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PURES ET APPLIQUÉES. 369 

RECHERCHE THÉORIQUE 

DES LOIS D'APRÈS LESQUELLES LA LUMIÈRE EST RÉFLÉCHIE ET RÉFRACTÉE 

A LA LIMITE COMMUNE DE DEUX MILIEUX COMPLÈTEMENT TRANSPARENTS ; 

PAR M. F.-E. NEUMANN [*]. 

(Traduction de M. CARART.) 

La théorie de la réflexion et de la réfraction comprend deux questions bien distinctes : 
la question de direction, la question d'intensité. Elle s'est en conséquence partagée en 
deux parties, dont Tune a atteint une haute perfection par les travaux de Newton, de La-
place, d'HuyghensetdeFresnel. Dans la plupart des cas, la théorie newtonienne a donné 
les lois que suivent les directions des rayons après leur réflexion ou leur réfraction. La 
doctrine des ondulations a appliqué ses principes à tous les faits que l'observation a 
jusqu'ici rencontrés ; elle ne serait amenée à les modifier 'que s'il existait des milieux 
dans lesquels les mouvements lumineux se transmettraient d'après des lois nouvelles et 
encore inobservées, circonstance qui ne paraît pas vraisemblable. 

Quant à la seconde partie, celle qui recherche les intensités des rayons réfléchis et 
réfractés, elle est d'une origine bien plus récente. Avant Lambert, on ne s'en était pas 
pas occupé, et l'ctude expérimentale des phénomènes qu'elle présente avait paru, dit 
ce géomètre, si difficile, qu'aucun physicien n'avait osé l'aborder. Les essais que Lam-
bert lui-même publia sur ce sujet, dans sa Photométrie, ne pouvaient guère avancer une 
question dont la clef manquait encore : je veux parler de la découverte de la polarisation 
par réflexion. La science avait à s'enrichir en outre de la découverte de MM. Aragoet Fres-
nel relative à l'interférence de deux rayons polarisés, avant que Fresnel pût attaquer le 
problème jusque-là inabordable des intensités de la lumière; ses efforts luttèrent heu-
reusement contre les obstacles, et les résultats qu'ils obtinrent ne sont pas le témoignage 
le moins éclatant du talent ingénieux et élevé de celui qui fonda pour l'optique une ère 
nouvelle. 

Fresnel résolut le problème de l'intensité de la lumière après sa réflexion et sa ré-
fraction à la surface d'un milieu transparent non cristallisé. Comme conséquences tie la 
solution à laquelle il parvint, se développèrent à lui les déterminations théoriques 
d'une grande classe de phénomènes qui avaient depuis longtemps excité l'attention 

Lu à l'Académie ties Sciences de Berlin, le ; décembre x835. 

Tome VII. — OCTOBRE I8J?.. 4 7 



370 JOURNAL DE MATHÉMATIQUES 

des physiciens, et qui étaient en partie expérimentalement appréciés, sans que rien eût 
fait entrevoir le lien qui les unissait. A cette classe de phénomènes se rattachaient la po-
larisation complète par réflexion sous l'angle de polarisation, la polarisation partielle 
par réflexion sous des angles quelconques et son accroissement par des réflexions répé-
tées, la polarisation partielle par réfraction et son accroissement par des réfractions suc-
cessives , la rotation du plan de polarisation quand la lumière incidente est polarisée, etc. 

Le point le plus remarquable des travaux de Fresnel est «ans contredit l'heureuse 
interprétation de ses formules pour le cas de la réflexion totale, interprétation qui le mena 
à la découverte des lois d'une classe de phénomènes qui étaient encore pour bien long-
temps abandonnés aux tâtonnements de l'expérience, des lois d'après lesquelles la lu-
mière réfléchie se polarise circidairement ou elliptiquement. 

l orsque les travaux de Fresnel furent publiés, le cercle des expériences avait déjà 
dépassé les limites que ce grand physicien avait atteintes dans sa théorie de la réfraction 
et de la réflexion ; depuis lors il a continué à s'étendre. Secbeck a poursuivi avec succès 
les recherches commencées par Brewster sur l'influence des surfaces cristallines sur la 
lumière réfléchie. Brewster a fait connaître plus exactement une classe de phénomènes 
qui dépendent de l'action des surfaces métalliques sur la lumière polarisée, phénomènes 
qui ont une liaison intime avec les faits observés par M. Arago, et plus tard étendus 
par les observations de Nobili et d'Airy. Ces modifications qu'exercent les surfaces métal-
liques sur la lumière réfléchie se rattacheraient, d'après la remarque d'Airy touchant 
la réflexion de la lumière à la surface du diamant, aux propriétés que présente la lu-
mière réfléchie à la surface des corps transparents. 

J'ai déduit des observations de Brewster \ Pngg. Ann., Bd. XXVI) la loi mathéma-
tique de ces phénomènes; mais on ne peut pas en espérer une théorie rigoureuse avant 
qu'on soit arrivé à une définition optique exacte de la transparence des corps et des 
causes qui la modifient à des degrés si différents : ce qui, nonobstant les travaux pré-
paratoires sur l'absorption de la lumière, notamment ceux d'Herschel et de Brewster, 
semble devoir manquer encore longtemps. 

De l'autre côté, la voie se présente tout ouverte, et l'on peut espérer compléter la 
théorie de Fresnel en l'étendant aux cas où la réflexion et la réfraction sont produites 
par des corps transparents cristallisés. Dans cette vue un essai a déjà été tenté. Seebeck 
a cherché à déduire, pour des angles observés par lui, la loi de la polarisation com-
plète par la réflexion à la surface des cristaux. Il s'est appuyé sur des principes théo-
riques semblables à ceux que Fresnel avait adoptés comme base de ses travaux. Cette 
extension des formules de Fresnel souffre néanmoins encore quelques difficultés, et ne 
s'applique pas à l'explication de tous les phénomènes jusqu'ici connus. 

Les questions posées par le progrès des recherches expérimentales sont à peu prés 
les suivantes : 

La loi générale de l'angle de polarisation, quelle que soit la position de la surface 
réfléchissante par rapport aux axes optiques, et dans quelque azimut qu'ait lieu la 
reflexion ; 

La loi pour la rotation du plan de polarisation dans le rayon réfléchi, rotation qui 
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résulte de la réflexion par les corps cristallisés quand le rayon incident est polarisé pa-
rallèlement ou perpendiculairement au plan de réflexion; 

La loi pour la déviation du plan de polarisation quand la lumière naturelle est réfléchie 
sous l'angle de polarisation ; 

La loi d'après laquelle la lumière réfractée se divise en deux rayons, l'un ordinaire , 
l'autre extraordinaire : cette loi doit faire connaître à la fois la position du plan de pola-
risation de la lumière incidente pour laquelle l'un ou l'autre des rayons disparaît; 

La loi d'après laquelle, à la réflexion intérieure dans un cristal, un faisceau de lu-
mière produit deux faisceaux réfléchis et un faisceau réfracté. La connaissance des deux 
dernières lois rendra possible une théorie des couleurs que présentent les cristaux à la 
lumière polarisée. 

On voit que le nombre des phénomènes et des faits qui attendent leur explication du 
développement de la théorie de la réflexion et de la réfraction est assez grand pour 
rendre ce développement désirable. Tel est le but spécial de ce Mémoire ; il aura encore 
pour objet d'expliquer tous les phénomènes de lumière qui dépendent de la différence 
des vitesses de propagation des ondes lumineuses. 

Quand on examine avec soin toutes les circonstances qui rapprochent la réflexion 
par des corps transparents non cristallisés de la réflexion produite par des milieux cris-
tallins, on ne peut douter qu'une même théorie puisse les comprendre toutes deux; car 
on ne voit pas entre elles de ces différences caractéristiques qui séparent la réflexion sur 
les corps transparents de la réflexion sur les métaux. S'il en est ainsi, les principes sur 
lesquels on s'appuie pour calculer l'intensité de la lumière réfléchie et l'intensité de la 
lumière réfractée à la surface des milieux non cristallisés doivent se prêter à une gé-
néralisation qui leur permette de s'adapter avec la même rigueur à la théorie des quan-
tités de lumière réfléchies et réfractées par les surfaces transparentes cristallisées. Les 
principes admis par Fresnel ne sont pas susceptibles d'une pareille généralisation , car 
ils supposent que dans tous les milieux cristallisés l'éther possède une égale élasticité. 
Les doutes que j'avais conçus autrefois sur l'exactitude de ces principes se sont encore 
fortifiés par cette circonstance. Ils m'étaient venus à l'occasion de la définition du plan 
de polarisation que Fresnel définit ; le plan conduit par la direction du rayon perpen-
diculairement à la direction du mouvement des molécules éthérées. Cette définition 
est le fondement sur lequel il a appuyé sa théorie des intensités réfléchies et réfractées. 
Mais la théorie de la double réfraction (Pogg. Ann., Bd. XXV ), que j'ai déduite d'une 
manière rationnelle des principes sur lesquels Fresnel fondait la sienne, conduit à une 
définition tout autre du plan de polarisation. Ce plan serait celui qui passe par la di-
rection du rayon, et par la direction du mouvement vibratoire. 

La théorie que je vais développer dans les pages suivantes sera fondée sur des prin-
cipes d'une généralité telle, qu'ils sont non-seulement applicables aux corps transparents 
non cristallisés, mais encore aux milieux cristallisés à un axe ou à deux axes , et même 
à des milieux dont l'action sur la lumière serait d'une nature toute nouvelle et encore 
inconnue. La même théorie comprendra comme corollaire la définition du plan de po-
larisation qu'exige la théorie de la double réfraction. 

47·· 
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§ IER. 

Avant d'exposer les principes sur lesquels je m'appuie, je présenterai sommairement 
les résultats du travail de Fresnel sur les intensités des rayons réfléchis et réfractés à 
la surface des corps transparents non cristallisés. Ces résultats ont reçu la sanction d'ex-
périences exactes, et peuvent ainsi servir à confirmer la justesse des vues théoriques qui 
m'ont conduit, malgré le désaccord entre ces vues et les principes qui les ont d'abord 

produits. 
Représentons-nous un faisceau de lumière, polarisée dans un azimut quelconque, 

tombant à la surface d'un milieu transparent. Soient S2 l'intensité de la composante de 
ce faisceau suivant le plan d'incidence, P3 l'intensité de la composante perpendiculaire 
à ce plan. Décomposons pareillement la lumière réfléchie (R2) en deux parties R;, R;, et 
la lumière réfractée (T2) en deux parties Τ', T2. R,', T2 sont polarisées suivant le plan 
d'incidence; R2, Tp perpendiculairement au même plan. Ces composantes satisfont 

aux égalités 

R2 = R; -+■ R;, Τ* = τ; + Τ;, 

et, en appelant ι l'intensité de la lumière incidente, 

S' -h P' = ι · 

Les formules principales de la théorie de Fresnel sont les suivantes : 

M Ρ 2 — [~sin (τ — ?')T ο, 

(9
)
 , _ rtang^'r]2P2 

(A) (3)
τ

,
 =

 sin^sin^'
 g% 

(4) τ
2
 =

 "psin?.?'
 F. 

■p désigne l'angle d'incidence, y l'angle de réfraction. 
On a vérifié la justesse de ces expressions de plusieurs manières. 

i. Par des expériences très-précises sur l'angle de polarisation, Seebeck a mis hors 
de doute la loi de Brev/ster, qui elle-même est une conséquence de la formule (2). En 
posant Rp = ο, on déduit tang y = η, η étant l'indice de réfraction de la sub-

stance. 

2. De très·nombreuses expériences sur la rotation du plan de polarisation par re-
flexion ont été faites par Fresnel (Pogg. Ann., Bd. XXII), et surtout par Brewster 
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(Pogg. Ann., Bd. XIX). La tangente de l'azimut du plan de polarisation dévié par ré-
flexion est 

T,2 = S2 — R/, et Tp = P2 — R),, 

Ρ - désigné la tangente de l'azimut du plan de polarisation du rayon incident. 

5. Brewster a fait pareillement des observations sur l'azimut du plan de polarisa-
tion dans le rayon réfracté (Pogg. Ann., Bd. XIX). 

Elles ont donné pour cet azimut 

T,2 = S2 — R/, et Tp = P2 — R),, 

h. M. Arago a fait, deux observations directes sur l'intensité de la lumière réfléchie 
non polarisée. Elles sont relatives aux angles d'incidence pour lesquels la réflexion donne 
le tiers et le quart de la lumière incidente. 

Dans le cas de la lumière non polarisée, quand 

S2 -Ε P2 = i, 

on doit poser 
S2 = P2 —1/2 

et l'intensité que présente la lumière naturelle réfléchie est 

T,2 = S2 — R/, et Tp = P2 — R),,T,2 = S2 — R/, et Tp = P2 — R),, 

Toutes ces observations s'accordent si complètement avec les formules ci-dessus rap-
portées , qu'on ne petit douter que ces formules n'en expriment les véritables lois, au-
tant du moins que la conception d'un milieu transparent peut se trouver réalisée dans 
la nature. 

