JOURNAL

ATHEMATIQUES

PURES ET APPLIQUEES

FONDE EN 1836 ET PUBLIE JUSQU'EN 1874

Par Joserns LIOUVILLE

ERNEST LAMARLE

Note sur la continuité considérée dans ses rapports avec la
convergence des séries de Taylor et de Maclaurin

Journal de mathématiques pures et appliquées 1" série, tome 12 (1847), p. 305-342.
<http://www.numdam.org/item?id=JMPA_1847_1_12__305_0>

gallica NUuMDAM

Article numérisé dans le cadre du programme
Gallica de la Bibliotheque nationale de France
http:// gallica.bnf.fr/

et catalogué par Mathdoc
dans le cadre du pole associé BnF/Mathdoc
http:// www.numdam.org/journals/ JMPA


http://www.numdam.org/item?id=JMPA_1847_1_12__305_0
http://gallica.bnf.fr/
http://www.numdam.org/
http://gallica.bnf.fr/
http://www.bnf.fr/
http://gallica.bnf.fr/
http://www.mathdoc.fr/
http://www.numdam.org/journals/JMPA

PURES ET APPLIQUEES. 305

NOTE

Sur la continuité considérée dans ses rapports avec la

convergence des séries de Taylor et de Maclaurin;

Pax M. Ernvesr LAMARLE,

Ingénieur des Ponts et Chaussées, Pro‘essenr i 'Université de Gand.

En publiant la Note insérée dans ce Journal (tome X1, pages 129 et
suivantes), J’ai eu pour objet de préciser les caractéres distinctifs que
toute fonction présente selon quelle est ou qu’elle n’est pas dévelop-
pable en série convergente, d’aprés un des types réductibles aux for-
mules de Taylor ou de Maclaurin. M. Aug. Canchy ayant démontré
antérieurement que la série de Maclaurin est convergente , tant que le
module de la variable reste moindre que la plus petite des valeurs
pour lesquelles la fonction ou sa dérivée cesse d’étre continue, j’avais
remarqué que les termes de cette proposition, souvent mal comprise,
se prétaient a de fausses interprétations. Pour plus de rigueur et de
clarté, il me parut utile d’établir nettement que la condition de con-
tinuité pouvait toujours éire omise en ce qui concerne la dérivée, et
qu'elle était, d’ailleurs, insuffisante, 4 moins qu'elle W’impliquat une
certaine périodicité de la fonction. .

Selon moi, la continuité proprement dite peut subsister indépen-
damment de toute périodicité, et il ¥ a avantage a ne point confondre

ces deux caractéres. Cela posé, j’ai cru devoir énoncer, commne il suit
le théoreme en question :

« Toute fonction est développable en série convergente, suivant

» la formule de Maclaurin, tant que le module de la variable reste

» moindre que la plus petite des valeurs ponr lesquelles la fonetion
Tome X1L. — Aocr 1847 39
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» cesse d’étre continue, ou de prendre méme valeur aux deux limites
» §=o0, § = an. Hors de 12, la série devient divergente. »

Dans une Note, que renferme le volume déja cité (pages 313 et sui-
vantes), M. Cauchy conteste la derniére partie de I’énoncé que je
viens de reproduire. 11 rappelle, en outre, que, dés 1844, il a fourni
lui-méme des explications catégoriques sur le sens et les restrictions
que comporte I'énoncé qui lui appartient. Ces explications, je me
hate de le dire, m’avaient échappé jusqu’ici. Conformes, en partie, &
mes propres remarques, elles ont sur elles I'avantage de la priorité.
Toutefois, je ne puis les admettre sans réserve, pas plus que exemple
choisi par I'illustre géométre pour démontrer I'inexactitude de énoncé
rappelé ci-dessus. Les points sur lesquels nous restons divergents,
n’étant dépourvus & mes yeux ni d’intérét ni d’importance, il convient
que je cherche & les élucider par de nouveanx développements.

Tel est 'objet de la présente Note.

§ Ier
Théorie de la continuité.

Considérant les caractéres distinctifs que doit offrir une fonction
pour étre développable en série convergente suivant la formule de Ma-
clauriun, j’ai dit, relativement  la condition de continnité, qu’elle était
insuffisante 4 moins qu’elle n’impliquat une certaine périodicité de la
fonction,

M. Cauchy fait observer que si j’avais eu sous les yeux le Mémoire
qu’il a publié sur les fonctions continues, et que J eusse rapproché cer-
tain passage de ce Mémoire des principes exposés dans son Analyse
algébrique, je me serais certainement borné a dire que, dans le théo-
reme en question, la condition de continuité est la seule qu'on doive
mentionner, vu que cette condition implique une certaine périodicité
de la fonction.

11 est incontestable qu’en définissant, ainsi qu’il P'a fait dans le pas-
sage qu’il cite, ce qu’il entend par fonction continue, M. Cauchy a
voulu comprendre la condition d’une certaine périodicité au nombre
de celles que toute fonction doit remplir pour étre développable en
série convergente suivant la formule de Maclaurin. Quant aux prin-
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cipes exposés par 'auteur dans son Analyse algébrique, je ne pense pas
qu'ils soient généralement interprétés dans le sens qu’il leur attribue.
C'est, du moins, ce que j'ai cru remarquer en lisant plusieurs passages
de divers écrits, et notamment ce paragraphe que jextrais textuel-
lement des Legons de Calcul différentiel et intégral, publiées par
M. abbé Moigno (tome 1T, pages 327 et 328) :

« Il est enfin une autre formule trés-générale démontrée aussi par
» M. Cauchy, et qu'il importe de rappeler en finissant. Désignons par z
» une variable imaginaire dont r soit le module et t Uargument, par ¥z
» une fonction qui reste finie et continue ainsi que sa dérivée ¥ (z),
» pour toute valewr du module R, inféricure & une certaine limite
» donnde R. Supposons, pe pLUS, que, r restant constant, la fonc-
» tion ¥ (z) soit une fonction periodique qui reprenne pour ¢ = 0.+ ar,
» la valeur qicelle avait pour t = . »

Sans insister sur ce point, voyons comment M. Cauchy procéde pour
ctablir directement que toute fonction d’une variable imaginaire ne
peut étre continue, sans étre en méme temps périodique.

La variable étant d’abord réelle, M. Cauchy donne la définition
suivante [*] :

« Supposons que, dans la fonction f(x), on fasse varier x par de-
» grés insensibles en attribuant A cette variable une série de valeurs
» infiniment rapprochées les unes des autres. La fonction f(x) restera
» continue pour toutes ces valeurs de x, si pour chacune d’elles elle
» acquiert constamment une valeur unique et finie, et si d’ailleurs un
» accroissement infiniment petit, attribu¢ a 'une quelconque de ces
» valeurs de a, produit toujours un accroissement infiniment petit de
» la fonction elle-méme. »

11 ajoute ensuite :

« Enoncée en ces termes, ia définition des fonchions continues n’esi
» pas seulement applicable au cas ou x reste réel; on pourra appli-
» quer encore, sans difficulté, au cas méme on x devient imaginaire.

Puis, vient une démonstration dont je vais reproduire les points
principaux.

") Foir la Note insérée dans ce Journal ‘tome XI, page 315,
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¢ désignant une quantité positive infiniment petite, et la variable
Imaginaire a ayant pour expression

r(cosf + y— 1 sing) = rea‘/:,

M. Cauchy remarque que si 'on pose successivement § = 7 — ¢, puis
9 = — (x — ¢), on trouve, dans la premiere hypothese,

&= —re—<V—1,
et, dans la seconde,

x=—vre’V 7"

On voit donc qu’en passant de 'une de ces hypothéses a l'autre, la
variable imaginaire x, qui reste toujours trés-peu différente de — 7,
ne varie qu'infiniment peu.

Cela posé, M. Cauchy conclut que la fonction f(x) ne peut rester
fonction continue de x dans le voisinage de la valeur particuliere
x = — r, qu'aatant qu’elle varie elle-méme infiniment peu, quand on
passe de la supposition §=nr— ¢ & la supposition §=— (n—¢), ce qu'on
peut exprimer encore, ajoute-t-il, en disant que la fonction f{x) ne
pourra rester fonction continue de a dans le voisinage de la valeur
particuliecre & = — r, si elle ne reprend pas la méme valeur, quand
Pargunment § passe de la valeur + 7 4 la valeur — 7.

Let se présentent plusieurs observations.

S'agit-il d’abord de la définition considérée en elle-méme; je
remarqueral que, prise en toute rigueur, elle rendrait inutile la
démonstration qui la suit. En effet, la variable imaginaire

x =plcosb + ¢y~ 1sinb),

etant periodique, il est évident que la fonction devrait subir la méme loi
de périodicité, par cela seul qu’elle serait assujettie 4 n’admettre qu’une
valeur unique pour chaque valeur de la variable. Une interprétation
aussi étroite conduirait & des résultats, qui déja sont inadmissibles [*],

"] Dira-t-on, par exemple, que la fonction
Sflx) = x +arccos x

est discontinue parce qu’a la valeur unique x = o répondent les deux valeurs
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alors méme qu’on s’en tient exclusivement au systeme des valeurs
réelles. Je ne puis donc m’y arréter. 1l est clair, d’ailleurs, que M. Cau-
chy lui-méme la repousse, puisqu’il a jugé une démonstration néces-
saire.

S'agit-il ensuite de cette démonstration; je dois déclarer qu’elle ne
e parait pas concluante.

En effet, ou bien 'argument ¢ est pris pour variable indépendante,
les variables imaginaires x et f(x) en étant toutes deux fonction; ou
bien la variable &, quoique imaginaire, reste variable indépendante.

