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PURES ET APPLIQUÉES. 345 

THÈSE DE MÉGANIQUE. 

Sur la propagation du son dans un milieu indéfini homogène 

dans l'état d'équilibre; 

PAR M. TH. DIEU, 
Professeur de Mathématiques supérieures au Lycée de Dijon. 

J'ai pour but d'exposer la théorie mathématique des mouvements 
vibratoires par lesquels le son se propage dans un gaz homogène 
indéfini. 

Poisson en a tracé l'histoire, avec la supériorité de vues qui le 
distinguait, dans le premier des Mémoires où il l'a traitée (xive cahier 
de VÉcole Polytechnique). Cependant, je me propose de rappeler, 
dans un résumé rapide, la part des savants illustres qui ont ouvert la 
voie, et d'indiquer les perfectionnements dus à Poisson. Il est revenu , 
comme l'on sait, à diverses époques, sur cette importante théorie, et 
n'a pas moins amélioré ses premières idées et ses premières méthodes 
de calcul que celles de ses devanciers. 

§ Ie'. 

Equations du problème. — Calcul de l'intégrale de l'équation unique 
à laquelle on les ramène. 

1. Les équations générales du mouvement d'un fluide sont au 
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nombre de quatre, 

00 

p(X _ _
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 _ _ „ _ _
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dv dv dv dv\ dp 
Y -dt ~ 11 dx ~~ v Tfy ~ w dE)~ ώο' 

!,. dw dw dw dw\ dp 
Γ \ r/ί ffe dy dz ) dz 

dp d, pu d. ρ ν d.piv 
dt dx dy dz ' 

η 

dont les trois premières s'obtiennent en mettant les forces perdues 
dans lesi équations générales d'équilibre, et la dernière par la condi-
tion que le fluide reste continu pendant le mouvement. On doit y 
joindre 

dx dy dzdx dy dz = iv 

Les équations (i) contiennent cinq inconnues, u, v, w, ρ et ρ; donc, 
elles ne suffisent pas pour les déterminer. Mais on peut obtenir une 
relation particulière, c'est-à-dire diflërente pour chaque nature de 
fluide, entre la pression ρ et la densité p, lorsque la densité n'est pas 
supposée constante. Si elle l'était, cela réduirait à quatre le nombre 
des inconnues, et les équations (i), dont la dernière deviendrait 

du dv dw 
dx dy dz ° ? 

seraient suffisantes. 

2. Lorsqu'on admet qu'il n'y pas sensiblement de calorique perdu 
ou gagné par une portion quelconque d'un gaz, pendant la durée des 
mouvements vibratoires par lesquels le son se propage dans ce gaz 
que nous supposons homogène dans l'état d'équilibre; qu'on repré-
sente par p

0
 la pression et p

0
 la densité de cet état, par c et c' les 

capacités calorifiques à pression constante et à volume constant [**j, 

[*] Toutes les lettres qui entrent dans ces équations ont les significations qu'on 
leur donne ordinairement dans l'hydrodynamique. 

[**! -, — i,3748, d'après les expériences de MM. Gay-Lussac et Welter 
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et qu'on pose 

(3) ρ = p0Q — c), 

de sorte que — p
0
 σ soit la variation que la densité éprouve quand le 

gaz passe de la pression p
0
 à la pression p\ la relation dont je viens 

de parler est 

(4; ρ =ρ
0
(ϊ-ρσ) f*j. 

3. Afin de pouvoir rigoureusement considérer le gaz comme homo-
gène dans l'état d'équilibre, il faut faire abstraction des forces exté-
rieures. Ainsi, par exemple, dans le cas de la propagation dans l'air, 
il ne faut pas avoir égard à la pesanteur , et, en outre, il est nécessaire 
de supposer la température uniforme : cela réduit, sans doute, le pro-
blème à une pure abstraction ; mais, avec un peu de réflexion , on 
voit que les circonstances écartées ne sauraient avoir une grande in-
fluence, et l'expérience a même démontré que cette influence est à 
peu près nulle sur la vitesse de propagation du son. 

Si l'on néglige donc les forces X, Y, Z, et les produits deux à deux 
des quantités u, c, w, σ, et des dérivées partielles des trois premieres, 
toutes ces quantités pouvant être considérées comme très-petites dans 
le mouvement dont il s'agit, on obtient, par les équations <V,, (3) 
ft ;4), 

'5:· 

du „ du dv „ du dw „ du 
dt dx at dy dt dz 

du du dv dw 
dt dx dy dz ' 

Γ*"; On l'obtient, par tin calcul élémentaire, en concevant que le gaz passe du pre-
mier état au second : 

τ '\ Par une variation de température au moyen de laquelle la pression deviendrait /y, 

sans que le volume ni la densité changent ; 

v. Par une seconde variation de temperature qui conduise à celle du second état, 
sans changement dans la pression /> 

On neglige d'ailleurs les quantités tres-petites pat rapporta u, comme, par exemple, 
les puissances v®, etc 

44· 
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en remplaçant — -, par a2, et ce système fera connaître h, v, w et σ; 
les équations (3) et (4) donneront ensuite ρ et p. Quant aux coordon -
nées d'une molécule, qui seraient x0, y0, z0 pour t — o, on en obtien-
drait les valeurs à la fin du temps t par l'intégration des équations (2) 

4. On voit facilement que les trois premières équations (5) pour-
raient immédiatement être intégrées par rapport à t, si σ était la déri-
vée, relative à cette variable, d'une certaine fonction de x, y, z, t. 
Or on peut admettre, sans restreindre la question, qu'il en est 
ainsi, et poser 

(6) o = 1 2a dcl dt 

φ étant telle, que—^ ^devienne pour t — o la condensation qui 
aura été initialement produite en un point quelconque. 