On doit surtout attacher une grande importance aux observations de Fresnel et de 
Brewster, citées nos 2 et 5, non pas tant à cause de leur étendue, qu'à cause de la 
preuve directe qu'elles apportent de l'exactitude des formules (A). Chacune de ces séries 

d'observations vérifie seulement, il est vrai, l'exactitude des rapports —, — ; mais, 

prises ensemble, elles prouvent l'exactitude des valeurs absolues R., R;„ T„ j 
L'observation a donné les angles que les plans de polarisation de la lumière réfléchie 

et de la lumière réfractée font avec le plan d'incidence. On peut déduire de leurs va-
leurs l'intensité de la lumière réfléchie aussi bien que celle de la lumière réfractée pour 
le cas où le rayon incident déjà polarisé tombe à la surface d'un milieu transparent 
non cristallisé. L'hypothèse d'un corps transparent non cristallisé donne, en effet, 

T,2 = S2 — R/, et Tp = P2 — R),, 
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d'où l'on tire, en désignant par α et β les azimuts observés des plans de polarisation du 
rayon réfléchi et du rayon réfracté, 

Rotang*, g^=tang(3. 

R/,, I\ ; seront par-là déterminés. 
Une théorie de la réflexion et de la réfraction qui ne donne pas pour les intensités 

des rayons lumineux les valeurs que les hypothèses rationnelles de Fresnel ont four-
nies en (A) doit être abandonnée; mais une théorie qui se résume dans les mêmes for-
mules doit être regardée comme déjà confirmée. 

§ II. 

Les hypothèses que j'adopte et sur lesquelles je fonde la nouvelle théorie sont les 
suivantes. 

1. La différence des vitesses de propagation de la lumière dans différents milieux, ou 
la réfraction de la lumière, résulte uniquement d'une inégale élasticité de l'éther dans 
ces milieux ; la densité de l'éther est dans tous la même. Dans la théorie de Fresnel, il 
est essentiel d'admettre dans tous les milieux transparents non cristallisés une élasticité 
uniforme, et de faire dépendre la réfringence d'une densité variable. Une de ces deux 
suppositions est indispensable ; on ne peut supposer ( le principe posé n° 15 de ce para-
graphe le fera clairement comprendre) que l'élasticité et la densité varient ensemble, 
si, comme l'observation paraît l'apprendre, les phénomènes delà réflexion et de la ré-
fraction dans les corps transparents ne sont dépendants que de l'indice de réfraction de 
ces milieux. Mais on doit se décider pour l'une ou pour l'autre, et l'incertitude me 
semble difficile. On peut bien, dans les milieux cristallisés , se figurer une élasticité va-
riable suivant les directions, mais une densité variable?... Ces principes ne regardent, 
au reste, que les milieux à transparence parfaite; rien ne nous dit que, dans les métaux 
et les autres corps à transparence incomplète , la variation de densité n'accompagne pas 
la variation d'élasticité. 

2. La lumière incidente résulte de vibrations transversales : ce sont des vibrations 
de la même espèce qui produisent la réflexion et la réfraction. 

5. La direction de ces mouvements vibratoires est partout, dans les milieux cristal-
lisés comme dans les autres, comprise dans le plan de l'onde. 

Ces deux hypothèses sont empruntées à la théorie de Fresnel. La première sert de 
base à sa théorie, si souvent citée, des intensités de la lumière; la seconde se déduit 
comme un résultat de sa théorie de la double réfraction. D'après la théorie de la double 
réfraction que j'ai donnée, les molécules oscilleraient suivant une direction légèrement 
inclinée à la surface de l'onde. 

4. Le plan de polarisation d'une onde est déterminé par la normale à cette onde et 
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par la direction de son mouvement. Cette définition, contraire à la définition de Fresnel, 
est une conséquence forcée de mes recherches sur la double réfraction. (Pogg. Ann., 
Bd. XXV.) 

J'appelle plan de polarisation d'un rayon le plan conduit par ce rayon et par la di-
rection du mouvement de ses éléments. Je prouverai plus tard que le rayon est toujours 
perpendiculaire à la direction du mouvement de ses molécules. 

o. Touchant la réflexion et la réfraction à la surface des corps complètement trans-
parents , je m'appuie sur les considérations qui suivent. 

A. Soit AB ,fig. i,e, une onde incidente à la limite commune GG de deux milieux 
transparents que, pour plus de généralité, je prendrai cristallisés; BC représentant 
l'onde réfractée, BD l'onde réfléchie. Ces trois plans d'ondes coupent le plan réfringent 
GG suivant la même droite. Chacune de ces trois ondes AB, BC, BD se propage paral-
lèlement à elle-même avec une vitesse propre qui dépend de la direction de son plan de 
polarisation, et de sa position par rapport à l'axe optique. J'indique par des lignes ponc-
tuées une quelconque des positions que prennent ces plans dans leur mouvement de 
progression ; ils sont liés entre eux de manière à atteindre en même temps le point B'. 
Cette condition détermine la position relative des trois plans de ce système. En effet, 
soient l'angle d'incidence du plan d'ondes ABG = i, l'angle de réflexion DBG = r et 
l'angle de réfraction CBG = r, les vitesses de propagation respectives η , me t u; la 
condition que le point B, quel que soit le plan d'ondes auquel il appartienne, se meuve 
avec une vitesse identique, est exprimée par les deux équations 

T,2 = S2 — R/, et Tp = P2 — R),, 

Les quantités n, m et u dépendent des positions des plans d'onde auxquels elles con-
viennent, et sont par conséquent, pour des plans de réfringence et d'incidence détermi-
nés, des fonctions connues des angles i, ret r qui fixent la position des plans d'onde. De 
ces deux équations, une donne l'angle r, l'autre l'angle s. En y mettant à la place de 
n, m et α les valeurs données par Fresnel en fonction des angles i, r, s, chacune d'elles 
conduit à une équation du 4e

 degré. Nous verrons que la première a deux racines néga-
tives par le moyen desquelles on déterminera deux plans d'ondes réfléchies ; la seconde , 
deux racines positives qui correspondront au système des deux ondes réfractées. 

B. Toutes les molécules des mêmes ondes ont le même mouvement, tant en vitesse 
qu'en direction; cette uniformité dans l'intérieur de chaque onde s'étend jusqu'à la 
ligne d'intersection des différents plans en B. Le mouvement des molécules en B est la 
somme des mouvements qui leur sont communiqués par les ondes du premier milieu , 
l'onde incidente, l'onde réfléchie, ou la somme des mouvements produits par les ondes 
du second milieu, les ondes réfractées. Ces deux sommes sont égales. Les composantes 
du mouvement imprimé aux molécules en B par l'onde incidente et l'onde réfléchie sont 
égales aux composantes du mouvement imprimé aux mêmes molécules par les ondes ré-
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frartees. Fresnel admettait seulement l'égalité des deux composantes parallèles au plan 

de réfringence. L'hypothèse que je fais s'appuie sur la considération suivante. 
Quand, à l'aide des équations de la Mécanique, on veutrésoudre rigoureusement le pro-

blème de la réflexion et de réfraction des ondes lumineuses à la surface de séparation 

de deux milieux transparents, on est forcé de poser les deux conditions suivantes, 
qui déterminent l'état de la limite commune des deux milieux : i° que, suivant cette 
surface, ces deux milieux sont intimement unis; 2° que la pression produite par le 
mouvement des molécules en Β dans l'un d'eux est égale à la pression produite par 
le même déplacement dans l'autre. Ces deux principes servent à établir six équations 
de condition au moyen desquelles on détermine les fonctions arbitraires comprises dans 
l'intégrale générale. La première de ces deux conditions, que les deux milieux sont so-
lidaires à leur limite commune, combinée avec l'hypothèse d'un mouvement commun à 
toutes les molécules d'un même plan d'onde, est exactement la supposition que j'ai 
faite; car de l'égalité des vitesses des molécules en Β suit l'égalité de leurs déplace-

ments. 

G. La force vive que possède l'onde incidente est égale à la somme des forces vives de 
l'onde réfléchie et de l'onde réfractée. 

Fresnel avait déjà fait usage du même principe, et j'avoue que, du côté théorique, 
ce principe peut être contesté ; car on ne comprend pas comment une partie de la force 
vive de l'onde incidente n'est pas dépensée à produire des ondes à vibrations longitu-
dinales dont l'effet optique est nul : une partie de la lumière devrait donc toujours dis-
paraître , puisque son intensité est mesurée par la force vive des ondes à vibrations trans-
versales, et qu'il n'existe, à proprement parler, aucun corps complètement transparent. 
Le principe ne peut donc être adopté qu'à la suite des expériences qui prouvent qu'il y 
a effectivement des corps pour lesquels l'intensité de la lumière incidente est égale à la 
somme des intensités que possèdent la lumière réfléchie et la lumière réfractée. 

§ III. 

Je vais appliquer, dans ce paragraphe, les principes que je viens de développer au 
cas ou le milieu réfléchissant et réfringent n'est pas cristallisé. La lumière incidente peut 
être polarisée ou ne pas l'être, mais on peut toujours la supposer décomposée en deux 
parties,"l'une qui est polarisée suivant le plan d'incidence, l'autre qui s'est polarisée 
perpendiculairement au même plan. La première produit une onde réfléchie et une 
onde réfractée qui sont encore polarisées suivant le plan d'incidence; la seconde donne 
à la reflexion comme à la réfraction, des ondes polarisées perpendiculairement au plan 
d'incidence. Ces deux portions de lumière peuvent être considérées séparément. Je 
m'occuperai d'abord de la lumière polarisée perpendiculairement au plan d'incidence. 
Soient AB,J!g. 2, une onde plane incidente, polarisée perpendiculairement au plan d'in-
cidence; FB l'onde réfléchie, BD l'onde réfractée: dans ces trois ondes le mouvement 
s'opère parallèlement au plan réfringent. Les vitesses de mouvement seront respective-
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ment, dans l'onde incidente, l'onde réfléchie et l'onde réfractée, désignées par P, R
p

, D,,. 
On a alors, par le principe de l'égalité des composantes, § II, n° il, B, 

(ι) Ρ -H R^ = D
p

. 

L'équation de la conservation des forces vives fournira une seconde relation pour dé-
terminer et D,,. A cause de l'égalité de densité, §11, n° I, on peut, dans l'équation 
des forces vives, prendre les produits des vitesses an carré par les rapports des espaces 
qu'ébranlent les mouvements d'une même ondulation dans les trois ondes. Les rapports 
de ces trois espaces sont, si l'on désigne par d et d'les longueurs d'ondulation dans 
le milieu où se meut l'onde incidente et dans le milieu où elle se réfracte , 

AC χ d : BF X d : BD χ d'. 

Mais AC =i BF, et, si l'on désigne par tp l'angle d'incidence CAB, et par tp' l'angle de 
réfraction ABD, on a 

AC : BD = cos if : cos φ'. 
D'ailleurs 

d : d' : : sin ip : sin φ'; 

donc, pour les rapports des trois espaces, il vient 

stn tp cos a : sin φ cos a : sin ψ cos φ , : ι : ι ; - . 

L'équation donnée par le principe de la conservation des forces vives est donc 

M P'= R; +D;sin<f,COSÎp-· 

Si l'on fait passer R,( dans le premier membre, et si l'on divise cette équation par (i), 
on obtient 

P_Rji=d,559^JL 

Cette dernière équation, réunie à l'équation (i), nous donne 

T,2 = S2 — R/, et Tp = P2 — R),,T,2 = S2 — R/, et Tp = P2 — R),, 

T,2 = S2 — R/, et Tp = P2 — R),,T,2 = S2 — R/, et Tp = P2 — R),, 

Si l'on désigne par P2 l'intensité de la lumière incidente, R,( sera l'intensité de la lu-

mière réfléchie, et D2 Sm^ C°S^ l'intensité de la lumière réfractée: on aura donc, en 

posant D„ — = T«, 

I}) 
T,2 = S2 — R/, et Tp = P2 — R),,T,2 = S2 — R/, et Tp = P2 — R),, 

T,2 = S2 — R/, et Tp = P2 — R),,T,2 = S2 — R/, et Tp = P2 — R),, 
Tome VU, — OCTOBRE 1842· 48 
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Ce sont les formules que j'ai rappelées au § Ier (A), et dont la justesse a été démontrée. 

Soit l'onde incidente AC polarisée parallèlement au plan d'incidence. Le mouvement 

de cette onde, aussi bien que les mouvements de l'onde réfléchie et de l'onde réfractée, 
se feront parallèlement au plan d'incidence. Les vitesses de ces mouvements dans l'onde 
incidente, dans l'onde réfléchie et dans l'onde réfractée, seront respectivement S, R„ D,. 

La conservation des forces vives donne l'équation 

14)
 S

' = bj + D;"Î^. 

Si l'on imagine les mouvements S, R„ D
s
, décomposés suivant des directions parallèle 

et perpendiculaire au plan de réfringence, on déduit du principe de l'égalité des com-

posantes les deux équations qui suivent : 

( S sin φ -h R
s
 sin γ = D

s
 sin ψ', 

" ' ( S cos y — Rj cos y = D, cos tp'. 

Nous avons ainsi trois équations et seulement deux inconnues R, et D
s
 ; mais on voit 

facilement que la troisième équation est une conséquence des deux autres, et qu'elle 
n'exprime rien de contradictoire. On doit être porté à voir, dans cette circonstance, 
une confirmation des considérations développées au § II, savoir, qu'une transparence 
complète ne peut exister sans une densité uniforme dans les deux milieux vibrants, 
car l'équation de la conservation des forces vives serait tout autre si la densité chan-

geait. 
Des équations (5) on tire 

R,ssin
 D,=2S

iM 

et si l'on désigné encore D; —— par Τ , 

T,2 = S2 — R/, et Tp = P2 — R),, 

valeurs qui sont identiques avec celles que j'ai citées au § Ier (A). 
La nouvelle théorie donne donc les valeurs vraies des intensités que possèdent la lu-

mière réfléchie et la lumière réfractée à la limite commune de deux corps transparents 

non cristallisés. 

