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R AV AR TARRRLIA

waaan U AR VS LAY WA LAY

SUR DIVERS POINTS

DE LA

THEORIE DES INVARIANTS,

Parx M. Evovarn COMBESCURE.

On me permettra de rappeler que Pon nomme inpariant toute fone-
tion g des coefficientsa, b, ¢,... d’une ou de plusieurs fonctions homo-
genes données, qui jouit de la propriété caractéristique de rester iden-
tiquement la méme en a, b, ¢,..., lorsque, apres avoir soumis les
fonctions considérées a une substitution unimodulaire [“], on rem-

place les coefficients dont il s agit par les expressions nouvelles que la
substitution teur a fait acquérir.

De cette définition découle immédiatement, comme P'a fait voir
M. Sylvester (On the Calculus of Forms, sect. 1V) [**], Uexistence de
certaines équations différentielles que doivent vérifier les invariants.
Je vais établiv ces éqnations par un procédé qui me semble plus simple
que celui de I'habile analyste, 4 qui emprunterai seulement Pemploi

[*} Si dans une fonction de trois variables , «, y, z par exemple, on remplace

z par ax+fBy4+qgz,
¥y par &x+fy s,
z par &z + .B”f —+ 9"z,
le déterminant 2 B ¢ — « 9’ §” 4 ... est appel¢, comme on sait, le module de la sub-

stitution ) laquelle devient unimodulaire quand ce déterminant est ¢zal 4 wr.
> laq L 2
[**} Cambridge and Dublin mathematical Journal; 1852,

Tome XX .~ Noveunre 1855, 43
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des substitutions partielles successives en lien et place d’une substitu-
tion immédiate tout i fait générale. Je prendrai des I'abord le cas
d’une fonction homogéne d’un nombre quelconque p de variables x,
Y» %..., u. Une pareille fonction est généralement représentée par

T (o % Lyt P
ZH()‘)H(F‘)H(P) A’l’“r"’F'r‘y SR /AN

I (%) désigne, & I'ordinaire, le produit continuel 1.2.3... X; les a,

sont ce qu'on est convenu d’appeler les coefficients, et le 2 se rap-

porte a toutes les solutions, en nombres entiers nuls ou positifs, de
I’équation

Atu+..+p=mn,

n étant le degré de la fonction.
Si I'on remplace, dans cette fonction, Y par y + ex, toutes les
autres variables restant intactes, il est facile de voir que le coefficient
/ o s Jo e p . : : . A
By .., QUi répond & x” y*... 4, aprés la substitution, sera donnd
par la relation

a, =a + Aa ALl et +
Ao TN A—L g+ 1,v0 .6 1.2 A=, p 2,0 .0
P}
+a0,p,+)\,u.‘.p€7
d’ou résulte
dailnp___)\ a)—l,/u.—l—l,v...to-*-()\——I)ai—27/‘-+2,‘l.‘.P8+"' ,
de ~+ g

aO,/L+I+).——I, Veop
c’est-a-dire

(la')' 0 ’
e :la;\—l,/l.-—l—l,w.-‘p‘

Actuellement, si I'on demande qu’une fonction ¢ des coefficients a s

persévere dans sa composition primitive lorsqu’on vient a4 remplacer
L. . 4 r * L - . 7
ces quantités par les expressions précédentes des L il sera néces-
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saire que ¢ disparaisse du résultat de cette substitution ; et il est clair
que ¢ ne pourra disparaitre sans entrainer la disparition des quantités
qui multiplient ses diverses puissances dans les expressions mentionnées
des a}_mp. Donc la condition nécessaire et suffisante pour gu'une
fouction ¢ des @, seréduise & la méme fonction des a, _,sera

2 dy d“;....p o
e 2t — g,
da}, e df
c’est-a-dire

d
V\ /A . (?
Al\aA~-l,"L—T*I, Y@ (la; .

:0;

et comme les @ . désignent des quantités tout i fait quelconques qui
peuvent parfaitement remplacer les @, , rien ne s'oppose 4 ce qu’on
Aoveg

supprime les accents et qu’on écrive en conséquence

N de
2/\61)_[’ /J,—i—l,u...pc?—: 0.
heep

Au reste, cette suppression d’accents revient & effectuer un changement
de variables an moyen de la relation qui lie les @’ aux a et donne ré-
ciproquement les a par les @' moyennant Ja substitution de — ¢ 4 «.