Ta substitution de cette expression au lieu de g , dans la premiere 
équation (5), suivie de l'intégration relative à t, fournit 

(7i
 « = â + o, * = g + v, «.=4' + w. 

en désignant par U, Y, W trois fonctions arbitraires de x, y. s seule-
ment; et la dernière équation (5) devient 

(8) »o\ it!if d* o dia\ ...»o\ it!if d* o dia\ ... 

en posant 

(y) a2 DU dV dW dx dy dz 2/yu dy .... . 

La solution du problème se trouve ainsi ramenée au calcul de l'in-
tégrale complète d'une équation à dérivées partielles; et je vais main-
tenant exposer un des procédés qu'on peut employer pour parvenir à 
cette intégrale. 

5. Si l'on connaissait une intégrale particulière φ = φ' de l'équation (8j, 
et l'intégrale générale ψ — ψ, de l'équation 

(9) d'o d2t dJf\d'o d2t dJf\ 
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•m en déduirait ψ = ψ' + ç>,, qui serait l'intégrale complete de (8), car 
cette valeur de φ la vérifierait évidemment, et contiendrait deux fonc-
tions arbitraires des variables x, y, z. 

Or on obtient une expression de ψ, appropriée à la discussion du 
problème, au moyen de la formule de Poisson, 

« ΙΟί 
J F (λ y'7

2
 -f- m

2
 -+- rï

z
 ) (ù 

— — ι c/ψ I F (u cos 5 + m sin 5 sin ψ -+- I sin 5 cos ψ) sin i/, 

qui a été démontrée, en dernier lieu, d'une maniéré aussi simple que 
rigoureuse, par M. William Roberts [*]; et cette expression de φ, sert 
à trouver celle de çp'. 

6. Calcul de φ, [**]. — Je pose d'abord 

tp = sin (α .r + fiy + y ζ -+- èl -t- υ). 

α, β, γ, υ étant des constantes, et je substitue dans l'équation (g) les 
valeurs de ~i » etc., qui résultent de cette hypothèse; cela donne , 

entre les indéterminées a, jS, γ et c?, l'équation de condition 

(A) ci2 = aa(a2 +/52+v2). 

Soient â et — t? les valeurs de â qui la vérifient, l'expression 
ç — sin(azr -t- fty -t- yz + iït + υ) — sinfa^r -f- βγ -+- y ζ — ât τ- ν), 

qui revient à 
ψ = a cos(aa? + β y -h y ζ -h υ) sin ât, 

vérifiera l'équation (g). Mais on trouve facilement 

2sinèt — àtj cos(àt\)â\·, 

i *] Journal Je M. Liouville, année 1846. 
[**] D'après la signification physique de la fonction <f, elle est périodique ou indé-

finiment décroissante quand t augmente ; il est donc naturel de prendre une fonction 
circulaire ou une exponentielle, pour avoir une solution particulière de l'équation (9 

et c'est cette dernière forme que l'on a préférée ; mais il résulte du calcul indique dans 
ce numéro, qu'on parvient au même résultat par l'emploi d'une fonction circulaire 
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et, en ayant égard à la condition (Δ), on a 

j cos(Sti)d> =— Ι dé I cosfei (y cos9 -H (3 sin <3 sin ψ -+ -.isin 9 cos ψ i J sm 9 ci 9 , 

d'après la formule de Poisson; donc, cette solution particulière peut 
être mise sous la forme 

? — -- ros («x ■+· (3j + y ζ -+-
 u

) J c/ψ ̂  cos [a/ (y cos 6 fi sin β sin ψ -I- « sin 9 cos ψ)] sin θ^5. 

Si l'on fait entrer t cos {a χ-h β yy ζ-l·· υ) sous le double signe d'in-
tégration, puis qu'on remplace le produit des cosinus par une somme, 

et qu'on supprime le facteur constant - qui est inutile, elle devient 

(11) cl = 2u 0 fy u 0 
cos[a(,z -+- atsin9cosi]))-t- P(/-t-aisin9sin4»)-h y(e -(-aicose)-t- -j]j 

-J- cos [α {at sin 9 cos ψ— a?) —t— (3 (aisinSsin^ — jr)~f-y{atcos9 —ζ) — υ]1 t sin 5 d%. 

Or, ψ et θ étant considérés comme les deux angles qui déterminent 
la position d'un point situé sur la sphère de rayon égal à l'unité de 
longueur, et ayant pour centre l'origine des coordonnées x, y, z. 
chaque valeur d'un des deux cosinus qui sont ajoutés dans l'expres-
sion précédente est multipliée par l'élément correspondant sin Odôdé 
de la surface de cette sphère; mais, pour des éléments diamétralement 
opposés, la somme des valeurs de θ relatives à ces éléments est n, et 
la différence de celles de ψ est également π; donc, les deux cosinus 
dont il s'agit sont égaux, et il en est de même des produits respectifs 
par sin $d$dty', par conséquent, on a 

(ial cl = 2u 0 dy u 0 cos [α (χ + at sin β cos ψ) ρ ( y -t- a/· sin θ sin ψ) -ι-y (z-t-ef cos 6) -t-u'| t sin 6 chi. 

en prenant la moitié de la valeur (ri). 

Soient maintenant (α,, β,, y,, υ,), (α
2

, β
2

, y
2
, u

2
), etc., autant de 

systèmes de valeurs qu'on voudra des arbitraires la, β, y, υ), et <p
t

, 
φ
2

, etc., les valeurs correspondantes de ψ données par la formule (12); 
il est évident que l'expression 

(13) φ == M, φ, -I- M
2

 cp
s
 -t- . .. -t- M„ ®„ -t- ..., 
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composée d'un nombre indéfini de termes, et dans laquelle M,, 
M

2
, etc., sont des constantes arbitraires, sera encore une solution de 

l'équation (9). 

Donc, Ρ désignant une fonction des trois binômes 

(A) oc ut sin Q cos ψ — J?', y -+- atsmQ sin ψ = y\ ζ-\r at cos6> = s'. 

susceptible d'être développée en une série de la forme 

M, cos13, j' +-γ, z'-+- y,) ·+- M
s
cos(a

2
a?'+ j3

2
y + y

2
z'-+- y

2
) + 

au moyen d'une détermination convenable des coefficients. mais du 
reste tout à fait arbitraire, on a 

·.14) 
?= Γ* dit fpiswedQ, 

pour une intégrale qui n'est encore que particulière, attendu qu'il n'v 
entre qu'une seule fonction arbitraire de oc, y, z. 