§ IV. 

Je vais présentement appliquer les mêmes principes au cas où la réflexion et la ré-
fraction se passent à la surface de séparation d'un milieu non cristallisé et d'un milieu 
cristallisé à un axe. Je développerai d'abord quelques relations générales, en partie 

connues, qui trouveront leur emploi dans la suite. 
La position des différentes lignes et des différents plans doit être exprimée par les 
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angles que forment ces divers éléments avec les trois axes rectangulaires d'élasticité du 
milieu cristallin à la surface duquel ont lieu les phénomènes de réflexion et de ré-
fraction. 

Soient A, B, C les cosinus des angles que la normale à la surface réfringente fait avec 
ces axes. 

Les normales aux ondes planes, incidente, réfléchie, réfractée ordinairement, réfrac-
tée extraordinairement, auront respectivement pour cosinus a, b, c, α, δ, γ, α', β', y', 
a , β , y . 

La normale au plan d'incidence sera fixée par les angles dont les cosinus sont 

Ε,, E,, E3; 

la trace du plan d'incidence sur le plan réfringent par 

F,, F„ F
3

; 

la ligne principale du plan réfringent par 

H,, H,, H,; 

les angles que le plan réfringent fait avec l'onde plane incidente , l'onde réfractée ordi-
nairement , et l'onde réfractée extraordinairement, seront 

φ, ? , cp . 

L'angle que la ligne principale (H(, H
3
) forme avec la trace du plan d'incidence et 

du plan réfringent (F,,F,,F3), c'est-à-dire l'azimut du plan d'incidence, sera dé-
signé par ω. Enfin soient μ', μ" les vitesses de propagation de l'onde ordinaire et de 
l'onde extraordinaire, la vitesse de propagation dans le milieu environnant non cris-
tallisé étant = ι. 

Pour déterminer Ε,, E,, E3, on a 

et E? -4- Ε' H- E* 1, 

(') 
AE, 4~ BE, -f- CEj — o, 
£tE| —f- éE„ —f— cE, — 05 

pour F,, F., F
;i
, on a 

et F? 4- F, 4- F, = 1, 
AF, -I- BF, -f- CF„ = o, 

w E|F
t

—f— E
2
F

2
 -f- ESF, — o ; 

pour la détermination de H,, H,, H., on a 

H, 4- Hl 4- RI = 1, 

et 
AH, 4- BH, 4- CH., = o, 

(3) XH, 4-YH2 4- ZH, = o. 

Χ, Y, Ζ désignent les cosinus de la normale au plan qui est mené par la ligne princi-
48. 
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pale perpendiculairement au plan de réfringence ; ils sont définis par les équations 

(4) X' + Y2=i, Z = o, AX + BY = o. 
Pour les angles 7 et ω, enfin, on a 

(5) cos y = Aa 4- Bb -+- Ce, 
(6) cos Ω = H,F, -+- HIF

2
 4- H3F3. 

A l'aide des équations (i), (2) et (3), (4) on peut exprimer F,, F,, F,, et H,, H,, H.;, au 
moyen de a, b, c, et, en portant ces valeurs dans l'équation (6), qu'on combinera avec 
l'équation (5), exprimer a, b, c par les angles φ et ω, en observant la condition 

a2 4- b2 -+- c2 = 1, 

Pour éviter les longueurs, on peut supposer B = o, car dans les cristaux optiques à 
un axe, il n'y a qu'une seule des directions des axes d'élasticité qui soit déterminée. 

II vient alors 
a = A cos y — C sin y cos ο>, 

'7) b = sin y sin ω, 
c = C cos <f 4- A sin <f cos ω ; 

F, = C cos ω, 
C8) F

3
=— sin ω, 

Fj=— A cos ω; 
E|= C sin ω, 

'9' E,= cos ω, 
L3=— A sin ω. 

On obtient les valeurs des cosinus α, (3, 7, a', (3', 7', a", S'', 7" en changeant dans l'équa-
tion (7)7 en — <f, f', if", les normales que ces cosinus déterminent étant toutes placées 
dans le plan des normales fixées par A, B, C et a, b , c , c'est-à-dire dans le plan d'in-
cidence. 

Soient G,, G-, G., les cosinus des angles que la trace du plan de l'onde incidente sur 
le plan d'incidence fait avec les trois axes d'élasticité, etl„ II

3
 les cosinus des angles 

de la ligne commune au plan d'incidence et à l'onde réfléchie avec les mêmes axes; on a 

nGi —f— b&z —f- CG
3

 ·— ο , 
Ε,G, +E2G2

 -f-E3G
3
 = o, 

et al, 4- filj 4- 7I, = o, 

E,ï, 4- E2I, 4- E3I3 — o. 

On déduit de là, en mettant pour a, b, c, α, β, 7, Ε,, Ε,, E
3

, leurs valeurs tirées des 
équations (7) et (q), 

G, = A sin 7 4- C cos 7 cos ω, 
(to) G; =— cos 7 sin ω, 

y G
3
 — C sin 7 — A cos 7 cos ω ; 

et 
I, = A sin 7 — C cos 7 cos ω , 

(>·) I
2
 = cos 7 cos ω, 

I
3
 = C sin 7 4- A cos 7 cos ω. 
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Pour exprimer y' et y" au moyen de 7, on a 

p' sin y = sin y', et p" sin y — sin y" , 

équations dans lesquelles p' est une constante p., oxprimant la valeur commune des vi-
tesses de propagation des deux systèmes d'ondes, quand tous les deux sont perpendicu-
laires à l'axe. La première équation ne réclame donc aucune étude ultérieure. Quant à 
p", c'est une fonction de l'angle que la normale à l'onde extraordinaire fait avec l'axe, 
c'est-à-dire une fonction de y" que voici d'ailleurs, 

(12) ρ"2 = π2 -(- (ρ3 — ττ2) γ"2 : 

π désigne la vitesse de propagation de l'onde extraordinaire, quand elle est parallèle à 
l'axe. Pour déterminer 7" on a ainsi, en remplaçant 7" par sa valeur exprimée en 7", 

l'équation suivante 

( 13) sin2 7 [V -4- (ρ2 — π2) (C cos φ" -+- A sin 7" cos ω)2] = sin2 y". 

La racine positive de cette équation du deuxième degré convient à la question qui nous 
occupe ; quant à la racine négative, elle n'a de signification que pour la réflexion à 
l'intérieur d'un milieu cristallin. 

Il faut encore trouver les directions du mouvement dans l'onde ordinaire et dans 
l'onde extraordinaire. 

Soient IL, β.'b, R' les cosinus des angles que la direction du mouvement ordinaire 
fait avec les axes d'élasticité; R", R^, R" les cosinus des angles que la direction du 

mouvement extraordinaire fait avec les mêmes axes. 
La direction désignée par R^, R,|, RJ est l'intersection du plan d'ondes, dont la 

normale a pour cosinus α', β', y', avec le plan mené par cette normale et par l'axe; l'autre 
direction, indiquée par R/'> R^, Rj, est perpendiculaire au plan mené par l'axe et par 
la normale dont les cosinus sont α", β", y". 

Cette dernière direction doit donc satisfaire aux conditions 

a"R;; + β" R;; + 7" Rh = 0, R; = 0, 
OU 

T,2 = S2 — R/, et Tp = P2 — R),, 

On obtient les cosinus de la normale au plan conduit par («', β', y') et l'axe, en rem-
plaçant α", β" par α', β'. On a ainsi 

*'K -+- P'r6 -+- v'R' = o, 
@'R,; — «'R,; = o, 

d'où 

R: = -, R,; = — , R' =_dfsfR: = -, R,; = — , R' =_dfsf 
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De la position donnée du plan d'ondes, on doit déduire la direction du rayon qui 
lui appartient. Pour l'onde plane ordinaire le rayon est dirigé suivant la normale à cette 
onde; pour l'onde extraordinaire le rayon a la direction du rayon vecteur mené du 

centre de l'ellipsoïde 
jdx! 4- μ2 y2 π2ζ2 = p'V, 

dont l'ordonnée z est parallèle à l'axe optique , au point où cette surface est touchée par 
le plan de l'onde. L'équation de ce plan est 

3." χ 4- p"y 4- y"z = o. 

Le rayon vecteur, mené au point de contact, forme avec les trois axes des angles dont 
les cosinus sont X, Y, Z; sa direction est donnée par les équations 

R: = -, R,; = — , R' =_dfsf 

Pour le point de contact commun à l'ellipsoïde et au plan, à l'extrémité de ce rayon 

vecteur, on a 
dx χ2 z y ' 
dz μ2 X a" 

R: =-, R,; = —, R' =_dfsfR: =-, R,; = — , R' =_dfsf 

tirant de là les valeurs de - et de - , et les portant dans les equations qui precedent, 

et observant que X2 4- Y'2 4- Z'2 = i, on trouve 

Χ - -γ-> 

(ιί> 
Y = Τ = s/a"3*' 4- (3"2-rr- 4-

 y
'7-y , 

y — zLil. 

si l'on appelle ω" l'azimut de ce rayon par rapport au plan d'incidence , et ο son incli-

naison sur la normale au plan réfringent, 

R: = -, R,; = — , R' =_dfsfR: = -, R,; = — , R' =_dfsfR: = -, R,; = — , R' =_dfsf 

R: =-, R,; = —, R' =_dfsfR: = -, R,; = — , R' =_dfsfR: = -, R,; = — , R' =_dfsf 

' 1 I' I 
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§ v. 

Nous allons présentement former les équations qui résultent du principe de l'égalité 
des composantes. Le plan d'incidence est à l'azimut ω, l'angle d'incidence est φ, les 
angles de réfraction sont y' et y". Soient ensuite S la vitesse du mouvement dans la lu-
mière incidente, parallèlement au plan d'incidence ; Ρ perpendiculairement au même 
plan; R

s
, Rp les deux composantes correspondantes dans la lumière réfléchie; D'la vi-

tesse du mouvement dans l'onde ordinaire ; D" la quantité analogue dans l'onde ex-
traordinaire. Nous décomposons ces six mouvements dans leurs composantes parallèles 
aux trois axes coordonnés, et nous obtenons, par lé principe susnommé, les trois 
équations 

PE, 4- SG, 4 R^E, 4 R2I, = D'R„ 4- D"R^, 
PE

2
 + SG

2
 -H R,E

2
 -+- RJ

2
 = D'R; 4 D"R;', 

PE, -+- qG
3 4 RpE3 -+- RjL — D R 4 D R . 

Si l'on multiplie la première, la seconde et la troisième de ces équations, d'abord par 
Ε,, E

2
, EJ , puis par F,, F

2
, F,, et enfin par A, Β = ο , C, et qu'à chaque fois on 

ajoute les trois produits, en ayant égard aux relations 

F,G, -f- F2G2 4- F3G3 — cos φ — F,!, 4· IaL 4- F3I3, 
et AG, 4 CG

3
 — sin y — — (AI, 4- GI

3
), 

on transforme ces trois équations dans les trois suivantes 

p 4- R, = D'CR; E, 4- R; E
2
 4 R; E

3
) 4 D" (R^E, 4 R;' E

2
 4 R;EJ, 

(■) 
(S 4 R,) cos y — D' (R; F, 4 R,; F, 4 RJ F,) 4 D" (R» F, 4 R" F, 4 R^FJ, 
(S — R

s
) sin y = 1)' (R; A 4 R^ C) 4 D" (R" A 4 R" C). 

Si des équations (i3), (12), (8), (7) du précédent paragraphe on déduit les valeurs de 
R', R^,..., E,,..., F,,..., et qu'à la place de α', β', y', a", β", y " on mette les valeurs 
qui se déduisent des équations (6), § IV, quand dans ces équations on substitue à y les 
angles y' et y", on trouve, après réductions convenables , 

R^E, 4 RjE
2 4 R^ E3 _ 4 -, 

dfgdfgfg 

(2) 

R' F, + R, F, 4 R; F, = —dfsf 

R"F, 4 Rj F, 4 RI'F
3
 = 4 , ,, , 

R Α 4 R. c = LA ;■ — 1 

R„A4RG -
 ν,~ν

4· 
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Pur là les équations (i)se changent dans les suivantes 

( ρ Ρ Asinw C sin a" — A cos ω cos ο" 

; 3 ) 
b. 'S — R,i ens

 0

 — η' -°S ' 'C sin ' ' ~.A..C°? Ί co^'j _μ ry> A cosy" sin ω 

c i'S R ) sin ο — D'
 ""/(C""?'-A cos cos»)

 + D

„ A sin y sin ω 

Je vais actuellement développer l'équation qui se déduit du principe de la conserva-

tion des forces vives, et dans ce but chercher d'abord le rapport d'un volume de l'onde 

incidente aux volumes des ondes réfléchie et réfractée qui se partagent, après la réflexion 

et la refraction, la vitesse du premier. 