L’adjonction successive de » a chacune des autres variables z,..., «
donnerait lieu, comme pour x, & autant d’équations analogues, et 'on
obtiendrait d’autres pareilles équations en partant de chacune de ces
mémes variables comme on est parti de y. M. Sylvester, dont la mé¢-
thode laisse échapper, ce me semble, le type général des équations
différentielles dout il s’agit, avertit qu’il suffit de prendre un nombre P
de ces équations égal au nombre des variables x, Fsees U, et quele
choix n’est pas arbitraire. Mais n’ayant rien spécifié relativement i ce
choix, il ne sera peut-étre pas inutile de réparer son oubli. Or si I’'on
altere successivement, dans a, 0 deux indices contigus depuis le pre-

mier ), par exemple, jusqu’au dernier p, pour retomber brusquement
sur le point de départ, les substitntions partielles correspondantes
atteignant de proche en proche toutes les variables et la supposition
répétée d’'une pareille opération aboutissant a une substitution uni-
modulaire tout a fait générale, les p équations qui répondront a cette

3.
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altération circulaire des indices seront évidemment suffisantes et ne
se trouveront pas en excés. On aura donc en prenant quatre variables,
‘pour fixer les idées,

49
Z)\a).——t,p.—i—l,u,‘ada) P"'07
dpa o

K ):A“"IJ”"“‘)PCLIG)' 'F:O’
. do
ya, . —
2 Ay pry v — 1, pi-l d(l) O—O’
o4y
2 P a)"f“)/’v”:f"—’ da) " =0

leZ conservant toujours la signification qu’il a dans la fonction

deonnée.
Si la fonction ¢ devait étre composée avec les coefficients de plu-
sieurs fonctions, d’'un méme nombre de variables, on introduirait dans

chacune des équations différentielles autant de nouveaux Z quil ¥ a

de fonctions nouvelles. Le cas d'un nombre inégal de variables donne
nécessairement lieu a des conventions diverses qu’il n’importe pas
d’énumérer, et qui n’offrent pas d’embarras pour le choix des équa-
tions.

Dans le cas des substitutions orthogonales dont, 4 ma conmnaissance,
les auteurs ne se sont pas spécialement occupés au point de vue des
invariants, on trouve, par une analyse semblable 4 la précédente,
que les équations ci-dessus, doivent étre remplacées par les suivantes :

49

Z ()\a).—l,/l+11’7ﬁ—— p‘a)_«',—x,‘u.—l, ”’P) da; ) = 0,
e e v
dy o
Z(Ha"‘;ll—‘ly""‘l){’—va)7/"+1:"“];P) a’a; }0_ ?

équations dont le nombre est égal & celui des variables, excepté pour
le cas de deux variables ou ce nombre se réduit a un, et qui sont en
quelque sorte aux premiéres ce que sont, dans la statique, les équations
des moments ou de rotation & celles de translation.

LI ' ' " U i R U S R R v s
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1.

Je vais, dans ce qui suit, m’occuper exclusivement de la fonction
a deux indéterminées, savoir

(1) J(x, ¥)=a,x"+ na, 2"y + "('fl—,_l-l) ay "yt e

i 1.7
A

. + na,_, xy" ' + a, y".

On a iciles deux équations différentielles

i—=n

. de
iaiy gt = o,

(2) -

i—=n

v dy
2 i dan i = O,

i=1
(qui ont sépar¢ment pour intégrale, la premiére une fonction arbitraire
des quantités o, o,,..., &,, la seconde une fonction arbitraire des quaiti-
tités 3o, Bi45..., B, renfermées dans le tableau suivant :

£
Oy = @y,

Sa, = a,+ da,n,

a, 0o 7= Qg (Ay + 24,1 + a, %),

(’7: _a—u> )agzaf, (ay+3a,n+3a, 0+ a,r,

_ =t N ’ - —1 . h
L On = a (a, + na,_,n+...+ na, v~ + a,n,

[' ﬁo = a,,
ﬁa = Gy Ay,
dp 182 =da, (an—2 +a2ca, ¢+ a, 52\},
> Be=alla, ;+3a, ¢+ 3a, =+ a, %,

fo=a'"(a, + na,c +...+ na,_, &' + a, €.

La senle'conséquence vraiment utile qu’on ait, & ma connaissance, d¢-
duite jusqu’ici de 1'une ou 'autre de ces intégrales, consiste dans une
retmarque de M. Brioschi, en vertu de laquelle la somme des produits
des indices des lettres qui entrent dans «; par les exposants correspon-
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dants, ayant pour chaque terme une valeur constante et égale a 7, la
méme propriété s’étendra a Yintégrale supposée une fonction homo-
géne des coefficients. Ainsi

Yo b
ZAaO a, a,... a,
étant cette intégrale et u désignant une constante, on aura
M+2Xd + 3k +.+nd, = p[*]

Maintenant la seconde équation (2) se déduisant de la premiere par
le changement de a; en a,_,, la vérification simultanée de ces deux
équations exige que

Jy X 4, %,
aO al (l2 all

(3) ¢ = ZA ISR P B
(l” an—l aﬂ—? “0

ainsi qu’on Va remarqué depuis longtemps dans le Cambridge and
Dublin mathematical Journal. On devra donc avoir

nky+ (n—1)A +.0+ k= p,
et par suite, en faisant
dg + Ay + oo+ hy = ps
et ajoutant les deux expressions de p, il viendra

np
= —

2

ce qui fait connaitre I'indice, et exige que np soil pair.
Avec le groupement nécessaire des termes ci-dessus indiqué, il est

[*] La constante . a été appelée par M. Transon 'izdice de la fonction homogéne E :

elle indique, comme on peut le voir aisément et comme M. Brioschil'a, je crois, établi
le premier, le degré de la fonction par rapport aux racines de I'équation

Sz, 1)=o0.
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clair qu’il suffit d’employer 'une ou Pautre des équations ditféren-
tielles (2) dans la recherche des coefficients A de la fonction intégrale.