Dans le premier cas, et c’est le seul que nous admettions comme
offrant un sens précis, on ne peut rien conclure de ce que les fone
tions x et f(x) subissent on non un changement brusque, lorsque a
variable indépendante 9, passant de la valeur + = & la valeur - x,
change elle-méme brusquement de grandeur numeériqgue.

Dans le second cas, la suite continue des valeurs — r¥:V~' gtant
donnée a priori, ¢est faire une supposition toute gratuite que de con-
sidérer ces valeurs de la variable imaginaire comme impliquant, par
rapport a celles de I'argument § qui leur correspondent, les deux
suites exprimées respectivement 'une par = — ¢, I'autre par — (x — 2.
Pourquoi ces deux suites, entre lesquelles il y a solution de continuité.
plutét que la suite continue © == ¢? le vois bien que le procédé suivi
rend possible une démonstration qui ne le serait pas autrement. Mais
comment justifier ce procédé, alors méme qu’il serait permis de prendre
pour variable indépendante V'expression imaginaire

x = e’V

Dans le systeme des valeurs réelles, la variable indépendante crois--
sant ou décroissant avec continuité, chacune des valeurs qu’elle aftecte
se resout en un ensemble on les parties intégrantes se confondent,
sans qu’il v ait lien d’¢tablir entre elles aucune distinction. Peu
importe dailleurs qu’il s’agisse du tout ou d’une partie. L'un comme
Vautre devant étre congu de toutes piéces, il y a toujours unité de
conception, et nulle difficulté ne surgit. Pour passer de la au systéme
des valeurs imaginaires, il snffit d’observer que celles-ci se composent

e deux parties réelles que le signe y --1 permet de réunir symboli-
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quement, sans qu’elles cessent pour cela de rester essentiellement dis-
tinctes. Des Jors tout se rédait a la considération des quantités réelles,
seules saisissables et intelligibles. Que deux de ces quantités soient
réunies dans une méme expression, ou la présence d’un symbole
particulier éléve entre elles une barriére qui les isole complétement,
la nécessité de ne les point confondre, et de maintenir pour cha-
cune d’elles les regles et conventions généralement établies, n’en
subsiste pas moins que si, figurant dans des équations distinctes,
elles étaient effectivement séparées.

Essayons d’exposer, & ce point de vue, la théorie de la continuité.

L’idée de fonction est complexe. Elle implique, avant tout, la
conception d’une variable qui subsiste par elle seule ou dont on
dispose arbitrairement. Cette variable, dite indépendante, ne peut
qu’étre réelle.

On distingue, par rapport i la variable indépendante, deux modes
de variations. Lorsqu’on se donne une suite de valeurs numériques,
teiles que a, b, ¢, d, etc., et que, passant brusquement de lune
@ lautre, Pon assujettit la variable a les prendre toutes successive-
ment, le mode de variation est discontinu. Il est continu lorsque la
variable est supposée croissante ou décroissante, de la méme maniére
gue croit ou décroit la distance comprise entre deux plans paralleles,
Van fixe, Yautre mobile. Une condition facile 4 saisir caractérise ce
mode. Elle consiste en ce que nul changement ne s'accomplit entre
deux limites quelconques, sans que la variable ait passé préalable-
ment par tous les degrés de grandeur intermédiaires.

Ul est visible que chacun de ces modes a son essence propre. On
s’est efforcé néanmoins de ménager entre eux une sorte de transition ,
qui permit de les résoudre 'un dans I'antre. Des efforts, dirigés vers
ce but, ne pouvaient aboutir a rien de rationnel : il a fallu d’ailleurs,
pour qu’on les poursuivit, céder a une étrange illusion. Au lieu de la
quantité, telle qielle est et qu’il faut la concevoir, c’est-a-dire avec
les propriétés qui subsistent en elle, indépendamment de tout degré de
grandeur, on n'a vu que ce qu’elle offre de saisissable aux sens, et 1a
ou elle lear échappait, on s’est figuré qu’elle changeait de nature, et
que, suspendue entre I’étre et le néant, elle participait & la fois de ces
deux extrémes. 11 semblerait que de telles aberrations n'ont pas be-
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soin d’étre refutées et qu’il suffit de les signaler pour en faire justice.
Remarquons, toutefois, qu’elles ont pour elles 'appui tacite de presque
tons les géometres.

Par cela seul qu’elle varie, la variable échappe a toute mesure di-
recte. Elle est, mais croissant toujours ou toujours décroissant. On
peut, sans doute, se représenter isolément chacun des degrés de gran-
deur que comprennent entre elles les limites choisies pour origine el
fin de la variation; mais comme entre ces limites la variable ne sub-
siste que par la loi qui régit ses changements, il serait évidemment ab-
surde et contradictoire de lui attribuer, a titre de détermination effec .
tive, 'un quelconque de ces degrés de grandeur. Comment comprendre .
en effet, qu’elle put affecter une pareille détermination si, en méme
temps, elle ne cessait pas d’étre variable?

On observera que dans le cas le plus simple , alors qu’il s'agit d’une
grandeur quelconque déterminée, il ne suffit point, pour qilells soit ,
ou, ce qui revient au méme, pour qi'on puisse la concevoir, de lui
assigner un certain degré qui la limite; il faut ajouter, en outre, ou
au moins sous-entendre que ce degré se conserve en elle. N'est-ce pas
la, d’ailleurs, ce que renferme en soi la dénomination de constantes
affectée aux grandeurs complétement définies? Cetre remarque s’ ap-
plique aux diverses valeurs par lesquelles la variable passe. Nulle ne
peut etre isolée, et devenir ainsi Pobjet d’une conception distincte .
sans que la pensée, qui se fixe sur elle, lui imprime forcément Je
caractére de durée nécessaire a sa détermination. De 14 Pextréme con-
tusion ott esprit tombe inévitablement, lorsque, considérant la suite
infinie des degrés que la variable franchit entre deux limites détermi-
nées, il transporte, dans chacune des valeurs intermédiaires, ’élément
de durée qui n’appartient qu’a I'ensemble formé par leur succession
continue. De la ces difficultés insolubles, qu’on ne songerait pas meéme
i soulever, si I'on prenait garde que la grandeur qui reste constante, ¢
celle qui change incessamment, puisent toutes deux leur réalité dans
la durée qui leur est commune, et qui, divisible a I'infini, offre tou-
jours, de part et d’autre, un terme commun de colparaison.

La faculté d’abstraire constitue sans contredit une des ressources les
plus précieuses dont nous disposions. Mais n’est-ce pas en abuser étran-
gement que de pousser les abstractions au point d’obscureir, disons
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plus, de rendre inintelligibles les premiéres notions de la science [ *]?

Que l'on veuille bien y réfléchir, et ’on sera conduit a admettre
avec nous les principes suivants :

Fitre et durer, c’est-a-dire continuer d’étre, sont pour toute gran-
deur, constante ou variable, deux conditions qui s'impliquent mutael-
lement.

Quel que soit le mode suivant lequel une grandeur quelconque
subsiste pendant une certaine durée, ce mode est toujours réductible
i deux types primitifs. I.’un de ces types répond aux parties de la durée
totale pendant lesquelles la grandeur conserve une méme détermina-
tion; I'autre, & celles ou la variation est incessante.

Tant qu’une grandeur varie de maniére & ce que tout changement
qu’elle subit exige pour s’accomplir une certaine durée de la variation .
on dit de cette grandeur qu’elle varie avec continuité.

Il n’est point de variation incessante qui ne soit tout entiere con-
tinue, ou qui ne se compose exclusivement d’une suite de variations

¢

[*] La considération des quantités infinitésimales crée un obstacle invincible 4 la
notion de continuité. Elle implique, d’ailleurs, deux impossibilités radicales, savoir :
19 Pexistence des prétendus infiniment petits ; 2° Pexistence des prétendus infiniment
grands. Jadmets qu'en dépit de leur commune absurdité, I'une de ces conceptions
puisse, moyennant certaines précantions, servir, en général, de correctif i Pautre. Je
ne comprends pas, néanmoins , qu’on affecte de les prendre au sérieux, et que, sans
s'inqui¢ter de propager I’erreur, on les présente comme base d’une science ol la certi-
tude des déductions repose essentiellement sur la rigueur absolue des principes fonda-
mentaux. Que dire, par exemple, du sens qui s’attache naturellement a ces lignes ex-
traites du programme des cours donnes, en 1846, 4 'Ecole Polytechnique :

« Du rapport entre l'accroissement d’une fonction et Paccroissement d’une variable.
» VALEUR QUE PREND CE RAPFORT QUAND LES ACCROISSEMENTS DEVIENNENT INFINIMENT

PETITS, »

Dans V'essai que jai publi¢ sur les principes de P'analyse transcendante, j’ai montre
ce qu'est, en réalité, une différenticlle, 4 savoir, une différence ordinaire prise dans
une certaine hypothése. Fai, d’ailleurs, créé une méthode qui, sans cesser d’étre pure-
ment algébrique et toujours rigoureuse , offre au plus haut degré la simplicité désirable.
En m’imposant cette tiche, je ne me suis point dissimulé que, si peu rationnels que
soient certains procédés fort en vogue, il suffit qu'un long usage les ait rendus fami-
liers pour qu’on trouve plus commode de s’y tenir. Je poursuivrai néanmoins, per-
snadé que la vérité peut plus que Verreur, et qu’a elle seule avenir appartient.
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continues, ayant toutes une certaine durée. L’hypothese inverse serait
un non-sens d’une absurdité en quelque sorte palpable.

