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NOTE

Sur Uévaluation de Caire de la surface nommée, dans Uoptique,

surface d’élasticite ;

Par M. Wiuan ROBERTS.

1. Soit une surface donnée par le systeme des équations

x=gwy), r=y@w9, 2=;y@,v),
et I’on sait que son aire superficielle s’exprimera par Pintégrale double
S = [fVE + n® + §*dudy,
ou

dz dy . dx dy __ dzdz dz dx __drds dy dz

4 Al

E= o dw 1T dud  dvdd ® T dude  dv du

(voir Lacrorx, Traité de calcul différentiel et intégral, tome 11,
n° 774). Cela posé, supposons qu’on transforme x, y, z en coor-

données polaires ordinaires R, §, ¢ pour trois dimensions, ce qui
donnera

x = Rsinfcosy, y = Rsinfsing, z= R cos b,

_d’oti 'on déduit, en regardant § et ¢ comme des variables indépen-
dantes, dont R est une fonction,

£ = Rsinf (Bcos@ —+ sinet%),
n = —Bcom{a%—}-l{sin@sinq) (Rsin@ —cos@%),

¢ = Rsinqa%‘ + Rsin§ cos¢ (Bsin@—— cos (%)1

en sorte que

(1) s :ff\/@ﬁ & O sin® 0 + - RO dy.

Tome XI.—Mans 1846. 11
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2. L’expression pour §, qu’on vient de donner, conduit facilement
a une formule simple pour P'aire d’une surface, qui est lieu géoms-
trique des projections orthogonales d’un point fixe sur les plans tan-
gents 4 une surface donnée.

En effet, soient 9,, ¢, les angles qui déterminent la position d’une
perpendiculaire R,, abaissée du point fixe sur un plan tangent quel-
conque a la sarface donnée. On aura donc, x, y, z étant les coor-
données du point de contact sur cette derniére,

R, = xsin 0, cos $i + g sin G, sing, 4+ zcosf,,
et, par la diftérentiation, en se rappelant que

sin 9, cos ¢, dx + sin 6, sin i dy + cosb,dz = o,

on trouve

dR ‘ ‘
294 = (xcosy, + ysin¢,)cos b, — zsin gy,
1
dR _ _
',E‘I = — (xsiny, — ycosy,)sing,.
Donc
dR? 2
R-‘z + R] I (1R| —_ x2 __’_‘)/.2 4+ Z2 — ]{27

PTR sin® 6, d9°

R étant le rayon vecteur an point de contact sur la surface donnée.
En comparant cette équation avec Péquation (1), on verra que
Paire S, de la surface qui se dérive de la surface donnée par la con-

struction dont il sagit, s’exprimera par la formule tres-simple

S. = [fRR, sin §, d6, dy, [*].

3. Pour faire application de cette formule, nous supposerons que

[*] Semblablement, si I’on désigne par r et w lerayon vectear men¢ d’un point donne i
un point quelconque sur une courbe et Pangle que fait la normale i extrémité de » avee
un axe fixe, I'arc de la courbe , licu des projections orthogonales du point fixe sur les
tangentes de la courbe donnée, se trouvera exprimé par l'intégrale Srdo; équation
dont j'ai déja fait usage pour démontrer par la méthode des infiniment petits une
propriéte des arcs d’une suite de courbes, dérivées d’une hyperbole équilatére. #oyez
le tome X de ce Journal, page r1ge2.
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la surface donnée soit un ellipsoide, dont le centre est au point ou
origine {ixe, La surface dérivée sera donc celle employée par Fresnel
dans ses recherches sur 'optique, et nommeée par cet illustre géometre
et physicien surface d’élasticité.

Pour obtenir la valeur de son aire, on n’a qu’a exprimer le rayon
vecteur 4 un point quelconque d’un ellipsoide, par les angles faits
par la normale a son extrémité avec les axes de la surface.

Ceci s’effectue aisément : car, soient x, y, z les coordonnées d'un
point quelconque sur un ellipsoide dont les demi-axes sont a, b, c, et

soient 4, 1, v les angles faits par la normale au point (2, y, z) avec les
axes. On a done

et. par conséquent,

RR, = ya*cos? A + b cos? B+ c* cos? v,

d’ot l'on trouve, en mettant pour &, p, v leurs valeurs en §,, ¢,,
I'aire S, de la surface d’élasticité donnée par la formule

S, = [f va*cos* G, + (b*sin® §, + c* cos® ,) sin®0, sin 9, db, dy,.

On obtiendra la huitieme partie de la surface totale en prenant cha-
cune des variables depuis o jusqu’a T,
2
Maintenant, si I'on considére Vellipsoide,

2

—

2—}— - 1,

818
<

Z'l
,y‘:

gl

et si Pon fait
x = ocosh, y =[sinlsing, z=ysinfcosy,

on en déduira, pour la huitieme partie de sa surface totale, Iintégrale

double définie

ta

75
C ey 2 r ’ 5 - o Sy .
\2) f f vA* i cosh + o (fPcos’ o + P sin® o) sin” § sin 8d6 dg,
o ¢ ¥

Iv..
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Cette expression sera identique avec la valeur de S,, pourvu qu’on ait
be ac b
a4 = ;7 ﬁ = ?a T= a_c‘7
ce qui donne le théoréme suivant: '

TurorimEe. L'aire totale de la surface d'élasticité, qion tire d'un

ellipsoide dont les demi-axes sont a, b, c, sera égale a laire d'un
ac ab

. . be

ellipsoide dont les demi-axes sont =, B
a

11 est presque superflu de remarquer que les volumes des deux ellip-
soides dont il s’agit sont égaux.