En adoptant la premicere, j’ajouterai une remarque qui ne contribue
pas peu, dans l'application, & Pabréviation du calcul. Elje consiste en
ce que, pour savoir ce que la fonction (3) fournit 4 la substitution dans
Péquation mentionnée, il suffit d’opérer une sorte de différentiation
mixte, portant a la fois sur Fexposant et sur I'indice de chaque lettre.

Ainsi la lettre isolée a ' donnerait

A ).l . }i —1

v.a; =ik.a a;,,

3 étant le symbole de cette différentiation. Cette régle, d’une facile
traduction en langage ordinaire, dispense en particulier d’avoir I'équa-
tion différentielle constamment présente anx veux ou i I'esprit. Comme
on doit finalement écrire

7.0 =o0,

1]

on exprime une certaine condition de mazximum dont la nature in-
time m’échappe, mais qui doit étre soumise 2 de certaines lois déter-
minées.

Pour faire une application, je rappellerai qu’on a I'invariant qua-
dratique de M. Cayley (n= an'),

i=n

=¥ (= p2ez){r e

a_'4
2 [ Y i n—yy

i= o

que fournit immédiatementl’emploi des coefficients indéterminés. Pour
obtenir I'invariant cubique, comme p=3n', on écrira
i=n'

(o) 1)
I, = Aop! 2 A acay ; + Ay pry Z A, a; ay
i

i=o

1

La différentiation par @ diminuant les indices, il faudra que le ¢ du
premier 2 donne nn résultat identiquement nul, et comme on éerit

alors les relations entre les A‘[‘” qui correspondent 4 Pinvariant qua-

(]ratique pour la fonction du 7/ ééme degré, il faut que r’ = an’, ce qui

.
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constitue en passant un des beaux résultats de M. Cayley. Différentiant

ensuite le premier terme en dehors du Z et le second en dedans du

Xl .
2, on devra avoir

(1) [
AN . . :
pa Ai (lai—i Apy + N+ 11— 1.4 a‘n’—i) ?

a2 n Z AiUJ a; d,y _; =—
ce qui fera connaitre une seconde série de coefficients. La continuation
de ces différentiations alternatives par ¢ donnera d’autres séries, et
ainsi de suite. L’application de ces remarques tres-simples m’'a permis
de calculer certains invariants beaucoup plus rapidement que Je ne
avais fait dans le principe ou je substituais directement dans I’équa-
tion différentielle sans suivre un procédé empreint d’une certaine régu-
larité.

Pinvoquerai tout & ’heure un théoréme de M. Cayley, publié par
M. Sylvester et qui consiste en ce que le degré, quant aux coefficients.
d’une fonction symétrique des racines X,, Xy;..«; L de Iéquation

(o1 je supposerai, pour un moment, @, = 1), est précisément égal & la
puissance la plus haute de Yune quelconque de ces racines dans la
fonction symétrique considéree [*]. Ce théoreme pouvant étre utile
dans d’autres circonstances, j'en donnerai la démonstration nouvelle
suivante qui me parait assez simple :

P; désignant la somme des produits ¢ a idesn —1 racines Lo, Xay..y
x,, on a, abstraction faite du signe et des facteurs binomiaux,

a, = x,+ Py,
a, =xy Py + Py,
N
Apy = X4 Pn—z -+ Pn—n
a, =2, Py,

[*] Philosophical Magazine, mars 1853. Je crois que M. Sylvester a établi seule-
ment que cc degré ne pouvait pas surpasser la plus haute puissance, etc.

IR ‘ ' 1 . GO G TPEET IO A R R b ey . e
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d’ou
o X X Ay

a0 ;
[ J— n 2 3 n
al=x, P1 PQ‘..P “+ ...

n—1

a

Les puissances de a, allant en diminuant dans la partie non écrite, le

, 3 2 L. R .
degré du terme ai‘. ..a " est précisément égal A la plus haute puissance

de x, dans la fonction symétrique qui Iui répond. D’ailleurs, dans un

N '

autre terme a:‘. . .af“ pour lequel on aurait
Xy Xy i W= o+ Dy,

les X5, X;5..., X, ne pouvant étre égaux respectivement aux by, Ag..., Lo,
sans quoi ce terme coinciderait avec le premier, les produits

ot

; A
Fa A J”

PP et Proph

n—1 T3

ou 'on peut prendre P,, P,,..., P,_, pour variables tout a fait indé-

pendantes, seront parfaitement dissemblables, et il ne pourra s'opérer -

aucune réduction dans les deux premiers termes des fonctions symé-
. o ,

. - : ;‘1 ‘n }"’
triques qui correspondent i al...aletha'...a’ Done, dans un

. 5 B , L )
polynomez Aa/...a,, le degrésera bien égal a la plus haute puis-

sance de 'une quelconque des racines dans la fonction symétrique
correspondante.

