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THESE DE MECANIQUE.

Sur la propagation du son dans un milieu indéfini homogene

dans Uétat d équilibre;

Par M. Tu. DIEU,

Professeur de Mathématiques supérieures au Lycée de Dijou.

¥ai pour but d’exposer la théorie mathématique des mouvements
vibratoires par lesquels le son se propage dans un gaz homogene
indéfini.

Poisson en a tracé Ihistoire, avec la supériorit¢ de vues qui le
distinguait, dans le premier des Mémoires ou il I'a traitée (x1v° cahier
de PEcole Polytechnique). Cependant, je me propose de rappeler,
dans un résumé rapide, la part des savants illustres qui ont ouvert la
voie, et d’indiquer les perfectionnements dus a Poisson. Il est revenu,
comme Von sait, 4 diverses époques, sur cette importante théorie, et
n’a pas moins amélioré ses premieres idées et ses premieres méthodes
de calcul que celles de ses devanciers.

§ ‘[el‘

FEquations du probiéme. — Calcul de Uintégrale de Udquation unique

a laquelle on les ramene.

1. Les équations générales du mouvement d’un fluide sont au

Tome XIV. — Ocrosre 1849. 44
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nombre de quatre

dre du du du d,
F@~7“ @ Ya z);ﬁ
dv . do v dv . fli) __dp
(I) ‘0< ot g dr @ dz dz’ [41
i w dw dw dw dp ’
P("%‘ ar Y &y :ﬂ—a’
d dopu d.pv d.ow
sz+di+(1; "'.dz =

dont les trois premiéres s’obtiennent en mettant les forces perdues
daus les équations générales d’équilibre, et la derniere par la condi-
tion que le fluide reste continu pendant le mouvement. On doit A
joindre

(2) Z-j:u, ﬂ’:v, :;::w.

Les équations (1) contiennent cing inconnues, u, v, w, p et donc,
elles ne suffisent pas pour les déterminer. Mais on peut obtenir une
relation particuliére, c’est-A-dire différente pour chaque nature de
fluide, entre la pression P et la densité p, lorsque la densité n’est pas
supposée constante. Si elle I’était, cela réduirait 4 quatre le nombre
des inconnues, et les équations (1), dont la derniére deviendrait

du dv dw

& tE =0

seraient suffisantes.

2. Lorsqu'on admet quil n’y pas sensiblement de calorique perdu
Ou gagné par une portion quelconque d’un gaz, pendant la durée des
mouvements vibratoires par lesquels le son se propage dans ce gaz
que nous supposons homogéne dans 1’état d’équilibre; qu’on repré-
sente par p, la pression et p, la densité de cet état, par ¢ et ¢ Jes
capacités calorifiques & pression constante et 4 volume constant [ **],

———
[*] Toutes les lettres qui entrent dans ces équations ont les significations qu’on
leur donne ordinairement dans I'hydrodynamique,

[**] :—_, = 1,3748, d’aprés les experiences de MM. Gay-Lussac et Welter.

I [ RN RN
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et qu’on pose
(3) p=polt —a,
de sorte que — p, o soit la variation que la densité éprouve quand le

gaz passe de la pression Po & la pression p; la relation dont je viens
de parler est

{4 p=po(l—-:-,°‘)f¥l-

3. Afin de pouvoir rigoureusement considérer le gaz comme homo-
gene dans I'état d’équilibre, il faut faire abstraction des forces exté-
rieires. Ainsi, par exemple, dans le cas de la propagation dans Pair,
il ne faut pas avoir égard a la pesanteur, et, en outre, il est nécessaire
de supposer la température uniforme : cela réduit, sans doute, le pre-
bieme a une pure abstraction; mais, avec un peu de réflexion, on
voit que les circonstances écartées ne sauraient avoir une grande in-
fluence, et Pexpérience a méme démontré que cette influence est 2
peu pres nulle sur la vitesse de propagation du son.

Si 'on néglige donc les forces X, Y, Z, et les produits deux a denx
des quantités u, ¢, w, ¢, et des dérivées partielles des trois premiéres,
toutes ces quantités pouvant étre considérées comme trés-petites dans

le mouvement dont il s’agit, on obtient, par les équations /1), (3)
et 45,

. du o da v o 4o dw g o

— = a P £ A R 7 AT
‘5 \d[ dr dr dy dt dz
e 'cla_du+d¢: L

Z T dx dy dz’

I*’ On I'obtient, par un calcul élémentaire, en concevant que le gaz passe du pre-
mier etat au second :

1°. Par une variation de tempeérature au moven de laguelle la pression deviendrait s
sans que le volume ni la densite changent;

>°. Par une seconde variation de temperature qui conduise i celle du second ctat,
sans changement dans la pression p.

On neglige dailleurs les quantités trés-petites par rapport & 5, comme, par exemple,
les puissances 57, ete

44
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C N ' g A
en remplacant £ - par a®, et ce systeme fera connaitre u, v, w et ¢

9
les équations (3) et (4) donneront ensuite p et p. Quant aux coordon-
nées d’'une molécule, qui seraient x,, ¥,, z, pour ¢ = o, on en obtien-
drait les valeurs 4 la fin du temps ¢ par I'intégration des équations (2)

4. On voit facilement que les trois premicres équations (5) pour-
raient immédiatement étre intégrées par rapport a ¢, si ¢ était la déri-
vée, relative a cette variable, d’une certaine fonction de x, y, z, 1.
Or on peut admettre, sans restreindre la question, qu’il en est
ainsi, et poser

. 1.
(6} = L ik
(e at dt’

, g0 dy . - . . .

¢ étant telle, que — i devienne pour t= o0 la condensation qui

aura ¢té initialement produite en un point quelconque.

Ia substitution de cette expression au lieu de ¢, dans Ia premiere
équation (5), suivie de 'intégration relative a ¢, fournit

L ___(l(p __dcp __dcp cool
L7 u_IZ‘_FU, v_‘;l;—i—v’ W—;I;_f—vv-‘;_;.‘:"",;

en désignant par U, V, W trois fonctions arbitraires de x, y, = seule-
ment; et la derniére équation (5) devient

, d?y de d?g d?y .
(8) —(—it—:-::aﬂ!(g-;-{—a;—f—dzg + ¥(x, 5, 2),

en posant .
. 2 [dU AV AW\
(L;J) a (E—“_@—FA—JZ —'{I(.T,],Z).