Concluons que toute durée d’une grandeur se compose nécessaire-
ment d’une suite de parties qui se succedent sans intervalle, et pendant
chacune desquelies la grandeur reste continue , soit qu’eile varie, soit
qu'elle persiste daps une méme détermination. Lorsqu’a la limite
commune 4 deux de ces parties, la grandeur subit un changement
brusque, on dit qu’il y a solution de continuité. Plusieurs solutions
de continuité sont possibles entre deux limites aussi rapprochées qu’on
voudra. Dans tous les cas, et quel qu’en soit le nombre, comme elles
ne constituent jamais que des accidents transitoires, essenticlieimncnt

depourvus de durée, il reste démontré qu’on peut dire avec une entiere
rigueur :

Tout mode Lexistence d'une grandeur quelconque est constamment
régi par une méme loi générale, la loi de continuite.

Avant d’aller plus loin, je crois utile de presenter plusieurs obser-
vations.

Les grandeurs, soumises au calcul , n'y figurent point comme quat-
tités concretes. Cest par le nombre abstrait, exprimant pour chacune le
rapport existant entre elle et son unité propre, quelles y sont intro-
duites. Ce mode de représentation n’entraine aucune difficulte pour les
grandeurs constantes. Quant A la grandeur variable, comme elle n’est
définie que par la loi particuliere qui régit sa variation, c’est cette loi
quil faut traduire numsériquement. On y parvient en fixant d’une ma-
niere générale le changement qui s'accomplit durant une partie quel-
conque de la variation. Veut-on, d’aillears, abstraire Péiement de
durée, ainsi qu’on le fait habituellement ; cette abstrachion devient
possible dés qu’il y a denx grandeurs subsistant ¢ variant ensemble &
partiv d’'une wmeéme origine. En effet, a chaque partie de la darée qui
leur est commune, répond de part et d’antre un changement déter-
miné. De la donc, relation nécessaire entre deux quelconques des
changements qui s’accomplissent sinultanément dans Pune et Vautre
grandeur; de la, possibilité ¢évidente de ‘ormer deus suites toujours
comparables entre elles et susceptibles de s'exprimer directement Pine
par Pautre. On atteint le méme résultat lorsque, au lien des change-

Lome NI~ Aver w3ys.

jo
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ments qui se correspondent pour une méme durée quelconque de la
variation, I'on fixe les valeurs qui subsisteraient ensemble, si, a I'ex-
piration de cette durée, la variation cessant tout a coup, les grandeurs
que Pon considére demeuraient constantes.

En général, I'élément de durée n’apparait point explicitement dans
les relations ou se trouve exprimée la loi qui régit la génération simul-
tanée de plusieurs variables : il convient, en outre, d’observer que
presque toujours il s’#limine de lui-méme. Que cette abstraction se
fasse spontanément, ou bien qu’elle résulte de P'application des pro-
cédés que je viens de décrire, elle offre dans tous les cas un avantage
précieux, c’est de ne laisser en présence que les grandeurs sur lesquetles
on veut opérer, et de faciliter le cours des déductions, rendues ainsi
plus directes et plus simples. Toutefois, il ne faut point perdre de vue
qque dans I'idée de variation est implicitement comprise I'idée de durée.
base fondamentale de toute conception intellectuelle.

Cela posé, occupons-nous des fonctions proprement dites, et. les
prenant d’une maniére absolue, ne voyons en elles que la suite des
valeurs qu’elles expriment numériquement.

Considérons d’abord la variable indépendante.

Déterminée par elle seule, c’est-a-dire toujours une et non com-
plexe, la variable indépendante est congue le plus simplement pos-
sible, lorsqu’on admet qu’elle croit ou décroit proportionnellement 4
ia durée pendant laquelle elle varie, ou, ce qui revient au méme,
;qu’elle ne subit auctin changement qui n’exige , pour s’accomplir, une
durée proportionnelle de la variation. Elle est, dés lors, essentiellement
continue.

Considérons ensuite la variable dépendante, ou, en d’autres termes,
ia fonction.

On entend par fonction une expression camplexe qui, variant et
cessant de varier en méme temps que la variable dontelle dépend, est
généralement déterminée pour toute valeur attribuée a cette variable.
Lorsque, pour une méme suite de valeurs affectées par la variable, la
fonction comporte plusieurs systemes de valeurs distinctes, on isole
par la pensée ces différents systemes, et 'on considére chacun d’eux
comme constituant par lui seul nne fonction particuliére. D’un sys-
teme & Pautre, la continuité et la discontinuité sont possibles de la
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méme maniere gue pour la suite des valeurs appartenant a 'un d’enx
pris séparément.

La fonction ne pouvant demeurer constante pour toutes valeurs de
la variable comprises entre deux limites aussi rapprochées qu'on vou-
dra, la variation quelle subit. lorsque cette variabie croit ou décroit
avec continuité, est nécessairement incessante. Doit-on en inférer qu’elle
est constamment continue, ou bien composée de partics qui se suivenl
immecdiatement et durant chacune desquelles la continuité subsiste
sans interruption? Nul doute pour une fonction quelconque puisant
sa réalité dans Uexistence effective ou idéale d’une grandeur dont elle
est 'expression numérique. Pour tout autre fonction, la question plu-
complexe veut étre traitee directement. Yessayerai tout a I'heure d:
résoudre cette difficulté.

Tant qu’il y a continuite, tout changement de la fonction exige,
pour s'accomplir, une certaine durée de la variation, et, par conse-
quent, un certain accroissement de la variable indépendante. Une
condition inhérente a ce mode, tel qu’il vient d’étre défini, soffit,
dailleurs, pour le caractériser. Elle consiste en ce que le passage d’urnie
valeur a une autre ne peut jamais avoir lieu sans que la fonction ait
franchi successivement toutes les valeurs intermédiaires.

Lorsque la discontinuité survient, c’est par un changement brusque
qui s opere instantanément. Voyons en quoi consistent, pour une
fonction, les changements brusques dont elle est susceptible.

Les opérations 4 effectuer sur la variable indépendante pour con-
struire la fonction sont réductibles d deux classes principales : je
range dans la premiere , Paddition, la multiplication, "élévation aux
puissances ; dans la seconde, la soustraction . la division, I'extraction
des racines.

Tant quwon procede par voie d’addition, de multiplication, ou
4 élévation aux puissances, chaque valeur de la variable fournit pour
ia fonction une valeur unique, toujours réelle et déterminée. La sous-
traction donne, pour résultat accidentel , zéro, et plus généralement
des quantités tantot positives, tantot négatives. En s’introduisant
‘omme diviseur, le zéro répond a une impossibilité fortuite. Lorsqu’une
;juantité, soumise 4 un radical de degré pair, passe du positif au né-
gatif, les valeurs fournies par ce radical perdent leur réalité.

40..
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Que les valeurs de Ia fonction . supposées numériquement expri-
mables, cessent tout i coup de I'étre, c’est 12, sans aucun doute,
un changement brusque. On voit ainsi que les fonctions admettent,
comme solution de continuité, le passage du réel a I'imaginaire, et,
pour me servir des termes usités, le passage du fini & Vinfini.

La discontinuité peut encore provenir d’un accident fortuit, qui,

par une cause quelconque, dépendante ou non de Pimpossibilité qu’ex-
. 1 . . N . . .
prime le symbole 3’ exclurait transitoirement toute détermination par-

ticuliere de ia fonction. Hors de la, elle n’est possible que par un chan-
gement brusque qui ferait succéder, Pune 4 Pautre , deux valeurs nu-
mériques tout a coup différentes; ce qui exige que ce changement ait
lieu dans le mode indigué pour construire la fonction ,» OU, sl ce mode
reste le méme, dans le résultat des opérations par lesquelles il se
réalise,

Supposons d’abord un intervalle ot le mode indiqué pour construire
la fonction ne change point, et cherchons si, la fonction n’affectant
jamais qu’une seule détermination transitoire, deux quelconques de
ces déterminations successives peuvent ctre toujours brusquement dif-
férentes. Dans cette hypothese. c’est la variation continue attribuée i
Ia variable indépendante qui produit les changements brusques inces-
samment subis par la fonction. Or, lorsque la variable croit ou décroit
continument, les valeurs qu’elie tranchit se succedent en étant tour i
tour commensurables et incommensurables. Dans le premier cas, elles
atfectent, en général, Yune des trois formes fractionnaires j’(; ::—
2P+ 1 , 2p +2

2 2q 1
numeérique : on peut, toutefois, en empruntant 4 volonté ’une ou

: dans le second, elles n’ont point de représentation

Pautre de ces formes, les exprinier avec tel degré d’approximation
quon désire. Cela pos¢, eten égard & la nature des opérations fonda -
mentales par lesquelles une fonction se construit, je remarque que
’est uniquement i raison de leur forme et non point de leur degré de
grandeur, que les valeurs successives de la variable peuvent introduire
dans la fonction une série non mterrompue de déterminations brus-
quement différentes. Tl suit de 1a quadmettre des changements brns-
ques incessants, c’est faire dépendre ces changements de la diversité

[N N RN N t
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des formes affectées par les valeurs fractionnaires, et par conséquent,
attribuer 4 chacune de ces formes une influence qui rend forcément
impossible toute détermination répondant aux valeurs incommensu-
rables. C’est donc aussi admettre implicitement que, si peu différentes
que soient entre elles deux valeurs de la variable, elles comprenuent,
néanmoins, une valeur intermédiaire pour laquelle la fonction nest
pas déterminée. Mais si pareille valeur existe nécessairement entre deix
limites aussi rapprochées qu’on voudra. il faut gqu’'entre ces memes
limites il y en ait une infinité. Deés lors, ce qui domine, en géncral
c’est le défaut de détermination, et, privée de son caractére essentiel,
la fonction prétendue n’est plus une fonction.

Apres avoir reconnu que la ot le mode de construction demeure
invariable, toute fonction proprement dite subit la lei de continuite .
il est aisé de voir que, si des changements brusques surviennent dans
ce mode, et, par suite, dans la fonction, ils sont toujours en nombre
linité. En effet, pour qu’il y ait fonction, il faut d’abord que le
mode de construction soit généralement déterminé. Veut-on, ail-
leurs, que ce mode ne cesse pas de changer brusquement: il faut.
pour I'exprimer, une fonction particuliere qui remplisse elle-mem:
cette condition : or ¢'est la précisément ce qu: vient detre démontré
impossible.

