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NOTE 

Sur la continuité considérée dans ses rapports avec la 

convergence des séries de Taylor et de Maclaurin., 

PAR M. ERNEST LA.MARLE, 

Ingénieur des Ponts et Chaussées, Processeur à l'Université de Garid. 

En publiant la Note insérée dans ce Journal (tome X'1, pages ι 29 el 
suivantes), j'ai eu pour objet de préciser les caractères distinctifs que 
toute fonction présente selon qu'elle est ou qu'elle n'est pas dévelop-
pable en série convergente, d'après un des types réductibles aux for-
mules de Taylor ou de Maclaurin. M. Aug. Cauchy ayant démontré 
antérieurement que la série de Maclaurin est convergente , tant que le 
module de la variable reste moindre que la plus petite des valeurs 
pour lesquelles la fonction ou sa dérivée cesse d'être continue, j'avais 
remarqué que les termes de cette proposition, souvent mal comprise, 
se prêtaient à de fausses interprétations. Pour plus de rigueur et de 
clarté, il me parut utile d'établir nettement que la condition de con-
tinuité pouvait toujours être omise en ce qui concerne la dérivée, et 
qu'elle était, d'ailleurs, insuffisante, à moins qu'elle n'impliquât une 
certaine périodicité de la fonction. 

Selon moi, la continuité proprement dite peut subsister indépen-
damment de toute périodicité, et il y a avantage à 11e point confondre 
ces deux caractères. Cela posé, j'ai cru devoir énoncer, comme il suit, 
le théorème en question : 

« Toute fonction est développable en série convergente, suivant 
» la formule de Maclaurin, tant que le module de la variable reste 
» moindre que la plus petite des valeurs pour lesquelles la fonction 

Tome XII. — Aon 1847. 3p 
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» cesse d'être continue, ou de prendre même valeur aux deux limites 
» $ — ο, θ = 2π. Hors de là, la série devient divergente. » 

Dans une Note, que renferme le volume déjà cité (pages 313 et sui-
vantes) , M. Cauchy conteste la dernière partie de l'énoncé que je 
viens de reproduire. Il rappelle, en outre, que, dès 1844? il a fourni 
lui-même des explications catégoriques sur le sens et les restrictions 
que comporte l'énoncé qui lui appartient. Ces explications, je me 
hâte de le dire, m'avaient échappé jusqu'ici. Conformes, en partie, à 
mes propres remarques, elles ont sur elles l'avantage de la priorité. 
Toutefois, je ne puis les admettre sans réserve, pas plus que l'exemple 
choisi par l'illustre géomètre pour démontrer l'inexactitude de l'énoncé 
rappelé ci-dessus. Les points sur lesquels nous restons divergents, 
n'étant dépourvus à mes yeux ni d'intérêt ni d'importance, il convient 
que je cherche à les élucider par de nouveaux développements. 

Tel est l'objet de la présente Note. 

§ Ier-

Théorie de la continuité. 

Considérant les caractères distinctifs que doit offrir une fonction 
pour être développable en série convergente suivant la formule de Ma-
claurin, j'ai dit, relativement à la condition de continuité, qu'elle était, 
insuffisante à moins qu'elle n'impliquât une certaine périodicité de la 
fonction. 

M. Cauchy fait observer que si j'avais eu sous les yeux le Mémoire 
qu'il a publié sur les fonctions continues, et que j'eusse rapproché cer-
tain passage de ce Mémoire des principes exposés dans son Analyse 
algébrique, je me serais certainement borné à dire que, dans le théo-
rème en question, la condition de continuité est la seide qu'on doive 
mentionner, vu que cette condition implique une certaine périodicité 
de la fonction. 

Il est incontestable qu'en définissant, ainsi qu'il l'a fait dans le pas-
sage qu'il cite, ce qu'il entend par fonction continue, M. Cauchy a 
voulu comprendre la condition d'une certaine périodicité au nombre 
de celles que toute fonction doit remplir pour être développable en 
série convergente suivant la formule de Maclaurin. Quant aux prin-
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cipes exposés par l'auteur dans son Analyse algébrique, je ne pense pas 
qu'ils soient généralement interprétés dans le sens qu'il leur attribue. 
C'est, du moins, ce que j'ai cru remarquer en lisant plusieurs passages 
de divers écrits, et notamment ce paragraphe que j'extrais textuel-
lement des Leçons de Calcul différentiel et intégral, publiées par 
M. l'abbé Moigno (tome II, pages et 3a8) : 

« Il est enfin une autre formule très-générale démontrée aussi pat 
» M. Cauchy, et qu'il importe de rappeler en finissant. Désignons par ζ 
» une variable imaginaire dont r soit le module et t l'argument, par Fs 
» une fonction qui reste jude et continue ainsi que sa dérivée F' [z ), 
» pour toute valeur du module R, inférieure à une certaine limite 
» donnée R. Supposons, DE PLUS, que, r restant constant, la fonc-
» tion F (2) soit une fonction périodique qui reprenne pour t = α -I- m , 
» la valeur quelle avait pour t = α. » 

Sans insister sur ce point, voyons comment M. Cauchy procède pour 
établir directement que toute fonction d'une variable imaginaire ne 
peut être continue, sans être en même temps périodique. 

La variable étant d'abord réelle, M. Cauchy donne la définition 
suivante [*] : 

« Supposons que, dans la fonction f\x), on fasse varier χ par de-
» grés insensibles en attribuant à cette variable une série de valeurs 
» infiniment rapprochées les unes des autres. La fonction f (x) restera 
> continue pour toutes ces valeurs de x, si pour chacune d'elles elle 
» acquiert constamment une valeur unique et finie, et si d'ailleurs un 
» accroissement infiniment petit, attribué à l'une quelconque de ces 
» valeurs de x, produit toujours un accroissement infiniment petit de 
>1 la fonction elle-même. » 

Il ajoute ensuite : 
« Enoncée en ces termes, la définition des fonctions continues n'es! 

» pas seulement applicable au cas où x reste réel; on pourra l'appli-
» quer encore, sans difficulté, au cas même où x devient imaginaire. 

Puis, vient une démonstration dont je vais reproduire les points 
principaux. 

'.*] Foir la Note insérée dans ce .tournai 'tome XI, page 3i5;. 
3«).. 
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ε désignant une quantité positive infiniment petite, et la variable 

imaginaire χ ayant pour expression 

r (cos 9 -f- y'— ι sin 9) = re6^ 1, 

M. Cauchy remarque que si Ton pose successivement 9 — η — ε, puis 
Q — — (π — ε), on trouve, dans la première hypothèse, 

oc = — re — '*/—1, 
et, dans la seconde, 

χ — — re 'v . 

On voit donc qu'en passant de Tune de ces hypothèses à l'autre, la 
variable imaginaire χ, qui reste toujours très-peu différente de — r, 
ne varie qu'infiniment peu. 

Cela posé, M. Cauchy conclut que la fonction f (x) ne peut rester 
fonction continue de χ dans le voisinage de la valeur particulière 
χ = — r, qu'autant qu'elle varie elle-même infiniment peu, quand on 
passe de la supposition 9= π— ε à la supposition 9= — (π— ε), ce qu'on 
peut exprimer encore, ajoute-t-il, en disant que la fonction J(x) ne 
pourra rester fonction continue de x dans le voisinage de la valeur 
particulière χ = — /·, si elle ne reprend pas la même valeur, quand 
l'argument 9 passe de la valeur + π à la valeur - π. 

Ici se présentent plusieurs observations. 
S'agit-il d'abord de la définition considérée en elle-même ; je 

remarquerai que, prise en toute rigueur, elle rendrait inutile la 
démonstration qui la suit. En effet, la variable imaginaire 

χ — ρ (cos 9 + y/— ι sin 9), 

étant périodique, il est évident que la fonction devrait subir la même loi 
de périodicité, par cela seul qu'elle serait assujettie à n'admettre qu'une 
valeur unique pour chaque valeur de la variable. Une interprétation 
aussi étroite conduirait à des résultats , qui déjà sont inadmissibles [*]·, 

[*j Dira- t-oii, par exemple, que la fonction 

y (χ) = χ arc cos χ 

est discontinue parce qu'à la valeur unique χ — ο répondent les deux valeurs 

f (x) = r2, f(x) = - u2, 
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alors même qu'on s'en tient exclusivement an système des valeurs 
réelles. Je 11e puis donc m'y arrêter. Il est clair, d'ailleurs, que M. Cau-
chy lui-même la repousse, puisqu'il a jugé une démonstration néces-
saire. 

S'agit-il ensuite de cette démonstration; je dois déclarer qu'elle 11e 
me paraît pas concluante. 

En effet, ou bien l'argument 0 est pris pour variable indépendante, 
les variables imaginaires χ et j\x) en étant toutes deux fonction ; ou 
bien la variable χ, quoique imaginaire, reste variable indépendante. 

Dans le premier cas, et c'est le seul que nous admettions comme 
offrant un sens précis, on ne peut rien conclure de ce que les fonc 
tions χ etJ (x) subissent ou non un changement brusque, lorsque la 
variable indépendante 0, passant de la valeur -4- π à la valeur — T., 

change elle-même brusquement de grandeur numérique. 
Dans le second cas, la suite continue des valeurs — étant 

donnée à priori, c'est faire une supposition toute gratuite que de con-
sidérer ces valeurs de la variable imaginaire comme impliquant, pat-
rapport à celles de l'argument θ qui leur correspondent, les deux 
suites exprimées respectivement l'une par ττ — s, l'autre par (π — s). 
Pourquoi ces deux suites, entre lesquelles il y a solution de continuité, 
plutôt que la suite continue π + ε? Je vois bien que le procédé suivi 
rend possible une démonstration qui ne le serait pas autrement. Mais 
comment justifier ce procédé, alors même qu'il serait permis de prendre 
pour variable indépendante l'expression imaginaire 

x = re 0 1-

Dans le système des valeurs réelles, la variable indépendante crois 
sant ou décroissant avec continuité, chacune des valeurs qu'elle affecte 
se résout en un ensemble où les parties intégrantes se confondent, 
sans qu'il y ait lieu d'établir entre elles aucune distinction. Peu 
importe d'ailleurs qu'il s'agisse du tout ou d'une partie. L'un comme 
l'autre devant être conçu de toutes pièces, il y a toujours unité de 
conception, et nulle difficulté ne surgit. Pour passer de là au système 
des valeurs imaginaires, il suffit d'observer que celles-ci se composent 
de deux parties réelles que le signe y/—1 permet de réunir symboli-
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queinent, sans qu'elles cessent pour cela de rester essentiellement dis-
tinctes. Dès lors tout se réduit à la considération des quantités réelles, 
seules saisissables et intelligibles. Que deux de ces quantités soient 
réunies dans une même expression, où la présence d'un symbole 
particulier élève entre elles une barrière qui les isole complètement, 
la nécessité de ne les point confondre, et de maintenir pour cha-
cune d'elles les règles et conventions généralement établies, n'en 
subsiste pas moins que si, figurant dans des équations distinctes, 
elles étaient effectivement séparées. 