La solution du probleme se trouve ainsi ramenée au calcul de I'in-
tégrale complete d’une équation a dérivées partielles; et je vais main-
tenant exposer un des procédés qu'on peut employer pour parvenir i
cette intégrale.

3. Silon connaissaitune intégrale particuliére 9 = ¢’ de I'équation (8,
et Uintégrale générale ¢ = ¢, de ’équation

{10 die d? d:
¢ 9_(12(_9 ¥ ?),

\ — S .
(9/ dr? dx? + dy? - dz?

[ i 1 et e R NN EEN [ en
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on en déduirait ¢ = ¢’ + ¢,, qui serait Vintégrale complete de (8), car
cette valeur de ¢ la vérifierait évidemment, et contiendrait deux fonc-
tions arbitraires des variables x, 7, z.

Or on obtient une expression de o, appropriée a la discussion du
probléeme, au moyen de la formule de Poisson,

{ 1 . P

FOVIE+m?--n*)di

—I

1 ¥

27T T
= dy f F(rcos5 + msingsiny + Lsin§ cosy)sindd.
v 8]

27 Jo

qui a été démontrée, en dernier lieu, d’une maniere aussi simple que
rigoureuse , par M. William Roberts [*]; et cette expression de ¢, sert
a trouver celle de ¢'.

6. Calcul de ¢, [**]. — Je pose d’abord
o =sin(zx + By + 7z + 0L+ v
u, f5, 7, v étant des constantes, et je substitue dans I'équation (gj les

dio  d ., .
valeurs de Zt%’ ﬁ: etc., qui résultent de cette hypothese; cela donne .

entre les indéterminées ., 3, y et ¢, 'équation de condition
(A) & =a(e®+ B+ 7).
Soient ¢ et — & les valeurs de ¢ qui la vérifient, 'expression
¢ = sin(ax + By + 72+ 8¢+ ) — sin(oex + By -+ 7z — 0t + v,
qui revient a
g = 2 cos{ax + By + 72 + v)sind,

vérifiera I’équation (g). Mais on trouve facilement

2sindt = 0“th cos(3)) d);

i*} Journal de M. Liouville, année 1846.

[**] D’aprés la signification physique de la fonction ¢, elle est periodique ou inde-
finiment décroissante quand ¢ augmente; il est donc naturel de prendre une fonction
cirenlaire ou une exponentielle, pour avoir une solution particuliére de 'équation {9,
et c'est cette derniére forme que Pon a préférée ; mais il résulte du caleul indique dans
ce numéro , qu’on parvient an méme résultat par 'emploi d'une fonetion circulaire
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et, en ayant égard a la condition (A), on a

i

2T T
cos(é‘t))d):zl—/ : a’~,’;f cos[at(ycost —+ fsin 6 siny + usinfcosyjjsin g d6,
o 7!' o (8]

d’apres la formule de Poisson; donc, cette solution particuliere peut
vtre mise sous la forme

”
]

27T T
7= s c0s(ar 4 By gz u)f d\pf cos [at(y cos b ~+ [isin §sin Y -+ usin & cos P)sin 66,
0 o

Si P'on faitentrer ¢ cos (2 +£y+ 7z + v) sous le double signe d’in-
tégration, puis qu’on remplace le produit des cosinus par une somme ,

) . ) . . . .
et qu'on supprime le facteur constant — , qui est mutile, elle devient
3

4

27 B cos[a(x+atsinecos\p)—!—ﬁ(y+atsin95inap)+7(z—+—-atc059)+ vi}
o {‘):£ dlpA/OI :—;— 08 [« (@t $in§ cosb— x)4- E(atsinsing — y) + v (atcosd —z)— v} Lo ds.
Or, ¢ et § étant considérés comme les deux angles qui déterminent
la position d’un point situé sur la sphére de rayon égal a I'unité de
longueur, et ayant pour centre Porigine des coordonnées x, I %
chaque valeur d’un des deux cosinus qui sont ajoutés dans Iexpres-
sion précédente est multipliée par 'élément correspondant sin 6 46 du
de la surface de cette sphere; mais, pour des éléments diamétralement
opposés, la somme des valeurs de 6 relatives a ces éléments est 7, et
la différence de celles de ¢ est ¢galement n; donc, les deux cosinus |
dont il s'agit sont égaux, et il en est de méme des produits respectifs
par sin §d6dy; par conséquent, on a

27T T
{12) ?:f dx[)‘/‘ cos[oc(_z—{-atsinecos-p)—!—;3(3‘+arsin6sin-{;)—r—-y(z-l—-atcose)—l—u]tsmede,
o o

en prenant la moitié de la valeur (r1).

Soient maintenant (@15 Brs Yay vi)s (o, B2y Yo v2)y etc., autant de
systemes de valeurs qu’on voudra des arbitraires (ay B9, 0), et ¢,
92, etc., les valeurs correspondantes de ¢ données par la formule (12);
il est évident que Uexpression

(13) CP:MNPi'*‘Mz?:""‘--‘f"Mn?n"“‘“w
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composée d'un nombre indéfini de termes, et dans laquelle M,,
M., etc., sont des constantes arbitraires, sera encore une solntion de
Péquation (g).

Donc, P désignant une fonction des trois bindmes
(A) x +atsinGcosy =a’, y -+ atsingsinyg = I zH+atcosh=rz.

susceptible d’étre développée en une série de la forme

M, cos{a, &'+ f, y'+ 7y, 2+ v,) + M, cos{a, 2’ + Ba + 128+ uy) +

Py

au moyen d’une détermination convenable des coefficients - mais du
reste tout & fait arbitraire, on a

5P ¥4 T
i4) :p:jc dqufo. P¢sin9d9,

pour une intégrale qui n’est encore que particuliére, attendu qu’il 0’y
entre qu’une seule fonction arbitraire de 7 2.