Ces considérations permettent d’étendre aux foncticns proprement
dites la loi de continuité précédemment établic pour tout mode d’exis-
tence d'ane grandeur quelconque.

Nous n’avons point entrevu jusqu’ici comment il est possible de
réaliser une fonction qui subissc instantanément nn changewment brus-
que de détermination numérique. Le role que les radicaux, les fone-
tions circulaires et les valeurs limites sont appelés a rempli en certains
cas. est tres-propre a jeter quelque jour sur cette question délicate,

En ce qui concerne les radicaux, je ferai d’abord observer que, si
Pon convenait, avec M. Cauchy, de désigner toujours par la nota-

tion ya* la racine positive. c’est-d-dire + a ou — «, suivant que «
g VTR = bE o .
est positif ou négatif, I'expression - e deviendrait égale a — 1 ou
£ P e
-+ 1, selon que a serait moindre ou plus grand que 4. 11 suffirait done

que cette expression, ou toute autre analogue, entrat dans une fone
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tion pour qu'elle y produisit, en général, un changement brusque de
Adétermination numérique.

’exemple que je viens de choisir souléve une difficulté. La quantité
sounise au radical est variable, et & chacune des valeurs qu’elle recoit
répondent deux racines numériquement égales, mais affectées de signes
contraires. De la résnltent deux systemes distincts, susceptibles d’étre
pris isolément et comprenant, en général, I'un les racines positives .
I'antre les racines négatives. Toutefois , comme zéro est une des valeurs
attectées par le radical , il y a lien de se demander si le passage par cette
valear ne doit pas étre considéré comme accompagné d’'un changement
de signe, I'nne des suites se substituant a Pautre, et réciproquement.

Quelques détails éclairciront ce point.

je prends pour accordé qu’on n’est point maitre d’établir arbitraire-
ment toute espéce de convention. Celles-la seules me paraissent admis-
sibles, qui sont conformes aux principes fondamentaux du calcul, et
je regarde comme un de ces principes celui qui permet de substituer
Pane a Pautre deux expressions numériques ayantidentiquement meme
valeur.

Cela posé, je remarque , relativement a la notation exponentielle :

1. Que, dans le cas ou Pexposant est une fraction, deux opéra-
tions sont indiquées, 'une par le numératenr, autre par le dénomi-
nateur;

»¢. Que, sans altérer la valeur de Pexposant entier ou fractionnaire,
on peut introduire haut et bas, comme facteur, un méme nombre
quelconque;

30, Que le résultat a obtenir doit rester indépendant de P'introduc-
tion de ce facteur;

4°. Que, pour remplir cette condition , il faut observer la regle sui-
vante :

Dans les deux opérations a faire, commencer toujours par celle qui
dépend du dénominateur.

En appliquant cette regle, on trouve
V@ — B = D=2 Va =B =x —b:

il v a donc changement de signe & partir de x = &, et 'on a constam-
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ment

Cette expression cessant, ainsi qu’on le voit, de preésenter un chan-
gement brusque de détermination numeérique, prenons la fonction «
liée 4 la variable indépendante & par les deux équations simultanees

peos o =i + recos @,
psing=rsng,

et posons en meéme temps

o= VI P4 2arcosl = \(1 —

—+ ar{1 + cos @),

r atfectant une valeur quelconque positive et § variant de zéro a an

Tant que la valeur attribuée a r est différente de I'unité, § varie
sans jamais annuler la quantité soumise an radical. Si donc on dis-
tingue, ainsi qu’il convient, les deux systemes de valeurs fournies par
le radical, on peut prendre I'un ou l'autre a volonté et s’y tenir ex-
clusivement. Or, en adoptant le systeme des racines positives, il est
aisé¢ de voir que, pour toute valeur de » moindre que 'unité . la fonc-
tion 2 s’annule aux deux limites § = o0, § = 2m, tandis que. ponr
toute valeur de r supérieure a 'unité, elle passe en méme temps gue £
par les mémes multiples de la circonférence. On ne peut donc tranchir
la limite r = 1 sans que la valeur de #, qui répond 4 § = 27, tonjours
égale a zéro, pour r< 1, et a 2w pour 7> 1, ne change brusquement
de grandeur. ‘

Dans la Note que renferme ce Journal (tome X1, page 140), ai

dit que pour r=1 et =m, il y avait -hangement brusque, 2 passan

. L bid \ . Lo N
tout a coup de —+ - Bl (Pest une erreur que je dois rectifier.
Lorsque r=1, on a

0= vy2(1+ (5:@) = \,ﬁ-éinf—.‘_;ﬂf’é; ;:) = a8in 6+ m.

2

Il faut donc admettre , en méme temps, que les valeurs de g, constam-
ment positives pour toutes valeurs de  moindres que 7, sont constam-
ment négatives pour toutes valeurs de @ supérieures a r.
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il suit de Ix que, tant qu’il s’agit uniquement de la valeur » — 1,
2. reste fonction continue de ¢, et que pour § = a7 I'on n’a point,
ainsi que je 'ai SUpposé, = =— o, mais bien o — x.

Quant aux fonctions que je considérais alors , si Pon observe que,
aans hypothése » = 1 , elles dviennent

¢ (r, 0) = [asin L (6 + =)]™ cos ma,

$(r,§

—

= [2sin £ (6 + )]™ sin ma,

on voit aisément que, pour tonte valeur de m entiere et positive , elles
ne cessent pas d’étre continues et de prendre respectivement mémes
valeurs aux deux limites § — 0,0=an.

Cette erreur rectifiée , je passe 4 la considération des valeurs limites.
Un exemple suffira.

Soit I'intégrale définie

h .
sin pz
f % dz.
o 2z

Si l'on suppose que I'indice / croisse indéfiniment, cette intégrale con-
. . - z ™ i3 .
verge vers une limite fixe exprimée par -+ - ou par —~, suivant que p
= 2 2

est positif ou négatif. 11 vient donc, dans cette hypothese,

lim fh ,Sil’,(/?zi *z :fw_Si_“ﬁ:f‘)?dz —

Y]

[SERE

le signe + subsistant pour toute valeur de moindre que b, le
signe — pour toute valeur plus grande.

Pour x =6, il y a changement brusque du mode de construc-
non. En effet, quelle que soit alors la valeur affectée par £, on n’'a
pius de limite a considérer, et il vient constamment zéro pour résultat,

On voit, par cet exemple, comment, en introduisant dans une

. . . . . Fsin(b—z)z .
fonction une expression symbolique de la forme ——dz, il
z
(4]

est possible d'y réaliser un changement brusque de détermination
numérique.

Dans ce qui précéde, jai eu pour objet principal I'étude des fone-
fions réelles, et de leur variation considérée dans ses rapports directs

[ ’u XN [T NI EE [
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avec celle de la variable indépendante. La question que je me suis
proposé de résoudre était 13 tout entiére : il ne me reste plus qu’h
montrer comment les principes établis ci-dessus s’appliquent d’eux-
memes et immédiatement au cas général des valeurs imaginaires.
('n sait que toute expression imaginaire est réductible au type fon-
damental
P+Qy :H;a

les quantités que P et Q représentent, étant toujours réelles.
On sait également que, pour opérer sur une expression imaginaire ,

il faut d’abord la réduire a ce type, ou, du moins, Py supposer ré-
duite.

L. . Sy—1) o ,
Soit, par exemple, la fonction | (re v '). Elle nest que par
Iidentité

] (reN:) =1lr46y—T.

Si donc on fait varier §, c’est dans le second membre et non dans
le premier qu’il faut étudier les modifications subies par la fonction.
Il est visible, en effet, que si 'on opérait directement sur le premier
membre, il y aurait absurdité et contradiction lorsque , donnant & §
les deux valenrs o et 2w, I'on obtiendrait pour résultat unique.

1) =10,

Considérons une fonction imaginaire ramenée a la forme
P+ Q.v—13;

P et Q seront des fonctions réelles de la variable indépendante , sub-
sistant chacune isolément et non réductibles entre elles.
La fonction donnée étant représentée par y ., il vient identiquement

et ce qu’il faut voir dans y, ce sont deux grandeurs, I'une égale a P,

Pautre & Q, toutes deux réunies symboliquement, mais toujours dis-
linctes et toujours séparables.

Tome X1L. — Aour 1845, 41
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1l suit évidemment de 1a que la variation de 'imaginaire y doit étre
considérée comme s’identifiant avec celle des fonctions P et Q, prises a
part et simultanément.

Pour éviter toute méprise, je ferai remarquer que I'on peut avoir,
entre certaines limites,

y=J@ +V—1.F(x);
puis, entre d’autres limites,
y =@+ V—1.¢ (),

les fonctions exprimées par P et Q changeant en méme temps qu’on
passe du premier intervalle au second, et, par conséquent, restant
toujours réelles.

T’observerai aussi que P'on doit distinguer le cas ou la quantité Q
s'évanouit par suite d’'une valeur particuliere attribuée 4 la variable
indépendante, et celui ou elle disparait d’elle-méme pour toute I'éten-
due d’un certain intervalle. Dans le premier cas, la valeur affectée
par ¥, quoique réelle en apparence [*], ne cesse point d’appartenir au
systeme général des valeurs imaginaires. Dans le second, il y a tran-
sition d’un systeme a Pautre, et, par suite, solution relative de con-
tinuité.