Essayons d'exposer, à ce point de vue, la théorie de la continuité. 
L'idée de fonction est complexe. Elle implique, avant tout, la 

conception d'une variable qui subsiste par elle seule ou dont on 
dispose arbitrairement. Cette variable, dite indépendante, ne peut 
qu'être réelle. 

On distingue, par rapport à la variable indépendante, deux modes 
de variations. Lorsqu'on se donne une suite de valeurs numériques, 
telles que a, b, c, d, etc., et que, passant brusquement de Γ une 
à l'autre, l'on assujettit la variable à les prendre toutes successive-
ment, le mode de variation est discontinu. Il est continu lorsque la 
variable est supposée croissante ou décroissante, de la même manière 
que croît ou décroît la distance comprise entre deux plans parallèles, 
l'un fixe, l'autre mobile. Une condition facile à saisir caractérise ce 
mode. Elle consiste en ce que nul changement ne s'accomplit entre 
deux limites quelconques, sans que la variable ait passé préalable-
ment par tous les degrés de grandeur intermédiaires. 

11 est visible que chacun de ces modes a son essence propre. On 
s'est efforcé néanmoins de ménager entre eux une sorte de transition , 
qui permît de les résoudre l'un dans l'autre. Des efforts, dirigés vers 
ce but, ne pouvaient aboutir à rien de rationnel : il a fallu d'ailleurs, 
pour qu'on les poursuivît, céder à une étrange illusion. Au lieu de la 
quantité, telle qu'elle est et qu'il faut la concevoir, c'est-à-dire avec 
les propriétés qui subsistent en elle, indépendamment de tout degré de 
grandeur, on n'a vu que ce qu'elle offre de saisissable aux sens, et là 
ou elle leur échappait, on s'est figuré qu'elle changeait de nature, et 
que, suspendue entre l'être et le néant, elle participait à la fois de ces 
deux extrêmes. Il semblerait que de telles aberrations n'ont pas be-
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soin d'être réfutées et qu'il suffit de les signaler pour en faire justice. 
Remarquons, toutefois, qu'elles ont pour elles l'appui tacite de presque 
tous les géomètres. 

Par cela seul qu'elle varie, la variable échappe à toute mesure di-
recte. Elle est, mais croissant toujours ou toujours décroissant. On 
peut, sans doute, se représenter isolément chacun des degrés de gran-
deur que comprennent entre elles les limites choisies pour origine el 
fin de la variation; mais comme entre ces limites la variable ne sub-
siste que par la loi qui régit ses changements, il serait évidemment ab-
surde et contradictoire de lui attribuer, à titre de détermination effec-
tive, l'un quelconque de ces degrés de grandeur. Comment comprendre . 
en effet, qu'elle put affecter une pareille détermination si, en même 
temps, elle ne cessait pas d'être variable? 

On observera que dans le cas le plus simple , alors qu'il s'agit d'une 
grandeur quelconque déterminée, il ne suffit point, pour qu'elle soit. , 
ou, ce qui revient au même, pour qu'on puisse la concevoir, de lui 
assigner un certain degré qui la limite; il faut ajouter, en outre, ou 
au moins sous-entendre que ce degré se conserve en elle. N'est-ce pas 
là, d'ailleurs, ce que renferme en soi la dénomination de constantes 
affectée aux grandeurs complètement définies? Cette remarque s'ap-
plique aux diverses valeurs par lesquelles la variable passe. Nulle ne 
peut être isolée, et devenir ainsi l'objet d'une conception distincte, 
sans que la pensée, qui se fixe sur elle, lui imprime forcément le 
caractère de durée nécessaire à sa détermination. De là l'extrême con 
fusion où l'esprit tombe inévitablement, lorsque, considérant la suite 
infinie des degrés que la variable franchit entre deux limites détermi-
nées, il transporte, dans chacune des valeurs intermédiaires, l'élément 
de durée qui n'appartient qu'à l'ensemble formé par leur succession 
continue. De là ces difficultés insolubles, qu'on ne songerait pas même 
à soulever, si l'on prenait garde que la grandeur qui reste constante, ei 
celle qui change incessamment, puisent toutes deux leur réalité dans 
la durée qui leur est commune, et qui, divisible à l'infini, offre tou-
jours, de part et d'autre, un terme commun de comparaison. 

La faculté d'abstraire constitue sans contredit une des ressources les 
plus précieuses dont nous disposions. Mais n'est-ce pas en abuser étran-
gement que de pousser les abstractions au point d'obscurcir, disons 
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plus, de rendre inintelligibles les premières notions de la science[*]? 

Que l'on veuille bien y réfléchir, et l'on sera conduit à admettre 
avec nous les principes suivants : 

Etre et durer, c'est-à-dire continuer d'être, sont pour toute gran-
deur. constante ou variable, deux conditions qui s'impliquent mutuel-
lement 

Quel que soit le mode suivant lequel une grandeur quelconque 
subsiste pendant une certaine durée, ce mode est toujours réductible 
à deux types primitifs. L'un de ces types répond aux parties de la durée 
totale pendant lesquelles la grandeur conserve une même détermina-
tion; l'autre, à celles où la variation est incessante. 

Tant qu'une grandeur varie de manière à ce que tout changement 
qu'elle subit exige pour s'accomplir une certaine durée de la variation . 
on dit de cette grandeur qu'elle varie avec continuité. 

Il n'est point de variation incessante qui ne soit tout entière con-
tinue, ou qui ne se compose exclusivement d'une suite de variations 

[*] La considération des quantités infinitésimales crée un obstacle invincible à la 

notion de continuité. Elle implique, d'ailleurs, deux impossibilités radicales, savoir : 
i° l'existence des prétendus infiniment petits ; 2° l'existence des prétendus infiniment 

grands. J'admets qu'en dépit de leur commune absurdité, l'une de ces conceptions 

puisse, moyennant certaines précautions, servir, en général, de correctif à l'autre. Je 
ne comprends pas, néanmoins , qu'on affecte de les prendre au sérieux, et que, sans 
s'inquiéter de propager l'erreur, on les présente comme base d'une science où la certi-

tude des déductions repose essentiellement sur la rigueur absolue des principes fonda-

mentaux. Que dire, par exemple, du sens qui s'attache naturellement à ces lignes ex-

traites du programme des cours donnés, en 1846, à l'École Polytechnique : 
« Du rapport entre l'accroissement d'une fonction et l'accroissement d'une variable. 

■· VALEUR QUE PREND CE RAPPORT QUAND LES ACCROISSEMENTS DEVIENNENT INFINIMENT 

" PETITS. » 

Dans l'essai que j'ai publié sur les principes de l'analyse transcendante, j'ai montre 

ce qu'est, en réalité, une différentielle, à savoir, une différence ordinaire prise dans 

une certaine hypothèse. J'ai, d'ailleurs, créé une méthode qui, sans cesser d'être pure-

ment algébrique et toujours rigoureuse, offre au plus haut degré la simplicité désirable. 

En m'imposant cette tâche, je ne me suis point dissimulé que, si peu rationnels que 

soient certains procédés fort en vogue, il suffit qu'un long usage les ait rendus fami-

liers pour qu'on trouve plus commode de s'y tenir. Je poursuivrai néanmoins, per-

suadé que la vérité peut plus que l'erreur, et qu'à elle seule l'avenir appartient. 
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continues, ayant toutes une certaine durée. L'hypothèse inverse serait 
un non-sens d'une absurdité en quelque sorte palpable. 

Concluons que toute durée d'une grandeur se compose nécessaire-
ment d'une suite de parties qui se succèdent sans intervalle, et pendant 
chacune desquelles la grandeur reste continue , soit qu'elle varie , soit 
qu'elle persiste dans une même détermination. Lorsqu'à la limite 
commune à deux de ces parties, la grandeur subit un changement 
brusque, on dit qu'il y a solution de continuité. Plusieurs solutions 
de continuité sont possibles entre deux limites aussi rapprochées qu'on 
voudra. Dans tous les cas, et quel qu'en soit le nombre, comme elles 
ne constituent jamais que des accidents transitoires, essentiellement 
dépourvus de durée, il reste démontré qu'on peut dire avec une entière 
rigueur : 

Tout mode d'existence d'une grandeur quelconque est constamment 
régi par une même loi générale, la loi de continuité. 

Avant d'aller plus loin , je crois utile de présenter plusieurs obser-
vations. 