Soient, fig. 3, ab l'intersection d'un plan d'ondes avec le plan d'incidence qui est 

le plan de la figure, et AB l'intersection du plan consécutif avec le même plan; qu'on 

imagine en a une ligne perpendiculaire au plan d'incidence, figurant l'intersection 

de l'onde incidente avec la surface réfringente, et qu'on suppose cette ligne prolongée 

en a . Les trois lignes ab, ak, aa' représenteront les trois côtés d'un parallélipipéde 

rectangle égal au volume primitif de l'onde incidente auquel nous cherchons à com-

parer les volumes qui reçoivent les vitesses du premier dans les ondes réfractées et 

dans l'onde réfléchie. 

Les extrémités des cotes du parallélipipéde primitif parallèles à aa', et partant des 

points Λ, B, b, sont désignées par A', B', b'. Le côté Bè rencontre en C le plan ré-

fringent; le côté îi'b' en C. 
D'après l'hypothèse que les ondes incidentes se meuvent dans un milieu non cris-

tallisé, je n'aurai à déterminer que le volume de l'onde réfractée extraordinairement ; 

car le volume de l'onde ordinaire se déterminera comme dans un milieu non cristallisé, 

et le volume de l'onde réfléchie est égal au volume de l'onde incidente. Soient CD le 

plan des ondes extraordinairement réfractées qui correspond à AB , et cd celui qui 

derive de ab ; toutes les vitesses qui proviennent du parallélipipéde primitif Aaa' 
sont renfermées entre les deux plans CD et cd, dont l'écartement, mesuré sur la nor-

male «H, est G g. Soient «S et CT les rayons appartenant à ces plans d'ondes, savoir, 

"S rayon réfracté de uE, et CT rayon réfracté de CF. Ces rayons réfractes ne sont 

pas en général dans le plan de la figure, c'est-à-dire dans le plan d'incidence ; les 

lettres D, d, c dans la figure doivent se rapporter à l'intersection réelle du plan des 

ondes avec les ravons «S et CT. Figurons-nous, en outre, par les points a', C, deux 

autres ravons parallèles à uE et CF, «'E', C'F', et représentons les rayons réfractés qui 

leur correspondent par «'S', CT', et par D', d', c' leurs intersections avec l'onde. Les 

mouvements qui ont lieu d'abord dans le prisme rectangulaire AB ab A'B' a' b' passent 

dans un prisme oblique CD cdC'D' c'd' ; le rapport de ces deux prismes est donc le rap-

port des deux volumes qui se correspondent dans l'onde incidente et dans l'onde ex-

traordinairement réfractée. 
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Pour déterminer la capacité du prisme C'DD' d, nous allons calculer l'aire de la base 

CC'DD'; cette base est figurée fig. 4> et désignée par les lettres qui lui conviennent; 

G est le pied d'une perpendiculaire à cette base abaissée de a, et G' le pied d'une nor-

male menée de a'. Désignons par W l'aire de cette base, par ψ l'angle DGC; l'angle 

DCG par ? et la ligne CC' par a. «C étant = i, 

GCr = cosy", «G — sin φ". 

L'angle que le rayon «D fait avec la normale «G étant q, on a 

GD = sin cp" tang q, 
et 

W = DC X CC' X cos? = «cos? X CD; 
mais 

CD cos ? = CG — GD cos -ψ — cos y" — sin q" tang q cos ψ ; 
d où 

(4) W = a (cos y" — sin y" cos ψ tang q). 

On doit, dans cette équation, à la place de tang q, substituer sa valeur. 

Les cosinus des angles que le rayon Forme avec les trois axes coordonnés ont été dé-

signés, (16), § IV, par X, Y, Z, et les cosinus de la normale à l'onde par a", β", γ". 

COS q = α"Χ -f- β" Y -+- y "Ζ, 

et, en substituant pour X, Y, Z, leurs valeurs tirées de (16), § IV, 

R: = -, R,; = — , R' =_dfsfR: =-, R,; = —, R' =_dfsf 
par conséquent 

R: =-, R,; = —, R' =_dfsfR: =-, R,; = — , R' =_dfsf 

Au lieu de prendre le double signe , on ne prend que le signe déterminé 4-, parce 
que, dans les cristaux à un axe, tang q a toujours une valeur positive, en admettant, 

comme pour le spath calcaire, que l'axe de l'ellipsoïde optique est le plus petit rayon 

de cet ellipsoïde. Pour l'uniformité, nous admettrons toujours cette hypothèse dans la 
discussion sur le choix des signes. 

De plus, on doit substituer dans l'expression de W la valeur de cos ψ ; ψ est l'angle 
que le plan d'incidence fait avec le plan déterminé par la normale à l'onde et la direc-
tion du rayon. Ce dernier plan forme, avec les trois axes coordonnés ,v, y, z, des angles 

dont les sinus sont rfc —— , rp —, o; quant aux sinus des angles du 

plan d'incidence avec les trois axes, nous les avons désignés ci-dessus par Ε,, Ε., E,. 
En employant ces différentes valeurs, on obtient, pour cos ψ, 

R: = -, R,; = — , R' =_dfsfR: = -, R,; = — , R' =_dfsf 
Tome VII. — OCTOBRE 1841. 49 
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et en substituant les valeurs de Ε,, Ε,, tirées du § IV (9), 

R: =-, R,; = —, R' =_dfsfR: = -, R,; = — , R' =_dfsf 

Pour décider le choix du signe, posons ω = o, ce qui nous donne 

R: = -, R,; = — , R' =_dfsf 

et en remplaçant a" et y" par leurs valeurs (7), § IV, 

R: =-, R,; = —, R' =_dfsfR: = -, R,; = — , R' =_dfsf 

Dans cette équation on a posé A = sin à, C — cos λ, ce qui donne 9ο0 — λ pour l'in-

clinaison du plan réfringent sur l'axe optique. 

Si l'on prend maintenant, comme cela est déjà indiqué par la formule (3), l'angle 

\ = ο , dans le cas où le rayon forme avec la normale au plan de réfringence un plus 

grand angle que la normale au plan d'ondes avec la même ligne, et inversement ψ= 180" 
quand le rayon fait avec la normale un angle plus petit, on doit, puisque dans le pre-

mier cas \ est plus petit que 7", et dans le second cas à est plus grand que y", prendre 

le signe supérieur. On a, par conséquent, 

R: =-, R,; = —, R' =_dfsfR: = -, R,; = — , R' =_dfsf 

En mettant dans cette equation les valeurs que l'on déduit de l'équation (7), § IV, en y 

changeant y en y", on trouve 

cos ψ \/1 — y"2 — C sin y" — A cos y" cos ω, 

et par suite 

) cos ψ y11 — y sin y" = -+- G — (C cos y" 4- A sin y" cos ω) cos y" 

ί = + C — y" cos y". 

Portant, dans l'équation (4)> 1® valeur de tang q (5), on aura 

l l l w 

mettant dans W, au lieu de cos ψ V 1 —
 s

i
n

 <?">
 sa valeur (6), on obtiendra 

C — y" cos y".C — y" cos y".C — y" cos y".C — y" cos y".C — y" cos y". 

Le volume du prisme oblique CC'DD', que je désignerai par Z", est donc, G g re-

présentant la hauteur de ce prisme , 

Z" = Gg X W. 
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Or, cette hauteur (fg est à la hauteur A a du prisme rectangulaire correspondant 

ÀA'Ca de l'onde incidente dans le rapport de la vitesse p" à la vitesse V. 
La hauteur ka étant représentée par H, on a 

Gg = H sin = 
et l'on obtient enfin, pour la solidité du prisme, 

,'8) Z" = «H [x - (*
2

 _ y>) . 

Telle est l'expression du volume ébranlé dans l'onde extraordinaire; le volume corres-

pondant dans l'onde ordinaire sera désigné par Z', et le volume dans l'onde réfléchie , 

qui est égal au volume dans l'onde incidente, par Z. On obtient ces volumes en posant 

dans l'équation (8) τ
1

 — μ- — ο, et changeant successivement y" en <p' pour obtenir Z', 
et o" en φ pour Z. Ainsi 

(9) 
Z' = «H

 Sin
t'

 t!OS
?-, 

Ζ =τ «H cos ψ. 

L'équation qui découle du principe de la conservation des forces vives est 

(P2 -+· S3 — Ri — R?) Z = D' Z/ -+- D"
2
Z"; ' 

elle se change dans la suivante quand on y porte les valeurs trouvées pour Ζ, Ζ', Z", et 
qu'on supprime le facteur commun «H, 

(P2 -J— S2 — R2 — R2) sin y cos y — D'2 sin γ' cos ο' 

(to) 

dsgss fgh frgghdf 

§ VI. 

Pour déterminer les inconnues R
i?

 Rp, D', D", ona, dans (3)et(io)du§ V, le nombre 
suffisant d'équations ; mais il semble à la première vue que ces quantités vont dépendre 

d'équations carrées, d'où devrait résulter une ambiguïté qui n'est pas dans la nature 

du sujet. .Te montrerai cependant que le système des équations (3) et (10) se résout en 
quatre équations du premier degré. 

Multiplions l'une par l'autre les équations (b) et (c), (3), § V ; nous obtenons 

(S
2
 — R

2
) sin φ cos ψ — D'

2
 sin ψ' cos γ'

 S
'" -———c sin 

(0 

-4-Γ>"
3

 «η
 τ

" ΓΟ,»" ( Αύηω\ 2_r>' η" (C SI" f' ACQS y'cos w) A sin ω sm (*'+■/' 

49· 
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Si à la place de ·/' et 7" on met leurs valeurs exprimées au moyen des angles φ', y" et ω, 

(■7), § IV, on a 

( -

I-(C sin <p' — A cos φ' cos ω\
3

 A
2

 sin
3

 ω 

I-(A sin ω \
3

 (C sin φ" — A cos 7" cos ω)*' 

ce qui donne, en retranchant l'équation (1) de l'équation des forces vives (10), § V, 

(P
2
 —Rp) sin 7 cos φ = D'

2
 sin 7' cos 7' ^

 S1
" " 

(3) 

Δ remplace 

+ D"
2

 sin cos 7" [-
C rin

 ~
 A c05

^^_^Zll^] 

+ IVD"A (C^^-Acos^os-)
 sinw sin(

 ,
 +

 ,
y/)

_ 

myu 

Je vais prouver maintenant que la partie de cette équation qui est à la droite du 

signe d'égalité peut se décomposer en deux facteurs M et N, 

J~sin7"cos7"(Csin7"—Acosy"eos<*i) ^ Δ y'r —y"- sin 7" cos 7" j 

(4) Ν = D sine cos φ -gff 

J~sin7"cos7"(Csin7"—Acosy"eos<*i) ^ Δ y'r —y"- sin 7" cos 7" j 

Multipliant ces deux facteurs l'un par l'autre, et comparant leur produit au second 

membre de l'équation (31, on voit que la décomposition est exacte , si 

AsinwfCsinc» —A cosy cost>>)(siny cosy -l-siny cosy") +
 :

—y —A -

ψ ι — 7
 Η

 V^
1
 — ν"

3 

J~sin7"cos7"(Csin7"—Acosy"eos<*i) ^ Δ y'r —y"- sin 7" cos 7" j 
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Cette relation est donc à vérifier. Supprimant les facteurs communs, on la réduit à 

(C sin y" — A cos y" cos ω) sin (V 4- y" ) cos (γ'— y" ) 4- —
τ
,—^ 1—— 

(5) 
= (C sin y' — A cos y' cos ω) sin (γ' 4- y"). 

Rappelons d'ailleurs que 

λ _ fr2 — *') 7 " (C — Ύ " cos f" )λ _ fr2 — *') 7 " (C — Ύ " cos f" ) 
(6) C — y" cos 7" = sin φ" (C sin φ" — A cos y" cos ω), 

sin2 7 [π2 4- (ρ·2 — π2) γ"2] = s>n2 ?"> et f*2 sin2 ? = sin2 ?'> 

et que des équations de la dernière ligne on peut tirer 

^ Ρ π sin27(i — y"2) sin2
 7(1—y"2) ' 

(8) + =
zeafq 

Si l'on porte ces valeurs dans l'expression de û, elle se change dans la suivante : 

(9' ^
 s

j
n

 φ»
 cos

 φ'γ, γ "2jdvs 

Cette valeur de Δ, introduite dans l'équation (5) qu'on débarrassera du facteur com-
mun sin (7' 4- 7" ), donne 

(C sin 7" — A cos 7" cos ω) cos (7' — 7" ) 4- sin (7' — 7" ) 7 " = C sin 7' — A cos 7' cos ω, 

équation dont il est facile de reconnaître l'exactitude, en observant que 

C [sin 7" cos (7' — 7") — sin 7'] = — C cos 7" sin (7' — 7"), 

A cos ω [cos 7" cos (7' — y") — cos 7' ] = A cos ω sin y" sin (7' — y"), 

et que 
7 " — A sin 7 cos ω 4- C cos 7". 