Une fonction peut étre tantdt réelle, tantot imaginaire, la variable
dont elle dépend restant toujours réelle. Néanmoins elle n’affecte ainsi
qu’une partie des déterminations compatibles avec son mode de con-
struction. Si donc on veut l'étudier dans toutes les modifications
qu’elle comporte, il faut substituer aux valeurs réelles de la variable
un systéme qui, sans exclure aucune de ces valeurs, comprenne en

[*] Tappelle Vattention du lecteur sur la fonction (— a)*. La variable # demeurant

réelle, on a
(—a)> =a*.[cos 2k + 1)z 4+ y— 1.sin (24 +1) e},

ce qui montre que, contrairement i I'idée qu'on s'en forme, en général, la fonc-
tion {— a)* est essenticllement imaginaire et continue. A chaque valeur du nombre
entier & répond nn systéme distinct de déterminations particuliéres. Il n'y a solution de
continuité que lorsqu’on passe d’'un systéme i 'autre.



PURES ET APPLIQUEES. 323

méme temps toutes les valeurs imaginaires possibles [*]. Pour satis-
faire a cette condition, x étant la variable, on doit poser

r=p+qy—1.

11 faut admettre, en outre, que les quantités p et g sont susceptibles
d’acquérir directement, et indépendamment Pune de 'autre, toutes
les valeurs réelles. Dés lors a devient fonction de ces deux variables .
et celles-ci seules peuvent étre dites indépendantes.

En assujettissant la variable x a franchir successivement, et avec
continuité, toutes les valeurs imaginables, on ne détermine aucun des
modes particuliers suivant lesquels la variation peut s’accomplir effec-
tivement. 1l est permis de rester a ce point de vue général, comine
aussi de considérer spécialement 'un ou Pautre de ces modes, le choix
4 faire dépendant de la nature des questions a résoudre et offrant
ainsile moyen d’établir, entre la variable et 1a fonction donunées, l'ordre
de relation le plus propre a remplir I'objet quon se propose. Dans
tous les cas, la continuité n’est possible pour x, qu'autant quelle
subsiste pour chacune des quantités réelles p et ¢, prises a part et si-
multanément. Nous admettrons désormais que cette condition néces-
saire est constamment satisfaite.

Si nous reprenons la fonction

_— —1
L) =1(p+gv=1) =1 (")

’

il viendra, sans rien statuer sur le mode de variation des quan-

tités p et q,

1 p-+q yv—1) =P+ Qy—1= L1 (p* + 4% + y—1.arc tang%-
~ette identité démontre la continuité absolue de la fonction lix),

pour tout mode de variation qui exclut la simultanéité des valeurs

particulieres p =0, g = 0.

[*] Le systéme des valears imaginaires comprend, comme cas particuliers , toutes
Jes valeurs réelles. Dés qu'on entre dans ce systeme, il n'y a plus lieu d’établir entre
les unes et les autres aucune distinction. Cette remarque est trés-importante au point de

vue de la continuite.

Ar..
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Cela bien compris, et sans qu’il soit besoin d’insister davantage sur
la distinction qu’il importe d’établir entre le systeme général de tous
les modes possibles de variation continue et 'un quelconque d’entre
eux, je vais passer a I'examen de celui de ces modes quon choisit ha-
bituellement pour Pattribuer 4 la variable imaginaire,

1l semblerait naturel d’opérer directement sur les quantités p et ¢, en
faisant correspondre successivement 1’nne quelconque des valeurs de p
a toutes les valeurs de ¢, ou réciproquement. Dans I'un et Pautre de
ces modes, p et ¢ seraient les variables indépendantes. 1l est d’ailleurs
visible qu’on y réaliserait pour x toutes les valeurs imaginables. Tel
n’est point le procédé généralement suivi. Moins simple en apparence,
il offre, en réalité, certains avantages qui le font préférer. Voici en
quoi il consiste :

Faisant

(1) reost =p,
(2) rsing =g,

on en déduit

- \"P2 + (15',

§ = arc tang .
€

Cela posé, 'on remarque que, quelles que soient les valeurs res-
pectives attribuées séparément aux quantités p et ¢, on peut toujours
satisfaire aux équations (1) et (2; en attribuant 4 r la valeur positive
\,'pzjr_“f/—g, et a 'arc §, soit la valeur unique qui, dans Iintervalle
de 0 a 27, remplit les conditions voulues, soit cette méme valeur,
augmentée d'un multiple quelconque de la circonférence.

Au lieu de P'équation

x=p—+ qy :I s
i} est donce permis d’écrire

x =r(cosf - \ — 1.sin5),

et. changeant le mode de variation, de prendre ret 6 pour variables
indépendantes.

o PE I s b

[T "
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Veut-on n’attribuer a r que des valeurs positives, et restreindre entre
les limites o et 27 la variation de 65 cela suffit pour réaliser un mode
de variation continue ou Ja variable x passe successivement par tontes
les valeurs imaginables. Cela ne suffit point, en général , si on vent
que la fonction acquiére elle-méme toutes les déterminations qu'elle
comporte.

En principe, et par cela seul qu'elles sont indépendantes, les va-
riables r et § doivent étre considérées comme susceptibles de prendre
ensemble et séparément toutes les valeurs réelles. On remplit cette
condition le plus simplement possible, et sans que la discontinnité
puisse Jamais survenir dans le mode de variation atiribuée i la vie
riable x, lorsque, partant de zéro, 'on fait correspondre successive-
ment 'une quelconque des valeurs de 7 & toutes les valeurs de 4. ou
réciproquemnent.

Quon le remarque bien, il s’agit de deux variations simultanées ,
subies, I'une par la variable x, autre par une fonction de cette va-
viable. On peut, sans doute, étendre ou restreindre i volonté ces va-
riations. Toutefois, il ne faut jamais perdre de vue qu’elles ne restent
comparables ¢u’entre les limites ot toutes deux saccomplissent a la
fois.

Dira-t-on que, la variable x étant periodique, 1l est superflu ’attri-
buer &4 § aucune des valeurs ou entre un multiple quelconque de Ja
circonférence; je répéte qu'on est parfaitement libre d’admettre telle
ou telle Iimitation du mode suivant lequel r et § varient. Il faut seule-
ment ey tenir compte et se garder de prétendre que les valeurs de la
fonction sont toujours ¢puisées er méme temps que celles de la variable
imaginaire.

Soit, par exemple, la fonction

1 1 1 1

. - ———— .- 1] e . 6\
Yy =x7 =ricosl -+ — 1 sinb)s = (cos; +y 1 sm—).
- \ G {/

n’est-il pas manifeste que, pour n'exclure aucune des déterminations
qu'elle comporte, et, en particulier, pour lui faire exprimer les di-
verses racines de 'unité, il est indispensable d
a la variation de 9, des valeurs pr
que g augmente ?

‘assigner, comme limites
ises de plus en plus grandes i mesure
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Lorsqu'on entre dans le systéme des valeurs imaginaires, il est &
observer que, sauf les cas d’impossibilité fortuite, il n’est, pour la
fonction de méme que pour la variable, aucune détermination parti-
culiére que toutes deux n’admettent nécessairement. La seule chose
qui change d’une fonction 4 une autre, c’est I'ordre dans lequel ces
déterminations se succédent, ou bien encore le degré de périodicité.
Supposons, en effet, que la variable soit prise pour fonction , et réci-
proquement. La fonction, prise pour variable, recoit immédiatement
toutes les valeurs possibles. D’un autre coté, a chacune de ces valeurs
.il en correspond une que la variable, devenue fonction, acquiert
forcément. Si donc, agissant directement sur la variable, on lui fait
prendre successivement toutes les valeurs possibles, il faut que la
fonction remplisse elle-méme cette condition générale.

De la résulte un principe que j’énoncerai comme il suit : -

Toute variation limitée des quantités r et §, qui ne permet pas de
réaliser dans la fonction le systéme entier des valeurs imaginaires, est,
par cela seul, nécessairement incoinpléte.

Appliquant ce principe a la fonction particuliere
| (&) = lr(cos § + y—1sing) =1 (rew—:') =1 +0y—1,

on reconnait immédiatement que la variation de § ne peut etre com-
plete par rapport a la fonction qu’autant qu’elle est illimitée.

L’exemple que je viens de choisir est trés-propre a montrer com-
ment, en certains cas, le série des valeurs imaginaires est a peine en-
tamée par la variation continue de la fonction, tandis qu’elle est déja
complétement épuisée par celle de la variable. L’explication de ce fait
est toute simple. Tl dépend de la multiplicité des valeurs qui dans la
fonction répondent a une seule et méme détermination de la variable
imaginaire. L’inverse est également possible; je citerai, pour exemple,
la fonction

am = r™ (cos§ + y— 1 sin 0)" = r™ (cos m@ + y — 1 sin mf).

I'ssentiellement continue pour toute valeur entiere et positive de
Vexposant m, cette fonction est en méme temps périodique, et, par

oo ]' ' [T TR RN U [N
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elle, la série des valeurs imaginaires est m fois épuisée lorsqu’elle ne
Pest qu’'une fois par la variable x.

Je crois en avoir dit assez pour établir nettement en quoi la conti-
nuité consiste , indépendamment de toute convention, et pour montrer
avec évidence que rien en elle n’implique ni n’exclut, par rapport a
la fonction, la condition d’une certaine périodicité. Lorsque, conformé-
ment aux principes, on opere directement sur les quantités » et 6, en
leur conservant le caractere de variables indépendantes, il n’y a pas
méme 'apparence d’une difficulté. qu’importe, en effet, A la conti-
nuité relative de la fonction qu’il y ait ou non périodicité dans la suite
des valeurs que la variation continue de ¢ fait prendre 4 la variable
ainsi qu’a la fonction? qu'importe que cette variation soit plus ou
moins limitée, pourvu que, de part et d’autre, on ne considére ja-
mais que l'intervalle ou elle saccomplit?

