 — χ

8
)]2* [(x

s
 — χ,) (x„ — x

3
)]'J ..., 

ou 
a a + β = a a! + β' = ρ 

(les α étant différents de zéro), correspondra à un invariant de degré 
quelconque ρ {un excepté) pour les fonctions de degré [\i. En prenant 
les diverses solutions de l'équation 

a α + β = ρ, 

et affectant un, deux, trois des groupes dont il s'agit d'une même so-
lution ou de solutions différentes (en se bornant bien entendu aux 
groupements qu'on ne peut pas déduire les uns des autres par la 
simple permutation des racines), on donnera lieu à autant d'invariants 
de même degré ρ se rapportant à la fonction considérée [*]. 

[*] Pour le cas de η = 5 , ρ — ι8, il m'a semblé qu'on ne pouvait pas satisfaire aux 
conditions de partition indiquées, sous la condition d'avoir un nombre pair d'cxpo-

Tome XX. — NOVEMBRE I855. 45 
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η étant quelconque, si on le suppose partagé en h parties tulles, 
que 

H, -4- + ... -4-nh — n, 

et qu'on ait formé avec les η, premières lettres, puis avec les n
2
 sui-

vantes, etc., h types ou produits particuliers pouvant respectivement 
donner lieu à des invariants d'un même degré q pour les fonctions des 
degrés «,, «2ν··5 n

h't
 en multipliant tous ces produits entre eux, on 

obtiendra évidemment le terme caractéristique d'une fonction symé-
trique propre à représenter des invariants du même degré q pour la 
fonction de degré n \ et si, pour une même valeur de q, les types par-
ticuliers sont susceptibles de plusieurs formes différentes, il en naîtra 
généralement pour le type résultant un nombre de formes égal au pro-
duit des nombres des formes particulières. 

On comprend que je ne me suis pas proposé de trouver ici com-
bien, pour une valeur donnée de η, il existe d'invariants d'un même 
degré p, linéairement indépendants, pas plus que le nombre et le 
degré des invariants fondamentaux, c'est-à-dire des invariants par les-
quels on peut exprimer rationnellement tous les autres. J'ai eu, comme 
on voit, principalement en vue les notions primordiales qui président 
à la théorie des invariants. 

IV. 

J'ajouterai quelques mots sur les invariants qui naissent des substi-
tutions orthogonales. Us sont déterminés ici par l'équation unique 

i=n 

Σ-■(«-1 
i= I 

Pour les rapporter aux variables a, x,, x.
2
,..., j'introduis directement 

dans la fonction , u) du précédent paragraphe la substitution ortho-

sants impairs. Ce qui se trouserait en contradiction avec un résultat de M. Hermite, 
résultat dont le manque de certains détails empêche de vérifier la complète exactitude. 
Voir la Théorie des Fonctions homogènes h deux indéterminées. Cambridge and Dublin, 
i854. 
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gonale 

j~ =. x cos £ —y sin ε, 
y — χ sin ε -λ- y cos ε, 

ce qui revient à changer 

Cl, X,,.... X 
n 

dans 

η' = α (cos ε — χ. sin ε)... cos ε — x„ sm ε), χ, = :—■»··■· 

Donc, en observant que 

— CL \X j -+- X , -+- ... + X„J, = I -4- X j ,..., 

l'invariabilité de forme de la fonction <p sera assurée par cette équation 

t1 +··· ■+" t1 + *») è, =rt + 

qui est satisfaite en prenant pour ψ une fonction arbitraire des 

0= Cl2 (i+ d?î)... (i -t- xi), 

4 A»« I + Xh Xi 

On a donc en particulier, et pour une valeur quelconque de n, l'in-
variant quadratique ν qu'on peut aisément exprimer parles coefficients 
de/. Pour obtenir d'autres invariants entiers et rationnels, on peut, 
par exemple, former l'équation qui a pour racines les v

hti
. Quant aux 

invariants simplement rationnels, leur formation s'aperçoit d'elle-même. 
Si l'on considère la substitution très-simple 

x= -ly, y = εχ, 

son introduction dans l'équation (ι), § II, change immédiatement 

^ir") 

45 . 
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en 

a'
0
 = α

η
ίa\ = — a„_, ê" 2),.··, «Li = ^ a, ε d„ — ± α

0
ε 

d'où résulte, en prenant a i<n, 

-j~= (η— ai) ai — {η — ai) α„_.·ε . 