La possibilité de la décomposition de la seconde partie de l'équation (3) en deux fac-
teurs M et Ν (4) est donc démontrée ; le premier membre de cette équation se résout 
aussi dans les deux facteurs Ρ 4- Rp, (P — R^) sin 7 cos 7. Si l'on compare les facteurs de 
chacun des membres de l'équation (3) avec les deux parties de l'équation (3), a, § V, on 
voit que l'équation (3) peut être divisée par celle-ci, et peut être remplacée par l'équa-
tion suivante, 

λ _ fr2 — *') 7 " (C — Ύ " cos f" )λ _ fr2 — *') 7 " (C — Ύ " cos f" ) 

λ _ fr2 — *') 7 " (C — Ύ " cos f" )λ _ fr2 — *') 7 " (C — Ύ " cos f" )λ _ fr2 — *') 7 " (C — Ύ " cos f" ) 
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DU, à la place de Δ mettant sa valeur (9), 

10) 
(Ρ — RJ sin 7 cos 7 = D' —T T— 

sin cos (C jkhskl lllm) + + 

Mettant, à la place de 7", dans le facteur de D", sa valeur 

7 " = C cos 7" A sin 7" cos ω, 
et remarquant que 

sin (7' -t- φ") sin (7'— 7") = sin2
 7' — sin2

 7", 

011 trouve 

sin 7" cos 7" (C sin 7" — A cos 7" cos ω) + 7" sin (7' 4- 7" ) sin (7' — 7" ) 

= C cos 7" sin2
 7' — A sin 7" cos2

 7' cos ω. 

Cette valeur substituée dans l'équation (10), la rend un peu plus simple. 

Les quatre équations du premier degré qui déterminent les vitesses R„ Pi,,, D', D", 

sont donc les suivantes : 

P + R„ = IV
 A sine „ C sin 7" A cos 7" cos ω 

b. (P-Ri)sin7C0S7= D'—
T Y

 (-D" ,
 1

 ■ 

(") 

c. (S + R,) Sin 7 =-D'
 siny,

(
Gsin;p

'-
Ac0Slp,C0SM

) +D"
 Asin

'
/,sin

" , 

d. (S — Rj cos 7 =—D —— T ' -t-D ——■ ■ 

§ VII. 

En éliminant R^, entre les équations a et b du paragraphe précédent et R, entre c et 

d, on trouve 

2P sin 7 cos 7 = ^ — sin (7 + 7') cos (7—7') A sin ω 

_J— - [C (sin 7"sin 7 cos Y+cos 7
,/
sin

2
 7') —A cos M(COS 7"sin 7 cos 7+ sin Y"cos

2
 7' )], 

( ' ) 
aS sin 7 cos ο = ■ sin (7 y')(C sin 7' — A cos ω cos 7') 

-t- ·, sin (7'+ 7") A sin ω. 
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En éliminant Ρ et S entre les mêmes équations, on obtient 

2ltp sin y cos y — sin (y— y') cos (y + '/) A sin ω 

('■) 

Η— [C (sin φ" cos φ sin φ— cos y" sin2 y') — A cos ω (cos y" sin y cos y—sin φ" cos-' y' ) 

aR, sin y COS y = sin (φ — φ' ) (C sin y' — A cos » COS y' ) 

sin (φ — φ" ) A sin ω. 

Des équations (ι) on peut déduire les vitesses dans le rayon ordinaire et dans le 
rayon extraordinaire. 

Posant, pour abréger, 

X (Psin(y-l-y') Asin ω—S , , « · r . V >, 
-+- A sin2 ω sin (y -+- y' ) cos (y — y') sin (y -1- <p" ), 

on obtient 

D' —
 2

 — V" sin y cos y 

(3) 
X (Psin(y-l-y') Asin ω—S , , « · r . V>, 

n
„ _ _ v^i—y"2 sin «y cos y 

Γ Ρ sin (y + y' ) (C sin φ' — A cos ω cos y' Π 
+ S sin(y+y) cos (y-y) A sin w 

Ces valeurs étant portées dans les équations (2), on voit que les expressions des vitesses 

dans les deux rayons réfléchis polarisés parallèlement et perpendiculairement au plan 
d'incidence ont la forme 

R„ = pV + fS, (4) 
R

s
 = ρ' Ρ + Î'S. 

On trouve, pour ρ et s, les valeurs suivantes : 

X (Psin(y-l-y') Asin ω—S , , « · r . V>, 
-+- A2 sin2 ω sin (y — cp' ) cos (y -+- tp' ) sin (y -f- y" ), 

X (Psin(y-l-y') Asin ω—S , , « · r . V >,X (Psin(y-l-y') Asin ω—S , , « · r . V >, 
— A2 sin2 ω Sin (y ~P y ) COS (y — y ) Sin (y — y") , 
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it pour μ ' et s', après quelques réductions, 

Ν/>' = — A sin ω (C sin y' —A cos ω cos y') sin 2y sin (y' — y" ), 
Νί'= — A sin ω (C sin y' -HA cos ω cos y') sin 2y sin (y' — y"). 

Si l'on fait dans ces formules, qui donnent D', D", R^, R„ y' = y", c'est-à-dire si l'on 

admet que la réfraction simple seulement est produite, elles se changent dans les va-

leurs trouvées ci-dessus au § III, pour la réflexion dans les milieux non cristallisés. 

4·' et j>' deviennent alors simultanément nulles, et 

X (Psin(y-l-y') Asin ω—S , , « · r . V>,X (Psin(y-l-y') Asin ω—S , , « · r . V >, 

St l'on porte ces valeurs dans l'équation (4), on trouve pour R
;/
 et R, les valeurs 

rapportées au § III pour les mouvements réfléchis dans les rayons lumineux polarisés 

perpendiculairement et parallèlement au plan d'incidence. 

On tire en outre de l'équation (3), en ayant égard à la relation 

t — y'1 = Α2βίη2ω (Csincp' — A cosw cosy')-, 

X (Psin(y-l-y') Asin ω—S , , « · r . V >,X (Psin(y-l-y') Asin ω—S , , « · r . V >, 

, sin y cos y [Ρ (C sin y'—A cos ω cos y') sin (y~t-y' )-f-SA sin ω 8Ϊη(φ
/
+φ) cos(<f' — y) j 

sin2 (y' -f- φ) cos (y' — y) \j ι / '2 

D'où l'on déduit, en multipliant la première équation par ^
 Slr>-—

f

 l
a
 seconde par 

X (Psin(y-l-y') Asin ω, et ajoutant; la première équation par X (Psin(y-l-y') Asin ω—S , , 

et la seconde par ■ et retranchant : 

:/r ) y/'
 +

 ~ sin(

?

' +

 ?

)cos(<p' — y) " 

C sin y' — A cos ω cos y' A sin ω 2S sin y cos y 
, ~ 7r-y" iji — γ'

2

 ~ sin (·/ -+- y) ' 

Si y désigne l'angle formé par le plan d'incidence avec le plan mené par l'axe et la 

normale à l'onde réfractée sous l'angle y' ou y", le mouvement D" a lieu dans l'azi-

mut go" — χ et le mouvement D' dans l'azimut i8o° — χ, l'azimut étant compté à 

partir du plan d'incidence. Si donc on décompose les mouvements D' et D" suivant le 

plan d'incidence et perpendiculairement à ce plan, et qu'on appelle D
s
 et D

f
 les com-

posantes respectives, on obtient 

Ds= D'cos x + D" sin x, 
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Mais on trouve 

X (Psin(y-l-y') Asin ω—S , , « · r . V >, 

et si l'on combine (h) et (c) l'une avec l'autre, on obtient 

X (Psin(y-l-y') Asin ω—S , , « · r . V >,X (Psin(y-l-y') Asin ω—S , , « · r . V >, 

Ce sont les valeurs que nous avons trouvées ci-dessus, au § III, pour Ώρ et D.,. 

§ VIII. 

Des équations (4) et (5) on peut déduire les lois de la polarisation de la lumière par ré-

flexion à la surface des milieux cristallins. Je m'occupe de cette recherche avec d'autant 

plus d'intérêt que les précieuses observations du docteur Seebeck sont là pour servir 
de pierre de touche à mes résultats théoriques, et qu'elles leur fournissent une belle 
confirmation. 

On peut, en partant des phénomènes de réflexion sur des surfaces non cristallines, 

donner une double définition de l'angle de polarisation : 

i°. On peut le définir l'angle d'incidence que doit faire avec la surface réfléchissante, 

un rayon polarisé perpendiculairement au plan d'incidence pour ne pas fournir de 

rayon réfléchi ; ?" ou encore l'angle sous lequel la lumière naturelle doit être réfléchie, 

pour que le rayon réfléchi ne soit composé que de lumière polarisée parallèlement au 

plan de réflexion. Mais ces deux définitions ne sont point, rigoureusement et générale-
ment parlant, applicables aux surfaces cristallines. 

En effet, si nous admettons que la lumière incidente soit polarisée perpendiculai-

rement au plan d'incidence, nous avons pour la lumière réfléchie, d'après (4), 

R? = pP, et II, = 7?'P; 

et, pour l'intensité de la lumière réfléchie , 

RJ -+- R,2 - (]S -h ρ") Ρ2· 

Ces deux composantes ne peuvent s'éteindre pour une valeur convenable de l'angle y , 

que dans le cas où p' est nul indépendamment de l'angle y, ce qui a toujours lieu poul-

ies surfaces non cristallisées, mais n'existe que dans certains cas particuliers pour les 

surfaces cristallines. 

Mais on peut concevoir la première définition d'une manière plus générale, qui la 

rend applicable aux corps cristallisés et non cristallisés. Il suffit de dire que l'angle de 

polarisation est l'angle sous lequel un rayon polarisé perpendiculairement au plan d'in-

cidence doit être réfléchi pour qu'aucune portion de lumière polarisée perpendiculai-

rement au plan de réflexion ne fasse partie du rayon réfléchi. Cette définition de l'angle 

de polarisation étant adoptée, nous obtenons cet angle en résolvant l'équation ρ — ο. 

Tome VII. — OCTOBRE ISJA. 5Θ 
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bn mettant pour/; sa valeur, et négligeant le facteur commun — , cette équation est 

^ ο = A2 sin2 ω cos (φ + φ' ) sin (9 — '/ ) sin (9 -f- 9" ) 

^ ο = A2 sin2 ω cos (φ + φ' ) sin (9 — '/ ) sin (9 -f- 9" ) 

equation clans laquelle 9, 9', 9" sont liés par les relations suivantes : 

^ sin 9' = sin 9 , 

i tang-' 9 I -ν—; l = p5 (C+- A cos ω tang 9" )Μ- *' ( A* — CcOS« tango :. 

le vais prouver maintenant que la seconde définition de l'angle de polarisation est 

pareillement insuffisante dans le cas de la réflexion sur les surfaces cristallines, et, dans 

ce but, je donnerai l'expression de l'intensité de la lumière réfléchie dans le cas où la 
lumière incidente n'est pas polarisée. 

La lumière naturelle peut se représenter par une suite de mouvements vibratoires se 

succédant dans toutes les directions avec une rapidité telle rpie l'on peut supposer que, 

pendant la courte durée nécessaire pour produire dans l'œil l'impression lumineuse, un 

même nombre d'oscillations ont lieu dans chaque azimut. 

Soit I2 l'intensité totale de la lumière incidente; l'intensité de la lumière qui produira 

ses oscillations dans l'azimut S sera-— dp\ cette partie donne en lumière réfléchie 

;R
;
i) = (p cos S -(- s' sin δ)2 — dp, 

R2) —: 'p'cosS ,ï sin β)2 — dp. 

L'intensité de la lumière réfléchie polarisée perpendiculairement, et l'intensité de la 

lumière réfléchie polarisée parallèlement, s'obtiennent en faisant la somme des intensités 

partielles :'RP
2' et TU) pour toutes les valeurs de p, 

R0— (P~ ■+■ Τ2)~ , 

R, - (ρ"· -4- ·ν2)ί. 

La lumière refléchie sera complètement polarisée suivant le plan d'incidence si 

p- 4- s'- — o, et l'angle d'incidence 9, déterminé par cette équation, sera l'angle de 

polarisation, conformément à la seconde définition. 

Mais, comme on le voit, cette équation ne suffit pas en général ; elle convient seule-

ment dans les cas particuliers où s' est nulle indépendamment de 9; alors l'angle de 

polarisation est déterminé par p = o. 

Maison peut donner à cette seconde définition une forme assez générale pour qu'elle 
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puisse s'appliquer tant aux corps cristallisés qu'à ceux qui ne le sont pas, en disant : 

L'angle de polarisation est l'angle d'incidence sous lequel la lumière naturelle doit 
être réfléchie pour être complètement polarisée. Pour les corps non cristallisés, le plan de 

polarisation de la lumière complètement polarisée par réflexion coïncide toujours avec 
le plan de réflexion ; ceci n'a plus lieu pour les corps cristallisés. C'est le docteur Seebeck 
qui a le premier fait connaître ce fait remarquable [Pogg. Ann. de Phys., Bd. XXI ), 

quoique Brewster [Philos. Trans., 181g) l'eut déjà précédemment observé dans des cir-

constances particulières pour lesquelles l'écart entre le plan de polarisation et le plan de 

réflexion est singulièrement augmenté. Il est facile de déduire des équations (4)> §™> 
l'angle défini de polarisation complète, et l'azimut dans lequel a lieu cette polarisation. 
J'appellerai cet azimut la déviation du plan de polarisation. 

Les deux mouvements R
s
 et R^, dont le premier a lieu dans le plan de réflexion , le 

second perpendiculairement au même plan, peuvent se décomposer en deux, l'un pa-

rallèle au plan mené par le rayon réfléchi, et faisant avec le plan de réflexion l'angle a; 

l'autre perpendiculaire. Soient R/ la première composante, R'. la seconde; elles satis-
font aux conditions 

A, = R» sin α + R, cos α = Ρ (Ρ sin CL -f- Ρ' cos α) -l·- S fri sin κ ,s cos α;, 

Β-,, = R/. cos α — R
s
 sin a — Ρ [ρ cos α — ρ' sin a) -Η S (.ν' cos a — s sin a). 