Il

M Brioschi a eu le premier 'idée de faire dépendre immédiatement
les invariants des racines x,, x,,..., x, [*]. 1} fait usage, & cet effet,
d’une formule de transformnation qu’on peut déduire sur-le-champ des
relations précédentes. Ces relations donnent effectivement, en remettant

. . . .. . nln—1)... (n—i-=1)
les facteurs binomiaux, et écrivant ensuite b; pour —( ~——~~—I) " ( T Qs
@y
([xl i—1
L1 db; . o - . Slz, 1)
¢’est-a-dire que o est égal au coefficient de ' dans le quotient 2
dr, r — I,

("} dnnales de Math. et de Phys. de M. Tortolini, juin 1854.
Tome XX. — Noveusiu (855. Q4
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Ainsi

dbl' 2 famel

672'—, - — (bl’_, + bl‘_2\T| -+ bi_:;l'f —+ ...+ box, )
De 14, par les relations qui ont lieu entre les racines et les sommes de
leurs puissances semblables, on déduit tout de suite, avec M. Brioschi,

Z; ZZ+ %:——( 0314—%1,;‘?0 ...+nan_,%),
” x"f;—;+x§j—i—l—. +x,,(—1——_s,( {;’: ...+a,,gin>
+(n—1)a gﬁl—i—(n—-z)asiil—z—a—kn—~3)a,,dq’+ +an£"i_(,
ou S, = x, 4+ x, + ... + x, Puis, en supposant ¢ homogéne et de

degré p, par rapport aux coefficients a,, a,,..., a, et se reportant aux
équations différentielles (2), on voit que leurs transformées sont

; rtcp do o
[b s Jx—l d.rz+ +d—x—n 0,
\)(f d—+ac~[i?i +x2d~“°~— (X, + Xy + ...+ a0, g
i S P = P st X))

Enfin, on trouve par la méme formule de transformation

d deo ll(‘J dq) ; lq; .
{ [— a .
\ﬁ) x" __)r_ r__" a‘;l__|_ 2((2..__-’_ +na7_n [#]7

> ’ .
et, en s appuyant sur cette equation

a. e

+aa, e a, L8 ="
Vo, T 20 g, .0 £

n da Py 909

que M. Cayley a fait voir étre une conséquence des équations (2, on
en conclut

do  np

¢ dy (lq)
( ) x,H—f—.r? + xnd??n_? ;

tels sont les résultats obtenus par M. Brioschi. De inspection des

(*] SiTon remplace a; par a;?, comme une fonction quelconque g, dépendant succes-
sivement des variables z; et @], est exactement de méme degré par rapport i ces deux
systémes de variables, on obtient immédiatement, par ce seul fait, Péquation ().

[T ' ' " R I R A N AR AR R e o
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équations transformées, ce géomeétre conclut sur-le-champ que toute
fonction symétrique des racines qui est en méme temps une fonction
des différences des racines, dans chacun des termes de laquelle toutes
les racines entrent un méme nombre de fois, est un invariant de la
fonction f(x, ).

Il vestait a faire voir que, réciproquement, tout invariant est réduc-
tible 4 une pareille fonction des différences.

Jétais arrivé a ce dernier résultat et aux précédents en faisant usage
de P'analyse suivante, avant d’avoir eu connaissance du Mémoire de
M. Brioschi.

[ fonction (1) étant mise sous la forme

(a) Sz yy=alx—x )iz —x. 7). .. (x—x,)),
si Pon reprend la substitution

x=x—cy, ¥y=y,
son unique effet est de changer x,, x,,..., x, en

4 / [
X, =X, +€E, X,=Ly+ &y X, = Xp+ &

n

a restant le méme. Il faut donce que l'on ait

(139(.1'", cee g ,Z‘,:) —o0
de -
c’est-a-dire

dy de
dz +

———i——i—ﬂ: 0
dx, dzx, ’

n

ou, en supprimant les accents,
L 4+t 4+ =0

Ensuite, la seconde substitution partielle

x=2x, y=y—c¢x,

transforme f dans

t=a(1+cx,). . .(1+ sx,,)(x _ﬁy)--(x— 1—:;';1' 7)’

