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PURES ET APPLIQUEES. ioç, 

SUR LES COURBES TAUTOCHRONES; 

Pak m. PI ISEI \ 

!. i.a méthode que je vais suivre pour traiter le problème îles tauto-

ehrones est uniquement fondée sur la differentiation sous le signe j"■ 

Elle me semble préférable au développement en série qu'on trouve 
dans la Mécanique de Poisson. Je détermine l'équation de la tauto-
ehrone soil dans le vide, soit dans un milieu dont la resistance est 
comme le carré de la vitesse, et en supposant le mobile pesant ou sol-
licité par une force dirigée vers un centre fixe. En particulier, lorsque 
le mobile est attiré ou repoussé par un centre fixe proportionnellement 
a la distance, et que la résistance est nulle, j'obtiens pour solutions la 
ligne droite, la spirale logarithmique, Pépicycloïde, et une spirale que 
j'ai considérée ailleurs, et qui jouit de la propriété remarquable d'etre 
semblable à la développée de sa développée. 

2. Je supposerai d'abord le mobile pesant et dans le vide; je dm 
gérai l'axe des χ en sens contraire de la pesanteur, et il s'agira d< 
trouver la courbe que doit suivre un point matériel pour arriver tou-
jours dans le même temps à l'origine des coordonnées, quel que soi! 
le point d'où ii est parti sans vitesse initiale. Konniions t le temps, 
s Tare île la tautochrone à partir de l'oiigine, h la valeur de a pour le 
point de départ du mobile, g la pesanteur. Nous aurons, par le prin-
cipe des forces vives. 

ils· , ι ils 
= ïg■ > h -X), dt 

at y —jc: 

Si donc nous appelons Τ le temps employé par le mobile pour arnvei 
Tome IX. — DÉCCHBISE J344 5 a 
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à l'origine, et si nous faisons s = ψ (χ). il nous viendra 

τ — J Çh ν' ' 
Jig Jo s/Il — x 

ou bien, en posant χ — hz, 

ry t f ' f ' (hz) dz \fh 

s/xgJo \h — z 

Par la nature du problème, cette valeur de Τ doit être indépendante 
de h; il faut donc que sa dérivée relative à h soit nulle. Mais on a 

dl _ ι Γ 1 [afetp";Az)-f- φ'[hz)\dz 
dh a sjxgk Jo s/1 — z 

la quantité entre crochets est une fonction de hz, et si nous faisons 

XX ψ" (x) + ψ'(χ} — ψ, (x), 

l'équation précédente pourra s'écrire 

c/ï ι Γ1 <sj\{hz)dz ι Çll y
t
(x)dx 

<Wl xjigh Jo yh—ζ xh\ixgJo si h—χ 

S (%) (lx 
— ne peut pas être nulle, que! que ο y Λ — χ 

soit h, à moins que la fonction ψ, (χ) ne soit elle-même identiquement 
, nulle; car autrement on pourrait prendre h assez petit pour que de 

χ — ο à χ — h, φ
(
 (a?) fût toujours de même signe, et alors l'intégrale, 

ayant tous ses éléments de même signe, ne serait pas nulle. On a donc 
l'équation 

•xxφ" (χ) -+■ ψ'(x) — ο, 

d'où 

ψ'(χ) = y
 γ

· 

c étant une constante arbitraire. On a donc, pour la courbe cherchée, 

— i ri 
dx V ν 
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el , en intégrant une seconde fois, 

s — 2 \ c.T ; 

on n'ajoute pas de constante arbitraire, parce que ,v et χ doivent être 
nuls en même temps. Si dans la valeur de Τ on remplace ψ' ix) par sa 
valeur, ou trouve 

T = TT V 2g 

valeur indépendante de h. comme cela devait avoir lieu. On tire de là 

Tv;2,^ 
\ <■ — - ~ Ί 

et par conséquent 

s = 2T V egx. x = 8gT s² 

E.ette équation représente une cycloïde qui a son sommet à l'origine et 
dont l'axe, dirigé en sens contraire de la pesanteur, a pour lon-