Les grandeurs, soumises au calcul , n'y figurent point comme quan-
tités concrètes. C'est par le nombre abstrait, exprimant pour chacune le 
rapport existant entre elle et son unité propre, qu'elles y sont intro-
duites. Ce mode de représentation n'entraîne aucune difficulté pour les 
grandeurs constantes. Quant à la grandeur variable, connue elle n'est 
définie que par la loi particulière qui régit sa variation, c'est cette loi 
qu'il faut traduire numériquement. On y parvient en fixant d'une ma-
niéré générale le changement qui s'accomplit durant une partie quel-
conque de la variation. Veut-on, d'ailleurs, abstraire l'élément de 
durée, ainsi qu'on le fait habituellement ; cette abstraction devient 
possible dès qu'il y a deux grandeurs subsistant e variant ensemble a 
partir d'une uième origine. En effet, a chaque partie de la durée qui 
leur est commune, répond de part et d'autre un changement déter-
miné. De là donc, relation nécessaire entre deux quelconques des 
changements qui s'accomplissent simultanément dans l'une et l'autre 
grandeur; de là, possibilité évidente de former deux suites toujours 
comparables entre elles et susceptibles de s'exprimer directement l'une 
par l'autre. On atteint le même résultat lorsque, au lieu des change-

i orne Ml. - Αουτ ι\θ 
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ments qui se correspondent pour une même durée quelconque de la 
variation, l'on fixe les valeurs qui subsisteraient ensemble, si, à l'ex-
piration de cette durée, la variation cessant tout à coup, les grandeurs 
que l'on considère demeuraient constantes. 

En général, l'élément de durée n'apparaît point explicitement dans 
les relations où se trouve exprimée la loi qui régit la génération simul-
tanée de plusieurs variables : il convient, en outre, d'observer que 
presque toujours il s'élimine de lui-même. Que cette abstraction se 
fasse spontanément, ou bien qu'elle résulte de l'application des pro-
cédés que je viens de décrire, elle offre dans tous les cas un avantage 
précieux, c'est de ne laisser en présence que les grandeurs sur lesquelles 
on veut opérer, et de faciliter le cours des déductions, rendues ainsi 
plus directes et plus simples. Toutefois, il ne faut point perdre de vue 
que dans l'idée de variation est implicitement comprise l'idée de durée, 
base fondamentale de toute conception intellectuelle. 

Cela posé, occupons-nous des fonctions proprement dites, et, les 
prenant d'une manière absolue, ne voyons en elles que la suite des 
valeurs qu'elles expriment numériquement. 

Considérons d'abord la variable indépendante. 
Déterminée par elle seule, c'est-à-dire toujours une et non com-

plexe , la variable indépendante est conçue le plus simplement pos-
sible, lorsqu'on admet qu'elle croît ou décroît, proportionnellement à 
la durée pendant laquelle elle varie, ou, ce qui revient au même, 
qu'elle ne subit aucun changement qui n'exige , pour s'accomplir, une 
durée proportionnelle de la variation. Elle est, dès lors, essentiellement 
continue. 

Considérons ensuite la variable dépendante , ou , en d'autres termes, 
la fonction. 

On entend par fonction une expression complexe qui, variant et 
cessant de varier en même temps que la variable dont elle dépend, est 
généralement déterminée pour toute valeur attribuée à cette variable. 
Lorsque, pour une même suite de valeurs affectées par la variable, la 
fonction comporte plusieurs systèmes de valeurs distinctes, on isole 
par la pensée ces différents systèmes, et l'on considère chacun d'eux 
comme constituant par lui seul une fonction particulière. D'un sys 
terne à l'autre, la continuité et la discontinuité sont possibles de la 
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meine maniéré que pour la suite des valeurs appartenant à l'un d'eux 
pris séparément. 

La fonction ne pouvant demeurer constante pour toutes valeurs de 
la variable comprises entre deux limites aussi rapprochées qu'on vou-
dra, la variation qu'elle subit, lorsque cette variable croît ou décroît 
avec continuité, est nécessairement incessante. Doit-on en inférer qu'elle 
est constamment continue, ou bien composée de parties qui se suivent 
immédiatement et durant chacune desquelles la continuité subsiste 
sans interruption? Nul doute pour une fonction quelconque puisant 
sa réalité dans l'existence effective ou idéale d'une grandeur dont elle 
est: l'expression numérique. Pour tout autre fonction, la question plus 
complexe veut être traitée directement. .T'essayerai tout à l'heure d< 
résoudre cette difficulté. 

Tant qu'il y a continuité, tout changement de la fonction exige, 
pour s'accomplir, une certaine durée de la variation, et, par consé-
quent, un certain accroissement de la variable indépendante. Une 
condition inhérente à ce mode, tel qu'il vient d'être défini, suffit, 
d'ailleurs, pour le caractériser. Elle consiste en ce que le passage d'une 
valeur à une autre ne peut jamais avoir lieu sans que la fonction ait 
franchi successivement toutes les valeurs intermédiaires. 

Lorsque la discontinuité survient, c'est par un changement brusque 
qui s'opère instantanément. Voyons en quoi consistent, pour une 
fonction, les changements brusques dont elle est susceptible. 

Les opérations à effectuer sur la variable indépendante pour con-
struire la fonction sont réductibles à deux classes principales : je 
range dans la premiere, l'addition, la multiplication, l'élévation aux 
puissances; dans la seconde, la soustraction, la division, l'extraction 
■ les racines. 

Tant qu'on procède par voie d'addition, tie multiplication, ou 
d'élévation aux puissances, chaque valeur de la variable fournit pour 
la fonction une valeur unique, toujours réelle et déterminée. La sous-
traction donne, pour résultat accidentel, zéro, et plus généralement 
des quantités tantôt positives, tantôt négatives. En s'introduisant 
comme diviseur, le zéro répond à une impossibilité fortuite. Lorsqu'une 
quantité, soumise à un radical de degré pair, passe du positif au né-
gatif, les valeurs fournies par ce radical perdent leur réalité. 

4«., 
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Que les valeurs de la fonction, supposées numériquement expri-
mables, cessent tout à coup de l'être, c'est là, sans aucun doute, 
un changement, brusque. On voit ainsi que les fonctions admettent, 
comme solution de continuité, le passage du réel à l'imaginaire, et, 
pour me servir des termes usités, le passage du fini à l'infini. 

La discontinuité peut encore provenir d'un accident fortuit, qui. 
par une cause quelconque, dépendante ou non de l'impossibilité qu'ex-

prime le symbole^) exclurait transitoirement toute détermination par-

ticulière de la fonction. Hors de là, elle n'est possible que par un chan-
gement brusque qui ferait succéder, l'une à l'autre , deux valeurs nu-
mériques tout à coup différentes ; ce qui exige que ce changement ait 
lieu dans le mode indiqué pour construire la fonction , ou, si ce mode 
reste le même, dans le résultat des opérations par lesquelles il se 
réalise. 

Supposons d'abord un intervalle où le mode indiqué pour construire 
la fonction ne change point, et cherchons si, la fonction n'affectant 
jamais qu'une seule détermination transitoire, deux quelconques de 
ces déterminations successives peuvent être toujours brusquement dif-
férentes. Dans cette hypothèse. c'est la variation continue attribuée a 
la variable indépendante qui produit les changements brusques inces-
samment subis par la fonction. Or, lorsque la variable croît ou décroît 
continûment, les valeurs qu'elle franchit se succèdent en étant tour à 
tour coinmensurables et incommensurables. Dans le premier cas, elles 

affectent, en général, l'une des trois formes fractionnaires ^2p + 1 

2E-±-L, ÎfLÎQ ; dans le second, elles n'ont point de représentation 

numérique: on peut, toutefois, en empruntant à volonté l'une ou 
l'autre de ces formes, les exprimer avec, tel degré d'approximation 
qu'on désire Cela posé, et eu égard à la nature des opérations fonda-
mentales par lesquelles une fonction se construit, je remarque que 
c'est uniquement à raison de leur forme et non point de leur degré de 
grandeur, que les valeurs successives de la variable peuvent introduire 
dans la fonction une série non interrompue de déterminations brus-
quement différentes. Il suit de là qu'admettre des changements brus-
ques incessants, c'est faire dépendre ces changements de la diversité 
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des formes affectées par les valeurs fractionnaires, et, par conséquent, 
attribuer à chacune de ces formes une influence qui rend forcément 
impossible toute détermination répondant aux valeurs incommensu-
rables. C'est donc aussi admettre implicitement que, si peu différentes 
que soient entre elles deux valeurs de la variable, elles comprennent, 
néanmoins, une valeur intermédiaire pour laquelle la fonction 11 est 
pas déterminée. Mais si pareille valeur existe nécessairement entre deux 
limites aussi rapprochées qu'on voudra, il faut qu'entre ces meines 
limites il y en ait une infinité. Dès lors, ce qui domine, en général , 
c'est le défaut de détermination, et, privée de son caractère essentiel, 
la fonction prétendue n'est plus une fonction. 

Après avoir reconnu que là où le mode de construction demeure 
invariable, toute fonction proprement dite subit la loi de continuité . 
il est aisé de voir que, si des changements brusques surviennent dans 
ce mode, et. par suite, dans la fonction, ils sont toujours en nombre 
limité. En effet, pour qu'il y ait fonction, il faut d'abord que le 
mode de construction soit généralement déterminé. Veut-on . d'ail-
leurs. que ce mode ne. cesse pas de changer brusquement: il faut, 
pour l'exprimer, une fonction particulière qui remplisse elie-tnem 
cette condition : or c'est là précisément ce qui vient d'etre démontré 
impossible. 

Ces considérations permettent d'étendre aux fonctions proprement 
dites la loi de continuité précédemment établie pour tout mode d'exis-
tence d'une grandeur quelconque. 

Nous n'avons point entrevu jusqu'ici comment il est possible de 
réaliser une fonction qui subisse instantanément un changement brus-
que de détermination numérique. Le rôle que les radicaux, les fonc-
tions circulaires et les valeurs limites sont appelés à rempli·· en certains 
cas. est très-propre à jeter quelque jour sur cette question délicate. 

En ce qui concerne les radicaux, je ferai d'abord observer que, si 
l'on convenait, avec M. Cauchy, de désigner toujours par la nota-
tion y 11 la racine positive, c'est-à-dire 4- « ou - «, suivant que a 

est positif ou négatif , l'expression γ deviendrait égale à — 1 ou 

-+- 1 , selon que χ serait moindre ou plus grand que h. 11 suffirait donc 
que cette expression, ou toute autre analogue, entrât dans une fonc 
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iion pour qu'elle y produisît, en général, un changement brusque de 
détermination numérique. 