Cela posé, il suffit de remarquer, pour avoir enfin 9 , que la dérivée 

#.d± (#dA d>.dA d>.d-l\ 

de l'expression (i4)> prise pour 9, vérifie aussi l'équation (9), quelle 
que soit Ρ , puisqu'on en tire 

#.d± (#dA d>.dA d>.d-l\ 

d(' ^ \ tlx- ' dy - riz" ; ' 

qui se réduit évidemment à une identité pour les mêmes valeurs de 9 
que (g). En effet, si l'on ajoute cette dérivée avec l'expression (r4; 
de 9 , après y avoir mis des signes différents F et j de fonctions arbi-
traires des binômes (A), on a 

(ta) 9 ,— ~J dit j" sin 0<70-h ■ j( j ftànQdb. 

qui satisfait aux conditions de contenir deux fonctions arbitraires des 
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variables indépendantes χ, y, ζ, et de vérifier l'équation (9) , dont 
elle est conséquemment l'intégrale complète [*]. 

7. En représentant par άω l'élément sin QdQdty de la surface de la 
sphere décrite de l'origine pour centre, avec un rayon égal à l'unité 

de longueur, et par ̂  une somme s'étendant à tous les éléments de 

cette surface, la formule précédente prend la forme plus concise 

il6' - 47Z('F+/+ *!) ί/ω· 

Si l'on y fait t — ο, on a 

cl 1 = fï·> zj > 
car 

^ d ω = (\ 7Γ-

D'ailleurs, on en tire 

dJt = j_ y(F + 2f + + t%)d*, 

que t — ο réduit d'abord à 

Ï =
 4

-VE [ (F)0 + 2 (dfdt)0 ] dw, 

en marquant par l'indice ο qu'il s'agit des valeurs de Ε et ̂  corres-

pondantes à t — o; mais on a 

(!)„=4(i)
0

sini5cos
+
+(f)

0

δίηόβίηφ+(£)ocos0 ' 

en suivant la même notation, et (> {^j ne contiennent 

[*] J'ai multiplié par d—i comme on fait toujours, afin de simplifier les expressions 

de φ, et de correspondantes à t — o. 
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plus les angles ô et ψ ; donc 

Σ{ί)
0

άω = α 

(~) y cos i|idty.j' sin2$d6 

. -t- (tï— ) f βϊηψί/ψ.ι sin20r/6 

^(Ijo ^6 cos 5de 

et, comme il y a une intégrale qui est nulle dans chacun des produits 
de deux intégrales placés entre les accolades, 

V (f) do = o: 

par conséquent, 

if = *<x,y, z) 

pour t =■ o. 

8. Calcul de φ'. — En différentiant l'équation (8) par rapport à t, 

et remplaçant ~ par p, on parvient à l'équation 

( -a
 \iEï+w*--**r 

qui a la même forme que (9), et de laquelle se déduit, au moyen de 
la formule (i5), l'intégrale particulière de (8) désignée par φ'. 

A cet effet, on peut poser 

ψ' — Jpdt, 

ce qui astreint ψ' à être nulle pour t — o, quelles que soient χζ; 
de sorte que les dérivées de tout ordre de ψ' relatives à χ , γ, ζ sont 
aussi nulles, et que l'on doit avoir 

Â= 5F = ^ 2), pour t = a, 

d'après l'équation (8). 
La formule (15), appliquée sous ces conditions à l'équation (17), 

Tome XIV— OCTOBRE I8:JY 45 
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fournit 

(18) p = 14u 2u 0 dy WtsmSc/e j
(
-J* r/ψ j* fisinôc/ô, 

ί étant une fonction arbitraire des binômes (A), et Ψ la fonction du 
second membre de l'équation (8) où ces binômes remplacent x, y, z; 
puis, <p' se déduit de cette valeur de ρ, en l'intégrant depuis ο jus-
qu'à t après l'avoir multipliée par dt, ce qui donne 

(,
9'f=irT^X"

 f. t sin θάθ + £ tdt,£ dty J "Fsintfr/Ô. 

9. On a enfin, comme je. l'ai annoncé au n° 5 , 

(20) ? = 

-ζ- j dfyj F.tsinddd 

+ 05'i"rf+X*/,si"Srf6 

+
 4ï/

1' dt£2π d$fJ ψ sin 6 de 

par l'addition des formules (15) et (19), et en mettant F au lieu de 
F -f- f, attendu que cette somme revient à une fonction arbitraire 
seulement. 

On peut écrire plus simplement cette intégrale générale de l'équa-
tion (8), en faisant usage de la notation déjà employée, sous la forme 

(21) ? - 4^ ς (*f +■ f
o
Y. tdt) dw 

10. La fonction φ, qui a été astreinte, quand elle a été introduite 
dans notre analyse (n°4), à une première condition particulière, peut 
encore être assujettie à une seconde condition, comme celle d'être 
nulle pour t — o, quelles que soient χ, y, z; de telle sorte que ses 
dérivées partielles, relatives à ces trois variables, seront en même 
temps nulles, et que U, V, W seront, d'après les équations (7), les 
valeurs initiales de H, R, W. 

Cela entraîne/ = o, et les formules (20) et (21) se réduisent à 

(22) cl=
 FJsinem

 + f;i ">'l rf+jT v.si„M6, 
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et 

(23) 9 = 2 ('F-t- J y.tdtjdto, 

dont l'une ou l'autre donne 

£ = F(jt, y, z) pour t = o. 

et, par conséquent, 

* = r,z) 

à la même époque. 
Cette valeur de φ n'aurait d'ailleurs aucun sens, quant au problème 

de la propagation du son, si les expressions des dérivées partielles 
4fp ^7· '' cessaient d'avoir des valeurs très-petites (n° 3). 