44-.
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et n’a conséquemment d’autre effet que de changer a, x,, x,,..., 2,
respectivement en

ad=a(1+ex,). (1+ex,); o, =
1l faut donc aussi que 'on ait

de da’  do dx’1+ o
da’ de ' dx, d: T

1
Mais
d.z:"
de

da’ ’ r ’ ’
—=a (X, + Xy +...+ X)),

_— 9 .
= = — 2} ..;

par conséquent, en substituant et supprimant les accents (ce qui cor-
respond toujours 4 un changement de variables, si I'on veut), on aura
‘ d d d
i 2 49 9 4% __ —(?
(6" S aRIT dxn_a(x,—i—...ﬁ-x,,)da
Lorsqu’on suppose ¢ une fonction homogene des coefficients de f,

les racines x,, &,,..., x, dépendant uniquement des rapports arbi-

a, a,
bl

. a d , fe g . .
traires —» —=>++» —2 représente la dérivée partielle de la fonction con-

a’d
sidérée en tant que a n’entre point dans ces rapports, et il importe de

d
ne pas la confondre avec E?' On a donc dans ce cas
0

dg __
a =P

p étant toujours le degré de ¢ par rapport aux coefficients. L’équation
précédente devient alors la seconde ().

La premiére équation (&) faisant dépendre ¢ arbitrairement des dit-
férences

Xy — Xy = Uy, Ly — 3= Ugyens Lp— Xy = Up_y;

en introduisant ces (72 — 1) variables dans la seconde, il viendra

. d d
w, (uy -+ 2 x,)d—zl Ao Uy (U + 22)) d{—?

n—1

= p Uy et Upy + BTG5
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et comme ¢ ne peut dépendre que de u,, u,,..., Up_yy € que x, reste
conséquemment tout & fait arbitraire, cette équation se partage dans
les deux suivantes :

d d
2 29 2 ?
Mg Tt =play + o+, ),
de de __ np
Ui g et Unt e = 9.
La derniére, 4 cause de
de _ _de _dy _ dy
de, du,  du, T du,
dy __dg
(6) dzy, du,’
de __ dy
dz, — du,_,’

redonne I’équation () [*].

Maintenant je considere la premiére équation (5) et équation (&),
qui sont tout a fait générales et ne préjugent rien sur I’homogénéité
de ¢. Yintroduis encore dans (8') les variables «,, ..., Uy, €t, & cause
que x, reste toujours arbitraire, j’obtiens les deux équations

dg
k4

u L2 4+ ul L
1 dul as n-1 da

d
a’u,:P_. = +...+u, ,)a

de do _rn_dy 1y
u‘d—u-’—k...'-l—ll,,__,dun_x—-;ad*a [ ]

[*] De ce que ¢ estune fonction symétrigne des racines z,,..., x,, homogéne
par rapport & ces racines, on peut conclure tout de suite la constance de Vin-

- " . ~ a; L.
dice p dont il a ¢té question au § II. Ilsufiit de remarquer que — étant du degré s,
a
. a[ )l ’ . ] )U )\‘ )'n
quant aux racines, | — sera de degré i), et conséquemment ZAa a, ... a,"du
a
degré constant ), 4 2%, 4-... +» P

[**] Dans le cas trés-particulier de n — 2, ce partage n’est plus nécessaire i canse
du facteur z, + x, qui apparait dans les deux membres.
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La seconde oblige ¢ 2 dépendre arbitrairement de

2 2

Zy = Q" Uiy Bpoy = @MU,

et des lors, en introduisant les z; dans la premiére, et faisant, pour
abréger,
=2, 4+ Zo+...4+ Zy_y,

il vient

(d) z, (z,——%@)ﬂ—l—...ﬂ—zn_, (zn_,—ie) 9 _ o,

dz, n Azpey

Le second membre de cette équation étant nul, il suffitde trouver n — 2
fonctions particuliéres qui la vérifient : ce qu’on obtient tout de suite en
prenant les divers produits des différences symétriques

m, = at(x, — ay) (X — X5)...(X, — 2y,

wy = a (&, — X,) (X, — Xy) - (Xn — Xa)s

Ces quantités, parce qu'elles vérifient Péquation (d), sont finalement
réductibles 4 n — 2 variables indépendantes, et pas 4 un moindre
nombre; car en conservant z,, par exemple, on en déduit, par la di-
vision, des expressions de la forme

Ty — Xy X — I,

yi=rm T

Xy — Xy Xy— Xy

et 'on voit bien qu’en attribuant pour un moment, a x,, x,, x;, des
valeurs fixes quelconques, et donnant a i les valeurs 4, 5,..., n, on

Xp—

a2, -
ré-
i Ly
pondant a des valeurs aussi arbitraires des y;. On aura donc, en y
comprenant ,, n — 2 fonctions intégrantes parfaitement indépen-

dantes.

pourra déduire de ces expressions des valeurs arbitraires des

Les #,, @,,..., quon peut considérer comme les vrais éléments qui
doivent concourir & la formation des invariants, renfermant indivi-
duellement toutes les racines et chacune un méme nombre de fois, de
quelque maniére qu’on les combine & leffet de former des fonctions .