D'exemple que je viens de choisir soulève une difficulté. La quantité 
soumise au radical est variable, et à chacune des valeurs qu'elle reçoit 
répondent deux racines numériquement égales, mais affectées de signes 
contraires. De là résultent deux systèmes distincts, susceptibles d'être 
pris isolément et comprenant, en général, l'un les racines positives, 
l'autre les racines négatives. Toutefois , comme zéro est une des valeurs 
affectées par le radical, il y a lieu de se demander si le passage par celte 
valeur ne doit pas être considéré comme accompagné d'un changement 
désigné, l'une des suites se substituant à l'autre, et réciproquement. 

Quelques détails éclairciront ce point. 
Je prends pour accordé qu'on n'est point maître d'établir arbitraire-

ment toute espèce de convention. Celles-là seules me paraissent admis-
sibles, qui sont conformes aux principes fondamentaux du calcul, et 
je regarde comme un de ces principes celui qui permet de substitue) 
l'une à l'autre deux expressions numériques ayant identiquement même 
valeur. 

Cela posé, je remarque, relativement a la notation exponentielle: 
i". Que, dans le cas où l'exposant est une fraction, deux opéra-

tions sont indiquées, l'une par le numérateur, l'autre par le dénomi-
nateur; 
2°.Que, sans altérer la valeur de l'exposant entier ou fractionnaire, 

on peut introduire haut et bas, comme facteur, un même nombre 
quelconque ; 

d°. One le résultat à obtenir doit rester indépendant de l'introduc-
tion de ce facteur; 

4°. Que, pour remplir cette condition, il faut observer la règle sui-
vante : 

Dans les deux opérations à faire, commencer toujours parcelle ψά 
dépend du dénominateur. 

En appliquant cette règle, on trouve 

\(x — b'f = (χ — b) 2 = L— v'(x — b)\2 ~ X — h : 

il ν a donc changement de signe à partir de a: — b, et l'on a constam-
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ment 

x-b3 a-b =1 

Cette expression cessant, ainsi qu'on le voit, de présenter un chan-
gement brusque de détermination numérique, prenons la fonction a 
liée à la variable indépendante 9 par les deux équations simultanées 

r affectant une valeur quelconque positive et 9 variant de zéro a urr 
Tant que la valeur attribuée à r est différente de l'unité, 9 varie 

sans jamais annuler la quantité soumise au radical. Si donc on dis-
tingue, ainsi qu'il convient, les deux systèmes de valeurs fournies pai 
le radical, on peut prendre l'un ou l'autre a volonté et s'y tenir ex-
clusivement. Or, en adoptant le système des racines positives, il est 
aisé de voir que, pour toute valeur de r moindre que l'unité , la fonc-
tion a s'annule aux deux limites 9 — o, 9 — ιπ, tandis que. pour 
toute valeur de r supérieure à l'unité, elle passe en même temps que C 
par les mêmes multiples de la circonférence. On ne peut donc franchir 
la limite r= ι sans que la valeur de %, qui répond à 9 -■- arc, toujours 
égale à zéro, pour r < ι, et à in pour r > ι, ne change brusquement 
de grandeur. 

Dans la Note que renferme ce Journal (toine XI, page '4«), j'ai 
dit que pour r= ι et Q = rt, il y avait -changement brusque, α passant 

tout à coup de 4- ^ à — *· C'est une erreur que je dois rectifier. 

I .orsque r = ι, on a 

ρ = v' 2 (i + cos 9) — y 4 sin3 b <β -J- π) — a sin | !9 -+- π). 

Il faut donc admettre, en même temps, que les valeurs de ρ, constam-
ment positives pour toutes valeurs de 9 moindres que π. sont constam-
ment négatives pour toutes valeurs de 9 supérieures à π. 

ρ cos α = ι -+- r cos 9 , 
ρ sin a — r sin 9 , 

et posons en même temps 

ρ = y' I + r2 + 2CCOs5 — y (l — ΐψ + 2Γ(Ι COS θ). 
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il suit de là que, tant qu'il s'agit uniquement de la valeur r = ι, 
a reste fonction continue de θ, et que pour θ = an l'on n'a point, 
ainsi que je l'ai supposé, 7. — o, mais bien a = n. 

Quant aux fonctions que je considérais alors , si l'on observe que, 
dans l'hypothèse /■ = ι, elles dviennent 

ψ (/-, 0) = [a sin \(θ -f- π)]'" cos ma. 

ψ (γ, 0) — [a sin \ (β + ιi)]m sin ma, 

on voit aisément que, pour toute valeur de m entière et positive, elles 
ne cessent pas d'être continues et de prendre respectivement mêmes 
valeurs aux deux limites 6 = ο, 6 = απ. 

Cette erreur rectifiée , je passe à la considération des valeurs limites. 
Un exemple suffira. 

Soit l'intégrale définie 

f dz.f dz. 

Si I on suppose que l'indice h croisse indéfiniment, cette intégrale con-

verge vers une limite fixe exprimée par ^ ou par — suivant que ρ 

est positif ou négatif, il vient donc , dans cette hypothèse, 

.. Γ h sin (b — .Ε) Ζ , f*50 sin {b — a·) ζ , η.. Γ h sin (b — .Ε) Ζ , f*50 sin {b — a·) ζ , η 

le signe -+- subsistant pour toute valeur de χ moindre que b, le 
signe — pour toute valeur plus grande. 

Pour χ — b, il y a changement brusque du mode de construc-
tion. En effet, quelle que soit alors la valeur affectée par h, on n'a 
pin» île limite à considérer, et il vient constamment zéro pour résultat. 

On voit, par cet exemple, comment, en introduisant dans une 

fonction une expression symbolique de la forme Γ q 

est possible d'y réaliser un changement brusque de détermination 
numérique. 

Dans ce qui précède, j'ai eu pour objet principal l'étude des fonc-
tions réelles, et de leur variation considérée dans ses rapports directs 
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avec celle de la variable indépendante. La question que je me suis 
proposé de résoudre était là tout entiere : il ne ine reste plus qu'à 
montrer comment les principes établis ci-dessus s'appliquent d'eux-
mêmes et immédiatement au cas général des valeurs imaginaires. 

Un sait que toute expression imaginaire est réductible au type fon-
damental 

Ρ + Qv-i, 

les quantités que Ρ et Q représentent, étant toujours réelles. 
On sait également que , pour opérer sur une expression imaginaire , 

il faut d'abord la réduire à ce type, ou, du moins, l'y supposer ré-
duite. 

Soit, par exemple, la fonction 1 (reElle n'est que par 
l'identité 

1 (re6 ^ ' ) = 1 r -+- 6 y — ι. 

Si donc on fait varier θ, c'est dans le second membre et non dans 
le premier qu'il faut étudier les modifications subies par la fonction. 
Il est visible, en effet, que si l'on opérait directement sur le premier 
membre, il y aurait absurdité et contradiction lorsque , donnant à 6 
les deux valeurs ο et απ, l'on obtiendrait pour résultat unique. 

l(re^) =l(r). 

Considérons une fonction imaginaire ramenée à la forme 

Ρ -ι- Q.y — ) ; 

Ρ et Q seront des fonctions réelles de la variable indépendante, sub-
sistant chacune isolément et non réductibles entre elles. 

Ua fonction donnée étant représentée parjy, il vient identiquement 

j — Ρ + Q V — ι ; 

et ce qu'il faut voir dans j, ce sont deux grandeurs, l'une égale à P, 
l'autre àQ, toutes deux réunies symboliquement, mais toujours dis-
tinctes et toujours séparables. 

i'oino XU. — Αοιτ 1847. 4 t 
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Il suit évidemment de là que la variation de l'imaginaire y doit être 
considérée comme s'identifiant avec celle des fonctions Ρ et Q, prises à 
part et simultanément. 

Pour éviter toute méprise, je ferai remarquer que l'on peut avoir, 
entre certaines limites, 

7 =/(*■■) + v;- ,F (*); 

puis, entre d'autres limites, 

y — φ(Λ·)+
Ν
'- Ι .ψ (Λ;) , 

les fonctions exprimées par Ρ et Q changeant en même temps qu'on 
passe du premier intervalle au second, et, par conséquent, restant 
toujours réelles. 

J'observerai aussi que l'on doit distinguer le cas où la quantité Q 
s'évanouit par suite d'une valeur particulière attribuée à la variable 
indépendante, et celui où elle disparaît d'elle-même pour toute l'éten-
due d'un certain intervalle. Dans le premier cas, la valeur affectée 
par y, quoique réelle en apparence [*], ne cesse point d'appartenir au 
système général des valeurs imaginaires. Dans le second , il y a tran-
sition d'un système à l'autre, et, par suite, solution relative de con-
tinuité. 

Une fonction peut être tantôt réelle, tantôt imaginaire, la variable 
dont elle dépend restant toujours réelle. Néanmoins elle n'affecte ainsi 
qu'une partie des déterminations compatibles avec son mode de con-
struction. Si donc on veut l'étudier dans toutes les modifications 
qu'elle comporte, il faut substituer aux valeurs réelles de la variable 
un système qui, sans exclure aucune de ces valeurs, comprenne en 

[*] J'appelle l'attention du lecteur sur la fonction (— a)x. La variable χ demeurant 
réelle, on a 

( — a)'· — a*. [cos (2 k -+- 1 ) ïlx -+- \/ — 1 .sin (2 k 4-1 ) Πxj, 

ce qui montre que, contrairement à l'idée qu'on s'en forme, en général, la fonc-
tion (—a)" est essentiellement imaginaire et continue. A chaque valeur du nombre 
entier k répond un système distinct de déterminations particulières. Il n'y a solution de 
continuité que lorsqu'on passe d'un système à l'autre. 
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même temps toutes les valeurs imaginaires possibles [*]. Pour satis-
faire à cette condition, χ étant la variable, on doit poser 

χ = p -+- q sj— ι. 