§ " 

Discussion de l'intégrale (22). — Lois qu'elle journit. 

H. La formule (22) donne immédiatement quelques-unes des lois 
du mouvement. 

L'ébranlement primitif doit, en général, être considéré comme 
limité à de certaines parties du fluide que l'on peut renfermer dans 
une sphere (Ε), de rayon ε, décrite de l'origine pour centre. D'après 
cela, la fonction F (a·,y, ζ) ne peut être différente de ο que pour des 
valeurs de x, y, ζ égales aux coordonnées de certains points renfermés 
dans cette sphère; et il en est de même de Ψ se. γ, ζ), car U, V, W, 
qui sont maintenant les valeurs initiales de u, u, VP, sont nulles pour 
tous les points extérieurs à la sphère (E). On a donc, pour ces der-
niers points, 

a= do do dodo do do 

a un instant quelconque, et ces équations donnent 

udx H- vdy -+- wdz = do, 
45.. 
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dq étant la différentielle de la fonction <p de x, y, z-, t relative aux 
trois premières de ces variables. 

12. Soient ξ, -η, ζ les coordonnées d'un point intérieur à la 
sphère (E), et posons 

χ -t- at sin θ cos ψ = ξ, y -+- at sinÔ sin ψ = n , z-+■ at cosô — ζ, 

d'où l'on déduit facilement l'équation 

(x — ξ)2 + (y — vif + (ζ — ζ)2 = a212, 

qui détermine une sphère de rayon at, dont le centre est le point 
(.χ, y, z), en considérant ξ, τη , ζ comme coordonnées courantes. 

Ce sera seulement (n° il) dans le cas où cette sphère coupera la partie 
du fluide primitivement ébranlée, que le premier terme de la for-
mule (2a) ne sera pas nul, c'est-à-dire, en désignant par r la distance 
du point (or, y, z] à l'origine, quand at tombera entre r — s et r -s- ε. 

Tant qu'on aura at < r — ε, le second terme de la même formule 
sera aussi nul; car, si l'on renverse l'ordre des intégrations indiquées 
dans ce terme, ce qui ne saurait en changer la valeur, et qu'on com-
mence par celle qui est relative à t, on voit que tous les éléments de 

j" Ψ (χ -h at sin θ cos ψ, y -4- at sin θ sin ψ, ζ -+- at cos θ) tdt, 

qu'il faudrait calculer d'abord, sont séparément nuls. Mais, quand at 
tombe entre les limites indiquées ci-dessus, cette intégrale se réduit à 

I W.tdt; et quand at surpasse r-t- ε, à / Wtdt. On pourra 

donc remplacer la dernière intégrale multiple de l'équation (22) par 

y- / tdt / ddj I Tsim9dB, 

si t surpasse ; et même, si t surpasse t>n pourra mettre cette 

quantité, qui sera plus loin supposée fixe, au lieu de la limite variable 
désignée par t. 
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f r ε
 ^

 r
 _ι_.

 ε
n'étant pas nulle, 

φ ne le deviendra pas de nouveau quand t dépassera > non plus 

que — auxquelles se réduisent u, 0, w pour les points situés 

au dehors de la sphère (Ε) ; mais ces quantités seront indépendantes 
de t. 

13. Il n'en est pas de même de l'expression de tirée de la for-

mule (22), savoir, 

5=4ÏF" *F (*
+
'Î) "

N "M=Ρ X" *FY. t sin 0 ds; 

en effet : 
i°. F et Ψ sont nulles pour tous les points dont il s'agit; 
i°, De 

F ( χ -l- at sin Q cos ψ, y -+- at sin θ sin ψ, ζ -+- at cos θ ) = F ( ξ, ·η, ζ ), 
on tire 

— — al— sin σ cos ψ + -y- sin 0 sin ψ + — cos & 1 

et F (ξ, y;, ζ) étant nulle pour toutes valeurs de ξ, yj, ζ qui seraient 
les coordonnées de points situés au dehors de la sphère (E), les déri-
vees — ·, — ■> ̂  et, par suite, — le sont également; donc, -j-

f
 est 

nulle pour toute valeur de t non comprise entre '-_f et —· 

14. Pour les points compris dans la sphère (E), r est moindre 
que ε, et il faut modifier légèrement ce qui est dit dans les nos 12 
et 13. On ne doit pas changer la limite inférieure ο de l'intégration 
relative à t dans le second terme de l'expression (22), et l'on peut 

seulement mettre r~-~- au lieu de t pour la limite supérieure, lorsque t 

surpasse cette valeur. Quant à elle est nulle pour les valeurs de t 

qui ne tombent pas entre ο et ——· 
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15. Il résulte de cette discussion, qu'en un point ,y, z) situé à 
une distance quelconque r de l'origine, et à la fin du temps t supé-

rieur à il pourrait y avoir un mouvement de translation uni-

forme et très-lent [*] des molécules du fluide, lequel ne serait pas 

accompagné de condensation, car σ est nul avec ~ en vertu de l'équa-

tion (6); mais, que les vibrations accompagnées de condensation 

n'auront lieu que quand t tombera entre et c'est-à-dire 

pendant une durée limitée qui ne pourra surpasser la différence -

Si l'ébranlement primitif s'étend à tous les points de la sphère (E), 
les ondes sonores seront sphériques, d'épaisseur Α H, et auront l'ori-

2I S gme pour centre ; la durée du mouvement vibratoire sera — en chaque 

point; et la vitesse de propagation de ce mouvement sera a, puisqu'il 
commence en des points situés sur le même rayon, distants de β, à 
des intervalles égaux à l'unité de temps. 

On conçoit d'ailleurs que, quoique tous les points compris dans la 
sphere (Ei n'aient pas été primitivement ébranlés, les circonstances 
que je viens d'indiquer auront encore sensiblement lieu, à des distances 
de cette sphère assez grandes relativement à son rayon. 