Le rayon réfléchi sera complètement polarisé dans l'azimut α si R — o, indépendam-

ment de Ρ et de S. On a donc, pour qu'une polarisation complète de la lumière natu-
relle puisse avoir lieu par réflexion, à satisfaire aux équations 

ρ cos α— ρ' sin α = ο , 

.ï'cos α— s sin α = ο , 

ce qui peut toujours être pour un choix convenable de a. et de l'angle d'incidence u. 

L'angle a est l'azimut que nous avons appelé déviation du plan de polarisation. Si l'on 

élimine α entre ces équations, on aura , pour déterminer l'angle de polarisation , 

Î3) ps — p's' — o, 

et la déviation du plan de polarisation est 

(<j) tang α = - . 

J'appellerai dans la suite l'angle de polarisation complète déterminé par (3), angle de 
polarisation. Cette désignation sera plus brève, et l'angle qu'elle indique est celui qui 

me paraît présenter le plus d'analogie avec l'angle de polarisation des surfaces non cris-

tallines , c'est le même angle que Seebeck a complètement déterminé par l'observation 

dans le spath calcaire pour différentes faces et différentes directions du plan de re-

flexion , et qu'il a aussi nommé angle de polarisation. Au reste, les différences entre les 

angles d'incidence déterminés par l'équation (3) et ceux déterminés par l'équation ■' r ), 

où ρ — o, sont du second ordre par rapport à la différence (jr2 — p'2}; ce n'est que dans 

OO.. 
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les cristaux, fortement réfringents, comme le spath calcaire, que des différences de cet 

ordre n'échappent pas à l'observation. 

Dans le cas particulier où le plan de réflexion est parallèle à la section principale, 

c'est-à-dire , ω = ο , onat' = o et aussi conséquemment α = o, et l'angle de la pola-

risation complète dépend de ρ = ο, c'est-à-dire de l'équation 

(5) C (sin y" sin y cos y — cos y" sin' y') — A (cos y" sin y cos y — sin y" cos' a>')=o, 

dans laquelle 
sin y' = ρ sin y , 

('">) tang'y" = sin'y [ρ'2 (C-H A tang y")2 -+- π'(A—Ctangy")']; 

de (5) on tire 

tang y" = A sin y cos y -t- C sin' y' 

et de là 

A—Ctangy" = - / ,, . i— , A tangy' -t- C == . "—. 

Avec ces trois équations on peut éliminer y" de l'équation (6), et obtenir : 

^sinycosj + Csin'y'y - y.' (AC + siny cosy)' = π' (A' cos'y' — C'sin'y')'. 

Le premier membre de cette équation revient, comme il est facile de le voir, au pro-

duit suivant : 
(A' — sin'y') (i — fi'C'—sin'y), 

d'où résulte que l'équation est linéaire par rapport à sin' y. En ayant égard à la relation 

A2 cos' y' — C2 sin' y' — A' — sin' y', 

elle devient 
[i—fi'C' — ir'A2 — (i—Tr'fi'jsin'y] (A' — sin'y') — o. 

Le premier facteur est seul à considérer ; il fournit l'angle de polarisation pour le cas où 

la section principale coïncide avec le plan de réflexion : 

(7) «"'*=· i-J'fi'- u²) C 

C'est la même formule que Seebeck a déduite précédemment de considérations théo-

riques, et dont il a justifié l'exactitude par des observations. ( Pogg. Ann., Bd. XXII. ) 

Je vais maintenant examiner le cas qui, après celui que je viens de traiter, est le plus 

simple, celui où le plan de réflexion est perpendiculaire à la section principale (M=TC)00). 

Si l'on porte dans (3) les valeurs dep, s, p', s', tirées de l'équation (5), § VII, qu'on déve-

loppe les multiplications indiquées, et qu'on néglige les facteurs communs sin (y — y'), 

sin (y -r- y') et N2, dont le premier n'a de signification que dans le cas particulier où 

y =y', c'est-à-dire où le milieu cristallisé est entouré d'un milieu non cristallisé dont 

l'indice de réfraction est égal à son indice ordinaire (cas particulier que j'étudierai 
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spécialement plus tard), on obtient 

A2cos(i)) — 9') cos (φ +9') sin (φ H- φ") sin (9 — 9") 

C2 sin19' (sin2 9" sin2 9 cos2 9 — cos2 9" sin2 9" ) 

-+- A2C2 sin9'cos(9 — 9')sin(9 +9") (sin 9" sin 9COS9 — cos9"sin2 9') 

-+- A2 C2 sin 9' cos (9 +9') sin (9 — 9") (sin 9" sin 9 cos 9+· cos 9" sin2 9') = o. 

Cette équation se résout en deux facteurs , 

[A2 cos (9 — 9') sin (9 -f- 9") -f- C2 sin 9' (sin 9" sin 9 cos 9 cos 9" sin2
 9')] 

[A2 cos (9 -+- 9' ) sin (9 — 9" ) -|- C2 sin 9' (sin 9" sin 9 cos 9 — cos 9" sin2 9' )] = ο 

dont le premier n'a aucune racine utile à la question actuelle, comme on s'en assure 
quand on pose 9' = 9", c'est-à-dire quand on applique cette équation au cas d'un milieu 
non cristallisé. L'angle de polarisation est donc ainsi déterminé par le second facteur 
seulement, 

(8) A2 cos (9 + 9') sin (9 — 9") ■+- C2 sin 9' (sin 9" sin 9 cos 9 — cos 9" sin2
 9') — o. 

II est facile d'éliminer 9" au moyen de l'équation (2), que, dans ce cas, où cos ω = ο, on 
peut écrire 

tan y 

ou avec la condition sin 9' = jrsin 9 , 

^ ο = A2 sin2 ω cos (φ + φ' ) sin (9 — '/ ) sin (9 -f- 9" )^ ο = A2 sin2 ω cos (φ + φ' ) sin (9 — '/ ) sin (9 -f- 9" ) 

Si l'on fait, 

(10) 
A2 cos (9-f-9') sin 9 — C2 sin2 9' = M , 
A2 cos(9-H9')cos9 — C2sin9'sin 9 COS9 = Ν , 

on tire des équations (8) et (9) : 

M2 cos2 9' — Ν2 sin2 9' = (M2+ N2A2)sin29' —. 

A l'aide des équations (10), qui donnent 

M cos 9' — Ν sin 9' = (A2 -+- C2 sin2 9' ) cos (9 + 9' ) sin (9 — 9' ), 

M cos 9' -H Ν sin9' = A2 cos ( 9 -|- 9' ) sin (9 + 9' ) — C2 sin2 9' cos (9 — 9' ) sin (9 4- 9' 

cette équation devient : 

( M2 -t- Α2 Ν2 ) sin2
 9'

 π
 ^ 

ν
ι ι)cos(9+9 )

 sin(9_?')sin(9-)-9')(A
2

-t-C
2

siny)[A
2

cos(9-(-9') — C
2

sin
2

9'005(9—9')]" 
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On trouve ensuite, en mettant pour M et leurs valeurs, que IV1 - —t— A

2
N

2
 a pour facteur 

\: o-C!sin2y'; d'ailleurs 

sin(<p — φ') sin (φ 4-φ') — -—sin-y'; 

toutes ces relations transforment l'équation (11) en 

(A2cos2tp — sin3 φ' )2
 4- Λ

2
 cos

2
(q> 4- φ' ) sin'(y — if' ) — ^ 

(12) eos (φ + 9 )
 A

2

 cos (φφ' )—C'
2

 sin
2

 φ'COS (φ—ç'j 

dette equation ne peut se résoudre que d'une manière approximative, car elle est du 

quatrième degré ; pour plus de simplicité, on la met sous la forme des équations algé-

briques par la substitution suivante : 

cos y'/cos x = x 

sin2 If — — ;, sin2 φ = '—4 , 
d'où 

; 1 d i 

COS2 φ — —, COS2® =: 2 —. 

Kile se transforme par là dans l'équation suivante, 

<4 

A
2 (x 4- ρ)

2
 f 1 — fix)' 4- C

2
fi

2
 (1 — x2) (1 — fi

2
a;

2
) 

— {[A
2
 (1 — fi

2
) — fi

2 (χ- — 1 )]
2
' 4- A

2
 Γ ι — ρ

2
) (x1 — 1 ) (i — μχ)2} — Ά 

— ο. 

Des quatre racines, celle qui convient à la question doit être déterminée, en raison des 

relations (i3), par la condition que si ρ est plus petit que t, χ soit plus grande que 1, 

et réciproquement, si μ est plus grand que 1, χ soit plus petite, tout en restant toujours 

positive. 

La forme de l'équation (12) est très-propre au développement de sin2 φ suivant les 

puissances de en multipliant les deux membres par cos (φ— '/), et écrivant 

dans le premier, à la place de cos (φ 4- <p')cos(<p — φ ), ι — (ι -l· f*2) sin2 φ, on obtient 

^ ο = A2 sin2 ω cos (φ + φ' ) sin (9 — '/ ) sin (9 -f- 9" )^ ο = A2 sin2 ω cos (φ + φ' ) sin (9 — '/ ) sin (9 -f- 9" ) 

et de là l'on tire 

;i5) sin'9 = f'
C2

 4-^[4f
t<
-(

I
"5f

!
- (P-t-fé2) A!]C2

 4-·-· |· 

Pour essayer l'équation (12), j'ai calculé l'angle de polarisation du spath calcaire 

dans l'hypothèse d'un azimut «=90°, et pour les faces sur lesquelles Seebeck l'avait 
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determine par l'observation. Je rassemble les résultats du calcul et de l'observation 
dans le tableau suivant: 

t 

j 

INCLINAISON 
do la 

surface réfléchissante 
sur l'axe. 

ANGLES 

de polarisation 

calculés. 

ANGLES 

de polarisation 

observés. 

DIFFÉRENCES. 

0» 19/ 58° 54',9 58* 56' H- l',I 
0 aS 58.54,9 58 56,i -t- 1,9 

Vf . '2 5p· 194 5.9· 3.9 - .5,2 
4r>. 2 J ,'"i 59.53,4 59 5O,9 — 2,5 
45. 39 59.53,5 59.47,9 - 5,8 45 43,5 59.54,1 59. 46,7 - 7,4 64- i,5 60 9.6.3 Go 14,8 - 11,7 89-47,5 60.33,4 

Pour développer l'équation générale de l'angle de polarisation, je pose 

C ("sin φ" sin ψ cos if— cos φ" sin'φ') — A cos ω (cos <ρ" sin φ cos φ — sin φ" cos
2
 <p') = 51, 

C (sin <p" sin γ cos ψ 4- cos if" sin
2
 <p' ) — A cos ω (cos <p" sin φ cos <p 4- sin ψ" cos

2
 <p' ) = Μ', 

C sin <p' — A cos ω cos tp' = N. 

Par là l'équation (3) se change en la suivante, après lui avoir fait éprouver quelques 

reductions faciles à voir, et avoir supprimé le facteur commun ^J 

cos(cp + φ') COS (φ — if') sin (φ Η- φ") cos (φ — φ" ) A1 sini ω -(-Ν2 MM' 1 
q-cos(<p + <p')sin(<p—-φ') A2 sin2 ω ΝΜ'4-cos (φ — <ρ') sin(y 4~<ρ") A

!
sin

2

M
MN S -

et celle-ci se décompose en deux facteurs 

[cos (φ — if')sin (φ 4- φ") A2sin2ω NSI'], 
[cos (tp 4- φ' ) sin (tp — φ") A2 sin2 ω 4- NM], 

dont le dernier contient seul les racines qui conviennent à la question. On s'en assoie 
en faisant comme ci-dessus 9/ ~ <p". Si l'on y replace les valeurs de Ν et de M, on obtient 
l'équation suivante, qui détermine généralement l'angle de polarisation : 

cos (y+y') sin(y) 

de laquelle on éliminera φ" au moyen de l'équation 

(17) tangLtp I sirri~ç I = ρ (C-P A cos ω tang ç )24-π2(Α — Ccosta tangtp')2. 

M. Seeheck a entrepris une série d'observations sur l'angle de polarisation à la surface 
naturelle du spath calcaire dans différents azimuts. Pour ces mêmes azimuts, j'ai calculé 



4oo JOURNAL DE MATHÉMATIQUES 
les angles de polarisation d'après (i6)et (17) et j'en présente les valeurs dans le tableau 

suivant, en regard de celles qu'a données l'observation. 

ANGLES DE Ρ 

calculés. 
ANGLES DE Ρ 

observés. 
DIFFÉRENCES. 

0° 0' 57° χο',ι 57° "9'J7 — o',4 

xi. 3o 57.42,9 57·45,9 -f- 3,0 

45. 0 58.34,9 58 33,9 — I
?

0 

67.30 5). 3o, 1 59· 29, 1 — 1,0 

()0. 0 59.53,4 59.5o,9 — 2,5 

Je ne crois pas qu'on puisse atteindre une concordance plus parfaite entre l'observa-
tion et la théorie ; elle prouve à la fois et la justesse des principes qui ont été adoptés, 

et. la grande habileté de l'observateur. 
Comme le cas particulier que nous avons traité (ω = go") nous a conduits à une équa-

tion du quatrième degré, on ne peut pas espérer que les racines des équations (16) et 

; 17) puissent s'exprimer autrement que par une série. 
Il est facile de mettre ces équations sous une forme semblable à celle de (12), et de 

développer ensuite les racines suivant les puissances de 7. 

