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NOTE 

Sur ΐévaluation de ïaire de la surface nommée, dans l'optique, 

surface d'élasticité ; 

PAR M. WILLIAM ROBERTS. 

I. Soit une surface donnée par le système des équations 

3r = <p(«,t»), j~q{u,v), ζ = χ («,</), 

et l'on sait que son aire superficielle s'exprimera par l'intégrale double 

S — ff V?2 -t- το2 ■+■ ζ2 dudv, 
oil 

j, dx dy, dx dy dz dx dz dx dy dz dy dz 

(voir LACROIX, Traité de calcul différentiel et intégral, tome II, 
n° 774)· Cela posé, supposons qu'on transforme x,y, z en coor-
données polaires ordinaires R, θ, ψ pour trois dimensions, ce qui 
donnera 

χ = R sin θ cos ψ, y = R sin θ sin ψ, ζ = R cos θ, 

d'où l'on déduit, en regardant θ et ψ comme des variables indépen-
dantes , dont R est une fonction, 

ξ = R sin Q ^R cos θ 4- sin θ , 

Yj = — R cos ψ ̂  + R sin 9 sin ψ ^R sin θ — cos θ , 

ζ — R sin ψ -jj + R sin Β cos ψ ί R sin θ — cos θ ~\ ι 

en sorte que 

<° s = ff \/{*'+ 

Tome XI.—MARS 1846. 1
1 
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2. L'expression pour S, qu'on vient de donner, conduit facilement 
à une formule simple pour l'aire d'une surface, qui est lieu géomé-
trique des projections orthogonales d'un point fixe sur les plans tan-
gents à une surface donnée. 

En effet, soient S,, ψ, les angles qui déterminent la position d'une 
perpendiculaire R

4
, abaissée du point fixe sur un plan tangent quel-

conque à la surface donnée. On aura donc, .χ, y. ζ étant les coor-
données du point de contact sur cette dernière, 

R, = .rsin Θ, cosijq -t- y sin 9, sin ψ
4
 -+- ζ cos 9,, 

et, par la differentiation, en se rappelant que 

sin 9, cos ψ, dx + sin 9, sin ψ, dy -4- cos θ, dz = ο, 
on trouve 

~ — (arcos ψ, -4- jy sin ψ
4
) cos θ, — ζ sin 9

(
, 

— — (x sin ψ, — y cos ψ, )sin 9,. 

Donc 

R' + Sf + = + e = 

R étant le rayon vecteur au point de contact sur la surface donnée. 
En comparant cette équation avec l'équation ( ι ), on verra que 
l'aire S< de la surface qui se dérive de la surface donnée par la con-
struction dont il s'agit, s'exprimera par la formule très-simple 

s< = //RR< sin ί/ψ, [*]. 

3. Pour faire application de cette formule, nous supposerons que 

[*] Semblablement, si l'on désigne par r cl ν le rayon vecteur mène d'un point donne à 
un point quelconque surune courbe et l'angle que fait la normale à l'extrémité de r avec-
un axe fixe, l'arc de la courbe , lieu des projections orthogonales du point fixe sur les 
tangentes de la courbe donnée, se trouvera exprimé par l'intégraleJrda·, équation 
dont j'ai déjà fait usage pour démontrer par la méthode des infiniment petits une 
propriété des arcs d'une suite de courbes, dérivées d'une hyperbole équilatère. Voyez 
le tome X de ce .Tournai, page 192. 
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Ja surface donnée soit un ellipsoïde, dont le centre est au point ou 
origine fixe. La surface dérivée sera donc celle employée par Fresnel 
dans ses recherches sur l'optique, et nommée par cet illustre géometre 
et physicien surface d'élasticité. 

Pour obtenir la valeur de son aire, on n'a qu'à exprimer le rayon 
vecteur à un point quelconque d'un ellipsoïde, par les angles faits 
par la normale à son extrémité avec les axes de la surface. 

Ceci s'effectue aisément : car, soient x, y, ζ les coordonnées d'un 
point quelconque sur un ellipsoïde dont les demi-axes sont a, b, c, et 
soient λ, μ, ν les angles faits par la normale au point {x,y, z) avec les 
axes. On a donc 

*= r7' ^ = ~RT' z = -rT' 

et. par conséquent, 

RR, = v«4 cos2 λ -+- b" cos2 μ + ck cos2 ν, 

d'où l'on trouve, en mettant pour λ, μ, ν leurs valeurs en 6
t
, ψ

4
, 

faire S(
 de la surface d'élasticité donnée par la formule 

S< =// v'a*cosaÔ, + (è4sin2ij>, -+- c* cos2 ψ,) sin2 0, sin θ, d$
t
 r/ψ,. 

On obtiendra la huitième partie de la surface totale en prenant cha-

cune des variables depuis ο jusqu'à -■ 

Maintenant, si l'on considère l'ellipsoïde, 

^ + r + r = 1 ' 

et si l'on fait 

χ — a. cos 5, y — β sin θ sin ψ, ζ — y sin θ cos ο, 

on en déduira, pour la huitième partie de sa surface totale, l'intégrale 
double définie 

v2) I f \β*γ cosè -t- α2 (βΛ cosaφ -+- γ2 sin2 φ) sin2 θ sin $d$ do. 