§ III. 

Loi de Γ intensité du son à différentes distances du centre de 
l'ébranlement. — Rapport constant de la vitesse propre des 
molécules vibrantes à la condensation 

tO. Afin de parvenir à la loi des vitesses des molécules du fluide, 
de laquelle dépend celle de l'intensité du son à différentes distances 
de l'origine, que nous supposerons fort grandes relativement au rayon 

L*] La vitesse de ce mouvement qui depend seulement des vitesses initialement im-
primées à des parties du fluide renfermé dans la sphère Ε). est très-petite par rap-
port à celle du mouvement vibratoire (n° 22). 
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de la sphère (E), il faut avoir recours à une transformation de l'équa-
tion (22) que je vais exposer. 

Soient 

(24) 

u· — r sin μ cos λ , 
y — r sin μ sin λ, 
ζ = r cos p., 

et 

(2 5) 

r sin μ cos λ -+- at sin 9 cos ψ = /', sin μ, cos λ,, 
r sin μ sin λ -t- at sin 9 sin ψ = r

t
 sin μ, sin λ,, 

r cos μ + at cos 9 — cos μ,, 

r, étant une longueur positive qui ne surpasse pas ε, puisqu'il suffit 
de tenir compte des valeurs des binômes (A) qui peuvent être respecti-
vement celles des coordonnées de certains points situés dans la 
sphère (E); et λ,, μ, étant des angles compris, le premier entre ο 
et 2π, et le second entre ο et π. 

Soient encore 

(26) at = r — r\ θ = π — μ + 9' et ψ = τ:+λ + ψ', 

r' est compris entre 4-ε et — ε d'après ce qui précède, et je vais 
montrer que les deux dernières hypothèses, ingénieusement choisies 
par Poisson, sont telles, que 9' et ψ' peuvent être considérés comme 

très-petits du même ordre que '-· 

17. D'après la troisième équation (a5), cos μ + y cos 9 est au 

moins de cet ordre; donc, cos μ et cos 9 doivent être de signes 
contraires, s'ils ne sont pas tous deux très-petits du même ordre au 
moins. 

Dans le premier cas, μ et 9 sont l'un plus grand, l'autre plus 

petit que^î et μ+ 9 tombe entre - el — ; donc l'égalité 9'= μ-+-9 — π 

montre que 9' ne peut être en dehors des limites — ^ et ^ ; et il en 

résulte encore que, si cet angle est positif, il ne peut surpasser μ en 
grandeur absolue. 
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La même équation donne, d'après les hypothèses (26), 

cos (μ - θ') - cos μ = cQQj.. 

or, les cosinus de p. — 6' et de μ sont de même signe, puisque le pre-
mier revient à —cos0; donc la différence arithmétique de ces cosinus 

est au moins du même ordre que * ; mais, pour qu'en ajoutant à μ, ou 

en retranchant de μ un arc qui ne surpasse pas on puisse avoir 

pour résultat un arc dont le cosinus ne diffère de celui de μ que d'une 
quantité très-petite de cet ordre, il faut évidemment que l'arc ajouté 
ou retranché ± 6' soit du même ordre au moins. 

Dans le second cas, μ et θ ne peuvent différer l'un et l'autre de ^ 

que d'une quantité du même ordre que et l'inspection seule de 

θ' — μ $ — η fait voir que Q' est au moins de cet ordre. 
Je remarquerai que, d'après cette première partie de ma démonstra-

tion, sin μ ne saurait être très-petit sans qu'il en soit de même de 
sin θ ; et vice versa. 

18. On déduit facilement des équations (iB) 

r\ — r2 -1- a2t2 + 2 rat [cos μ cos θ + sin μ sin θ cos (ψ — λ)] ; 

d'après (26), on a aussi 

cos 5 = — cos μ — θ' sin μ, et sin θ = sin μ — θ' cos μ, 

en prenant cos θ' = ι et sin θ' = θ' [ce qui revient à négliger les quan-

tités très-petites du même ordre que φ ] ? et 

cos (ψ — λ) = — cos ψ'; 
donc 

r® = r2 + α2*2 

— % rat [cos2 μ -h θ' sin μ cos μ + (sin2 μ — 6' sin μ cos μ) cos ψ'], 

d'où l'on tire, en posant cos ψ' = ι — α, 

r2 = (r — at)2 -h 2 rat a (sin2 μ — 6' sin μ cos μ), 
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puis 

α sin μ. sin 9 — - — » 

relation de laquelle il résulte que α = sin verse ψ' est au moins très-

petite du même ordre que ̂  > et, par suite, que ψ' l'est au moins du 

même ordre que ρ pourvu que les sinus de μ et de 9 ne soient pas 

très-petits. 
On s'explique cette exception, en observant que dans la circon-

stance particulière qui y conduit, les deux premières équations (a5) 
n'astreindraient ni l'angle ψ, ni ses lignes trigonométriques, à aucune 
condition relativement à λ, ou aux lignes de cet angle; on peut la 
lever, en convenant de ne point prendre des axes tels, que celui 
des ζ forme avec la direction du rayon vecteur r un angle dont le 
sinus serait très-petit : cette convention ne diminue pas, d'ailleurs, la 
généralité de la formule (22). : 

19. Les équations (25) peuvent, d'après cela, être réduites à 

(*7) 
r' sin μ cos λ + r9' cos λ cos μ H- r ψ'sin λ sin μ — r, sin μ, cos λ, 
γ' βίημ sin λ + rS' βίηλοοβμ — rij/cosX βίημ = r, &ΐημ, sin)., 

r' cos μ — r 9' sin μ. = r, ϋθ8μ,, 

qui fournissent 

(28) r\ — r'2 -f- r2 (912 -+- ψ'2 sin2 μ). 

Pour l'objet que je me propose maintenant, il faut considérer r 
comme une distance déterminée quelconque, très-grande par rapport 
à ε, et les angles λ et μ comme se rapportant à une direction déter-
minée qui peut aussi être quelconque. 