[T ' . " COEE e R eyt T
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entieres et homogenes des racines, ce double caractére se transmettra
inlégralement aux fonctions résultantes. Cela découle de la parfaite
indépendance de n — 2 de ces quantités. Et si 'on admettait méme Ia
disparition possible de certains termes, qui tendrait a détruire cette
double propriété, rien n’empécherait de les réintrodunire comme des
forces capables de se neutraliser. 1l est inutile de dire que, dans la
combinaison des fonctions élémentaires dont il s'agit, on ne doit pas
tonjours exclure la division. On peut donc établir ce théoreme, qui
n’est pas, ce me semble, sans importance dans la présente théorie :

Pour qu'une fonction symétrique des racines représente un invariant,
il faut et il suffit qiielle soit réductible & une fonction homogéne des
différences des racines dans les divers termes de laguelle toutes les
racines apparaissent , sans exception , et chacune un méme nombre de
fois.

Ce nombre commun de fois indique précisément, d’apres le théo-
reme de M. Cayley, le degré de I'invariant par rapport aux coefficients.
On voit & quel probléme de partition des nombres on se trouve par la
ramené. On en traduit les conditions primordiales par Pemploi des
exposants indéterminés. Ainsi a,, o,,..., «,_, étant les exposants qui re-
pondent & &, — x,,..., X, — X3 PBiye -, s, COUX qui répondent i
Ly — Lgy..., Ty — X, elc., p le degré de Pinvariant par rapport aux
coeflicients, on doit avoir

Uy = Gy +o = p,
oy -+ [31 o= ﬁn-—ﬂ =P
Cp_y + ﬁn_2 + ARy = P
. , .. np ]
ce qui, par Faddition totale, redonne — pour le degré. quant aux
racines,

Si 'on concoit la fonction la plus générale des différences des racines.
dont les exposants vérifient les relations ci-dessus et que l'on suppose
écrits sur une méme ligne horizontale les termes 011, les racines étant
dans le méme ordre, les exposants constituent des solutions distinctes

des équations précédentes, de telle sorte qu'en permutant, dans cha-
cun de ces termes, les racines de toutes les maniéeres possibles. les
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diverses séries des termes déduils ne puissent avoir en commun aucun
de ces derniers termes; en supposant enfin ces mémes séries écrites
chacune en colonne verticale, et affectant individuellement chaque
terme d’un coefficient spécial, on aura le tableau de la fonction la plus
générale des différences remplissant les conditions voulues. Si, main-
tenant, cette fonction n’est qu'une seconde forme donnée &4 une fonc-
tion symétrique des simples racines, elle devra, comme celle-ci, rester
indifférente aux permutations imposées aux diles racines. Et comme
ces permutations imposées simultanément et de la méme maniére aux
_diverses colonnes verticales, n’ont d'autre effet que d’y changer res-
pectivement les termes les uns dans les autres, sans les transporter
d’une colonne a l'autre, U'indifférence nécessaire de forme devra se
manifester séparément et librement dans chacune des colonnes men-
tionnées; c’est-a-dire que chacune d’elles devrareprésenterune fonction
symétrique des racines.

On anra donc autant d’invariants distincts qu’il y aura de pareilles
fonctions symétriques.

Dans la recherche du terme fondamental de chacune de ces fonc-
tions , il ne suffira pas que la permutation de deux racines quelconques
ne reproduise pas ce terme au signe pres. Il faudra de plus que ce signe
ne change pas quand on changera le signe de toutes les différences; ce
qui veut dire que le nombre des exposants impairs devra étre pair.
Cette condition résulte immédiatement de P'inspection des équations
précédentes qui montrent que la fonction cherchée doit se réduire 2
la méme fonction des racines réciproques quand on la divise par la
puissance p du produit des racines. Cest ce qui découle encore du
a'(']”. La,
n:" e ai"

/Il
groupement nécessaire A signalé au § 11. Bien que lu so-
lution du probléeme arithmétique précédent entraine généralement dans
des longueurs que je n’ai pas encore trouvé le moyen d’amoindrir, on
peut en déduire néanmoins certaines conséquences immédiates rela-
tivement & I'existence de certains invariants. D’ailieurs les =, w4y.--,
donnent tout de suite par Vaddition de leurs puissances 2 i des inva-
riants de degré 4 i (par rapport aux coefficients) pour les fonctions
de degré quelconque n. Et 'on voit aisément que, par d’autres com-
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binaisons de ces quantités, ou, ce qui est aussi simple, par des grou-
pements directs des racines, on peut former d’autres types pour les
invariants du degré mentionné.