II., 
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Cette expression sera identique avec la valeur de S,, pourvu qu'on ait 

be n ac ab 

ce qui donne le théorème suivant : 
THÉORÈME. L'aire totale de la surface d'élasticité, qu'on tire d'un 

ellipsoïde dont les demi-axes sont a, b, c, sera égale à l'aire d'un 

ellipsoïde dont les demi-axes sont — , —■ 

Il est presque superflu de remarquer que les volumes des deux ellip-
soïdes dont il s'agit sont égaux. 

4. Parmi les diverses méthodes pour déterminer l'aire ellipsoïdale, 
qu'on doit aux travaux des géomètres, je ne sais pas si l'on a remar-
qué celle que je vais indiquer. Elle consiste en ce qu'on ramène l'ex-
pression pour l'aire à une intégrale définie connue, évaluée par Le-
gendre. 

En effet, si l'on intègre l'expression (a) par rapport à 0, depuis θ — ο 

jusqu'à θ — ^5 on trouvera 

s=i
r[;|

arc
(
si,1=

V
/
f)

 + ft
']''<

>
' 

en faisant, pour abréger, 

Ρ = α2 (β2 cos2 ψ + γ sin2 ψ), 

Q = j3a (α2 — γ2) cos2 <ρ -+- γ2 (α2 — β2) sin2 φ. 

Pour transformer cette expression, nous prendrons un nouvel angle ω, 
tel que 

sin ω =Vp 

ce qui donne, pour la valeur de S, après toutes les réductions conve-
nables , 

2 <*2 J.j c°s2 « sin3 ft — sin2 ω \Zsin' ω — sin2 ν 4 

où 
sin2 μ = ——■> sin2 ν = —— · 
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Maintenant, Legendre a démontré que 

Jff· ω d<,> ir (cos ρ — cos v) 

Η " — [cos2 uF (c, μ) -t- sin2 uEfc, μ)1, 

où 

c> _ tang' ρ — tang' ·.. 

( Traité des jonctions elliptiques, tome I, page 3i3 , la deuxième for-
mule de la case VIII.) 

Donc, on a finalement 

s = [cos2 p-f (c> μ) +sin2 f*E(c> ti] ■' 

ce qui s'accorde parfaitement avec le résultat de Legendre (tome 1, 
page 35g). 

ù». Nous remarquerons enfin que la méthode la plus simple peut-
être d'évaluer l'aire d'ellipsoïde est due à M. Jacobi; cet illustre géo-
mètre présente l'élément de la surface sous une forme rationnelle, en 
choisissant pour variables les angles qui déterminent la position d'une 
normale à un point quelconque (Journal de M. Crelle, tome X;. 

La formule qu'il en tire se déduit immédiatement de l'équation gé-
nérale, qui a lieu pour une surface quelconque . 

(3) S = ffp, p2
 sin 9 dO d<p, 

dans laquelle ρ,, ρ
2
 désignent les rayons de courbure en un point quel-

conque, et 9, <p les angles qui fixent la position de la normale. Car. 
dans l'ellipsoïde, par un théorème de M. Ch. Dupin, 

pi p2 — ~p~' 

a, />, c étant les demi-axes, et ρ la perpendiculaire abaissée du centre 
sur le plan tangent. Donc 

J J [«' cos' θ -)- (b1 cos' ç> -t- c2 sin' ») sin' 9]' ' 
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ce qui est l'expression trouvée par M. Jacobi. Orj en trouve encore une 
autre démonstration , fondée sur des principes géométriques, dans le 
dernier numéro du Cambridge and Dublin mathematical Journal, 
par M. Jellett, où le même auteur a donné quelques constructions 
élégantes par rapport à ce sujet. 

Quoique je n'aie vu la formule (3) dans aucun ouvrage, je n'ai pas 
de doute qu'elle a déjà été donnée; il est très-probable, je crois, que 
M. Gauss l'a obtenue. 

P. S. Il saute aux yeux que l'élément de l'aire de la surface d'élas-
ticité 

Va" cos2 θ, -f- (h4 cos2 ψ, -I- c4 sin2 ψ,) sin2 Q
K
 sin Θ, dty, 

sera également celui de l'aire d'une surface, qui est lieu des projections 
orthogonales du centre d'un hyperboloïde (à une ou à deux nappes), 
ayant a, h, c pour demi-axes, sur ses plans tangents. Par conséquent, 
si l'on conçoit un système d'un ellipsoïde et des hyperboloïdes qui ont 
ies mêmes axes quant à la grandeur et à la direction, et si l'on en tire 
des surfaces par la construction dont nous avons parlé, un cône quel-
conque, dont le sommet est placé au centre et qui les coupe suivant des 
courbes fermées, déterminera sur toutes des portions de même étendue. 

La surface (H), dérivée d'un hyperboloïde, aura un point multiple 
à son centre, et sera enveloppée là par un cône du second degré, réci-
proque au cône asymptotique de l'hyperboloïde auquel elle appartient. 
Ce cône tangent déterminera sur la surface d'élasticité correspondante 
une portion égale à l'aire totale de la surface (H). 

Comme cas particulier de ce qu'on vient d'énoncer, on verra 
aisément que, si l'on fait tourner autour de son axe l'ensemble d'une 
lemniscate, de ses tangentes centrales, et du cercle décrit sur l'axe, la 
surface engendrée par la révolution de la lemniscate sera égale au 
petit cercle de la sphère, qui est formé par la révolution des tan-
gentes. 