D'après cela, les équations (26) donnent 

dt — — d9 — d9', dty — dty'. 

Ο11 a aussi 
r' = ± ε, aux limites t —r+- s a, 

9' = — π -f- μ et 9' = μ, aux limites 9 — ο et 9 = π, 
TomeXlV.— OCTOBRE 1849.
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ainsi que 

ψ' = — π — λ et ψ' = π — λ, aux limites ψ = ο et ψ = 2 π. 

L'équation (22) devient donc 

« * - U>jC «L· *·*)· 
en négligeant les termes qui contiennent comme facteurs r' ou 6' par 
rapport à ceux qui contiennent r, et en désignant par F, et Ψ, ce que 
deviennent les fonctions F et Ψ quand on remplace les binômes (A) par 
leurs valeurs en fonctions de r', ψ' et Θ', c'est-à-dire, par les premiers 
membres des équations (27). 

Mais les intégrales qui entrent dans cette expression de 0 contiennent 
toujours r explicitement, ce qu'il faut éviter. 

20. Pour cela, on change encore de variables, et je poserai, d'après 
Poisson, 

(3o) Q'r — s sins,, ψ'/' sin p. = s coss', 

s, étant un arc compris entre ο et 2π, et s une quantité positive. 
Ces équations fournissent, en observant la règle de la transforma-

tion des coordonnées dans les intégrales multiples, 

r sin= ds cosf, — sds, sins,, 

ο — ds sinί, -+- sds, cos s,, 
d'où 

r sinμ, dût' = 4^-. 

puis 
cdS' = ds .sin .s, ; 

et, par suite, 
/3 sin u. d6' dù' — sds ds,. 

Donc, comme l'équation (28) donne 

s — \Jr3 — F3, 

et que ne doit pas surpasser s, la précédente valeur de ψ prend fa 
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forme 

β" ,=4^i '"'j, + '"'j, »·*·> 

en désignant par F2, Ψ2 ce que deviennent F,, Ψ, quand on remplace 
9' r et ψ'τ par les valeurs de ces quantités en fonction de s et déter-
minées par les équations (3o); de sorte que le premier terme de cette 

formule est, abstraction faite du coefficient —, une fonction des 

trois variables r', λ, p., et le second terme, aussi abstraction faite du 

coefficient , ' ,·■-, une fonction de ces deux dernières variables seu-

lement. 

21. L'équation (3i) se rapporte à une direction quelconque des 
axes des coordonnées, sauf la restriction que j'ai posée dans le n° 18. 
Par conséquent, il est permis de disposer de cette direction, comme 
je vais le dire, afin de simplifier la suite du raisonnement. 

On a maintenant 
r = const., λ = const. , μ — const.; 

ce qui représente : 
i°. Une sphère de rayon r, dont le centre est à l'origine ; 
2°. Un plan passant par l'axe des ζ et faisant l'angle λ avec celui 

-■"ν 
des xz ; 

3°. Un cône droit, dont l'axe des ζ est l'axe de figure. 
Ces trois surfaces, qui sont orthogonales, se coupent au point que 

l'on considère, et, en prenant respectivement pour axes des x,, y,, z, 
l'intersection du plan et du cône, la tangente à celle de la sphère et 
du cône, et la tangente à celle de la sphère et du plan , on a évidemment 

(32) dx, = dr, dy, = r sin μ r/λ, dz, = rdp.. 

Si Ton dirige l'axe des χ suivant la même droite que celui des χ,, 
en faisant tourner le premier système autour de son origine, de ma-
nière que, en outre, les axes des y et des ; deviennent respective-
ment parallèles à ceux des y, et des ζ,. il suffit d'augmenter χ, , y, 

46.. 
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et z, de certaines constantes, pour passer de ces derniers axes aux 
nouveaux axes des x,y, ζ, et de faire λ = ο, μ = Donc, 

(33) dx — dr, dy = rdl, dz = rd\x [*]. 

Cela posé, on doit seulement prendre 
d φ dtù d ο u =^ w — 
dx dy dz 

d'après la remarque du nu 11; et, en vertu des formules (33), ces 
expressions des composantes de la vitesse correspondante au point 
déterminé par les coordonnées polaires r, λ , μ deviennent 

(34) u = dcl dr, v = 1r dcl dy, w = 1r 

d'après le principe de la dérivation des fonctions médiates. 
On déduit facilement de ces dernières expressions que les rapports 

-et — sont du même ordre que y pourvu que les dérivées partielles de 

F [x,y, ζ) et de Ψ {χ, y, z) aient entre elles des rapports finis, ce qui 
a lieu en général; donc la vitesse de chaque molécule de fluide est 

sensiblement égale à et dirigée suivant le rayon vecteur. 

22. On a, d'après l'équation (31), 

(35) * =
 sds£ ¥

>
ds

<+-J_
dd

£ **£ *.*.) 

+ W5T''X jAX2u F2 ds1 

en ayant égard à l'observation qui termine le n° 20, et à ce que la pre-
mière équation (26) donne 

dr 
a?~ I? 

quand on regarde t comme constant. 

[*] On ne peut craindre que la formule (3i) tombe en défaut pour les nouveaux 
axes, car celui des χ coïncide avec le rayon vecteur, et le sinus de l'angle compris entre 
ce rayon et l'axe des s est conséquemment égal à 1. 
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Si l'on néglige , dans cette formule, le terme qui contient — comme 

facteur, par rapport à celui qui contient seulement et qu'on prenne 

„= ■ jl. Γ^λΓ^,. (36) 

on voit que la vitesse des molécules de fluide est, à très-peu près, 
inversement proportionnelle à la distance de l'origine au lieu ou elles 
se trouvent quand elles vibrent; ce qui justifie la loi de l'intensité du 
son en raison inverse du carré de la distance, puisqu'on admet (pie 
cette intensité est proportionnelle au carré de la vitesse. 