Cela posé, il suffit de remarquer, pour avoir enfin ¢, que la dérivée
e ! Y4 T A
g=Z dy | Ptsindds
dt at [, o

de I'expression (14), prise pour ¢, vérifie aussi Péquation (g), quelle
que soit P, puisqu’on en tire

dy dg dy . do

E o 1. 2% 4. -7 70,9

¢ dt 3 (( dr & &
= = ~ )

de T T Tdr

dx?

qui se réduit évidemment 4 une identité pour les meémes valeurs de ¢
que (9). En effet, si 'on ajoute cette dérivée avec Pexpression (14
de ¢, aprés y avoir mis des signes différents F et f de fonctions arbi-
traires des binomes (A}, on a

(15) po= fomdq,f Ft sin 9 -+ 4—71tjn'u /:T/’tsinﬁd&.

YAt

qui satisfait aux conditions de contenir deux fonctions arbitraires des
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variables indépendantes x, y, z, et de vérifier I'équation (g), dont
elle est conséquemment V’intégrale complete [*].

7. En représentant par dw I'élément sin §d0d¢ de la surface de la
sphere décrite de 'origine pour centre, avec un rayon égal a I'unite
P gmne p y 8

de longueur, et par ¥ une somme s’étendant & tous les éléments de

cette surface, la formule précédente prend la forme plus concise

B 1 d;
16) Q‘ZEZ(tF—l—f—}—tE{)dm_
SiYonyfaitt =o0,0na

ov=Jf(x, 7 2),

car
Zd&) = 4.

D'ailleurs, on en tire

der _ 1 af /
% = I= 2(F+2 —+—t—t—+—t-(7t-;)dm,

que ¢ = o réduit d’abord a
(1(?1 - I - (.lf‘\
= B[+ (), ] o

. . . d
en marquant par l'indice o qu’il s’agit des valeurs de F et EJ;corres-

pondantes & £ == 0; mais on a
(g)o =a [(j—i)o sin@cos ¢ + (%)Osin Gsind + (%}0 cos 6] :

d d daf .
en suivant la méme notation, et —Jf 5 I ne contiennent
dr dy Jo dz /o

[*] Fai muldplié par i’ comme on fait toujours, afin de simplifier les expressions

o
de ¢, et de —a%' correspondantes 4 ¢ = o.

‘ 1 TRUV O iy e [N
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plus les angles 6 et §; donc
(%)0/01”(305 g dq;.l:ﬁ sin?6 db

a —|—(g)o‘fmsinnpdnp.ﬁﬁsianG,
+ <g>oﬁzwd¢.foﬁ sin 6 cos 6 df

et, comme il y a une intégrale qui est nulle dans chacun des produits
de deux intégrales placés entre les accolades,

2(3—{)0(&) = 0

dg, .
= = Fix, r, 2)

= (@),

par conséquent,

pour £ = o.
8. Calcul deo’. — En différentiant I'équation (8) par rapport a .
dg . . s .
et remplagant - par p, on parvient a I’équation

- d'p o d?p d’p dip
(17) W—“(zx?+dys &)

qui a la méme forme que (9), et de laquelle se déduit, au moyen de
la formule (15), Iintégrale particuliére de (8) désignée par ¢'.

A cet effet, on peut poser

‘P' ::flpdt,
o

ce qui astreint ¢ & étre nulle pour ¢ = o, quelles que soient x, y, z;
de sorte que les dérivées de tout ordre de ¢’ relatives a x, y, 2z sont
aussi nulles, et que 'on doit avoir

dp __ d?e
de —  dr

=¥ (x, y, 3), pourt=o0,

d’apres I'équation (8).
La formule (15), appliquée sous ces conditions & I'équation (17),

Tome X1V. — OcroBre 1849. 45
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fournit

(18) p:il?‘[mdqlfn‘lftsinede—kfg %-/‘%dqf‘/’ﬂ fesinGdd,

f étant une fonction arbitraire des bindmes (A), et ¥ la fonction du
second membre de Péquation (8) ot ces bindémes remplacent x, y, z;
puis, ¢’ se déduit de cette valeur de P, en lintégrant depuis o jus-
qu’a ¢ apres 'avoir multipliée par dt, ce qui donne

(1) ¢'= ﬁf a [ f.tsin@dﬁ—f—zl;fo‘ztdtfm dy [ wsin g ds.

9. On a enfin, comme je I'ai annoncé aun® 3,

Z‘;lwda{;lﬂ F.£sin 6 5

1 d = L=, .
(20) ¢ == +4—Wa~fﬂv dq»fo‘ J-tsin6d >

+Zl;ft tdtfmd(.pfnllfsin@d@

par I'addition des formules (15) et (1g), et en mettant F an lieu de
F + {, attendu que cette somme revient 4 une fonction arbitraire
seulement.

On peut écrire plus simplement cette intégrale générale de I'équa-
tion (8), en faisant usage de la notation déja employée, sous la forme

(2r1) ¢ = 4%2 <tF + tZ—{-i—f—f- £tW.tdt>do).

10. La fonction ¢, qui a été astreinte, quand elle a été introduite
dans notre analyse (n°4), 4 une premiere condition particuliére, pent
encore étre assujettie 4 une seconde condition, comme celle détre
nulle pour ¢z = o, quelles que soient x, ¥ z; de telle sorte que ses
dérivées partielles, relatives a ces trois variables, seront en meéme

temps nulles, et que U, V, W seront, d’aprés les équations (7), les
valeurs initiales de u, v, w.

Cela entraine f'== o, et les formules (20) et (21) se réduisent a

(22)@:{;[’”({4}»/0‘” F.tsin@d@—}—ﬁﬁttdtlzﬁd¢£ww.si116d6,

[T} [ : ‘ " IR N I I N TR (IR RN NNNNR RN [
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of

(23) o :Zl;Z (tF + j: Y.t ({t)dm,

dont I'une ou 'autre donne

dy

- = (x, y, 2) pour t=o0.

et par conséquent,

Q

_ 1 P
—nF(.T, ¥, %

2

a la méme epoque.
Cette valeur de ¢ n’aurait d’ailleurs aucun sens, quant au probleme

de la propagation du son, si les expressions des dérivées partielles
dy do . . . . .
, ]}‘f, PR cessaient d’avoir des valeurs trés-petites (n° 3).