La variable o demeurant continue, imaginons que, pour toutes va-
leurs de r comprises entre deux limites déterminées, la fonction varie
périodiquement suivant un certain mode, et qu'au deld de ces li-
mites , le mode change brusquement. 1l est clair que ces limites ne
pourront étre franchies sans qu’il y ait. en général, changement brus-
que de détermination, et, par conséquent, solution de continuité. Si
donc une fonction a d’abord un certain degré de périodicité, puis
qu’elle le perde brusquement, ou que, ne P'ayant pas, elle I'acquiere
tout a conp, la discontinuité surgit en méme temps. Cette remarque
explique peut-étre erreur ou P'on est tombé en faisant dépendre la
continuité de la péviodicit¢, et confondant ainsi deux caractéres essen-
tiellement distincts.

Avant de terminer ce sujet, je crois utile d’ajouter quelques mots
sur la construction géométrique des valeurs imaginaires et sur les
avantages spéciaux que ce mode de représentation peut offrir dans la
({llestiol] qlli nous ()CCIlPe.

Soient ¢ et u deux coordonnées rectangulaires. Si I'on pose, en
geénéral ,

P+Qy—1=¢t+uy—ri,
toute valeur de 'imaginaire P + Q \/‘”—“1 fixe la position d’un point;

et réciproquement, tout point du plan des coordonnées répond a I'une
des valeurs de cette imaginaire.
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On voit ainsi que toute expression imaginaire, considérée dans|'en-
semble des déterminations qu'elle comporte, et abstraction faite des
solutions de continuité qu’eile peut offrir accidentellement, dans les
cas d’impossibilité fortuite, est exactement représentée par la suite
infinie des points que comprend une surface plane.

Cherchons quel est, par rapport & la génération de cette surface,
le sens exprimé par les divers modes de variation continue, sur les-
quels notre attention s’est portée plus particuliérement.

Soit d’abord

x:p+q\//::t+uv’—1;

si I'on fait correspondre a chaque valeur de p teutes les valeurs de q,
on a pour chaque valeur de p une droite perpendiculaire a Paxe des
abscisses, et c’est par le déplacement de cette droite, transportée pa-
rallelement 4 elle-méme, que la génération du plan s’effectne. Lors-
qu’on procede inversement, c’est-i-dire en faisant correspondre & une
valeur de ¢ toutes les valeurs de P> puis en donnant successivement
4 g toutes les valeurs possibles, la genération a lieu par le déplace-
ment d'une droite parallele a Paxe des abscisses.
Soit ensuite

X=rcosf +y—1rsind =1+ uy—.

De la résulte
t=rcosf, wu=rsind,

et, suivant qu’on élimine r ou 6,

n = t.tang @,

ou bien
u? 4+ t?= 2

Dans le premier cas, chaque valeur de 6, se combinant avec toutes les
valeurs de r, fournit une droite qui passe par l'origine et fait avec
I'axe des abscisses un angle égal 4 6. Lorsque 0 varie, cette droite
tourne, et c'est par sa rotation autour de Porigine que le plan se
trouve engendré.

Dans le second cas, il y a combinaison directe de chaque valeur
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de r avee toutes les valeurs de 6. Chacune de ces combinaisons donne
une circonférence de cercle ayant son centre a l’origine, et la quantité »
pour rayon. rvariant a son tour, la circonférence se développe progres-
sivement, et la génération du plan s’effectue.

Considérons maintenant quelques fonctions particuliéres, et, pour
abréger, adoptons exclusivement, en ce qui concerne la variable x, le
mode de variation continue qui se traduit par la rotation d’une droite
tournant autour de Vorigine.

Soit, en premier lieu, la fonction 2™; on a

2™ = (rcosd + y— 1 rsin6)" = r™ (cosmf + y— 1 sin mb).
Cest done aussi par la rotation d’une droite tournant autour de I'ori-
gine que se traduit la variation relative de la fonction x™; dans ce
mouvement, la vitesse change avec 'exposant m. Soit encore la fone-
tion lx; il vient

le =1 +6y—1=t+uy—1.

lei c'est par le déplacement d’une droite paralléle a I’axe des abscisses
que se réalise dans la génération du plan le systéme complet des va-
leurs imaginaires. Lorsqu’on restreint la variation de § entre les li-
mites o et 27, les positions extrémes de la génératrice sont données
par les équations

U=—o0, uU—2T.

et la surface engendrée se réduit a la bande que comprennent entre
elles ces positions extrémes.

Ces exemples suffisent ; par eux on saisit clairement ce qu’exprime
tout mode de variation continue susceptible d’étre attribué 4 la va-
riable imaginaire. 1ls mettent, d’ailleurs, en évidence la relation qui
s'établit entre I'un quelconque de ces modes et celui qui lui corres -
pond dans la variation simultanée de la fonction. De part et d’autre il
v a d’abord a considérer le mouvement d’un point. et, par suite, la
génération de deux lignes, répondant I'une i la variable, autre 4 la
fonction; puis vient, avec ou sans changement de forme, le déplace-
ment de ces lignes: de li résultent deux aires planes, qui s’engendrent
simultanément et se correspondent de la méme maniére gue leurs

Tome X1, — Aovr 1845 3
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geénératrices respectives. Par hypothése, 'un de ces deux systémes est
essentiellement continu, c’est-d-dire que dans le mouvement du point
décrivant une position quelconque de la génératrice, comme dans
celui de la géncératrice décrivant une portion d’aire quelconque, il n’y
a jamais ni lacune ni saut brusque. Tant que P'autre systéme remplit
les mémes conditions, il y a continuité relative.

En résumé, soit une fonction quelconque réelle ou imaginaire, la
variable peut étre assujettie 4 varier continfiment entre certaines li-
mites. Quelle que soit, en ce cas, la détermination particuliere du
mode de variation, il reste caractérisé par ’absence de tout chan-
gement brusque, et la fonction varie, en général, de la méme ma-
niere. Aussi longtemps que cette condition, supposée remplie par la
variable, 'est également par la fonction, on dit de celle-ci qu’elle est
et demeure fonction continue de la variable que I'on considére.

D’aprés tout ce qui précede, je crois étre en droit de poser la con-
clusion suivante :

Dans le théoréme de M. Cauchy, relatif au développement des fonc-
tions en série, la condition de continuité n'est pas la seule qi’on doive
mentionner. Elle est insuffisante, vu quielle wimplique, en aucune ma-
niere, une certaine periodicité de la_fonction, condition essentiellement
distincte de la premiére et non moins nécessaire.

§ 1L
Application de la théorie qui précéde a la solution de plusieurs difficuites .

L’énoncé que j’ai reproduit dans la premiere partie de cette Note
(voir page 306) , se termine par ces mols : kors de la, la série devient
divergente.

M. Cauchy n’admet pas que la discontinuité de la fonction entraine
toujours la divergence du développement. Loin de la, il fait la re-
marque suivante :

2

« JVai précisément émis I'opinion contraire a celle quénonce ici
» M. Lamarle, dans un précédent Mémoire ou je me suis spécialement
v occupé des jonctions dont les développements restent convergents,
» tandis quelles deviennent discontinues. M. Lamarle lui-meéme ne
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» pourra révoquer en doute I'existence de fonctions qui présentent ce

» double caractere. T} me suffira de prendre pour exemple la fonc-

» tion méme qu’il a choisie comme propre a montrer une application
» du théoréme général, savoir:

{1+,
» et de considérer spécialement le cas ou, le module r de x étant
» inférieur & Punité, l'exposant m devient fractionnaire, et de la
» forme £, p, q étant des nombres entiers. »
q

Observons d’abord que je n’ai point entendu parler des fonctions
dans lesquelles il surviendrait tout A coup un changement brusque du
mode de construction. Si I'on avait, par exemple,

sin KL, — r) z-4-sin (L—— x ‘) z

o m _fl Y S 3 _ /. {

7= (1 +x) - et ez
L Zat]

»

ii est clair que la série resterait convergente pour toute valeur de x

inférieure i 'unité; et cependant il y aurait changement brusque pour

N . “ T 1
ies valeurs partlcuheres x — 7 x =g

La restriction que je viens d’indiquer résulte de la nature meéme de
la question. On est naturellement conduit a la faire, et elle peut
rester sous-entendue sans crainte d’aucune méprise. Aussi n’est-ce pas
sur ce point que porte 'objection qui m’est opposce.

Avant d’aborder la discussion de chacun des exemples produits par
M. Cauchy & Pappui de son opinion, il convient que je rappelle en
quelques mots la marche que j’ai suivie pour fixer d’'une manicre pré-
cise le sens des opérations a effectuer dans les diverses applications du
thiéoréme qui nous occupe.

Soit f'(a) une fonction quelconque, supposée réelle; si Fon y rem-
place & par ref¥—, il vient
(1 f(rew—l ) =g (r, 6) + ¢ir.0) \ 1,
= et ¢ étant deux fonctions réelles.

Imaginons maintenant que, pour toute valeur de x inférieure au

f2.
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nombre R, f(x) soit développable en série convergente d’apres la for-
mule de Maclaurin. On aura

(2) J&X) =a+ bax + cat + ...,
et, par suite,

= t + breos + cr’cos2f +. ..
f(rea ): { i_' ; 2 o3 '
+ v—1(brsin + cr*sin 26 +...)

3

) go(r,@):a+b/'cose—+—cr2c0529+...,
N $(r, 0) = brsin + crisin 26 +. ...