D'après la discussion du n° 12, le terme de la valeur (35) de ~^· 

qui dépend de Ψ, est le seul qui ne devienne pas nul quand t sur-

passed^-"; or, ce terme contenant ρ comme facteur, il est très-petit 

par rapport à la valeur (36) de u, et cela s'accorde avec ce que 
j'ai dit au commencement du n° li>. 

2,3. D'après la première des équations (26), 

dr' 
— = — a 
dt 

lorsque r est considéré comme constant; donc l'équation (6) devient 
ï dy 

^ a dr' 

or on tire de l'équation (3i) 

dr dr' = 1 4uar dr' . sds 2u 0 F0 ds1; 

et. par conséquent, on a 

(37) o = 1 4ua2r d dr'. s0c2' 'dsfr.ds,. 

Les formules (36) et (37) donnent 

a = 1 u 0, 
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d'où l'on conclut d'abord que les molécules qui s'éloignent du centre 
d'ébranlement, sur chaque rayon vecteur, sont condensées, et celles 

qui s'en rapprochent, dilatées; puis, que le rapport - de la vitesse 

constante de la propagation du son à la densité du milieu est, abstrac-
tion faite du signe, approximativement égal au rapport de la vitesse 
propre des molécules à la condensation positive ou négative qu'elles 
éprouvent ; de sorte que ce dernier rapport est constant pour le même 
milieu. 

§ iv. 

Hypothèse particulière du trinôme U dx -t- Y dj -t- W dz, différentielle 
exacte. 

24. Si l'on admet que les composantes U, V, W de la vitesse ini-
tiale soient les dérivées d'une fonction f de x, y, z, les équations (7) 
deviennent 

(38) u = d'(*,~i~fK p =
 W

 =d. ( cl + f) z 

D'ailleurs, comme y(~ o, puisque f est supposée indépendante de t, 
l'hypothèse (6) peut être écrite sous la forme 

(3o) ff = ±±k±D. 

La quatrième équation (5) devient alors 

(40) i 4o) —d?—-a L—dP—H—df— —d?—J'i 4o) —d?—-a L—dP—H—df— —d?—J' 

et elle ne diffère plus de l'équation (9) que par le changement de 0 
en ψ +f 

Or, il faut que φ + /se réduise à fix, y, z) pour t = o, et que -

ou soit toujours, en même temps, une fonction arbitraire 

de x, y, ζ, que nous continuerons de représenter par ¥(x, y, ζ); 
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donc l'intégrale de l'équation (4o) sera 

(41) cl + f 1 1 4u E (tF + f + t df dx) dw, 

d'après la formule (x6) du n° 7. 
Les transformations par lesquelles l'équation (3ij a été déduire de 

l'équation (22), peuvent être appliquées successivement à l'équa-
tion (4i); elles donnent 

(42)1=JÏ-r{-„£ "'Ι Λ*.)· 

en observant que J\x, y, z) est nulle pour les valeurs de x, y. z 
qui ne se rapportent pas à des points compris dans la sphère (Ει, et 
F.,, f

t
 procédant de F, J, comme cela a été expliqué pour F

2
 dans les 

nos 19 et 20. 

2o. On déduit facilement de l'équation (4Q que ψ est nulle pour les 

points extérieurs à la sphère (E), tant que t ne tombe pas entre -

et '-γ- (n° 11); donc, le mouvement n'a, en chacun de ces points. 

qu'une durée qui ne peut excéder et le repos s'y rétablit ensuite 

complètement. 
Pour tout point intérieur ou extérieur 4 la sphère (E), on a, d après 

les équations (38) et (40' 
u = 1 4uΣ/V'f df ,.

d
*f\ 1 

[F et y représentant, comme dans l'équation (40' ce i116 deviennent 
F (oc, J, z) et f{pc, y, z), Par ^a substitution des binômes (A) à x, 
γ, ζ], et deux valeurs semblables pour v, w; or, il résulte de ces expres-
sions, que le repos se rétablit aussi en chaque point compris dans la 

sphère de l'ébranlement initial, lorsque t surpasse —-— 

11 y a donc une différence qui me paraît assez remarquable, entre 
les conséquences auxquelles conduisent les équations (a3) et (40, par 
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rapport au retour des molécules à l'état de repos, qui ne semble pas 
devoir nécessairement s'établir après que le mouvement vibratoire a 
cessé, d'après l'équation (a3) du n° 15. 

26. En vertu de l'équation (4^), ψ est de la forme 

Ψ =7 Φ (Λ h μ), 

comme lorsqu'on ne fait aucune hypothèse particulière sur U, V, W ; 
donc, on déduirait de cette équation les conséquences que j'ai déjà 
exposées dans les nos 21 et suivants, soit relativement à la direction et 
à la grandeur des vitesses propres des molécules du fluide, soit relati-
vement à la condensation ou à la dilatation qu'elles éprouvent pendant 
la durée du mouvement. 

§ V. 

De la marche suivie dans cette thèse. 

27. Les premiers travaux mathématiques sur la propagation du son 
dans un milieu indéfini sont dus à Lagrange; Euler s'en est ensuite 
occupé, puis Laplace qui a rectifié la valeur de la vitesse de propaga-
tion du mouvement, en tenant compte de la chaleur développée par 
la compression; enfin, Poisson a consacré à ce problème deux de ses 
beaux Mémoires sur la physique mathématique. 

Les deux premiers de ces illustres savants ont supposé que la masse 
fluide étendue indéfiniment en tous sens, a d'abord été ébranlée sem-
blablement suivant toutes les directions, autour du point pris pour 
origine des coordonnées; alors udx + vdj + wdz est toujours égale 
à la différentielle relative à r, d'une fonction de r et de Z; et l'équa-
tion qu'il s'agit d'intégrer ne diffère pas de celle du problème des cordes 
vibrantes. 

Dans le premier en date des deux Mémoires de Poisson, il avait 
adopté l'hypothèse du trinôme des vitesses différentielle exacte, et 
transformé premièrement en coordonnées polaires l'équation (9) à 
laquelle il arrivait par le théorème de Lagrange sur ce trinôme. 