§ 1L
Discussion de Uintégrale (22). — Lois quelle Journit.

1. La formule (22) donne immédiatement quelques-unes des lois
du mouvement.

[’ébranlement primitif doit, en général, €tre considéré comme
limité a de certaines parties du fluide que on peut renfermer dans
une sphere (E), de rayon ¢, décrite de l'origine pour centre. D’apres
cela, la fonction F (x, y, z) ne peut étre différente de o que pour des
valeurs de x, ¥, z égales aux coordonnées de certains points renfermés
dans cette sphere; et il en est de méme de ¥ {x, y, z), car U, V, W,
qui sont maintenant les valeurs initiales de u, ¢, w, sont nulles pour
tous les points extérieurs & la sphere (E). On a donc, pour ces der-
niers points,

dop dy - (l?.

U= > V= ==

dr dy’ w—dz'

2 un instant quelconque, ef ces équations donnent

udx + vdy + wdz = do,
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dg étant la différentielle de la fonction o de x, y, z, ¢ relative aux
trois premiéres de ces variables.

12. Soient £, , ¢ les coordonnées d’'un point intérieur a la
sphere (E), et posons

Z + atsing cosg = &, Y +atsinlsing =y, z4 atcosfd==¢,

d’ou Von déduit facilement Péquation
(& —EP+(r — 0+ (-2 =as,

qui détermine une sphére de rayon at, dont le centre est le point
(¢, 7, 2), en considérant &, 5, £ comme coordonnées courantes,
Ceseraseulement (n° 11) dans le cas ou cette spheére coupera la partie
du fluide primitivement ébranlée, que le premier terme de Ia for-
mule (22) ne sera pas nul, c’est-i-dire, en désignant par r la distance
du point (x, y, z a 'origine, quand «¢ tombera entre r — ¢ et y + ¢,
Tant qu’on aura at < r — ¢, le second terme de la méme formule
sera aussi nul; car, si I'on renverse 'ordre des intégrations indiquées
dans ce terme, ce qui ne saurait en changer la valeur, et quon com-
mence par celle qui est relative 4 ¢, on voit que tous les éléments de

.

t
f Y(x + atsinfcosy, y + ar sinfsing, z -+ atcosf)tdt,
o

qu’il faudrait calculer d’abord, sont séparément nuls. Mais, quand at
tombe entre les limites indiquées ci-dessus, cette intégrale se réduit a
r+z

: e ,
f W.tdt; et quand at surpasse r + ¢, a j Ytdt. On pourra
r—e r—z¢

a a

donc remplacer la derniére intégrale multiple de I’équation (22) par

f;[iatdtﬁnﬁd¢£ﬂ W sin o6,

a

r+e

. r—zeg N -
81 £ surpasse — ef meme, s1 ¢ surpasse » On pourra mettre cette

a
quantité, qui sera plus loin supposée fixe, au lieu de la limite variable
désignée par ¢.
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<
. r—e . 3 r—+-¢ v .
f‘lf tdt, prise depuis t = ~—— jusqu’d £ ou -~——> n'ctant pas nulle,

. , r--e¢
¢ ue le deviendra pas de nouveau quand ¢ dépassera —, non plus

de do doy vy . o,
que 7o T & auxquelles se réduisent u, v, w pour les points situés

au dehors de la sphére (E); mais ces quantités seront indépendantes
de ¢

A s R d ., ,
13. 1l n’en est pas de méme de I'expression de %7 tirée de la for-

mule (22), savoir,

%:4[7]; ﬁdgpjom (F+t%‘> sin Gde—rzéfom dnpﬁﬂ V. tsinG db;

en effet
1°. F et ¥ sont nulles pour tous les points dont il s’agit;
2%, De

Fia +atsinGeosy, y +atsinfsing, z-+atcosf)=F(5,n,{),
on tire

AF _ (dF e AF e+ Y os s
7 =@ |7z sin cos ¢ o sin  + = co /)w

et F(£, 9, ) étant nulle pour toutes valeurs de &, v, & qui seraient

les coordonnées de points situés au dehors de la sphére (E), les déri-
d¥ d¥ dF

vées —— —=
E] H az

. dF . ) do
i@ » et, par suite, — le sont également; donc, — est

le/g
r—+€

. ryr—e
nulle pour toute valeur de ¢ non comprise entre — et

14. Pour les points compris dans la sphére (E), r est moindre
que ¢, et il faut modifier légérement ce qui est dit dans les n>* 12
et 13. On ne doit pas changer la limite inférieure o de I'intégration
relative 2 ¢ dans le second terme de I'expression (22), et I'on peut

"+ € . . . , .
seulement mettre —— au lieu de ¢ pour la limite supérieure, lorsque ¢

. d
surpasse cette valeur. Quant a d—f, elle est nulle pour les valeurs de ¢

. r-+e
qui ne tombent pas entre o et ——-
a
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15. 11 résulte de cette discussion, qu’en un point (x, y, 2 ) situé a
une distance quelconque r de I'origine, et a la fin du temps £ supé-

Fc

rieur i » il pourrait y avoir un mouvement de translation uni-
forme et tres-lent [*] des molécules du fluide, lequel ne serait pas
, . dﬂ? ’y
accompagné de condensation, car & est nul avec = en vertu de Péqua-
tion (6); mais, que les vibrations accompagnées de condensation

. r—g r—g . .
n’auront lien que quand ¢ tombera entre —— et — c’est-a~dire

, L, . e 2z
pendant une durée limitée qui ne pourra surpasser la différence -

Si I’ébranlement primitif s’étend a tous les points de la sphére (E),
les ondes sonores seront sphériques, d’épaisseur a¢, et auront lori-

. N . - 2¢
gine pour centre; la durée du mouvement vibratoire sera —en chaque

point; et la vitesse de propagation de ce mouvement sera a, puisqu’il
commence en des points situés sur le méme rayon, distants de a, 2
des intervalles égaux a I'unité de temps.