Tant que ces équations subsistent , ¢’est-a-dire tant que le module »
reste compris entre + R et — R, les fonctions o(r,9), ¢(r,8) se
trouvent assujetties & remplir plusieurs conditions importantes :

1°. Pour toute valeur de r, elles varient contintiment avec G;

2°. Pour toute valeur de 0, elles varient contintiment avecr;

3°. Elles affectent une certaine périodicité, en vertu de laquelle on
a constamment

¢ =0, 4+ 2kn), ¢(r,0) = (76 + 2kn),
et, en outre,
@(/',6):90[—7‘,64—(2/{+1)7r], q;(r,@):up[—r,ﬁ—i—(z/s—i—l)n[,

2 Am représentant un muitiple quelcongue de la circonférence.

Bien que ces conditions, prises avec toute 'extension qu'elles com-
portent, doivent étre considérées comme une conséquence nécessaire
de la possibilité du développement, on peut néanmoins les restreindre
sans qu’elles cessent pour cela d’étre suffisantes. C’est ainsi qu’en les
réduisant au plus petit nombre possible, on est conduit & faire abs-
traction des valeurs négatives du modale, & limiter la variation de I’ar-
gument § par les valeurs extrémes o et 2 7, enfin 4 exprimer la condi-
tion de périodicité par les équations particulieres

(5) P 0)=¢(,27), ¢, o) = $(r, 2m.

Tel est le sens que j’ai attaché a Pénoncé snivant -

o ,. : e : [ A
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Pour yu'une fonction soit développable en série convergente , d'apres
la formude de Maclanrin, il faut deux conditions distinctes, a la fois
nécessaires et suffisantes.

La premiére, c’est que la continuité subsiste a partir de r = o, pour
toute valeur du module égale on inférieure a celle que Lon considere;

La seconde, c’est que, dans cet intervalle, chacune des fonctions
o(r,8), G (r, 8) reprenne, pour § = an, la valeur qu’elle prend pour
9 = o.

Quant a la marche a suivre dans les diverses applications, elle est
toute tracée par les considérations qui précedent. On commence par
effectuer la séparation indiquée par 1'équation (1); puis, prenant i
part les fonctions ¢ (r, §), ¢ (r, §,, on examine si, pour toute valeur
de r, inoindre qu’an certain nombre R, elles satisfont 4 la condition
des limites exprimée par les équations (5). En supposant cette condi-
tion remplie, il faut s’assurer, en outre, que la continuité subsiste a
partir de r = o, c’est-a-dire que les fonctions ¢ (1, 6), & (r, 6) ne su-
bissent aucun changement brusque :

1”. Lorsque. le module r affectant une valeur quelconque moindre
que R, 'argument § varie avec continuité entre les limites o et 27

2. Lorsque, ¢ demeurant quelconque et constant, r varie conti-
ntument a partir de o jusqu’a la limite R.

Cela posé, cherchons si les fonctions choisies pour exemple par
M. Cauchy présentent effectivement le double caractére qui leur est
attribué |, c’est-a-dire s’il est vrai qu’elles deviennent discontinues,
tandis que leurs développements demeurent convergents.

Soit d’abord la fonction

I 4

14+ a) = (1 + rcosf + y — 1 rsin 6)7 = o(ry 8+ y—1 ir, &)

Pour déterminer chacune des fonctions ¢ (r, 6), ¢ (r, 5), je fais

1+ rcosd =pcosa, rsing=psina.

De la résulte
P v
o(r, ) = p1 cos%a, g (r ﬁ)zp‘isin'f .
' 9

i

It vient, d’ailleurs, en adoptant pour g la racine positive fournie par
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le radical,

6 =v1-+r'4+ arcosé.
Par hypothese, r est plus petit que P"unité. On a donc constamment

COSs o > O.

Quant & sin «, il change de signe et s’annule avec sin §.
Il suit de la que, tandis que § varie entre o et =, Pangle a part

A - A 3 \ . . . . k3
de o, croit continiment jusqu’a une certaine limite moindre que >

puis décroit de maniére a redevenir nul pour § = . Au dela, cest-i-
dire lorsque § passe de la valeur 7 4 la valeur 27, la variation de o se
reproduit symétriquement, avec cette seule différence que, de positif
qu’il était d’abord, Pangle « devient négatif. En d’autres termes, si

Fon désigne par € et §” deux valeurs de o correspondantes, P'une 4 §,
Pautre & 2 — @, il est visible qu’on a généralement

g = — 8.

Les valenrs de 2 qui répondent 4 6 == o et 4 6 = ar, se réduisant a
une seule et méme valeur, zéro, la condition des limites est évidem-
ment satisfaite. 11 en est de méme de la condition de continuité, les

variables p, cosg o, sins a ne subissant aucun changement brusque.

On voit donc que si, pour toute valeur du module moindre que
I'unité, la fonction

'
(1 -+ )

est développable en série convergente d’apres la formule de Maclaurin,
eile est en mée temps continue pour tout cet intervalle.

D’accord avec moi sur les principales données de cette question,
M. Gauchy y introduit une convention arbitraire, et, par elle, il crée
une discontinuité factice. La convention dont je parle consiste 4 n’ad-
wettre pourl'angle « que des waleurs positives, comprises entre les limites
o cf 2m. Dans ce systeme, 'angle o prend tout 4 coup deux valeurs,
lorsqu'on fait § = m: 'une est o, Pautre ar. La premiere subsiste
comme limite de la suite qui commence & § = o et finit 4 § = r; la se-
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conde, comme origine des valeurs qui se succedent a partir de 6§ ==
jusqu’a 0 = 2m. De la vient la discontinuité. Elle dépend, ainsi qu’on
le voit, d’une condition particulicre, arbitrairement introduite dans un
wode de variation qui déja se trouve complétement déterminé. 1.’angle «
n’est point une variable dont on dispose, c’est une fonction de la va-
riable indépendante §. Dira-t-on que, 6 variant entre les limites o
et 2m, la fonction « doit étre assujettie & varier entre ces mémes limites’
Une pareille prétention serait insoutenable. Comment, d’ailleurs, jus-
tifier la bizarre anomalie que présenterait la fonction o, si, n'affectant
jamais qu’unc valeur unique, elle en acquérait deux pour § = n?

Ce premier point étant éclairci, passons aux exemples cités par
M. Cauchy, dans le Mémoire qu’il a publié sur les fonctions dont les
développements restent convergents, tandis qu'elles deviennent dis-
continues {voir Comptes rendus des séances de U Académie dles Sciences,
tome XIX, page 142).

Ces exemples sont au nombre de deux; je les examinerai successi-
vement.

Cousidérons d’abord la fonction

i .1 WU ¢
‘y:[l—a'2+.7c(2~—.‘r”\2\f’—l]R+[I—tvc2-.r(‘z~—x")‘z\x—1".

M. Cauchy fait observer que, pour des valeurs réelles de la variable «,
la fonction » cesse d’étre continue a partir de v = 1. Tl démontre,
d’ailleurs, que le développement de cette fonction, ordonné suivant les

puissances ascendantes de x, ne cesse pas d’étre convergent, tant que
'on a

x? < a.
Posons
T—ax? = cosa, xy2— x?=sino.
Nous avrons, en subshtuant,
P arccos {1 — &%)
J = 2008 3 = 2008 — "

La forme sous laquelle je viens d’écrire la fonction y montre évi-
demment que, pour des valeurs réelles de la variable x, cette fonction
ne cesse pas d’étre continue, a partir de x = 1, comme le suppose
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M. Cauchy, mais seulement partir de x* = 2. 1l n’y a donc rien
d’extraordinaire A ce que son développement demeure convergent jus-
qu’a cette derniére limite. Ici encore la discontinuité prétendue n’existe
que comme résultat d’une convention purement arbitraire. Cette con-
vention, reproduite dans I'ouvrage déja cité de M. 'abbé Moigno,
consiste en ce que le changement de signe de la partie réelle 1 — x? est
regardé comme impliquant une solution de continnité.
Prenant, en second lieu, la fonction
JF=va2=3x+x=\i<a)(a— ),
et posant
X == refV—r,

d’ou résulte

¥y = \/2 — 3rcosf +r?cosal — (3rsing — r?sin a Gv—1,
M. Cauchy remarque que la partie réelle de Vexpression placée sous le
radical, savoir,

k. 2
2 —3rcosf + r®cos 26 = 2(%—— rcos@) —f—% —r2,

s évanouit quand on pose

b 3
r—= \/%, COS@:Z';Ia

et, par conséquent, devient négative pour certaines valeurs de 6, alors

que r est compris entre \/% et 1. 1l conclut de 12 que la fonction 7 qui

reste continue par rapport a r et § pour toute valeur du module infé-
rieure a \/% devient discontinue a partir de cette limite.

D’un autre coté, M. Cauchy constate que si I'on développe la fonc-

tion ¥y = y1 — & o — & en série ordonnée suivant les puissances as-
cendantes de x, la série ainsi obtenue ne cesse pas d’étre convergente

8
Apres avoir produit ce dernier exemple d'une fonction dont le déve-

pour des valeurs de x supérieures & \ﬁ, mais inférieures a 'unité.

' S e
[T ’I [ AR (RN '
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loppement reste convergent, tandis qu’elle devient discontinue,
M. Cauchy ajoute :

« Au reste, il est important d’observer que les deux expressions

[SIES
[KIEN

(2—3x+2)?, 1 —x)(2a—x

» sont deux formes différentes d’une seule et méme fonction, rant

» que le module de x reste inférieur a la limite \/% Mais quand le

» module de x devient supérieur a cette limite, les deux expressions
» dont il s’agit représentent deux fonctions distinctes, qui ne sont
» plus identiquement égales entre elles pour toutes les valeurs réelles
» de I'angle 6. De ces deux fonctions, la seconde seule reste continue

» pour un module de x supérieur a \/% mais inférieur a Punité, et

» représente constamment dans cet intervalle la somme de la série
» qu’on avait obtenue en développant la premiere fonction. »

En reproduisant ce passage, ou les régles fondamentales du calcul
semblent étre en défaut, j’ai voulu montrer le danger des conventions
sur lesquelles repose le paradoxe énoncé par M. Cauchy. Comment
concevoir, en effet, qu’il ne soit pas permis d’écrire identiquement

Vo —3x - x?P=\1— xy2 — .