Pour reproduire 'invariant quadratique qui se rapporte aux fonc-
tions de degré pair, il suffit évidemment de prendrede deux en deux les

e . . n . ’
différences des racines. Le produit de ces - différences donnera par son

carré le terme fondamental de la fonction symétrique cherchée. (On
peut d’ailleurs obtenir ce terme, comme cela doit toujours étre, en
combinant les z,, =,,..., par simple multiplication et division.)

Dans le cas trés-particulier de quatre racines, on peut former le
groupe

(s — @) (2 — 2,2 (2, — @) (2, — 20,

qui correspond 4 Vinvariant cubique pour la fonction du quatriéme
degré. Soit actuellement n = 4i. Si 'on partage les n racines en
{ groupes contenant chacun quatre racines distinctes, le produit

[{z) — ) (20, — xa)]“ [(y — a3) (20, — xs)]ﬁ
. E [ ~ ) (20, — xs)]rw [(xs — x,) (xy — xs)]ll ciey

2a+{3:2a'+ﬁ’:p

{les o ¢tant différents de zéro), correspondra 4 un invariant de degré

quelconque p (un excepté) pour les fonctions de degré 4i. En prenant
les diverses solutions de 1’équation

20.+;9:p,

et affectant un , deux, trois des groupes dont il s'agit 'une méme so-
lution ou de solutions différentes {en se bornant bien entendu aux
groupements qu'on ne peut pas déduire les uns des autres par la
simple permutation des racines), on donnera lieu 4 autant d’invariants
de méme degré p se rapportant i la fonction considérée [*]

"] Pour le cas de n = 5, p =18, il m’a semblé qu’on ne pouvait pas satisfaire aux
conditions de partition indiquées, sous la condition d’avoir un nombre pair d’cxpo-

Tome XX. — Noveucke 1855, [}5
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n étant quelconque, si on le suppose partagé en /% parties telles,
que
iy +ny +... +n,=n,

et qu'on ait formé avec les n, premiéres lettres, puis avec les 7, sui-
vantes, etc., & types ou produits particuliers pouvant respectivement
donner lieu a des invariants d’'un méme degré ¢ pour les fonctions des
degrés n,, n,,..., n,; en multipliant tous ces produits entre eux, on
obtiendra évidemment le terme caractéristique d’une fonction symé-
trique propre 4 représenter des invariants du méme degré ¢ pour la
fonction de degré n; et si, pour une méme valeur de g, les types par-
ticuliers sont susceptibles de plusieurs formes différentes, il en naitra
généralement pour le type résultant un nombre de formes égal au pro-
duit des nombres des formes particulieres.

On comprend que je ne me suis pas proposé de trouver ici com-
bien, pour une valeur donnée de r, il existe d’invariants d’un méme
degré p, linéairement indépendants, pas plus que le nombre et le
degré des invariants fondamentaux , ¢’ est-a-dire des invariants par les-
quels on peut exprimer rationnellement tous les autres. JI’ai eu, comme
on voit, principalement en vue les notions primordiales qui président

4 la théorie des invariants.

IV.

J’ajouterai quelques mots sur les invariants qui naissent des substi-
tutions orthogonales. Ils sont déterminés ici par 'équation unique

i—=n

./ dy d
Z l (ai-—i da Qi EL) = 0.

i=1

Pour les rapporter aux variables a, x,, x,,..., j'introduis directement
dans la fonction (@) dn précédent paragraphe la substitution ortho-

sants impairs. Ge qui se trou: erait en contradiction avee ur résultat de M. Hermite,
résultat dont le manque de certains détails empéche de vérifier la compléte exactitude.
Voir la Théorie des Fonctinns homogénes & deux indétermindes. Cambridge and Dublin,
1854.
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gonale

X = X CO$ ¢ — ¥ sin ¢,
Y = X sine¢ + y cos g,

ce qui revient & changer

dans

‘ . . ‘ Sin & 4 &, COS ¢
= a(cos ¢ — x,sine)... (cose — &, sin¢), x, = 2%

177 cose — x,sin ¢

aa

Donc, en observant que

da’ oy ’ ! d'l"l ' 2
FoT T A X+ X+ + X)), =14 x?,...

I'invariabilité de forme de la fonction ¢ sera assurée par cette équation

do oy Ao d
et +rEh S =ale,+x,+ .+ 2,

(r + x}) y Za’

qui est satisfaite en prenant pour ¢ une fonction arbitraire des

v=a’(1+ x})... (1 + x2),
Th— X;
Y T e
On a donc en particulier, et pour une valeur quelconque de 7, I'in-
variant quadratique v qu’on peut aisément exprimer par les coefficients
de f. Pour obtenir d’autres invariants entiers et rationnels, on peut,
par exemple, former 'équation qui a pour racines les ¢s, 5. Quant aux
invariants simplement rationnels, leurformation s’apercoit d’elle-méme.
Sil'on considére la substitution trés-simple

1
T=—-y, y=c¢tux,

son introduction dans P’équation (1), § I, change immédiatement

Aoy Qyyeeey Qg

45 .
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ro__ v 23 I3 — (122 .
a,=a,", a, = —a, "V, a_ ,=xa " a ==a,"

d’ou résulte, en prenant 2iZn,

da:. . ¢ 1 da:,,_i . ’
—=(n—a2ai)g ", ——=—(n—2i)a,

—4

Pour que ¢ échappe a l'influence de la substitution précédente, on
devra donc avoir, en ne tenant pas compte des accents,

. d d
2 (n— 21) (a;d—i — Qp_; _daj_,)'

i
Cette équation s’integre immeédiatement et reproduit pour n = 5 un
résultat énoncé par M. Hermite dans le Mémoire déja cité.