Il faut admettre, en outre, que les quantités p et q sont susceptibles 
d'acquérir directement, et indépendamment l'une de l'autre, toutes 
les valeurs réelles. Dès lors χ devient fonction de ces deux variables, 
et celles-ci seules peuvent être dites indépendantes. 

En assujettissant la variable χ à franchir successivement, et avec 
continuité, toutes les valeurs imaginables, on ne détermine aucun des 
modes particuliers suivant lesquels la variation peut s'accomplir effec-
tivement. 11 est permis de rester à ce point de vue général, comme 
aussi de considérer spécialement l'un ou l'autre de ces modes, le choix 
à faire dépendant de la nature des questions à résoudre et offrant 
ainsi le moyen d'établir, entre la variable et la fonction données, l'ordre 
de relation le plus propre à remplir l'objet qu'on se propose. Dans 
tous les cas, la continuité n'est possible pour χ, qu'autant qu'elle 
subsiste pour chacune des quantités réelles ρ et q, prises à part et si-
multanément. Nous admettrons désormais que cette condition néces-
saire est constamment satisfaite. 

Si nous reprenons la fonction 

1 (χ) = 1 (p + q y — t ) — 1 {re6 ^ ') , 

il viendra, sans rien statuer sur le mode de variation des quan-

tités ρ et q, 

1 (p -r q y — ι ) = Ρ + Q V — ι = j 1 (ρ
2 + </s) -t~ ν — x.arc tang 9— 

Cette identité démontre la continuité absolue de la fonction 1 (χ), 
pour tout mode de variation qui exclut la simultanéité des valeurs 

particulières p = o, q = o. 

[*] Le système des valeurs imaginaires comprend, comme cas particuliers, toutes 
les valeurs réelles. Dès qu'on entre dans ce système, il n'y a plus lieu d'établir entre 

les unes et les autres aucune distinction. Cette remarque est très-importante au point de 

vue de la continuité. 
ji · 
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Cela bien compris, et sans qu'il soit besoin d'insister davantage sur 
la distinction qu'il importe d'établir entre le système général de tous 
les modes possibles de variation continue et l'un quelconque d'entre 
eux , je vais passer à l'examen de celui de ces modes qu'on choisit ha-
bituellement pour l'attribuer à la variable imaginaire. 

Il semblerait naturel d'opérer directement sur les quantités ρ et q, en 
faisant correspondre successivement l'une quelconque des valeurs de ρ 
à toutes les valeurs de q , ou réciproquement. Dans l'un et l'autre de 
ces modes, ρ et q seraient les variables indépendantes. Il est d'ailleurs 
visible qu'on y réaliserait pour χ toutes les valeurs imaginables. Tel 
n'est point le procédé généralement suivi. Moins simple en apparence, 
il offre, en réalité, certains avantages qui le font préférer. Voici en. 
quoi il consiste : 

Faisant 

(d) /'COS θ — ρ , 

(») r sin 9 = q, 

on en déduit 

'■= \p2
 ■+- </% 

9 —- arc tang ~· 

Cela posé, l'on remarque que, quelles que soient les valeurs res-
pectives attribuées séparément aux quantités ρ et q, on peut toujours 
satisfaire aux équations (i) et (2; en attribuant à r la valeur positive 
\p2 + f/2, et à l'arc 9, soit la valeur unique qui, dans l'intervalle 
de ο à 271, remplit les conditions voulues, soit cette même valeur, 
augmentée d'un multiple quelconque de la circonférence. 

Au lieu de l'équation 

x ~ Ρ + (/ V — 1 > 
il est donc permis d'écrire 

χ — r (cos 6 -s- y — 1 .sin 9), 

et, changeant le mode de variation , de prendre / et 6 pour variables 
indépendantes. 
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Veut-on n'attribuer à r que des valeurs positives, et restreindre entre 
les limites ο et 2 π la variation de 6 ; cela suffit pour réaliser un mode 
de variation continue où la variable χ passe successivement par toutes 
les valeurs imaginables. Cela ne suffit point, en général , si l'on vent 
que la fonction acquière elle-même toutes les déterminations qu'elle 
comporte. 

En principe, et par cela seul qu'elles sont indépendantes, les va-
riables r et 5 doivent être considérées comme susceptibles de prendre 
ensemble et séparément toutes les valeurs réelles. On remplit cette 
condition le plus simplement possible, et sans que la discontinuité 
puisse jamais survenir dans le mode de variation attribuée à la va-
riable χ, lorsque, partant de zéro, l'on fait, correspondre successive-
ment l'une quelconque des valeurs de r à toutes les valeurs de 6 . ou 
réciproquement. 

Qu'on le remarque bien, il s'agit de deux variations simultanées, 
subies, l'une par la variable χ , l'autre par une fonction de cette va-
riable. On peut, sans doute, étendre ou restreindre à volonté ces va-
riations. Toutefois, il ne faut jamais perdre de vue qu'elles ne restent 
comparables qu'entre les limites où toutes deux s'accomplissent à la 
fois. 

Dira-t-011 que, la variable χ étant périodique, d est superflu d'attri-
buer à 9 aucune des valeurs où entre un multiple quelconque de la 
circonférence; je répète qu'on est parfaitement libre d'admettre telle 
ou telle limitation du mode suivant lequel ret θ varient. Il faut seule-
ment eu tenir compte et se garder de prétendre que les valeurs de la 
fonction sont toujours épuisées en même temps que celles de la variable 
imaginaire. 

Soit, par exemple, la fonction 

γ — χΐ — r'i (cosθ + y — ι sin θ)'/ = Π ( cos - + ν — 1 sin - 1. 

η est-il pas manifeste que, pour η exclure aucune des déterminations 
qu'elle comporte, et, en particulier, pour lui faire exprimer les di-
verses racines de l'unité, il est indispensable d'assigner, comme limites 
à la variation de 9, des valeurs prises de plus en plus grandes à mesure 
que (j augmente ? 
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Lorsqu'on entre dans le système des valeurs imaginaires, il est à 
observer que, sauf les cas d'impossibilité fortuite, il n'est, pour la 
fonction de même que pour la variable, aucune détermination parti-
culière que toutes deux n'admettent nécessairement. La seule chose 
qui change d'une fonction à une autre, c'est l'ordre dans lequel ces 
déterminations se succèdent, ou bien encore le degré de périodicité. 
Supposons, en effet, que la variable soit prise pour fonction , et réci-
proquement. La fonction, prise pour variable, reçoit immédiatement 
toutes les valeurs possibles. D'un autre côté, à chacune de ces valeurs 
il en correspond une que la variable, devenue fonction, acquiert 
forcément. Si donc, agissant directement sur la variable, on lui fait 
prendre successivement toutes les valeurs possibles, il faut que la 
fonction remplisse elle-mèine cette condition générale. 

De là résulte un principe que j'énoncerai comme il suit : 

Toute variation limitée des quantités r et 9, qui ne permet pas de 
réaliser dans la fonction le système entier des valeurs imaginaires, est, 
par cela seul, nécessairement incomplète. 

Appliquant ce principe à la fonction particulière 

J (χ) = 1 r (cos 9 -+- y'— ι sin 9) — 1 i^re' ^ ' ) = 1 (r) -f- θ y— ι , 

on reconnaît immédiatement que la variation de 9 ne peut être com-
plète par rapport à la fonction qu'autant qu'elle est illimitée. 

L'exemple que je viens de choisir est très-propre à montrer com-
ment , en certains cas, le série des valeurs imaginaires est à peine en-
tamée par la variation continue de la fonction, tandis qu'elle est déjà 
complètement épuisée par celle de la variable. L'explication de ce fait 
est toute simple. Il dépend de la multiplicité des valeurs qui dans la 
fonction répondent à une seule et même détermination de la variable 
imaginaire. L'inverse est également possible; je citerai, pour exemple, 
la fonction 

,x— rm (cos 9 -4- ν" — ι sin 9)'" — rm (cos in9 + y'— ι sin m9). 

Essentiellement continue pour toute valeur entière et positive de 
l'exposant m, cette fonction est en même temps périodique, et, par 
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elle, la série des valeurs imaginaires est m lois épuisée lorsqu'elle ne 
l'est qu'une fois par la variable x. 

Je crois en avoir dit assez pour établir nettement en quoi la conti-
nuité consiste, indépendamment de toute convention, et pour montrer 
avec évidence que rien en elle n'implique ni n'exclut, par rapport à 
la fonction, la condition d'une certaine périodicité. Lorsque, conformé-
ment aux principes, on opère directement sur les quantités ;■ et 6 , en 
leur conservant le caractère de variables indépendantes, il n'y a pas 
même l'apparence d'une difficulté, qu'importe, en effet, à la conti-
nuité relative de la fonction qu'il y ait ou non périodicité dans la suite 
des valeurs que la variation continue de θ fait prendre à la variable 
ainsi qu'à la fonction? qu'importe que cette variation soit plus ou 
moins limitée, pourvu que, de part et d'autre, on ne considère ja-
mais que l'intervalle où elle s'accomplit? 

La variable χ demeurant continue, imaginons que, pour toutes va-
leurs de r comprises entre deux limites déterminées, la fonction varie 
périodiquement suivant un certain mode, et qu'au delà de ces li-
mites , le mode change brusquement. Il est clair que ces limites ne 
pourront être franchies sans qu'il y ait. en général, changement brus-
que de détermination, et, par conséquent, solution de continuité. Si 
donc une fonction a d'abord un certain degré de périodicité, puis 
qu'elle le perde brusquement, ou que, ne l'ayant pas, elle l'acquière 
tout à coup, la discontinuité surgit en même temps. Cette remarque 
explique peut-être l'erreur où l'on est tombé en faisant dépendre la 
continuité de la périodicité, et confondant ainsi deux caractères essen-
tiellement distincts. 

Avant de terminer ce sujet, je crois utile d'ajouter quelques mots 
sur la construction géométrique des valeurs imaginaires et sur les 
avantages spéciaux que ce mode de représentation peut offrir dans la 
question qui nous occupe. 