?.»■ Τ gueur ■ 

H. Supposons maintenant le mobile attiré ou repoussé par un centre 
lixe: soient r sa distance à ce centre, / η la iorce qui le sollicite, et 
qu'on regarde comme positive ou négative, selon qu'elle est attractive 
ou répulsive. Appelons λ la valeur de r qui répond au point de départ 
du mobile, α celle qui répond à l'origine des arcs parcourus dans le 
même temps, 0 l'angle compris entre les ravons vecteurs r et y.. Le 
principe des forces vives nous donnera 

dt² = -2 /' f (r) dr 
taisons 

■>. I f[iïdr — .r, 2 f f[r· dr — h: 

l'équation précédente deviendra 

— h — x, d'oii dt. ~ .é'L · 

3 2 . 
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Si donc nous désignons par Τ le temps employé à parcourir l'arc dont 
les extrémités répondent à r = a, r — a, ou bien à χ — h, χ — ο, et 
si nous posons de plus ν ο (,x), nous aurons 

Τ W 
J ο sjh — χ 

Cette valeur de Τ ne diffère que par le facteur constant y'2g" de celle 
qu'on a trouvée plus haut; elle doit être indépendante de η et par 
conséquent de Λ; on aura donc encore 

φ'(χ), ou = s — % sjcx, 

d'où résulte 

Τ = π y'c, 

et, par suite, 

ds Τ 2 Τ ,— — = —S — — y χ, Λχ K\J.V f 

ou enfin, en remplaçant χ par sa valeur, 

ds , f.f'-t.... s —' i/' ·:>. f'jrdr. / fr π V J
a

 J K ' 
π y 2 j j\r)(lr 

Ces deux équations multipliées ensemble nous donnent 

/· / \ dt ÎT ^ 
= 4T"s' 

on voit par là que la composante suivant le rayon vecteur de la force 
qui sollicite le mobile doit être à chaque instant proportionnelle à l'arc 
qui lui reste à parcourir. Cette propriété de la tautochrone était con-
nue de Newton {Principes, liv. Ier, section ι o) [*]. 

(*j On en déduit immédiatement la solution de cette question : Quelle doit être la loi 

de l'attraction, pour qu'une courbe donnée soit tautochrone? 
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4. De l'équation qui donne la valeur de fis, on tire 

Ά ΐ y/2. /('') 

on voit par là que ^ se réduit à zéro, quand on lait r — «, en excep-

tant le cas particulier où l'on aurait 

/;«) = o. 

On en conclut que généralement la tautochrone est normale au rayon 
vecteur mené du centre fixe à l'origine des arcs parcourus en temps 
égaux ; cette origine est alors un sommet de la courbe. 

Mais il peut en être autrement si l'on a 

/(«) = o. 

Alors l'expression de ̂  prend, pour r = a, la forme et par Ja mé-

thode ordinaire on trouve que sa vraie valeur est . tel est le 2 τ v./'0,' 
cosinus de l'angle sous lequel le rayon vecteur mené à l'origine des 
arcs coupe la tautochrone. Si toutefois ce cosinus était plus grand que ι 
ou imaginaire, la courbe serait elle-même imaginaire, au moins pour 
les valeurs de r voisines de y., et par conséquent ne répondrait pas a la 
question. 

ù. Si dans l'équation précédente on remplace ds par y dr2 -y- r2d'62, 

on aura l'équation de la tautochrone en coordonnées polaires : elle 
peut s'écrire 

, j' ' I , „r 

d$ ..·= '' \ / -, ~ ··"· · 

Υ 'M'"· 

Supposons m particulier la force proportionnelle à une puissance de 
la distance , de sorte qu'on ait 

j (r) = mr1'; 
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il viendra 

tr ι Ά / R d j — zfc — \/ —— 
r V rl'+" — xP+l 

ou i'ois a fait, pour abréger, 

R — ·'· /<+ > Τ
 f /

 ^
 α/

,_
Μ

^ 
7Γ 

La forme de la courbe dépend principalement du nombre et de la 
grandeur des valeurs positives de r qui annullent R. Or, la dérivée de R 
étant un binôme, on pourra toujours savoir pour quelles valeurs de / 
ce trinôme augmente ou diminue, et on connaîtra par conséquent dans 
quels intervalles se trouvent les racines positives de l'équation 

R = o, 

s'il en existe. Sans entrer dans Je détail de cette discussion, qui exige la 
distinction d'un assez grand nombre de cas, j'en indique seulement 
les résultats principaux. 