Pour que φ échappe à l'influence de la substitution précédente, on 
devra donc avoir, en ne tenant pas compte des accents, 

*£(»-.V / i/cp rfö »')(<*< a; 

Cette équation s'intègre immédiatement et reproduit pour η = 5 un 
résultat énoncé par M. Hermite dans le Mémoire déjà cité. 

V. 
Soient, en général, 

Z.J Z(, Z2?. ·.y zn 

η -1- ι variables parfaitement indépendantes, et ζ', zj, z'2z'„, η -f- ι 
autres variables qui leur correspondent; soit enfin ε un paramètre ou 
variable tout à fait arbitraire, et considérons les équations 

ί 57 = θ (*'' z'"···' 

(a) ) 77 ~ (
z
''
 z

"···'
 z

-)' 
............................ 

(§ = e„(z% zj,..., zj), 

0, 6,ô„ désignant des fonctions données de z', zj,..., zj, et, si l'on 
veut, de ε. En intégrant ces équations et remplaçant les η -t-i con-
stantes qui s'introduisent par des fonctions quelconques desz, s,, z2,..., 
z„, on formera un système de η + ι équations au moyen desquelles il 
sera permis d'exprimer les zj par les z,·, et vice versa. Je désignerai ce 
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système d'équations par (b). Suivant la nature des fonctions S,·, et 
aussi suivant la nature des fonctions cle z, z,,..., z

n
 par lesquelles on 

aura remplacé les constantes de l'intégration, les expressions des z, en 
ζ, z,,..., z„ et ε fournies par le système (b) et conçues développées 
suivant les puissances de ε, auront des formes différentes et se rédui-
ront, pour ε = ο, à de certaines fonctions κ, κ,, κ

2
κ„ de ζ, ζ,,..., 

ζ
η

. Cela posé, on pourra très-bien se demander qu'une fonction φ des 
variables ζ, z,,..., z„ jouisse de la propriété de se réduire à φ (κ, κ

)ν
..,κ„) 

identiquement, lorsque, dans φ (z, z,,..., z„), on vient à remplacer 
z, z,z

n
 respectivement par les expressions de z'

;
 en ζ, ζ,, z„, ε dé-

duites du système (b). La condition nécessaire et suffisante pour que 
cette circonstance ait lieu étant évidemment qu'après la substitution 
on ait 

7~ε~ °' 

au moyen des relations (a), 011 écrira sur-le-champ l'équation diffé-
rentielle qui assure à φ la propriété demandée. Puis, an moyen du sys-
tème (b), où ε jouera le rôle de paramètre arbitraire, on substituera, 
dans l'équation différentielle en z

i
 , les variables z

t
 aux variables ζ' , 

substitution qui se fera dans bien des cas par la simple suppression 
des accents. 

Une seconde hypothèse faite sur la forme des fonctions et sur celles 
qu'on substitue aux constantes de l'intégration du système (a) con-
duira à une autre équation différentielle qui sera l'expression d'une 
propriété de la fonction φ d'un genre analogue au précédent. Autant 
on fera de pareilles hypothèses, autant on aura d'équations aux dif-
férences partielles que la fonction φ devra vérifier simultanément. On 
voit que ceci comprend comme cas très-particulier l'idée première de 
la théorie des invariants, considérée au point de vue le plus général, 
théorie dans laquelle les substitutions linéaires qu'on peut partager en 
substitutions partielles, à paramètre variable unique, sont le moyen 
intermédiaire qui permet d'arriver à la modification des coefficients, 
modification qu'on se donne d'ailleurs d'avance, et qui revient à con-
sidérer immédiatement le système (b) pour en déduire le système (a). 
Remarquons qu'au lieu de concevoir les expressions des zj en ζ, z,,..ε 
développées suivant les puissances de ε en prenant pour premier terme 
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ce que z'
t
 devient pour ε= o, on peut prendre une autre valeur ini-

tiale répondant à ε = k, k étant une quantité fixe et déterminée. Re-
marquons aussi que lorsque, après avoir formé l'équation différen-
tielle en Zf, on reviendra aux variables z,· au moyen du système (b), 
s pourra, dans certains cas, se trouver mêlé et en évidence dans les 
divers termes de l'équation différentielle, laquelle alors se partagerait 
en plusieurs autres. 

On peut se convaincre aisément que toutes les équations différen-
tielles, considérées dans les précédents paragraphes, peuvent s'obtenir 
par cette méthode, dont on peut déduire, par des hypothèses conve-
nables, certains résultats présentant quelque intérêt. 