Soient ί et κ deux coordonnées rectangulaires. Si l'on pose, en 
général, 

Ρ + Q V — ï — t -j— Il \j — ï, 

toute valeur de l'imaginaire Ρ + Q y— ι fixe la position d'un point; 
et réciproquement, tout point du plan des coordonnées répond à l'une 
des valeurs de cette imaginaire. 
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On voit ainsi que toute expression imaginaire, considérée dans l'en-
semble des déterminations qu'elle comporte, et abstraction faite des 
solutions de continuité qu'elle peut offrir accidentellement, dans les 
cas d'impossibilité fortuite, est exactement représentée par la suite 
infinie des points que comprend une surface plane. 

Cherchons quel est, par rapport à la génération de cette surface, 
le sens exprimé par les divers modes de variation continue, sur les-
quels notre attention s'est portée plus particulièrement. 

Soit d'abord 

x = ρ-hq\f—ι — t -+- u sj — ι ; 

si l'on fait correspondre à chaque valeur de ρ toutes les valeurs de q, 
on a pour chaque valeur de ρ une droite perpendiculaire à l'axe des 
abscisses, et c'est par le déplacement de cette droite, transportée pa-
rallèlement à elle-même, que la génération du plan s'effectue. Lors-
qu'on procède inversement, c'est-à-dire en faisant correspondre à une 
valeur de q toutes les valeurs de p, puis en donnant successivement 
à q toutes les valeurs possibles, la génération a lieu par le déplace-
ment d'une droite parallèle à l'axe des abscisses. 

Soit ensuite 

χ — r cos θ -h \J' — ι r sin θ — t -f- u\ — ι. 

De là résulte 
t — r cos θ, u = r sin θ, 

et, suivant qu'on élimine r ou θ, 

u = i.tang θ , 
ou bien 

u2 + t2 = ra. 

Dans le premier cas, chaque valeur de 5, se combinant avec toutes les 
valeurs de r, fournit une droite qui passe par l'origine et fait avec 
l'axe des abscisses un angle égal à Θ. Lorsque θ varie, cette droite 
tourne, et c'est par sa rotation autour de l'origine que le plan se 
trouve engendré. 

Dans le second cas, il y a combinaison directe de chaque valeur 
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de r avec toutes les valeurs de Θ. Chacune de ces combinaisons donne 
une circonférence de cercle ayant son centre à l'origine, et la quantité r 
pour rayon, r variant à son tour, la circonférence se développe progres-
sivement, et la génération du plan s'effectue. 

Considérons maintenant quelques fonctions particulières, et, pour 
abréger, adoptons exclusivement, en ce qui concerne la variable x, le 
mode de variation continue qui se traduit par la rotation d'une droite, 
tournant autour de l'origine. 

Soit, en premier lieu, la fonction xm; on a 

x'n= (r cos θ -+- y — ι r sin θ)'" = rm (cos ιηθ + y — ι sin ηώ). 

C'est donc aussi par la rotation d'une droite tournant autour de l'ori-
gine que se traduit la variation relative de la fonction xm \ dans ce 
mouvement, la vitesse change avec l'exposant m. Soit encore la fonc-
tion 1 x; il vient 

1 oc — 1 ( /* j —t— 0 y — ι — t ~f~ il y/ — ι. 

Ici c'est par le déplacement d'une droite parallèle à l'axe des abscisses 
que se réalise dans la génération du plan le système complet des va-
leurs imaginaires. Lorsqu'on restreint la variation de θ entre les li-
mites ο et απ, les positions extrêmes de la génératrice sont données 
par les équations 

u = ο, u = 2 π. 

et la surface engendrée se réduit à la bande que comprennent entre 
elles ces positions extrêmes. 

Ces exemples suffisent ; par eux on saisit clairement ce qu'exprime 
tout mode de variation continue susceptible d'être attribué à la va-
riable imaginaire. Us mettent, d'ailleurs, en évidence la relation qui 
s'établit entre l'un quelconque de ces modes et celui qui lui corres 
pond dans la variation simultanée de la fonction. De part et d'autre il 
y a d'abord à considérer le mouvement d'un point, et, par suite, la 
génération de deux lignes, répondant l'une à la variable, l'autre à la 
fonction; puis vient, avec ou sans changement de forme, le déplace-
ment de ces ligues: de là résultent deux aires planes, qui s'engendrent 
simultanément et se correspondent de la même manière que leurs 

Tome XII. — ΑΟΓΤ 18474 2 
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génératrices respectives. Par hypothèse, l'un de ces deux systèmes est 
essentiellement continu, c'est-à-dire que dans le mouvement du point 
décrivant une position quelconque de la génératrice, comme dans 
celui de la génératrice décrivant une portion d'aire quelconque, il n'y 
a jamais ni lacune ni saut brusque. Tant que l'autre système remplit 
les mêmes conditions, il y a continuité relative. 

En résumé, soit une fonction quelconque réelle ou imaginaire, la 
variable peut être assujettie à varier continûment entre certaines li-
mites. Quelle que soit, en ce cas, la détermination particulière du 
mode de variation, il reste caractérisé par l'absence de tout chan-
gement brusque, et la fonction varie, en général, de la même ma-
nière. Aussi longtemps que cette condition, supposée remplie par la 
variable, l'est également par la fonction, on dit de celle-ci qu'elle est 
et demeure fonction continue de la variable que l'on considère. 

D'après tout ce qui précède, je crois être en droit de poser la con-
clusion suivante : 

Dans le théorème de M. Cauchj, relatif au développement des jonc-
tions en série, la condition de continuité n'est pas la seule qu'on doive 
mentionner. Elle est insuffisante, vu qu'elle n'implique, en aucune ma-
nière, une certaine péiiodicité de la jonction, condition essentiellement 
distincte de la première et non moins nécessaire. 

§ II. 

Application de la théorie qui précède à la solution de plusieurs difficultés. 

L'énoncé que j'ai reproduit dans la première partie de cette iNote 
voir page 3of>), se termine par ces mots : hors de là, la série devient 

divergente. 
M. Cauchy n'admet pas que la discontinuité de la fonction entraîne 

toujours la divergence du développement. Loin de là, il fait la re-
marque suivante : 

« J'ai précisément émis l'opinion contraire à celle qu'énonce ici 
» M. Lamarie, dans un précédent Mémoire où je me suis spécialement 
" occupé des jonctions dont les développements restent convergents, 
» tandis quelles deviennent discontinues. M. Lamarie lui-même ne 
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f> pourra révoquer en doute l'existence de fonctions qui présentent ce 
» double caractère. Il me suffira de prendre pour exemple la fonc-
» tion même qu'il a choisie comme propre à montrer une application 

» du théorème général, savoir : 

( j -+-x)m, 

» et de considérer spécialement le cas où, le module r de χ étant 
» inférieur à l'unité, l'exposant m devient fractionnaire, et de la 

» forme-j ρ, n étant des nombres entiers. » 

Observons d'abord que je n'ai point entendu parler des fonctions 
dans lesquelles il surviendrait tout à coup un changement brusque du 
mode de construction. Si l'on avait, par exemple, 

y = (1+x)mÎsin ( - — Î+ sin ( — — χ \ ζdz, 

z 

ii est clair que la série resterait convergente pour toute valeur de χ 
inférieure à l'unité; et cependant il y aurait changement brusque pour 

les valeurs particulières χ — χ =13. 

La restriction que je viens d'indiquer résulte de la nature même de 
la question. On est naturellement conduit à la faire, et elle peut 
rester sous-entendue sans crainte d'aucune méprise. Aussi n'est-ce pas 
sur ce point que porte l'objection qui m'est opposée. 

Avant d'aborder la discussion de chacun des exemples produits pat 
M. Cauchy à l'appui de son opinion, il convient que je rappelle en 
quelques mots la marche que j'ai suivie pour fixer d'une maniéré pré-
cise le sens des opérations à effectuer dans les diverses applications du 
théorème qui nous occupe. 

Soit j\x) une fonction quelconque, supposée réelle; si l'on y rem-

place χ par /vôv'-', il vient 

·' '1 /(«?" ^ ')= ψ {r, d) + Ψ (r. 0) \ — ι, 

ψ et ψ étant deux fonctions réelles. 
Imaginons maintenant que, pour toute valeur de χ inférieure au 

4 a. 



33a JOURNAL DE MATHÉMATIQUES 

nombre R,/(«) soit développable en série convergente d'après la for-
mule de Maclaurin. On aura 

(2? f — et ~l— bx —(— ex" -f~... , 

et, par suite, 

f re 0 -1 a -+- brcosQ + cr2 cos iB +·... 

+ V — 1 (<^r sin 3 + cr2 sin iQ -4-...) 
De là résulte 

(3) ψ (r, Q) = a H- hr cos θ -f- cr2 cos 20 +.., 

(·4) ψ (θ = sin ® + c''2 sin aÔ -f-

Tant que ces équations subsistent, c'est-à-dire tant que le module r 
reste compris entre -+- R et — R, les fonctions <p(r, 0), ψ (r, Θ) se 
trouvent assujetties à remplir plusieurs conditions importantes : 

i°. Pour toute valeur de r, elles varient continûment avec 6 ; 
a°. Pour toute valeur de 0, elles varient continûment avec r ; 
3°. Elles affectent une certaine périodicité, en vertu de laquelle on 

a constamment 

ψ (r, 0) = ψ (r, 0 -h ι kn), ψ (/·, 0 ) = ψ (r, $ -+- a Απ), 

et, en outre, 

φ {r, 0) = r, 0 + [ik -+- ι) π], ψ (r, θ) = ψ[— r, θ + {%k + ι) ττJ, 

2 Απ représentant un multiple quelconque de la circonférence. 
Rien que ces conditions, prises avec toute l'extension qu'elles com-

portent , doivent être considérées comme une conséquence nécessaire 
de la possibilité du développement, on peut néanmoins les restreindre 
sans qu'elles cessent pour cela d'être suffisantes. C'est ainsi qu'en les 
réduisant au plus petit nombre possible, on est conduit à faire abs-
traction des valeurs négatives du module, à limiter la variation de l'ar-
gument 0 par les valeurs extrêmes ο et 2 π, enfin à exprimer la condi-
tion de périodicité par les équations particulières 

(5) φ (r, ο) = φ (/·, ζτζ), ψ ir, ο) = ψ (r, ι π,. 