A l'inspection immédiate des équations (16) et (17), on voit que l'angle de polarisa-

tion est le même pour -f- ω et — ω ; mais on ne peut voir de même, et sans un examen 

attentif, que l'angle de polarisation ne change pas pour ω et 180" — <0, comme Brewster 

l'a observé le premier, et comme Seebeck l'a confirmé. 

Pour le reconnaître, je développai les racines de l'équation (16) suivant les puis-

sances de r2—ps, et je les trouvai jusqu'à la troisième puissance inclusivement in-

dépendantes des puissances impaires de cos ω. D'après cela il me parut vraisemblable 
que le développement en était généralement indépendant. L'élimination de y" dans 
l'équation (16) me confirma dans cette opinion; mais mon calcul est trop long pour 
l'inscrire ici, d'autant plus qu'on m'a communiqué le calcul suivant, qui est plus court. 

De (16) on tire la valeur 

τι -f- ρ coswτι -f- ρ coswτι -f- ρ cosw 

t. m, η, ρ, doivent seulement contenir des puissances paires de cos ω, 

I — A2 sin'w sin φ cos (9 -Η φ') — C2 sin3 9' A2 cos'to cosy' siny cosy, 

η — A2sin2&)Cosy cos (tp -f- tp') — C'sin9'siny cosy -f- A2cos2w cos39', 

m — ACsiny'(siny'cosy'— siny cosy), 

ρ — AC cos φ' (sin φ cos φ—sin 9'cosy'). 

Si l'on substitue partout dans ces expressions à sin y cosy sa valeur 

sin y cosy = sin y' cosy' -f- cos (y H- y') sin (y —y'), 
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on obtient 

l — A2
 cos ( y 4- y ' ) [ sin

2
 ω sin y -J- cos

2
 ω cos φ ' sin ( <p — ?')]-+- sin φ ' Μ, 

η == cos ( y 4~ y ' ) [ A
2
 sin

2
 o> cos y— C

2
siny'sin(y— y ' ) ] 4- cos y' Μ , 

m — — AC sin φ ' cos (φ -f- y ' ) sin ( y — y ' ), 
ρ — AC cos φ'cos (φ -t- y' ) sin (φ — y'), 

où l'on pose pour abréger 

M = A2cos2« cos2y' —C2sin2y'. 

Si l'on remplace en outre, dans les valeurs l, η , sin φ et cosy par les valeurs 

sin y = sin y ' cos (y — y ' ) +
 cos y ' sin ( y — y ' ), 

cos y = cosy ' cos (y — y ' ) — sin y ' sin ( y —· y ' ), 
on obtient 

I — A5 cos (y i-y') [ sin 2ω sin y ' cos (y — ?')"+" cos y ' sin ( y — y ' j ] 4- sin y ' M, 
h — cos (y + y') [A

2sin2wcosy'cos(y—y')—(C24-A2sin2to)siny' sin (y—y')]4- cosy' M. 

Soient maintenant 

C -f- A cos ω tang φ = , 

A η . „ υ-ρ m" cos M 

η -t- ρ cos ω 

/' — C η -f- Ccos'mm, m' = Cp + Ai, 
l" = An 4- Ccos'wm, m" — Aρ — C/, 

ou , si l'on substitue les valeurs précédemment données pour /, m , η , ρ, 

!' = C cos (y 4- y') [A
2 sin2 ω cos y' cos (y—y') — sin y' sin (y — y' ) j + Ccosy ' M , 

m' =.· Acos(y4-y')[A2sin2o>siny'cos(y— y')4-cosy 'sin(y —?')]+ A siny ' M; 

l" = Asin2weos(y 4- y') [A2 cos y' cos( y — y') — siny' sin (y — y') ] -ρ A cosy ' M , 
m" — — A'C sin2 ω siny ' cos (y -+- y ') cos (y — y') — Csiny'M. 

Qu'à l'aide de ces expressions on forme les valeurs 

/ d~ /'siny , m ζh /'siny', 

/ sin ω zL· \j — ι . /", m sinw + y/ — ι . m", 

et qu'on pose pour abréger 

cos ('y 4-y') [A
2sin2wsin y 'cos (y — y') 4-(cos y ' -f-C)sin(y — y ' )j -t-siny ' M = ϋ. 

cos (y 4- y ' ) [A2 sin2 ω sin y ' cos ( y — y') 4~ (cosy' — C)sin(y — y')]4- siny' M == D 

A sin ω cos (y 4- y ') [_A sin ω cos (y — y ' ) — sj— ι sin (y — y ')]-(- M = E, 

A sin ω cos (y 4- y ') [A sinwcos(y — y ' ) 4- ν'—
1 sin (y — y')] 4- M. — E', 

on obtient 

— /'siny' = (i— Ccosy')D, /4- /' siny' = (1 4- cosy ') D ', 
m — m' siny ' = — Asiny' D, m 4- m' sin y' = 4- A siny' D'. 

Tome VII. — OCTOBRE 1842. 51 
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De plus, 

fsinw -+- \J—ι l" = (sinwsiny' 4- \j—iAcosy')E, 

/
s
inw —sj—i.l" = ( sin ω sin y ' —A eos φ ' ) Ε', 

m sin ω 4- y/—ι .m" — — C ψ—ι sin,y'.E, 

m sin ω — 1 ·m'' = ^ V''—1 sîn y ' - Ε'. 

Mais on a 

[η ρ cos ω j [ tang y " — sin y' (C 4- A cos ω tang φ' )] 
= I -4- M cos ω — sin φ ' ( / ' 4-T72'COS»), 

{η 4- ρ cosw)[tangy" 4- siny'(C 4- A cos ω tang tp")] 
= i + 772 cos ω + SL'NY'(/' -h 772 'cosw), 

(72 4- ρ cos ω) [sin ω tang y" 4- s/—t (A — Ccosu tangy")] 

= sin ω ( / 4-7?2 cos«) 4- V—
1
 ('" TÏÎ " cos ω ), 

(T? 4- /JCOSW) [sinwtangy" —\l—ι (A — C cos ω tang y ") ] 

= sin oi(/4-77? cos ω) —ν'—1 ('" 4- m" cos ω !, 

et par conséquent, si l'on pose η 4- ρ cos ω = Ν, 

Ν [tangy" — siny' (C 4- A cos ω tang y" )} = (ι — Ccosy' — Acoswsiny') D, 

Ν [ tang y" 4- siny'(C 4- Acoswtangy")] = (i 4- C cos y' 4- A cos ω sin y' ) D'. 

Ν [sin ω tang y" 4- \j—ι (A — C cos ω tang y" ) ] 

= [sin ω sin y' 4- \j—ι (A cos y' — C coswsin y')] Ε , 

Ν [sin ω tang y" — \J — ι (A — C cos ω tang y"} J 

= [sin<usiny' — y/—ι (Acosy' — Ccos«siny')J E'. 

Si l'on substitue oes valeurs dans l'équation (17), que l'on peut présenter ainsi, 

tang'y"—sin2y'(C4-Acoswtangy")2 = jr2sin2y [sin2w tang2y"4-(A—Ceosw tangy")''], 

on obtient, en tenant compte de la condition 

1—( C cosy' 4- A cos ω sin y')2 = sin2<u sin2y' 4- (Acosy' — Ccoswsin y'):, 

l'équation 

ο = [1 — (Ccosy' 4- A cos ω sin y') '] [ DD' — π2 sin 2 y EE '], 

qui se réduit à la suivante, le premier facteur ne pouvant disparaître pour une valeur 

réelle de y', 

(18) ο = DD'— Tr2sin2y EE', 

dans laquelle se trouvent seulement des puissances paires de cos ω. 
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C'est là l'équation à l'aide de laquelle on détermine généralement l'angle de polari-

sation après avoir éliminé <p". Si l'on met pour D, D', Ε, Ε', leurs valeurs , on arrive 
à l'équation 

Si l'on met pour ir2 sin2 ψ sa valeur 

w'sin2^ = sin2p' -4- (π2 — pt.2)sin1
 φ , 

et si l'on donne à (19) la forme 

(20) R = S (π 2 — p.2) sin2 y, 

on trouve 

R= cos (y+y') sin (y+y') 

S'= cos(y+y') 

on a donc, si, au lieu de sin(y—φ') sin (φ -1- φ'), on écrit sa valeur(i —p2)sin2^, 

cos (φ -t- φ') = * _ ̂  

(2l) 
[A2sin2w cos(iy-l-f')cos((j>—Ç')-i-A2

COS
2
MCOS

2
ÇP'—C2sin2<f>']2-4-A2sin2&>cos2(y-|-y')sm2(y—<f') ) 

A2sin2MCOs(ç -f- φ') -+-(A2 cos2 ω cos2 f'—C2sin2
 If') cos (φ If') ) 

Si l'on multiplie les deux membres de cette équation par cos (f— <f'), et qu'à la 
place de cos(<j> -t- φ')cos (φ—<f') on écrive sa valeur 1—(i-t- p2) sin2<p, on obtient 

sin2 a = — 
I -ι- ρ2 ι — ρ4 

(32)' 

A²sin²wcos 

forme très-convenable pour le développement de sin2 <p, suivant les puissances de 

— . Comme cos (φ + γ') disparaît en même temps que π2 — ρ2, on obtient im-

médiatement le terme de sin2ep qui dépend de la première puissance de π2 — ρ2, en 

5i.. 

cos (y+y') 

(>9' = π2 sin 2 © Γ A2sinWos^ + ?')cos(<f - çp')-l2 

-+- π2 sin2 <p A2 sin2 ω cos2 (φ Η-φ') sin2 (φ — φ') 

-t- C2 sin2 (if — φ')cos2(y Η- φ'). 
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posant cos (φ -f- <p' ) = ο : 

sin 2 φ — ( A2 COS2 ω COS2 φ' — C2 sin 2 φ' ), 
(23) ou 

sin 2 φ — — ( A2 COS2 ω COS2 φ' — C2 sin 2 φ' ), 

Si l'on veut encore obtenir le terme suivant qui dépend de (π2—μ-)2, on peut poser 
dans l'équation (22.) cos2 (f 4- φ') = ο , et l'on obtient alors 

sin 2 φ ( A2 COS2 ω COS2 φ' — C2 sin 2 φ' ), 

χ { (Λ" cos-',, cos'γ -t-sin φ) ( j j , 

ou bien 

sin:
'S — — - (A2COS2MCOS!<P'—G2sin2y')— -—— cos(m-F m') A'sin2ω C°S" ^ L-'. 

Si l'on porte dans le second membre de cette équation la valeur de sin 2<j, de l'équa-
tion (23), et si l'on néglige la troisième puissance de π2 — μ2, on trouve 

- (£ζ£) ' (A'^-Cy ) j P2+A2sin2»[ '—£■ ) J J. 
(24 ι 

- (£ζ£) ' (A'^-Cy ) j P2+A2sin2»[ '—£■ ) J J. 

On voit que sin'ip = ———- dans l'azimut ω' , pour lequel cost/= ±— μ. Dans 

ces quatre azimuts la surface cristalline se comporte donc comme la surface d'un corps 

non cristallisé à l'indice de réfraction - , et cos (φ —f— φ') est nul; et ceci n'a pas 

lieu seulement approximativement, mais rigoureusement, comme on le voit par l'e-
quation (21). D'où résulte que , si cos( φ -i- φ') = ο , A2 cos2ω cos2 φ' — C2sin2 φ' = ο, 

et réciproquement. 
Il peut être intéressant d'avoir l'équation (19) dans la forme ordinaire de l'équation 

algébrique. On y parvient de la manière la plus simple, à l'aide de la substitution pré-

cédemment employée , savoir : 

—-T- = x, 

ce qui donne l'équation 

[ μ (A2 sin2ω -H μ2 C2) -t- (I — μ2) χ — μ (i—A2cos2to)a;2]2 

— ττ2 [ A2 sin 2 ω μ2 C 2 — (μ2 — A2 COS 2ω ) χ2 ] 2 

+ (ι — μ2) [ π2A2sin 2ω -+· μ2 C2 — (π2Α2 sin'w -f- C2) a?2] (ι — μχ)1 — ο, 

dont je ne m'arrêterai pas à donner le développement suivant les puissances de χ 
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§ IX. 

Je vais m'occuper maintenant de l'équation (4) du précédent paragraphe , équation 
qui détermine la deviation da plan de polarisation par réflexion. L'angle désigné par φ 
dans cette équation représente l'angle de polarisation. La valeur de / est, d'après l'é-
quation (5), § VII, 

s' — — sin ω sin (φ' — φ") ( Csin<p' -+- A cos» cosy') sin 2<j>, 

et la valeur de s se change par là même , quand on ν met à la place du produit 

A2 sin2» X sin (φ — f) 

sa valeur déduite de l'équation (16), § VIII, dans l'expression suivante : 

9S i (C2sin2<p'— A2cos2*» coa*jp') sin (çf — y 

on obtient d'après cela, pour la déviation du plan de polarisation α, 

t.1)dg 

Ce résultat simple et élégant se traduit dans le théorème suivant : 
La tangente de la déviation du plan de polarisation est égale à la tangente de l'angle 

rjiie le plan de polarisation de l'onde ordinaire fait avec le plan d'incidence, multi-
pliée par le cosinus de la somme des angles de polarisation complète et de réfraction 
ordinaire qui lui correspondent. 