La difficulté, qui se présente ici, disparait d’elle-méme , lorsque,
laissant de cOté toute convention arbitraire, on procede suivant la
marche que nous avons tracée.

L’expression a transformer étant

y = \/2 —3rcosf + r*cos 28 — (3rsin§ — r?sin 26)(——:_?
=g 0) + \:——I—L}J (r, 6),
je pose
92— 3rcosb—+ r*cosaf =pcosa, 3Irsinf—risimab = o sin .
De la résulte
g (r, ) = pj‘f cos —Z, $(r, 0) = — p% sing-

Tome XII.-— Aovr 18,47, 45
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On a, d’ailleurs, en adoptant la valeur positive fournie par le radical ,

p=v(1— arcosf-+r? (4 —4rcosb + r).

Si Fon remarque que la valeur de psin o peut se mettre sous la
forme
psing=rsing (3 —arcosb),

et que ¢ nest jamais nul, si ce n’est pour les valeurs particulieres

r=1, r==1, combinées avec § = 0 ou § = 27, on voit immédiate-
. 3 e

ment que, pour toute valear de r moindre que 5 et autre que P'unité,

sin o change de signe et s’annule avec sin §.

Cela posé, soit d’abord
r < \/—%

pcos o = 9(é -— 1‘0056‘)2—#‘

v

il est visible que cos o reste constamment positif.
Il suit de la que, tandis que § varie entre o et 7, Pangle « part de

comme on a

‘ A T A . y . . . . T
zéro, croit continiment jusqu’a une certaine limite meindre que =

puis décroit de maniére 4 redevenir nul pour 9 = n. Au deli, c’est-a-
dire lorsque 9 passe de la valeur n & la valeur 27, la variation de x se
reproduit symeétriquement , avec cette seule différence que, de positif
qu'il était d’abord, I'angle o devient négatif.

La condition des limites est évidemment satisfaite. On voit également
que la continuité n’est pas interrompue.

, \/g.

Rien ne change, si ce n’est que la variation de 2 s’étend, sans la dé-

Soit ensuite

« sy imite ©
passer, jusqu’a la Hmite o

Soit maintenant

I‘>\/§<l,,

noow 1 XN (R IR AT Frides i R
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En écrivant la valeur de p cos o, sous la forme suivante :

2COSO = 2 (r cos G — 3 ‘Lgf:!,TJ) (1'0059 — t}_\r%’_":j)“

tl est aisé de voir que rien ne change encore, si ce n'est que la va-
T ’ ’ ) ’ N .

leur , est dépassée et qu’elle répond & une valeur de § qui se rap-

proche indéfiniment de zéro, & mesure que le module 1 converge vers

Punité.

En ce cas, 2 part de zéro, croit jusq’a une certaine limite moindre
yue m, puis décroit et redevient nul. Cette variation, toujours continue ,
s'accorBlit en méme temps que 5 croit de o 4 7. Au dela, c'est-a-
(hiré quand § croit & partir de 7 jusqu’a 27, la variation de o se re-
produit symétriquement, avec cette seule différence que, de positif
qu’il était d’abord, angle « devient négatif.

Cette discussion montre que la condition des limites ne cesse pas

d’étre satisfaite et qu’il y a toujours continuité.
Soit encore

il vient alors

On a, d’ailleurs,
asin 5 —4cos?
= i -vHh — 4 cosb.
¢ P
I.eseul changement qui s’introduise, relativement au mode de variation
qui précede, consiste en ce que I'angle o ne part plus de zéro, mais
bien de 5 Cette circonstance empeécherait que la condition des limites

tit remplie, si p ne sannulait point aux deux limites § = 0, § = ar.
Quant a la continuité, il est visible qu’elle subsiste sans interruption.
Il est vrai que, pour toute valenr de r moindre que I'unité, angle o

. . oy T
part de zéro, tandis que pour r= 1, sa valeur initiale est — Toute-

tois, il 0’y a pas de changement brusque dans les tonctions ¢ (r, 9},
43..
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Y (r, 6). Pour s’en convaincre, il suffit d’observer que, tandis que le
module converge vers 'unité, les valeurs de p et de «, qui répondent
4 des valeurs de § trés-voisines des limites o et 27, se rapprochent in-
définiment de celles qui, dans Ihypothese r = 1, répondent a ces

limites.
Supposons, en dernier lieu, que la valenr du module soit comprise

3
entee 1 et —

En ce cas, les valeurs extrémes de P'angle 2 sont respectivement
+ met —n. D’un auire coté, p ne s’annule point. La condition des
limites n’est donc plus satisfaite pour la fonction ¢ (r, §), et, par con-
séquent, la série cesse d’étre convergente. Néanmoins, et c’esi,la une
circonstance qu’il importe de signaler, il suffit que la valeur attribuée
4 p reste constamment positive, pour que la continuité ne soit pas
interrompue.

On voit, par ce qui précede, que, contrairement & Vopinion de
M. Caunchy, et eu égard & ce qu’il nest pas permis de considérer le
changement de signe de la partie réelle

o — 3rcosf 4+ r¥cosab,

comme impliquant, par lai seul, une solution de continuité, la fonc-

tion

y=ya— 3z rat
est constamment continue, non-seulement pour des valeurs du module
inférieures a 'unité, mais, en outre, pour des valeurs plus grandes,
les quantités r et p conservant, par hypothese, un seul et méme signe.
On observera qu’en détruisant I’objection qui m’était opposée, j ai
fait aussi disparaitre le paradoxe énoncé dans le passage reproduit ci-
dessus (page 337).
Dans la Note 2 laquelle je réponds, M. Cauchy exprime Uopinion
suvante :
La nature des conventions a une influence marquée sur le carac-
» tere des fonctions considérées comme continues; de sorte (u’en
» passant d’un systeme de convention a un autre, on peut rendre
» discontinues des fonctions qui étaient continues, et réciproquement.
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» [Yapres cette remarque, il n’y pas lieu de s'étonner que les dévelop-
» pements de certaines fonctions restent convergents, dans le cas ou
» ces fonctions deviennent discontinues, puisqu’en modifiant les con-
» ventions admises, on peut quelquefois enlever a une fonction dont
» le développement était convergent le caractére de continuité. Pour
» rendre plus souvent applicable le théoreme sur la convergence des
» développements, il est évidemment utile d’adopter les conventions
» qui conservent ce caractere le plus longtemps possible aux fonctions
» employées dans le calcul. »

Selon moi, le caractére d’ou dépend la continuité est un caractere
absolu qu’on n’est point maitre de modifier, et qui se conserve intact
dans tout systeme de convention susceptible d’étre introduit dans le cal-
cul, sans porter atteinte aux principes fondamentaux. Quoi quil en
soit, M. Gauchy reconnaitra, sans doute, qu’en adoptant ma maniere de
voir, I'on restitue aux fonctions qu’il a choisies pour exemple la con-
tinuité dont elles se trouvent dépouillées dans le systeme de conven-
tions qui lui appartient. Sous ce rapport, et alors méme qu’on serait
libre d’opérer autrement, il y aurait donc avantage i se conformer aux
principes que j'ai développés ci-dessus. Ge n’est point en appliquant
ces principes, mais pour s’en étre écarté, que M. Cauchy a introduit
la discontinuité 1a 001, en réalité, elle n’existe point.

Avant de terminer cet article, j’ajouterai quelques mots sur la con-
cition de continuité considérée par rapport aux fonctions dérivées.

Lorsque j’ai dit de cette condition qu’elle pouvait étre omise, | ai
entendu exprimer qu’elle devait I’étre nécessairement. M. Canchy fait
observer gidon pourrait a la rigueur se passer de la considération des
fonctions derivées, mais qu’il vaut mieux ne pas I’abandonmner entiere-
nient, attendu qu’elle sert, en certains cas, 4 déterminer le modunle des
series.

On sait que les limites entre lesquelles la série de Maclamvin est
convergente sont les mémes pour la fonction que pour P'une quel-
conque de ses dérivées, et réciproquement. En faisant cette remargque
dans mon premier travail sur le théoréme de M. Cauchy, jai été con-
duit i observer que, bien que la considération de la dérivée fiit sn-
perflue et indirecte, il pouvait étre quelquefois plus simple 'y re-
conrir, Dans ce cas. la dérivée se substitue a la fonction, et celle-ci



342 JOURNAL DE MATHEMATIQUES

cesse d’exiger aucune vérification directe. En géncéral, le contraire a lieu,
'est-a-dire qu’on opere sur la fonction, sans aveir a s'inquiéter de la
dérivée. Les calculs a faire n’étant pas toujours aussi simples qu’il
serait désirable , il est bon que I'énoncé du théoréme ne laisse aucun
doute sur 'inutilité¢ d’une double opération ou la fonction et sa déri-
vée devraient toutes deux intervenir. 11 convient, d’ailleurs, au point
de vue de la rigueur mathématique , qu’une condiﬁon, démontrée
surabondante, ne figure point au nombre de celles qui sont réputées
nécessaires.

Une observation du méme genre m’a été suggéree par la lecture d’un
Mémoire [*] cité dans la Note & laquelle je réponds. Apres avoir posé
Péquation

.
j J(rde = F(X)— F(x,..

M. Cauchy ajoute:

« Cette équation suppose que la fonction f{x) reste finie et continue
» par rapport a la variable x, depuis la limite x = x, jusqu’a la
- limite x = X, »

Je ferai remarquer, comme je I'ai dit ailleurs, que I'équation dont
il s’agit suppose, en général, non pas que la dérivée f (), mais bien

gue la fonction F (x;, demeure continue dans l'intervalle que l'on
considere.

U Noir Comptes rendas des Scances de U dcadémie des Setences, torae XVIIT,

pave 1073,
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