On congeit dailleurs que, quoique tous les peints compris dans la
sphere (E! n’aient pas été primitivement ébranlés, les circonstances
que je viens d’indiquer auront encore sensiblement lieu, # des distances
de cette sphere assez grandes relativement i son rayon.

§ IIL

Lo/ de Uintensité du son o différentes distances du centre de
Uébranlement. — Rapport constant de la wvitesse propre des
molécules vibrantes a la condensation

16. Afin de parvenir 4 la loi des vitesses des molécules du fluide,
de laquelle dépend celle de I'intensité du son i différentes distances
de Porigine, que nous supposerons fort grandes relativement au rayon

. "] La vitesse de ce mouvement qui depend seulement des vitesses initialement im-
primees a des parties du fluide renfermé dans la sphére Ej. est tre

s-petite par rap-
port i celle du mouvement vibratoire {n° 22).

1 ! 1 1 U T S e R o
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de la sphére (E), il faut avoir recours a une transtormation de I’équa-
tion (22) que je vais exposer.

Soient
x = rsinp cos },
(24) Yy =rsinp sin ),
Z = rcos.,
et

rsin g cos A + at sin 9 cos § = r, sin p, cos 1,,
(25) rsin g sin A + atsin § sin ¢ = r, sin @, sin ,,
reospu —+ at cos§ = r,cos,,
r, étant une Jongueur positive qui ne surpasse pas ¢, puisqu’il suffit
de tenir compte des valeurs des binomes (A) qui peuvent étre respecti-
vement celles des coordonnées de certains points situés dans la

sphere (E); et ,, u, étant des angles compris, le premier entre o
et 27, et le second entre o et .

Soient encore
(26) at=r—1r, I=n—p+0§ et ¢=nm4+r+ Y,

r’ est compris entre +¢ et — ¢ d’apres ce qui précede, et je vais
mentrer que les deux derniéres hypothéses, ingénieusement choisies
par Poisson, sont telles, que & et ¢’ peuvent étre considérés comme

. . A €
tres-petits du méme ordre que =

™ . s , . \ al
17. Dapres la troisieme équation (25, cosp + —cos§ est au
moins de cet ordre; donc, cosp et cos§ doivent étre de signes

contraires, s'tls ne sont pas tous deux trés-petits du méme ordre au
mnoins.

Dans le premier cas, u et § sont I'un plus grand, lautre plus

) 3 T
petit que T, et u.—9 tombe entre - et —: donc Pégalité 6'=pu +6 —nx
2 : 2 2 !

A . . iy T -
montre que § ne peut étre en dehors des limites — — et —; et il en

résulte encore que, si cet angle est positif, il ne peut surpasser u en
grandeur absolue.
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La méme équation donne, d’apres les hypothéses (26),

4 ’
cos(p — ¢') — cosp = r'cos(p —0') —r, cos ..

r
or, les cosinus de p. — ¢ et de . sont de méme signe, puisque le pre-
mier revient 4 — cos9; donc la différence arithmétique de ces cosinus

. A € . . \
est au moins du méme ordre que -; mais, pour qu’en ajoutant & ., ou

. ™ . .
en retranchant de poun arc qui ne surpasse pas —», on puisse avorr
2

pour résultat un arc dont le cosinus ne différe de celui de ¢ que d’une
quantité trés-petite de cet ordre, il faut évidemment que Yarc ajouté
ou refranché =+ ¢’ soit du méme ordre au moins.

Dans le second cas, p et 6 ne peuvent différer P'un et lautre de g

g 7 A [ . -
que d’une quantit¢é du méme ordre que -» et l'inspection seule de

§ = p.+ & — = fait voir que ¢ est au moins de cet ordre.
Je remarquerai que, d’apres cette premiére partie de ma démonstra-
q que, dap

tion, sin p. ne saurait étre trés-petit sans qu’il en soit de méme de
sinf; et vice versd.

18. On déduit facilement des équations (25)

ri=r*+a't’ + arat[cospcos§ + sinp sin @ cos(y — N)];
d’apres (26), on a aussi
cosf = — cosp — @sinp, et sinf = sin . — §' cos .,
1; . ‘ ’ - > \ 7 .
en prenant cos§’ = 1 et sin §' = &' [ce qui revient 4 négliger les quan-
2
tités trés-petites du méme ordre que (;) ]» et
cos(y — 2) = — cos {’;

donc
r2=rt*+4+ ag*t?

—2rat[cos®p + §'sin . cosp + (sin® . — 6 sinp cos ) cos '],
d’oti 'on tire, en posant cosy’ = 1 — a,

ri=(r—at)}+ arate(sin*y — ¢ sin cos ),
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puis

. . rl—re
asinpsing = ~—

1

relation de laquelle il résulte que o = sin verse ¢’ est au moins tres-

. A 2 . 3 .
petite du méme ordre que ( > » et, par suite, que ¢’ 'est au moins du

~ | ®

A € . -
méme ordre que -, pourvu que les sinus de p. et de O ne soient pas
tres-petits.

On s’explique cette exception, en observant que dans la circon-
stance particuliére qui y conduit, les deux premieres équations (25)
n’astreindraient ni ’angle ¢, ni ses lignes trigonométriques, a aucune
condition relativement i X, ou aux lignes de cet angle; on peut la
lever, en convenant de ne point prendre des axes tels, que celui
des z forme avec la direction du rayon vecteur r un angle dont le
sinus serait tres-petit : celte convention ne diminue pas, d’ailleurs, la
généralité de la formule (22). ;

19. Les équations (25) peuvent, d’aprés cela, étre réduites a
r'sin g cosh + r6’ cosk cosp. + r¢’sind sinp = r, sinp, cos i,
(27) { ¢ sinp sin ) + r& sin X cosp — rycosisinp =r; sin, sin},
\ r'cosp — r@’ sinpg =r, cosp.,,
qui fournissent

(28) r?==r? 4 r? (4 Y sin ).

Pour I'objet que je me propose maintenant, il faut considérer -
comme une distance déterminée quelconque, trés-grande par rapport
e, et les angles ) et . comme se rapportant 4 une direction déter-
minée qui peut aussi étre quelcongue.