En supposant que α ne soit pas nul, le rayon vecteur mené à l'ori-
gine des arcs est normal à la courbe et la partage eu deux parties sy-
métriques : la longueur a de ce rayon est un maximum par rapport 
aux rayons voisins, si ia force est répulsive; un minimum, si elle est 
attractive. Dans ce dernier cas. la courbe à son sommet peut tourner vers 
le centre fixe sa concavité ou sa convexité ; le rayon vecteur peut croître 
jusqu'à l'infini, et alors la courbe est une spirale composée de deux 
branches infinies symétriques, ou bien le rayon vecteur a un maximum 
fini; alors le rayon maximum est tangent à la courbe, et. celle-ci est 
analogue pour la forme à une épicycloïde engendrée par un point 
d'un cercle mobile roulant intérieurement sur un autre cercle décrit 
du centre fixe. 

La force étant toujours attractive, si l'on suppose α = ο et ρ com-
pris entre, + ι et — ι , l'origine des arcs se confond avec le centre 
fixe, et la courbe se compose de deux branches symétriques qui, par-
tant d'un même point où elles sont tangentes au rayon vecteur maxi-
mum, s'enroulent autour du centre fixe et ne l'atteignent qu'après un 
nombre infini de révolutions. 

Lorsque la force est répulsive, le rayon vecteur peut décroître jus-
qu'à zéro ou avoir un minimum; s'il \ a un minimum, la forme de la 
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courbe est analogue à celle d'une épicycloïde engendrée par un point 
d'un cercle mobile roulant extérieurement sur un autre cercle décrit du 
centre fixe : si le rayon n'a pas de minimum , la courbe est une spirale 
à deux branches symétriques qui s'approchent indéfiniment du centre 
sans l'atteindre : leur longueur peut être finie ou infinie, 

4L Considérons plus particulièrement ie cas ou la force, est propor-
tionnelle à la première puissance de la distance; l'équation de la tauto-
chrone devient, en faisant ρ — ι. 

M-= ±^v/
 π

 - —Π 

Si l'on suppose d'abord m < o, ou la force répulsive , et qu'on fasse 
ι ■ / - . - 4- ι ~ ~y on voit que cette equation appartient a une êpic\-

eloïde qu'on peut décrire en faisant rouler extérieurement un cercle 

tie ravon ^ -- sur un autre cercle décrit du centre fixe avec ie Ο 

rayon Cette propriété de l'épicveloïde, d'être tautochrone lorsque 
la force est proportionnelle à la premiere puissance de la distance, se 
trouve démontrée dans le livre des /Principes Aoc. πι. . 

Lorsque la force est attractive, il faut distinguer plusieurs cas : 

Soit ÉLéi < ι et faisons ι — Ει;"' = r- : la courbe sera encore une 
7Γ" 7Γ- /' 

épicycloïde, et "Λ - - sera le rayon du cercle qui l'engendrera en rou-

lant intérieurement sur un autre cercle décrit du centre fixe avec ie rayon λα 

Soit maintenant^- ι : l'équation représente une droite située à 

la distance α du centre fixe; on retrouve ainsi une propriété bien 
connue de cette ligne. 

Soit enfin ^
 Γ
_ "' > ι, et faisons ~ — ι = — · l'équation de la tau-

[*] Elle est alors iriteirrable. 
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tochrone devient 
,
r
 dr r2 y} 