Tel est le sens que j'ai attaché à l'énoncé suivant : 
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Pour qu'une jonction soit développable en série convergente, d'après 
la formule de Maclaurin, il faut deux conditions distinctes, à la fois 
nécessaires et suffisantes. 

La première, c'est que la continuité subsiste à partir de r = o, pour 
toute valeur du module égale ou inférieure à celle que l'on considère; 

La seconde, c'est que, dans cet intervalle, chacune des fonctions 
ο (r, θ), ψ (r, B) reprenne, pour Β — in, la valeur qu'elle prend pour 
Β — ο. 

Quant à la marche à suivre dans les diverses applications, elle est 
toute tracée par les considérations qui précèdent. On commence par 
effectuer la séparation indiquée par l'équation (i); puis, prenant à 
part les fonctions φ [r, Β), ψ (r, Bt, on examine si, pour toute valeur 
de r, inoindre qu'un certain nombre R, elles satisfont à la condition 
des limites exprimée par les équations (5). En supposant cette condi-
tion remplie, il faut s'assurer, en outre, que la continuité subsiste a 
partir de /· = o, c'est-à-dire que les fonctions <ρ (r, Β), ψ (r, 6) ne su-
bissent aucun changement brusque : 

i". Lorsque, le module r affectant une valeur quelconque moindre 
que R, l'argument θ varie avec continuité entre les limites o et in ; 

y.°. Lorsque , Β demeurant quelconque et constant, r varie conti-
nûment à partir de o jusqu'à la limite R. 

Cela posé, cherchons si les fonctions choisies pour exemple par 
M. Cauchy présentent effectivement le double caractère qui leur est 
attribué, c'est-à-dire s'il est vrai qu'elles deviennent discontinues, 
tandis que leurs développements demeurent convergents. 

Soit d'abord la fonction 

ι -I- χ)·Ί — (ι + /'cos Β -+- ν — ι r sin Β)ι — φ {r, θ) + y — ι ψ (r, Β). 

Pour déterminer chacune des fonctions ψ (r, 6), ψ (/·, θ), je fais 

ι + /' cos Β = ρ cos α, r sin θ = ρ sin a. 

De là résulte 

φ (r, Β) — pi cos ^ α, ψ [r, Β) = ρq sin - a. 

Il vient, d'ailleurs, en adoptant pour ρ la racine positive fournie par 
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le radical, 

ρ = y ι + r2 + 2 r cos 9. 

Par hypothèse, r est plus petit que l'unité. On a donc constamment 

cos a > o. 

Quant à sin α, il change de signe et s'annule avec sin 9. 
11 suit de là que, tandis que 9 varie entre ο et π, l'angle α part 

de o, croît continûment jusqu'à une certaine limite moindre que-» 

puis décroît de manière à redevenir nul pour θ = π. Au delà, c'est-à-
dire lorsque 9 passe de la valeur π à la valeur a π, la variation de α se 
reproduit symétriquement, avec cette seule différence que, de positif 
qu'il était d'abord, l'angle « devient négatif. En d'autres termes, si 
l'on désigne par β et β' deux valeurs de α correspondantes , l'une à 9 , 
l'autre à in — 9, il est visible qu'on a généralement 

o" = - β. 

Les valeurs de a qui répondent àô = oetà(5 = απ, se réduisant à 
une seule et même valeur, zéro, la condition des limites est évidem-
ment satisfaite. Il en est de même de la condition de continuité, les 

variables ρ, cos^ α, sin^ α ne subissant aucun changement brusque. 

On voit donc que si, pour toute valeur du module moindre que 
l'unité, la fonction 

(1 + x) p/q 

est développable en série convergente d'après la formule de Maclaurin, 
elle est en même temps continue pour tout cet intervalle. 

D'accord avec moi sur les principales données de cette question, 
M. Cauchy y introduit une convention arbitraire, et, par elle , il crée 
une discontinuité factice. La convention dont je parle consiste à n'ad-
mettre pour l'angle a que des valeurs positives, comprises entre les limites 
o et. απ. Dans ce système, l'angle α prend tout à coup deux valeurs, 
lorsqu'on fait 6 — π : l'une est o, l'autre in. La première subsiste 
comme limite de la suite qui commence à 9 = o et finit à 9 — π; la se-
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coude, comme origine des valeurs qui se succèdent à partir de 6 — η 
jusqu'à θ = a π. De là vient la discontinuité. Elle dépend, ainsi qu'on 
le voit, d'une condition particulière, arbitrairement introduite dans un 
mode de variation qui déjà se trouve complètement déterminé. L'angle a 
n'est point une variable dont on dispose, c'est une fonction de la va-
riable indépendante 6. Dira-t-on que, θ variant entre les limites ο 
et a π, la fonction a doit être assujettie à varier entre ces mêmes limites ? 
Lue pareille prétention serait insoutenable. Comment, d'ailleurs, jus-
tifier la bizarre anomalie que présenterait la fonction a, si, n'affectant 
jamais qu'une valeur unique, elle en acquérait deux pour θ — π? 

Ce premier point étant éclairci, passons aux exemples cités par 
M. Cauchy, dans le Mémoire qu'il a publié sur les fonctions dont les 
développements restent convergents, tandis qu'elles deviennent dis-
continues (voir Comptes rendus des séances de Γ Académie des Sciences, 

tome XTX, page 142, 
Ces exemples sont au nombre de deux ; je les examinerai successi-

vement. 
Considérons d'abord la fonction 

γ — [ ι — a:'- + χ [ι — ,xa) - y — ι ]Λ + [ι — χ2 — χ (a — χ·2)2 y — ι | 

M. Caucliy fait observer que, pour des valeurs réelles de la variable x, 
la fonction y cesse d'être continue à partir de χ = ι. Il démontre, 
d'ailleurs, que le développement de cette fonction, ordonné suivant les 
puissances ascendantes de χ, ne cesse pas d'être convergent , tant que 
l'on a 

x2 > 2, 
Posons 

ι — x2 — cos «, χ y Α. — χ2 = sin α. 

INous aurons, en substituant, 

y = 2 COS 3 = 2 cos 3 

La forme sous laquelle je viens d'écrire la fonction y montre évi-
demment que, pour des valeurs réelles de la variable x, cette fonction 
ne cesse pas d'être continue, à partir de χ = ι, comme le suppose 
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M. Cauchy, mais seulement à partir de χ2 = 2. Il n'y a donc rien 
d'extraordinaire à ce que son développement demeure convergent jus-
qu'à cette dernière limite. Ici encore la discontinuité prétendue n'existe 
que comme résultat d'une convention purement arbitraire. Cette con-
vention, reproduite dans l'ouvrage déjà cité de M. l'abbé Moigno, 
consiste en ce que le changement de signe de la partie réelle 1 — x2 est 
regardé comme impliquant une solution de continuité. 

Prenant, en second lieu, la fonction 

y z= y/2 — "ix -h X2 = y/(l — X) (a — x), 
et posant 

χ = re6 v/-1, 
d'où résulte 

y — sj 1 — 3rcosQ -4- r2 cos ιθ — (3r sin θ — r2 sin 2 9) y' — ι> 

Μ. Cauchy remarque que la partie réelle de l'expression placée sous le 
radical, savoir, 

2 — 3rcos6 + r2 cos ιθ = 2 — rcos9^ + | — r2, 

s'évanouit quand on pose 

r=y/g'
 cos 0 =34. 1r, 

et, par conséquent, devient négative pour certaines valeurs de 9, alors 

que /■ est compris entre . 11 conclut de là que la fonction y, qui 

reste continue par rapport à r et 9 pour toute valeur du module infé-

rieure à y/g' devient discontinue à partir de cette limite. 

D'un autre côté, M. Cauchy constate que si l'on développe la fonc-
tion y = y 1 — χ y 2 — χ en série ordonnée suivant les puissances as-
cendantes de a?, la série ainsi obtenue ne cesse pas d'être convergente 

pour des valeurs de » supéneures à y/| a mais inférieures à l'unité. 

Apres avoir produit ce dernier exemple d'une fonction dont le déve-
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loppement reste convergent, tandis qu'elle devient discontinue, 
1M. Gauchy ajoute : 

« Au reste, il est important d'observer que les deux expressions 

(2 — 3# -h X2) 2, ( [ — .τ) 2 {'1 — aù 2, 

» sont deux formes différentes d'une seule et même fonction, tant 

» que le module de χ reste inférieur à la limite \JMais quand le 

» module de χ devient supérieur à cette limite, les deux expressions 
» dont il s'agit représentent deux jonctions distinctes, qui ne sont 
i) plus identiquement égales entre elles pour toutes les valeurs réelles 
» de l'angle Θ. De ces deux fonctions, la seconde seule reste continue 

» pour un module de χ supérieur à y/g' mais inférieur à l'unité, et 

» représente constamment dans cet intervalle la somme de la série 
» qu'on avait obtenue en développant la première fonction. » 

En reproduisant ce passage, où les règles fondamentales du calcul 
semblent être en défaut, j'ai voulu montrer le danger des conventions 
sur lesquelles repose le paradoxe énoncé par M. Cauchy. Comment 
concevoir, en effet, qu'il ne soit pas permis d'écrire identiquement 

v'2 — °)X + X2 — V 1 — X \'2 — X. 

La difficulté, qui se présente ici, disparaît d'elle-même, lorsque, 
laissant de côté toute convention arbitraire, on procède suivant la 
marche que nous avons tracée. 