D’apreés cela, les équations (26) donnent

dr’ , ,
([t:——a—, df = db, dq):dup.
On a ausst
p'= ¢, aux limites =" - :,
=—n+p et §=p, auxlimites 0 =o0 et =,

Tome X1V, — Ocrosre 1849.

D
0
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ainsi que

¢Y=—m—2% et ¢=n—), auxlimites b=o0 et Y=o

L’équation {22) devient donc

T—i 1973 N

2 :ﬂ( B T A P Car [T ay [ wiag)-
(()) frma I— -2 q) — T p a:/__s ’ —mr~2 LP ki )

03

~Q

en négligeant les termes qui contiennent comme facteurs r’ ou §’ par
rapport a ceux ui contiennent r, et en désignant par F, et ¥, ce que
devieunent les fonctions F et ¥ quand on remplace les bindmes (A) par
leurs valeurs en fonctions de r”, §’ et &, c’est-a-dire, par les premiers
membres des équations (27).

Mais les intégrales qui entrent dans cette expression de ¢ contiennent
towjours r explicitement, ce qu’il faut éviter.

20. Pour cela, on change encore de variables, et je poserai, d’apres
Poisson,
(30 9r=ssins,, {'rsing =s coss,
s, €tant un arc compris entre o et 27, et s une quantité positive,

Ces équations fournissent, en observant la régle de la transforma-
tion des coordonnées dans les intégrales multiples,
rsinpudy’ = ds coss, — sds, sins,,
o= ds sins, + sds, cos s, .
dou
sels,

rsinpdy =—-

sins, ’

puis
rd§ = ds.sins, ;

et, par suile,
2 sinp d dy = sds ds,.

Donc, comme I'équation (28) donne

§ = \/’I‘? _— ’,iz!

et que r, ne doit pas surpasser ¢, la précédente valeur de ¢ prend la

[T RT] 1 i ' A PULE T e i e Y o



ke it 0

PURES ET APPLIQUEES. 363

forme

. V=17 27 \ € Ve —r* 27
{31) ¢= sdds F.ds, + -—— dr’ sdds W, ds,
grar J, o frar | _ . o o ?

en désignant par F,, ¥, ce que deviennent F,, ¥, quand on remplace
9'r et ¢'r par les valeurs de ces quantités en fonction de s et s, déter-
minées par les équations (30); de sorte que le premier terme de cette

formule est, abstraction faite du coefficient ———, une fonction des

4 ar

trois variables 7/, X, p, et le second terme, aussi abstraction faite du

Coefﬁcientfﬁ , une fonction de ces deux derniéres variables seu-

1
wa‘r
lement.

21. I’équation (31) se rapporte a4 une direction quelconque des
axes des coordonnées, sauf la restriction que j’ai posée dans le n° 18.
Par conséquent, il est permis de disposer de cette direction, comme
je vais le dire, afin de simplifier la suite du raisonnement.

On a maintenant

r=const.. A= const., u = const.;
ce qui représente :
1°. Une spheére de rayon r, dont le centre est a I'origine;
2°. Un plan passant par Paxe des z et faisant angle }. avec celui
AN
des xz;

3°. Un cone droit, dont 'axe des z est I'axe de figure.

Ces trois surfaces, qui sont orthogonales, se coupent au point que
I'on considére, et, en prenant respectivement pour axes des x,, ¥, 2,
Uintersection du plan et du cone, la tangente a celle de la sphére et
du cone, et la tangente a celle de la sphére et du plan . on a évidemment

(32) dx, = dr,- dy, = rsinudh, dz, = rdp.

SiVon dirige axe des x suivant la méme droite que celui des x,,
en faisant tourner le premier systeme autour de son origine, de ma-
niére que, en outre, les axes des y et des z deviennent respective-
ment paralléles a ceux des y, et des z,. il suffit d’augmenter x,, y,

46..
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et z, de certaines constantes, pour passer de ces derniers axes aux
ki3

nouveaux axes des x, 7, z, et de faire A = o, p=;. Donc.
(33) dx=dr, dy=rd}, dz=rdp [*].
Cela posé, on doit seulement prendre
_ dg __dy _ds
U = Tz Yy = 57 W = &—7

d’apres la remarque du n° 11; et, en vertu des formules (33), ces
expressions des composantes de la vitesse correspondante au point
déterminé par les coordonnées polaires r, 2, p deviennent

. dy L ody . dy
(34) U= o V=Sl wes -

I
rodp ’
d’apres le principe de la dérivation des fonctions médiates.

On déduit facilement de ces derniéres expressions que les rapports
v w A H ) e . '
. € — sont du méme ordre que -, pourvu que les dérivées partielles de
I u r
F(x,y, z) et de ¥ (x, y, z) aient entre elles des rapports finis, ce qui
a lieu en général; donc la vitesse de chaque molécule de fluide est

. , . d .., . )
sensiblement égale a d—f, et dlrxgee suivant le rayon vecteur.

22. On a, d’apres I'équation (31),

4 e
i d_’f sdsf Vs, ,
\ 4rar dr A o

en ayant égard & I'observation qui termine le n° 20, et a ce que la pre-

miere équation (26) donne
dr’

= g
dr ?

quand on regarde £ comue constant.