'/■> —' ± - V—r r-hr V r - — a-

On voit que / peut croître depuis a jusqu'à l'infini; θ devient d'ail-
leurs infini en même temps que /·: la courbe est donc une spirale à 
deux branches symétriques s'éloignant indéfiniment du centre fixe. 
Mais elle jouit, en outre, d'une propriété remarquable; c'est qu'elle 
est semblable, non pas comme J'épicycioïde a sa développée, mais a la 
développée de sa développée, de sorte qu'en formant ses dévelop-
pées successives, on obtient une série de courbes semblables de deux 

en deux 
Cette proposition se déduit immédiatement, comme je l'ai fait voir 

dans un précédent article, de la relation 

α [ I -h >·2) / c = ----- - (e/U -+- e~- ■" 2 

qiu existe entre le rayon de courbure ρ d'un point quelconque de la 
courbe, et l'angle u qu'il fait avec le rayon vecteur mené du centre 
fixe au sommet. Pour démontrer que cette relation convient à la ligne 
dont nous nous occupons, il suffit de faire voir qu'on en peut tirer 

son équation entre r et 0. 
Prenons pour axe des y une parallèle à la droite avec laquelle le 

ravon de courbure fait l'angle u, pour axe des χ une perpendiculaire, 

nous aurons 
dx = ρ cos IL /ht, dy = — ρ sin η du 

Remplaçons ρ par sa valeur écrite plus haut, intégrons, et disposons 
des constantes arbitraires de façon que l'on ait ,x --- ο et γ = α pour 

u — o; il viendra 

χ = | e/u (siη u + /. cos u ι -- e ~ "■ sin u — λ cos id], 

y■ — - [e'·" ■ cos u — λ sin u) 4- vr '"(cosm — λ sin «)], 

et par conséquent 
x2 -+- γ2. ou r2 — — fi ι -r- >.-> le2'-'" 4- e~2M-, J-a-'i — À2)]. 
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Tirons de cette équation 4- e~2j"; ajoutons-y ± 2, et extrayons 
la racine carrée; nous trouverons 

, 1 a2 . . 2 I r~—a5 

c" 4- e-->" \ ^ , c» — e-/u — ± - \/ , « V 1 4- λ1 a V ι 4- λ 2 

et en différentiant l'une de ces équations, puis la divisant par l'autre, 
nous aurons 

du — ή.- — r r 

λ y (r'1 — a2) {r1 4- V «4 

D'un autre côté, si dans la relation 

r'dô —ydx — xdy· = pr/κ (a? sin h 4- ̂  cos u), 

nous remplaçons ρ, x, y par leurs valeurs en fonction de u, il nous 
viendra 

r'r/0 = (
e

/« e~>u)2 du = ±: rr/r * ·> 

d'où 

dQ = ± 
r V r — st 

ce qui est l'équation de la tautochrone. 
Nous avons supposé, dans la discussion précédente, α différent de 

zéro: s'il était nul, on aurait 

,, dr / 4-T1 m 
M = ± -- y/·^- - ! . 

^ T*'* Si i— est moindre que 1, cette équation ne représente rien; si 

4JjZi — 1, elle appartient à une droite passant par le centre fixe; 
77" 

enfin si surpasse l'unité, elle représente une spirale logarith-

mique. Ainsi, lorsqu'un mobile assujetti à se mouvoir sur une spirale 
logarithmique est attiré par l'origine de cette courbe proportionnelle-
ment à la distance, il y arrive toujours dans le même temps, quel 
que soit son point de départ. 

7. On pourrait faire sur la loi de la force plusieurs autres hypothèses 
Tome IX- — DÉOEMBRF, I844-
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et obtenir des courbes plus ou moins faciles à discuter; je me borne à 
supposer encore 

f (r) = rn(r— a), 

cas auquel s'applique la remarque qui termine le n° 4. On aura alors 

dQ=± - ι 
r \ 7t 

équation qui représente une spirale logarithmique, lorsque ~~ ' 
est une quantité réelle. Ainsi, lorsqu'un point assujetti à rester sur une 
spirale logarithmique est sollicité par une force dirigée vers l'origine 
et proportionnelle à l'excès de son rayon vecteur sur celui d'un point 
fixe de la courbe, il arrive dans le même temps à ce point fixe, que! 
que soit son point de départ. 