Si Ton appliquait cette transformation à l'équation (8), d'après les 
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formules (^4), on aurait [*' ] 

= α»Γΐ1^ϊ + ί 1 rf(smft <ιν· Π + ,.ψ t .= α»Γΐ1^ϊ + ί 1 rf(smft <ιν· Π + ,.ψ t . 

Ψ, représentant ici ce que devient Ψ par la substitution , au lieu de χ. 
/, z, de leurs valeurs (q4)· 

En intégrant les deux membres depuis ο jusqu'à ι π pour et 
depuis ο jusqu'à π pour μ , après les avoir multipliés par sin μ did μ . 
comme dans ce Mémoire, on a 

'■φ) Ί^- = α"^ + ΓΧ' 

si l'on pose 

dl f ψ sin μ άμ = Φ, 

[ *] On peut la faire d'une manière assez peu connue , au moyen de deux remarques 

fort simples : 
x°. φ étant une fonction de χ, j~, ζ, ou du moins une fonction dans laquelle χ, y, --

sont regardées comme les seules variables, la quantité 

/ d<f\2 ί dy\'! ( da\2 

\<iïy vit"/ v'2 / 

ne change pas de forme ni de valeur, quand on déplace, d'une manière quelconque, 

les axes rectangulaires des χ, y, ζ. 
9°. La variation de l'intégrale triple 

///[(È)V(S)V(S)>^-

étendue à tous les éléments du volume compris dans une enveloppe constante n 
provenant de celle d'un paramètre quelconque contenu dans la fonction ω, est 

—///*♦ ■(&+&+%) ***■ 
Cela posé, si l'on dirige les nouveaux axes comme cela est expliqué à l'article 21, on 

a, d'après les formules (3a), 

/dtpV fdf\2 /df\' (df\'~ ι ίdcf\2 ι /df\2 

\dx) \dyj ycfe ■ \r/z r"- sin2 p. \d\/ r2\dy.J 

Tome XIV. — OCTOBRE 1849 47 
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et 

ι ί/λ J Ψ, sih/χί/μ — χ, 

Φ étant une fonction de r et de et χ une fonction de r seulement. 
Or, il est facile de vérifier que l'expression 

ΓΦ = f,[r + at) + f
2
(r — at) — — f dr f r/cfr, 

d'ailleurs, 
dx dy dz — r ' sin u. dr d\ dρ ; 

donc 

=///[(S),+ (S)+é($)*jr2 sin u dr 

=///[(S)
,+

 (S)+é($)*jr2 sin u dr dy d u; 

ces intégrales triples s'étendant à tous les éléments d'un espace déterminé. 
Les variations de ces intégrales correspondantes à celles d'un paramètre quelconque 

contenu dans la fonction a doivent être égales ; donc 

J J J L "r sin3p dV sin ρ dp J r ' 

-/ffJ J J L "r sin3p dV sin ρ dp J r ' 

et, comme cette égalité doit subsister quelle que soit Sa pour chacun des éléments de 
volume représentés par 

dx dy dz — r2 sin ρ dr d). d ρ , on a 

+ d'*- 1 P'v S) . d^ ^rf'(sin^-) I 
dx2 djr1 dz1 r"- f dr ~^~sin

3
p dV sin ρ dfx _j 

F.nfin , si l'on observe que 

• "{'•
d
£) é,_

d
{'*

 +
 î) ,Ι-.r, 

r dr dr'1 dr dr ' dr 
et que 

d2(ρ d2.r<f 
dt2 dt2 ' 

on tombe facilement sur l'équation du texte. 
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ι oulenant deux fonctions arbitraires f, et f2, satisfait à l'équation (Φ) ; 
niais on 11e déduit que très-péniblement les propriétés de la fonction 9, 

qu'on a besoin de connaître, de celles de Φ, et l'on ne parvient pas 
ainsi à la loi des intensités du son à différentes distances du centre 
d'ébranlement. C'est par la réduction de sa quantité φ en une série 
d'intégrales ordonnée suivant le nombre croissant des intégrations, 
que Poisson a d'abord démontré cette loi. 

28. J' ai principalement dû puiser dans le second des deux Mémoires 
précités, et je vais indiquer brièvement en quoi je m'en suis surtout 
écarté. 

J'ai fait usage (nos Β et suivants), pour parvenir à la valeur (20), de 
considérations bien différentes de celles qu'on y trouve; car c'est 
par la formule de Fourier étendue à trois variables, que cette valeur 
y est obtenue : la marche que j'ai suivie est due, je crois, à M. Liouville. 

11 m'a paru convenable d'étudier d'abord le mouvement sans 
rien supposer de particulier sur le mode d'ébranlement initial, et 
de ne passer qu'ensuite à l'examen de l'hypothèse que le trinôme 
Udx -+- Vdy -+- Wdz soit la différentielle d'une fonction de x, y, z; 
car on est plus logiquement conduit à faire cette hypothèse particu-
lière , après qu'on a reconnu (n° 11) que udx -+- vdy + wdz est toujours 
la différentielle relative h x, y, ζ d'une fonction de ces trois variables 
et de t pour les points extérieurs à la sphère d'ébranlement. 

Au lieu de déduire de la valeur (20) de 9, celle qui convient à ce 
cas particulier, je remonte à l'équation de laquelle cette fonction doit 
dépendre, ce qui m'a paru beaucoup plus simple. 

Enfin, je ferai remarquer que j'ai essayé de fixer rigoureusement 
(n°" 17 et suivants) la nature des variables auxiliaires 9' et ψ' employées 
par Poisson pour transformer une équation semblable à (40, en appli-
quant sa transformation à la valeur de 9 fournie par l'équation (22): 

j'ose croire qu'on ne me saura pas mauvais gré d'avoir insisté un peu 
longuement sur ce point qui est important, car de là dépendent toutes 
les réductions subséquentes qui permettent d'arriver à la loi de l'in-
tensité du son. 

4 7.. 