[*] On ne peut craindre que la formule { 31} tombe en défaut pour les nouveanx
axes, car celui des x coincide avec le rayon vecteur, et le sinus de Pangle compris entre
ce rayon et I'axe des s est conséquemment égal & 1.
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Si Pon néglige , dans cette formule, le terme qui contient ;L comne

N \ . . - 1
facteur, par rapport & celui qui contient seulement —, et qu’on prenne

g v od YT .
{36) M= G o f sdsf F,ds,,
frar dr ), A :
ou voit que la vitesse des molécules de fluide est, a tres-peu pres.
inversement proportionnelle a la distance de Porigine au lieu ou elles
se trouvent quand elles vibrent; ce qui justifie /a loi de [’intensite du
son en raison inverse du carré de la distance , puisqu'on admet que
cette intensité est proportionnelle au carré de la vitesse.
) . . . N 17
I’apres la discussion du n° 12, le terme de la valeur (35 de ==
qui dépend de ¥, est le seul qui ne devienne pas nul quand ¢ sur-
r B

+ : i . . . .
passe ——; or, ce terme contenant — comme facteur, il est tres-petit

par rapport i la valeur (36) de u, et cela s'accorde avec ce que
j’ai dit au commencement du n® 15.
23. Dapres la premiére des équations (26),

dr'

—_— = —
At

forsque r est considéré comime constant; donc I'équation (6) devient

- 1 dy
v adr’

or on tire de I'équation (371)

dy A 2z
i w i sd: 28,3
dr’ hmardr ]( sds o Fodsis

¥

et . par conséquent, on a

) 1 d yei—r'® R
{37 G=— = sds F,ds,.
/ 47:a rdr o p =

3

Les formules (36) et (37) donnent

I

~— e —
v — *

13
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d’oti Pon conclut d’abord que les molécules qui s’éloignent du centre
d’ébranlement, sur chaque rayon vecteur, sont condensées, et celles

qui s’en rapprochent, dilatées; puis, que le rapport Pf de la vitesse

¢

constante de la propagation du son 4 la densité du milieu est, abstrac-
tion faite du signe, approximativement égal au rapport de la vitesse
propre des molécules a la condensation positive ou négative qu’elles

éprouvent; de sorte que ce dernier rapport est constant pour le méme
milien.

§ IV.

Hypothése particuliére du trindme U dx + Vdy + W dz, différentielle
exacte.

24. Si on admet que les composantes U, V, W de la vitesse ini-
tiale soient les dérivées d’une fonction S dex, y, z, les équations (7)
deviennent'

— 4(e+S) —d.(e+Sf) — 4-(¢+f)
(38) M—T, V——.T, W~T.

Dailleurs, comme 67}; = 0, puisque fest supposée indépendante de ¢,

Phypothese (6) peut étre écrite sous la forme

_1d(a+f)
(39) i

La quatrieme équation (5) devient alors

(40) i%ﬁ =a [”LM 4 4le+s) | d(y +f)],

dz? dy? dz?
et elle ne différe plus de Péquation (g) que par le changement de ¢
en ¢ + f.

Or, il faut que ¢ + f'se réduise af(x, y, 2) pour t = o, et que %

dt
ou - (s dj—f) soit toujours, en méme temps, une fonction arbitraire

de o, 7, z, que nous continuerons de représenter par F(x, 7, z);

"
. . \ 1" . D R I T N R N N R TR SRR ERRARIRT) [ ]
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donc Pintégrale de 'équation (40) sera

(41) cp—t—f:i;Z(tF—i—f—%tj—i)dw,

«Wapres la formule (16) du n° 7.

Les transformations par lesquelles 'équation (31 a été déduire de
Véquation (22), peuvent étre appliquées successivement a 'équa-
tion (41); elles donnent

V;’——_-_rﬁ 27 vl \/s_r:" T N
A L ; - £ - dy. .
42 ¢“4wr(a£ sds[ F,ds, dr’[ sr/.sj0 j:./ks,)

en observant que f(x, y, z) est nulle pour les valeurs de &, y. z
qui ne se rapportent pas & des points compris dans la sphere (E 1, el
F,, f» procédant de F, f; comme cela a été expliqué pour F, dans les

n° 19 et 20.
23. On déduit facilement de équation (41) que ¢ est nulle pour les

points extérieurs a la sphére (E), tant que ¢ ne tombe pas entre ’57

r e
a

et

(n° 11); donc, le mouvement n’a, en chacun de ces points.

5 . - ’ 2¢ , , R .
gu'une durée qui ne peut excéder —, et le repos s’y rétablit ensuite
@
complétement.

Pour tout point intérieur ou extérieur i la sphere (E), ona, dapres
les équations (38) et (41),

1 dF df d*f
7 __Z—;Z (t ot t(l.z'dt) dw

| ¥ et f représentant, comme dans I'équation (41), ce que deviennent
Flx, 7y, 2) et f(x, y,2), par la substitution des bindomes (A) a x,
¥, z], et deux valeurs semblables pour v, w; or, il résulte de ces expres-
sions, que le repos se rétablit aussi en chaque point compris dans ja

. I3 . e ¥
sphére de ébranlement initial, lorsque ¢ surpasse ——-

[

1l y a donc une différence qui me parait assez remarquable, entre
les conséquences auxquelles conduisent les équations (23) et (41), pav
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rapport au retour des molécules a I'état de repos, qui ne semble pas
devoir nécessairement s’établir apres que le mouvement vibratoire a
cessé, d’apres 'équation (23) du n° 15.

26. En vertu de P'équation (42), ¢ est de la forme
¢=-00", %, p),

comme lorsqu’on ne fait aucune hypothése particuliére sur U, V, W;
donc, on déduirait de cette équation les conséquences que j’ai déji
exposées dans les n° 21 et suivants, soit relativement & la direction et
a la grandeur des vitesses propres des molécules du fluide, soit relati-
vement a la condensation ou  la dilatation qu’elles éprouvent pendant
la durée du mouvement.

§ V.
De la marche suivie dans cette these.

27. Les premiers travaux mathématiques sur la propagation du son
dans un milien indéfini sont dus a Lagrange; Euler s’en est ensuite
occupé, puis Laplace qui a rectifié la valeur de la vitesse de propaga-
tion du mouvement, en tenant compte de la chaleur développée par
la compression; enfin, Poisson a consacré A ce probléme deux de ses
beaux Mémoires sur la physique mathématique.

Les deux premiers de ces illustres savants ont supposé que la masse
fluide étendue indéfiniment en tous sens, a d’abord été ébranlée sem-
blablement suivant toutes les directions, autour du point pris pour
ovigine des coordonnées; alors udx + vdy + wdz est toujours égale
a la différentielle relative a r, d’une fonction de r et de ¢; et I'équa-
tion qu'il s’agit d’intégrer ne différe pas de celle du probléme des cordes
vibrantes.