V.
Soient, en général,

2y Zyy Bgyrery 2

n + 1 variables parfaitement indépendantes, etz, 7, 7, ,..., z,, n +1
autres variables qui leur correspondent; soit enfin ¢ un paramétre ou
variable tout & fait arbitraire, et considérons les équations

dz’
ds
dz'l

(a) de

=0 (2, z\,..., 2.),

= 0,(%, 2(y.-5 2),

dz,ll ’ ’ /

a: 9,, (Z, Byyenssy zn)!

0,0,,.., U, désignant des fonctions données de 2, z,,..., 2, et, si I'on
veut, de ¢. En intégrant ces équations et remplacant les n 1 con-
stantes qui s'introduisent par des fonctions quelconques des z, z,, z,,...,
z,, on formera un systéme de 7 + 1 équations an moyen desquelles il

" sera permis d’exprimer les z; par les z;, et vice versd. Je désignerai ce

sy ' ' v S ey Rt e e e e
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systeme d’équations par (b). Suivant la nature des fonctions 6;, et
aussi suivant la nature des fonctions de 2y Zy5e0+y 2, par lesquelles on
aura remplacé les constantes de Uintégration, les expressions des z, en
%, Zy,--+5 %, et ¢ fournies par le systeme (b) et concues développées
suivant les puissances de ¢, auront des formes différentes et se rédui-
ront, pour ¢ = o, a de certaines fonctions x, x,, Ko sy Ry de 2, 2,
z,. Cela posé, on pourra trés-bien se demander qu’une fonction g des
variables z, z,,..., z, jouisse de la propri¢té de se réduire i 9 (#y Ryyeny 1)
identiquement, lorsque, dans ¢ (2, Zy5..., 2,), on vient a remplacer
%y Z45.-., Z, respectivement par les expressions de z; en z, z,, z,, ¢ dé-
duites du systeme (b). La condition nécessaire et suffisante pour que
cette circonstance ait lieu étant évidemment qu'apres la substitution
on ait
d
7=

au moyen des relations (a), on écrira sur-le-champ I’équation diffs-
rentielle qui assure 4 ¢ la propriété demandée. Puis, an moyen du sys-
teme (b), on ¢ jouera le role de parametre arbitraire, on substituera,
dans I'équation différenticlle en z, les variables z; anx variables z, |
substitution qui se fera dans bien des cas par |
des accents.

Une seconde hypotheése faite sur la forme des fonctions 0; et sur celles
qu’on substitue aux constantes de Vintégration du systéme (a) con-
duira 4 une autre équation différentielle qui sera Pexpression d’une
propriété de la fonction ¢ d’un genre analogue au précédent. Autant
on fera de pareilles hypotheses, autant on aura d’équations aux dif-
férences partielles que la fonction ¢ devra vérifier simultanément. O
voit que ceci comprend comme cas tres-particulier I'idée premicre de
la théorie des invariants, considérée au point de vue le plus général.
théorie dans laquelle les substitutio

a simple suppression

ns linéaires qu’on peut partager en
substitutions partielles, a parameétre variable unique, sont le nioyen
intermédiaire qui permet d’arriver 4 la modification des coefficients,
modification qu’on se donne d’ailleurs d’avance, et qui revient i con-
sidérer immédiatement le systeme (b) pour en déduire le systcme (a).
Remarquons qu’au lieu de concevoir les expressions des z; en z, 2y iyt
développées suivant les puissances de ¢ en prenant pour premier terme
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ce que 7; devient pour ¢ = 0, on peut prendre une autre valeur ini-
tiale répondant & ¢ = &, k étant une quantité fixe et déterminée. Re-
marquons aussi que lorsque, aprés avoir formé 'équation différen-
tielle en 7, , on reviendra aux variables z; au moyen du systeme (b),
¢ pourra, dans certains cas, se trouver mélé et en évidence dans les
divers termes de I'équation différentielle, laquelle alors se partagerait
en plusieurs autres.

On peut se convaincre aisément que toutes les équations différen-
tielles, considérées dans les précédents paragraphes, peuvent s'obtenir
par cette méthode , dont on peut déduire, par des hypothéses conve-
nables, certains résultats présentant quelque intérét.