4. Parmi les diverses méthodes pour déterminer l'aire ellipsoidale,
qu’on doit aux travaux des géométres, je ne sais pas si 'on a remar-
qué celle que je vais indiquer. Elle consiste en ce qu'on ramene l'ex-

3

pression pour l'aire & une intégrale définie connue, évaluée par Le-

gendre.
En effet , si 'on integre expression (2) par rapport a §, depuis § = o

. N [d
jusquw’a 6 = >» on trouvera

T

S_—_%l";[v%arc(sin:\/(;%)+ﬁ'y]dqo,

en faisant, pour abréger,
P = a® ($*cos® ¢ + y*sin’ ¢),
Q = 7 (2 — 77) cos® g + 7 (e — ¥) sin® .

Pour transformer cette expression , nous prendrons un nouvel angle w,

sinw::\/ga

ce qui donne, pour la valeur de S, apres toutes les réductions conve-

tel que

nables,
22 M © d(,) ™
s=487 (" 2 -+ 7 f1,
« , COs’® \/Sin2F — $1N% 0 \/sm’w — sin?v 4
ou
. @t — st A @t —— B
sin? p. = a'y, sin®y = azp-

| L [RRREREE RN VAT e i
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Maintenant, Legendre a démontré que

f’" » dw __ w(cos p — cosv)
,  C08" ® \/sin"y— sin’e ysinw — sin v 208"y COS5
ks

— [cos® uF (¢, p) + sin® uE(c, p)],

2 COS vSIN (£ €OS? 2
ou
o — tang® ¢ — tang: v
tang® p
{ Traité des fonctions elliptiques, tome I, page 313, la deuxieme for-
mule de la case VIIL.)
Donc, on a finalement

§ — 71-21 raf

1 Temnp [cos® pF (¢, p) + sin®* pE{c, p)],

ce qui s’accorde parfaitement avec le résultat de Legendre (tome 1,
page 359).

5. Nous remarquerons enfin que la méthode la plus simple peut-
étre d’évaluer I'aire d’ellipsoide est due 4 M. Jacobi; cet illustre géo-
metre présente I'élément de la surface sous une forme rationnelle, en
choisissant pour variables les angles qui déterminent la position d’une
normale 4 un point quelconque (Journal de M. Crelle , tome X,

La formule qu’il en tire se déduit immédiatement de I'équation gé-
nérale, qui a lieu pour une surface quelconque,

(3) S= [[ppysinddb dy,

dans laquelle g,, p, désignent les rayons de courbure en un point quel-
conque, et 4, o les angles qui fixent la position de la normale. Car.
dans Pellipsoide, par un théoréme de M. Ch. Dupin,

atbict
0,0y = -
prpr ==

a, b, ¢ étant les demi-axes, et p la perpendiculaire abaissée du centre
sur le plan tangent. Donc

S — [l2 b2 c2 sin 6d0 d'fl o
[a*cos? 6 4 (B3 cos® o+ ¢?sing) sin® 6]
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ce qui est I'expression trouvée par M. Jacobi. Op en trouve encore une
autre démonstration, fondée sur des principes géométriques, dans le
dernier numéro du Cambridge and Dublin mathematical Journal
par M. Jelleit, ou le méme auteur a donné quelques constructions
élégantes par rapport a ce sujet.

Quoique je n’aie va la formule (3) dans aucun ouvrage, je n’ai pas

de doute qu’elle a déja été donnée; il est trés-probable, je crois, que
M. Gauss I’a obtenue.

P. 5. 1l sante aux yeux que I'élément de P'aire de la surface d’élas-
ticité

va'cos* 0, + (A" cos* U, +— ¢* sin? ¢,) sin® 6, sin 0,6, dy,

sera également celui de 1'aire d’une surface, qui est lieu des projections
orthogonales du centre d’un hyperboloide (4 une ou a deux nappes),
ayant @, b, ¢ pour demi-axes, sur ses plans tangents. Par conséquent,
si 'on congoit un systéme d’un ellipsoide et des hyperboloides qui ont
ies mémes axes quant a la grandeur et a la direction, et si I'on en tire
des surfaces par la construction dont nous avons parlé, un céne quel-
conque, dont le sommet est placé au centre et qui les coupe suivant des
courbes fermées, déterminera sur toutes des portions de méme étendue.

La surface (H), dérivée d’un hyperboloide, aura un point multiple
a son centre, et sera enveloppée la par un cone du second degré, réci-
progue au cone asymptotique de ’hyperboloide auquel elle appartient,
Ce cone tangent déterminera sur la surface d’élasticité correspondante
une portion égale a 'aire totale de la surface (H).

Comme cas particulier de ce quon vient d’énoncer, on verra
aisement que, si ’on fait tourner autour de son axe 'ensemble d’une
lemniscate, de ses tangentes centrales, et du cercle décrit sur axe, la
surface engendrée par la révolution de la lemniscate sera égale an

petit cercle de la sphére, qui est formé par la révolution des tan-
gentes,

) S Lo o o (A