8. Jusqu'à présent nous n'avons considéré que le mouvement dans 
le vide; admettons maintenant que le mobile éprouve de la part du 
milieu environnant une résistance proportionnelle au carré de sa vi-
tesse. Soit k cette résistance pour une vitesse égale à l'unité: en con-
servant les notations du n° 2, nous aurons, dans le cas d'une pesan-
teur constante en grandeur et en direction, 

d2s dx , ds'-
dt2 ^ ds dt2 

ou bien 
, (ds\* . (ds\1 , j a — — ak — as — — 22 dx. 
\dt \dt ° 

Cette équation s'intègre à la manière des équations linéaires; remar-
quons d'ailleurs que la vitesse doit être nulle pour χ = h, et nous 
trouverons 

(*)' = f * "~fc· d' = r=^==^=-
w 1 

Faisons 

Ç c~2ks dx — l, ί e~2hsdx — u, e"ks = ^(u); 
Jo 
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il viendra 

dt — Ψ' (")du Τ = — ' f' 'V\u)du 

k\jig{l—;t) k\figj
a

 y 7—a 

Cette valeur de Τ est pareille à celles qu'on a obtenues aux nos 2 
et 5 ; elle doit être indépendante de h et par suite de Z; on en conclura 
donc de la même manière 

ψ'(«)= - γ/·-, 
et, en intégrant, 

ψ Ut) =1 — a \cu. 

On a déterminé la constante en considérant cpie ψ (M) OU e~k' doit se 
réduire à l'unité pour s = o, c'est-à-dire pour χ — o, ou, ce qui re-
vient au même , pour M — o. 

Dans la valeur de Τ remplaçons ψ'(M) par — γ/^ ; elle devient 

rp I je Ç ' du π Je 

~ V 9.
g
 J

0 v
/,777cr,

t
) — I V 2

g
' 

il ou 

y C —
 V 2g 

Substituons cette valeur de \c, ainsi que celles de u et de ψ [u), dans 
l'équation 

ψ (u) = ι — ι \ eu ; 
nous trouverons 

=
 , _ J

2g
 Γτ

0-^ι/χ, 
π V Jo 

ou , en transposant et élevant au carré, 

Γ e~-hs clx = (1 -
* Jn 

Différentions, multiplions les deux membres par edks, puis intégrons, 

53.. 
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et il nous viendra, pour l'équation de la tautoehrone, 

χ - /«■ - I, χ — (>' - L· - I.). 

En faisant k = o, elle devient 
π- Q 

X — 8?PS' 

on retrouve la eycloïde, comme cela devait arriver. Quelle que soit 
d'ailleurs la valeur de k, il est aisé de reconnaître que la tautoehrone 
est tangente à la cycloïde à son sommet, et que le contact est du se 
cond ordre. 

9. La résistance étant toujours proportionnelle au carré de la vi-
tesse, supposons enfin que le mobile soit attiré ou repoussé par un 
centre fixe; nous aurons, en reprenant les notations du n° 5, 

a2s ,w , dr , as3 

dT> = -fW* + kdF 

ou 
rf(sy-2*(i)AI/F

=-
2
/(O^·. 

Intégrons cette équation de manière que ̂  s'évanouisse pour r~a, et 

nous trouverons 

— ie'
lks
 £ e~-hsj {r) dr. 

Posons 

f fif)dr = x, 
t/Oi 

d'où 
j ( r) dr — dx ; 

taisons de plus 

f f(r) dr = h, 
«Λ* 

il viendra 

= 2β2Αί f e"iks dx. 
\dtJ Λ 
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Sauf le facteur constant g, cette valeur de (ds)² — J est identique à celle du 

numéro précédent; la valeur de Τ qui s'en déduit doit être indépen-
dante de a et par conséquent de Λ; en outre, comme dans ce numéro, 
χ se réduit à zéro en même temps que s. Répétant donc les raisonne-
ments et les calculs déjà faits, on arrivera à la même équation, où g 
sera remplacé par l'unité; et, en y remettant à la place de a'sa valeur, 
on aura, pour équation de la tautochrone, 

£ j\r) dr = p-- (e*' -/es - ι j. 

En faisant k — o, on retrouve la courbe que nous avons déterminée 
dans le cas du vide ; on reconnaîtra facilement qu'en général ces deux 
courbes sont tangentes à l'extrémité du rayon vecteur α qui est leur 
sommet commun, et qu'elles y ont un contact du second ordre. 