L'expression à transformer étant 

y — sjι —3/'cos θ + r2 cos 2 0 — (3/'sin θ — /'2 sin %Q) y'~ ι 

— ψ (''» 6) + y — ι. ψ (?', θ), 

je pose 

2 — 3 /' cos 6 -t- /1 cos 2 6 = ρ cos α , 3 /' sin θ — r2 sin 2 6 — ρ sin a. 

De là résulte 

φ (r, θ) = ρ 2 cos ψ (r, Ô) = — ρ ï sin -

Tome XII —Αυιιτ 1847· 43 
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On a, d'ailleurs, en adoptant la valeur positive fournie par le radical , 

= \/(i — 2r cos θ -f- r2) (/, — Zjrcos 8 -+~ r2). 

Si I on remarque que la valeur de ρ sin α peut se mettre sous la 
l'orme 

ρ sin α — r sin 9 (3 — a r cos 9), 

et que ρ n'est jamais nul, si ce n'est pour les valeurs particulières 
r= ι, r — 2, combinées avec 5 = o οu ® = ait, on voit immédiate-

ment que, pour toute valeur de r moindre que - et autre que l'unité, 
sin α change de signe et s'annule avec sin 8. 

Cela posé, soit d'abord 

r< \/1· 
comme on a 

ρ cos α = a — r cos θ ) Τ- - — r2, 

il est visible que cos α reste constamment positif. 
Il suit de là que, tandis que 8 varie entre ο et π, l'angle « part de 

zéro, croît continûment jusqu'à une certaine limite moindre que i2, 

puis décroît de manière à redevenir nul pour 9 = π. Au delà, c'est-à-
dire lorsque 9 passe de la valeur π à la valeur ·>. π, la variation de α se 
reproduit symétriquement, avec cette seule différence que, de positif 
qu'il était d'abord, l'angle α devient négatif. 

La condition des limites est évidemment satisfaite. On voit également 
que la continuité n'est pas interrompue. 

Soit ensuite 

r = 78 

Rien ne change, si ce n'est que la variation de α s'étend, sans la dé-

passer, jusqu'à la limite"· 
Soit maintenant 

r>\/l< '·· 
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En écrivant la valeur de ρ cos α, sous la forme suivante : 

ρ cos α = ο. I r cos α j y· cos 9 —ζ ' j-

ii est aisé de voir que rien ne change encore, si ce n'est que la va-

leur T' est dépassée et qu'elle répond à une valeur de 9 qui se rap-

proche indéfiniment de zéro, à mesure que le module r converge vers 
l'unité. 

En ce cas, α part île zéro, croît jusqu'à une certaine limite moindre 
tpie 7Γ, puis décroît et redevient nul. Cette variation, toujours continue , 
s'accomplit en même temps que S croît de ο à π. Au delà, c'est-à-
ifcré quand θ croît à partir de π jusqu'à 2 π, la variation de a se re-
produit symétriquement, avec cette seule différence que, de positif 
qu'il était d'abord , l'angle a devient négatif. 

Cette discussion montre que la condition des limites ne cesse pas 
d'être satisfaite et qu'il y a toujours continuité. 

Soit encore 
/■ = 1 ; 

il vient alors 

cos a b= V 5 — 4 cos 6 2 y'5—4 COS 6 2 sin a = V 5 — 4 cos 6 2 y'5—4 COS 6 2 cos 02 

On a, d'ailleurs, 

ρ = 2 sin - \ 5 — 4 cos 9. 

Le seul changement qui s'introduise, relativement au mode de variation 
qui précède, consiste en ce que l'angle α ne part plus de zéro, mais 

bien de^· Cette circonstance empêcherait que la condition des limites 

fût remplie, si ρ ne s'annulait point aux deux limites θ — ο, θ = in. 
Quant à la continuité, il est visible qu'elle subsiste sans interruption. 
Il est vrai que, pour toute valeur de r moindre que l'unité, l'angle « 

part de zéro, tandis que pour r= ι , sa valeur initiale est -· Toute-

fois , il n'y a pas de changement brusque dans les fonctions <p (r, 0) , 
43.. 
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ψ (γ, θ). Pour s'en convaincre, il suffit d'observer que, tandis que le 
module converge vers l'unité, les valeurs de ρ et de a, qui répondent 
à des valeurs de θ très-voisines des limites ο et ιπ, se rapprochent in-
définiment de celles qui, dans l'hypothèse / = 1, répondent à ces 
limites. 

Supposons, en dernier lieu, que la valeur du module soit comprise 

entre r et -· 

En ce cas, les valeurs extrêmes de l'angle α sont respectivement 
+ π et — π. D'un autre côté, ρ ne s'annule point. La condition des 
limites n'est donc plus satisfaite pour la fonction ψ (r, Θ), et, par con-
séquent, ia série cesse d'être convergente. Néanmoins, et c'est,là une 
circonstance qu'il importe de signaler, il suffit que la valeur attribuée 
à ρ reste constamment positive, pour que la continuité ne soit pas 
interrompue. 

On voit, par ce qui précède, que, contrairement à l'opinion de 
M. Uauehy, et eu égard à ce qu'il n'est pas permis de considérer le 
changement de signe de la partie réelle 

•χ — 3 r cos θ 4- cos ·2 θ , 

comme impliquant, par lui seul, une solution de continuité, la fonc-
tion 

y = v2 - 3x + x2 

est constamment, continue, non-seulement pour des valeurs du module 
inférieures à l'unité, mais, en outre, pour des valeurs plus grandes, 
les quantités r et ρ conservant, par hypothèse, un seul et même signe. 

On observera qu'en détruisant l'objection qui m'était opposée, j'ai 
tait aussi disparaître le paradoxe énoncé dans le passage reproduit ci-
dessus (page 33y). 

Dans la Note à laquelle je réponds, M. Uaiichy exprime l'opinion 
suivante : 

La nature des conventions a une influence marquée sur le carac-
« tère des fonctions considérées comme continues ; de sorte qu'en 
■» passant d'un système de convention à un autre, on peut rendre 

> discontinues des fonctions qui étaient continues, et réciproquement. 



PURES ET APPLIQUÉES. Q r 

» D'après cette remarque, il n'y pas lieu de s'étonner que les dévelop-
i' pements de certaines fonctions restent convergents, dans le cas ou 
» ces fonctions deviennent discontinues, puisqu'en modifiant les con-
" vendons admises, on peut quelquefois enlever à une fonction dont 
» le développement était convergent le caractère de continuité. Pour 
» rendre plus souvent applicable le théorème sur la convergence des 
» développements, il est évidemment utile d'adopter les conventions 
» qui conservent ce caractère le plus longtemps possible aux fonctions 
» employées dans le calcul. » 

Selon moi, le caractère d'où dépend la continuité est un caractère 
absolu qu'on n'est point maître de modifier, et qui se conserve intact 
dans tout système de convention susceptible d'être introduit dans le cal-
cul, sans porter atteinte aux principes fondamentaux. Quoi qu'il en 
soit, M. Cauchy reconnaîtra, sans doute, qu'en adoptant ma maniéré de 
voir, l'on restitue aux fonctions qu'il a choisies pour exemple la con-
tinuité dont elles se trouvent dépouillées dans le système de conven-
tions qui lui appartient. Sous ce rapport, et alors même qu'on serait 
libre d'opérer autrement, il y aurait donc avantage à se conformer aux 
principes que j'ai développés ci-dessus. Ce n'est point en appliquant 
ces principes, mais pour s'en être écarté, que M. Cauchy a introduit 
la discontinuité là où, en réalité, elle n'existe point. 

Avant de terminer cet article, j'ajouterai quelques mots sur la con-
dition de continuité considérée par rapport aux fonctions dérivées. 

Lorsque j'ai dit de cette condition qu'elle pouvait être omise, j ai 
entendu exprimer qu'elle devait l'être nécessairement. M. Cauchy fait 
observer qu'on pourrait à la rigueur se passer de la considération des 
fonctions dérivées, mais qu'il vaut mieux ne pas l'abandonner entière-
ment, attendu qu'elle sert, en certains cas, à déterminer le module des 
séries. 

On sait que les limites entre lesquelles la série de Maclaurm est 
convergente sont les mêmes pour la fonction que pour l'une quel-
conque de ses dérivées, et réciproquement. En faisant cette remarque 
dans mon premier travail sur le théorème de M. Cauchy, j'ai été con-
duit à observer que, bien que la considération de la dérivée fût su-
perflue et indirecte, il pouvait être quelquefois plus simple d'y re-
courir. Dans ce cas. la dérivée se substitue à la fonction, et celle-ci 
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cesse d'exiger aucune vérification directe. En général, le contraire a lieu, 
c'est-à-dire qu'on opère sur la fonction, sans avoir à s'inquiéter de la 
dérivée. Ees calculs à faire n'étant pas toujours aussi simples qu'il 
serait désirable, il est. bon que l'énoncé du théorème ne laisse aucun 
doute sur l'inutilité d'une double opération où la fonction et sa déri-
vée devraient toutes deux intervenir. 11 convient, d'ailleurs, au point 
de vue de la rigueur mathématique, qu'une condition, démontrée 
surabondante, ne figure point au nombre de celles qui sont réputées 
nécessaires. 

Une observation du même genre m'a été suggérée par la lecture d'un 
Mémoire [*] cité dans la Note à laquelle je réponds. Apres avoir posé 
l'équation 

f\/;r Λ.τ .·- Ε (X) - ι·' ,r0 . 

vï. Cauchy ajoute : 
« Cette équation suppose que la fonction fix) reste finie et continue 

» par rapport a la variable x
7
 depuis la limite x — x

0
 jusqu'à la 

limite χ — X. » 
•le ferai remarquer, comme je l'ai dit ailleurs, que l'équation dont 

il s'agit suppose, en général, non pas que la dérivée/(x)
7
 mais bien 

que la fonction F(u i, demeure continue dans l'intervalle que l'on 
considère. 

!*j Voir Comptes rendus des Seances de l'Académie des Sciences, tome XVIII, 
}>ata? 1073, 