Dans le premier en date des denx Mémoires de Poisson, il avait
adopté 'hypothese du trindme des vitesses différentielle exacte, ot
transformé premiérement en coordonnées polaires I'équation (g) a
laquelle il arrivait par le théoréme de Lagrange sur ce trindme.

Si on appliquait cette transformation Féquation (8), d’apres les
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formules (24), on aurait []

1(’[1 d.r;)

. . d{ si

1.re d*.rg I d?.ry I # dy | W (I‘) "
AU N

dt- dr? -+ risinip d)? risinp du
¥, représentant ici ce que devient ¥ par la substitution, au liea de x,

7.2, de leurs valeurs (24).

En intégrant les deux membres depuis o jusqu'a 27 pour i, et
depuis o jusqu’a m pour p., aprés les avoir multipliés par sin . didp..
conme dans ce Mémoire, on a

. rd o 2. 7®

.\(I)) dt* =a dr? ~

f i a’lfngosin‘u.dlu‘ =0,
(1] V]

[*] On peut la faire d’unc maniére assez peu connue, an moyen de deux remarques

si 'on pose

fort simples :
1°. ¢ étant une fonction de z, ¥, z, ou du moins une fonction dans laguelle «, v, -
sont regardées comme les seules variables, la quantité

do\? (lq;\ 2 doy?
(@)~ () + (Z)

ne change pas de forme ni de valeur, quand on déplace, d’une maniére quelcongue.
les axes rectangulaires des x, ¥,z
2°, La variation de Vintégrale triple

PTG @ o

étendue A tous les éléments du volume compris dans une enveloppe constantc i
provenant de celle d'un paramétre quelconque contenu dans la fonction ¢, est

o D D) dyd
_— [{‘L. ({)’2-{—-1? (l'J’(Z

Cela wosé . si Von dirige les nouveaux axes comme cela est expliqué a Particle 21, on
l} s 3

a, d’apres les formules (32},

do\? dg\? dg\* dy 1 (dcf:\ z
(71?) +(@) +< (d/) 7Esint p 2 ;FA) -

Tome X1V, — OctoRE 1849. 4y
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et
a7 3
f d)\f ¥, sinpdy =y,
G [

% étant une fonction de r et de ¢, et ¥ une fonction de r seulement.
Or, il est facile de vérifier que Iexpression

r® =1, (r + at) + f,(r — at) — t% f drf rydr,
Vo o

d’ailleurs
’ dz dy dz = r*sinp dr d) dp;

T de\? do\? do\?
ks i ¢ -t y d
JITUE) (@) +(2) ] wwe
deg\? i do\* 1 fdp\*| .
e -t - — — — 2 drdyduy:
ST+ iz () + 2 (G oo

ces intégrales triples s’étendant a tous les éléments d’un espace déterminé.

donc

Les variations de ces intégrales correspondantes a celles dun paramétre quelconque
contenu dans la fonction ¢ doivent ¢tre égales ; donc

dle¢ d'e diy
So{-L - 22 4L 2% 7o
l[ff 0 (dx2 4 dyz -+ - (,Td] dz

L d ’ 5
d.(rZ2 Ny d. sin{,td—qJ
s dr + 1 dig 1 du Do drddd
== J e e e —— Y rd)du,
¢ dr sin’p d)? + sin p. dy. ; sy #

et, comme cette égalité doit subsister quelle que soit ¢ pour chacan des éléments de
volume représentés par

drdy dz = r*sinp dr d) dy.,

on a
de . dg\ 7

(22 (sinp 5}

O O S (r d") Loy 1 ° (sdeP—,

dz? dy? dz | T ar +sin’y PO sin p dp

Enfin, si 'on observe que
H

dq) d
d.{r -1 29
1 (r dr) dte dy d. () dr ?> _ d.ry

r A Tty ar T

et que
rd*qz _d’re
=

on tombe facilement sur Péquation du texte.

2
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voutenant deux fonctions arbitraires f, et f,, satisfait a I’équation (®);
mais on ne déduit que trés-péniblement les propriétés de la fonction o,
qu’on a besoin de connaitre, de celles de ®, et Von ne parvient pas
ainsi a la loi des intensités du son A différentes distances du centre
d’ébranlement. C’est par la réduction de sa quantité @ en une série
d'intégrales ordonnée suivant le nombre croissant des intégrations.
cue Poisson a d’abord démontré cette loi.

28. Tai principalement da puiser dans le second des deux Mémoires
précités, et je vais indiquer briévement en quoi je m’en suis surtout
écarté,

Jai fait usage (n® 6 et suivants}, pour parvenir 4 la valeur (20), de
considérations bien différentes de celles quon y trouve; car cest
par la formule de Fourier étendue & trois variables, que cette valeur
y est obtenue: la marche que j’ai suivie est due, je crois, 4 M. Liouville.

1 m’a paru convenable d’étudier d’abord le mouvement sans
rien supposer de particulier sur le mode d’ébranlement initial, et
de ne passer qu’ensuite a 'examen de I'hypothése que le trindme
Udax + Vdy + Wdz soit la différentielle d’une fonction de x, y, z;
car on est plus logiquement conduit 4 faire cette hypothese particu-
fiere , aprés qu’on a reconnu (° 11) que udzx + vdy -+ wdz est toujours
la différentielle relative 2 &, y, zd’une fonction de ces trois variables
et de ¢ pour les points extérieurs a la sphere d’ébranlement.

Au lieu de déduire de la valeur (20) de ¢, celle qui convient a ce
cas particulier, je remonte a I'équation de laquelle cette fonction doit
dépendre, ce qui m’a paru beaucoup plus simple.

Enfin, je ferai remarquer que j'ai essayé de fixer rigoureusement
{n>* 17 et suivants) la nature des variables auxiliaires §' et ¢’ employées
par Poisson pour transformer une équation semblable a (41), en appli-
quant sa transformation 4 la valeur de ¢ fournie par I'équation (22):
jose croire qu’'on ne me saura pas mauvais gré d’avoir insisté un peu
longuement sur ce point qui est important, car de 14 dépendent toutes

. les réductions subséquentes qui permettent d’arriver a la loi de in-
tensité du son.