Quant à l’expressionA.sin w . . , -, -^— . prise pour la tangente de 1 angleCsmy'oswcos? 
le plan d'incidence fait avec la direction du mouvement dans l'onde réfractée ordinai-

rement , c'est-à-dire avec son plan de polarisation, il est facile de se convaincre qu'elle 

est exacte d'après les équations (a), § V, ι, dans lesquelles le sinus de cet angle est, 

d'après les notations expliquées aux paragraphes IV et V , exprimé par 

R'E' + R; Ε" + R' Ε'" = Asm" ■ 

Si l'on veut savoir dans quel azimut la déviation de la polarisation disparaît, on se 
servira de l'observation faite ci-dessus que cos (φ 4- <f') disparaît en même temps que 

( C2 sin Y — A2 cos2» cos2<p' ), et s'annulle seulement dans ce cas. La déviation du plan 

de polarisation sera donc nulle si 

(2) A sin» ( C sin f -f- A cos φ' cos») = ο. 

D'après cela , aucune déviation n'a lieu. 
i°. Quand A = ο ; 
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2°Quand w —;o ou i8o°, c'est-à-dire quand le plan de réflexion est parallèle à la 

section principale; 

O TT Quand coso) — — langç'— ¿\ 
En effet, quand tang(<jj -4- f') = o, tang<p' = p. 
3,a troisième équation détermine, en général, deux azimuts de même valeur, mais 

de signes contraires. Tout plan réflecteur est donc en général divisé en quatre parties 
analogues à celles que déterminent sur le plan de la figure (fig. 5), la ligne princt-
pnle HH', et les lignes AB, BC, de telle sorte que les deux parties adjacentes don-
nent des déviations de signes contraires et soient séparées par des lignes sans déviation. 
La direction HH ' divise le système total des déviations en deux moitiés symétriques. 
3.es deux autres lignes sans déviation AB et CD se confondent en une seule ligne qui 
est perpendiculaire à HH' quand le plan réflecteur devient parallèle à l'axe. Plus le 
plan refléchissant s'incline sur l'axe , plus les lignes AB, BC s'approchent de HH ', et 

s'en approchent du côté II' qui se trouve dans l'azimut ω = i8o°, situé de telle ma-
nière (|ue la ligne HII' fasse en II un angle aigu avec l'axe mené par H au-dessous du 

plan. Il y a une certaine inclinaison du plan réfléchissant sur Taxe pour laquelle les 

deux lignes ΛΒ et BC se confondent avec BH', et pour laquelle il n'y a plus sur la 

face qu'une seule ligne sans déviation, la ligne principale ; cette inclinaison est deter-

miner par l'équation 

= tany y' — u. 

Pour le spath calcaire, cette inclinaison est de 58°55'. 
Si dans l'équation (i) on néglige tout ce qui dépend delà seconde puissance de 

:V—r:), on peut, de l'équation (21) du paragraphe précédent, tirer 

(Htu cíe i ^quauon 12 r ; au paragrapne preccucnt, urei"7 Tr - — ff - 42 ríK 2 f.ì rns 2 P,2 sin 2 ^ 

rappelant que sin 2 φ = —--—;, on obtient 

)<-US( <jp 4- <p77 !—w-1 /A2 OOS - w—C:u5 2u » 

Oci donne 
11 taim y. f j (JL zzr A sin W (Acosw -h Cf/J m= 

La deviation ζ est donc, pour les substances comme le spath calcaire, dans lesquelles 

,7 'j-, positive depuis « = ο jusqu'à ω — ω' = arc ^cos = — — ρ ^ ; de ω &>' 

jusqu'à ω = ι8ο° elle est négative. L'inverse a lieu quand - <j p. Il semble néces-

saire de bien éclaircir ce qu'on entend par inclinaisons positives et négatives. 

Soient, fig. 6, H'HK un rhomboèdre de spath calcaire, H le sommet de l'angle 

solide obtus, HH' la ligne principale de la face HH'G. 
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Soient en outre El un rayon lumineux incident réfléchi suivant IR vers l'œil 
placé en R ; er l'intersection du plan réflecteur HH'G par le plan d'incidence RIE, 
cIE = 1800 — ψ et HIE = ω. 

Si le rayon IR est complètement polarisé par réflexion , et si « a une valeur négative, 
son plan de polarisation est à gauche pour l'œil placé en R. Ceci résulte de ce que nous 
avons admis dans les formules (11), § VI, que le mouvement Ρ s'éloigne du plan d'inci-
dence vers la droite, que le mouvement S se fait dans le plan d'incidence de bas en 
haut, et que les mouvements R;J, R, ont lieu respectivement suivant les mêmes di-
rections. 

Pour obtenir les maximum de α, il suffit d'égaler à zéro la différentielle de cette 
expression prise par rapport à ω ; on trouve l'équation suivante : 

COS 0)1 C , A /i= - 2Ä'* * V2 

Des deux direotions déterminées par cette équation , l'une change de ω = 45° jusqu'à 
ω = go", l'autre de ω = i35° jusqu'à ω= i8o" pendant que l'inclinaison du plan réflé-
chissant sur l'axe varie de o° à go°, mais de telle sorte que la dernière atteint beaucoup 

A 
plus vite l'azimut 18o° quela première ne s'approche de go° ; si - = celle- ci est éloignée 

L 
de l'azimut go° de l'angle (cos = é), tandis que la seconde direction est déjà dans l'azi-
mut 18o°, et s'est évanouie en même temps comme direction correspondante à un maxi-
mum. De la position d'un plan incliné sur l'axe d'un angle correspondant à la condition 

grande déviation ; cette ligne s'approche de plus en plus de la perpendiculaire à la ligne 
principale, à mesure que le maximum devient plus petit, et, si ce maximum s'annulle , 
la ligne sans déviation se place perpendiculairement à la ligne principale. Pour le plan 
perpendiculaire à l'axe , la déviation est, dans tous les azimuts, égale Λ zéro. 

J'ai été heureux de voir ces résultats de la théorie de la déviation du plan de polari-
sation tellement confirmés par les observations de M. Seebeck, que l'accord le plus par-
fait s'est trouvé entre les valeurs déduites du calcul et les valeurs observées. Cet accord 
est vraiment admirable, dans des phénomènes si délicats et si fugaces , et montre bien la 
grande habileté et la rare précision de l'observateur. M. Seebeck publiera très-prochai-
nement sans doute ses observations, et je dois laisser le lecteur s'assurer par lui-même 
de leur perfection. 

Jusqu'à présent nous nous sommes occupés du cas où de la lumière non polarisée 
était réfléchie par les surfaces cristallines. Nous admettrons maintenant que la lumière est 
polarisée avant de tomber sur la surface réfléchissante. Je désignerai par a l'azimut de 

la polarisation primitive , ce qui revient à faire dans les formules (4), § VI, - =tang a. 

Le plan de polarisation de la lumière réfléchie tournera d'une certaine quantité par 
réflexion, et je désignerai par S son nouvel azimut, S satisfaisant à la relation générale 

AC=à celle d'un plan perpendiculaire à l'axe , il n'y a qu'une seule ligne de plus 
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tang ο = Le rayon incident étant polarisé perpendiculairement au plan d'incidence , 

soit Ίρ la rotation de son plan de polarisation , c'est-à-dire l'angle que le plan de pola-
risation fait avec le plan perpendiculaire au plan de réflexion; soit S

s
 la rotation du plan 

de polarisation d'un rayon polarisé parallèlement au plan d'incidence. 

(4 ■■ 
p 

tang ί, = . 

On peut mettre les expressions de p,p', s, s' dans (5) sous les formes suivantes, en or 
donnant les ternies suivant la différence des réfractions 9', φ" : 

fr ( sin («ρ — tf'} cos (çp -f-φ') sin (φ 4-ç')(i—y") cos (if'—9")— M sin (9' — 9"), 

- (£ζ£) ' (A'^-Cy ) j P2+A2sin2»[ '—£■ ) J J. 
Si l'on pose pour abréger 

Τ = y' sin φ cos φ' 4- G sin3 9' 4- A cos ω cos3 9', 

Τ' = Y sin 9 cos 9' — C sin3 9' — Λ cos ω cos3 9', 

les valeurs de M et M' sont ies suivantes : 

M = sin 19 — 9') cos3 (9 4- 9') A3 sin3 ω 4- sin (9 4-9') (Csiny' — A cos« cos 9' ; T, 
ill' = sin (9 4- Y )cos3 (9 — 9') A3 sin3 ω — sin (9 — 9' ) (C. sin 9' — A cos ω cos9' Ί" 

Les valeurs de// et de / sont d'après (5), § VI, les suivantes : 

i V p' — — A sin ω (C sin 9' — A cos ω cos 9' ) sin 29 sin ( 9' — 9" ) 
I I\V =—A sin ω (Csin 9'-f-Acoso cos 9')siny.9sin(9'—-9"). 

('.es valeurs de ρ, s, ρ', s', substituées dans les équations (4), donnent 

- (£ζ£) ' (A'^-Cy ) j P2+A2sin2»[ '—£■ ) J J. 
tang ρ

 s;nf?—9'icos(94-φ')sin(9 ·Ηρ')(ι—Y') — MtangiV—9' 
, A sin ω (C sin 9'4-A cos οι cos 9' sin 29 tang (9' — 9" 

tang" sin (φ 4-9' )cos(9—9' !sin(ç—γ)( ι—-y ' -14- Al' tang {9'—9', 

La tangente (9' — 9' ) dépend d'une équation du deuxième degré, qu'on forme facilcmcntde 

sin'g' — sin39 ίπ· 4- u-— -77-')γ"3] et de sin3 9' — g.'sin39. 

Si l'on retranclie ces deux equations l'une de l'autre, on obtient 

Hsin (<p'11— V/ 

Si dans cette equation on met partout, à la place de 9", 9' — (9' — 9" ), et si l'on dix ise 
par cos3 ρ — Y' -, on obtient l'équation qui donne tang (9' -— 9" 1, dont la plus petite 
racine convient seule à l'équation (7). Si l'on veut la valeur numérique de cette racine, 
il est préférable de la déduire de l'équation (8) par un procédé d'approximation. 
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Si dans les valeurs de tang S
p

, tang S
t
 on ne veut conserver que les premières puis-

l'angle de polarisation, parce qu'alors cos (f+ f') contient aussi le facteur ρ- — π
!

. 
Si la réflexion s'opère sous l'angle de polarisation, les deux déviations S

p
 et S

s
 sont com-

plémentaires, et S
s
 devient en même temps égale à a, c'est-à-dire à l'angle de déviation 

du plan de polarisation, comme cela résulte des formules (3) et (4), § VIII. 
Ces deux déviations <?

s
, 3

p
 disparaissent sur la face perpendiculaire à l'axe, et chan-

gent sur chaque face quand le plan de réflexion est parallèle à la ligne principale. D'ail-
leurs il existe sur chaque face, pour tout azimut du plan de réflexion entre o° et ± 90", 
un angle d'incidence pour lequel 3

p
 = o, et pour tout azimut entre ± 90° et 180", 

un angle d'incidence pour lequel S
s
 disparaît. Le système de ces deux angles d'incidence 

est divisé symétriquement par la ligne principale du plan réfléchissant. Pour obtenir 
pour un plan réflecteur quelconque le système des rayons à polarisation parallèle et 
perpendiculaire qui ne subissent pas de rotation , on peut employer la construction 
suivante. 

Soit HH',fig. 7, la ligne principale du plan réflecteur qui fait en H un angle aigu 
avec l'axe mené au-dessous. Comme centre du cristal, prenons un point situé sur la 
normale élevée en Ν à la surface réfringente, et distant de Ν d'une longueurs 1. 
Faisons 

et des points M et M', avec le rayon M N, décrivons deux cercles. Toute ligne menée du 
centre du cristal à la périphérie du cercle M représente un rayon ordinaire, procédant 
d'un rayon incident dont la polarisation primitivement perpendiculaire n'éprouve 
nulle déviation ; tandis que les rayons qui vont du centre à la périphérie du cercle 
M' proviennent par réfraction ordinaire de rayons incidents, dont la polarisation pri-
mitivement parallèle n'éprouve aucune déviation. 

Quel dr.it être l'azimut du rayon incident pour que le rayon réfléchi soit polarisé pa-
rallèlement ou perpendiculairement au plan de réflexion ? 

Je désignerai le premier azimut par d
s

, le second par d
p

. Des equations (4) d resuite 
que, si le rayon réfléchi est polarisé parallèlement au pian de reflexion, = ο ; alors 

I V 

sances de - ;— , on devra, dans tang 3
p

, ne pas négliger le terme de tang (y—<f" ) 

qui dépend de ft—-—^ , dans le cas où la réflexion a lieu dans le voisinage de 

MN = M'Ν = TAC, 

Les mêmes considérations font voir que 

(8) ——, = tang d
p

. 

Tome VII,— OCTOBRE I#{2. 
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Ces deux azimuts des plans primitifs de polarisation d
s
 et d

p
 deviennent égaux quand 

la réflexion se fait sous l'angle de polarisation complète, car ce dernier est, d'après l'éq. 

Î3), ζ VIII, déterminé par '-= —. Dans cet azimut aucune portion de lumière n'est 

réfléchie. Quand ip est mis pour l'angle de polarisation complète, — — ou — - est la 

tangente de l'azimut dans lequel doit être un rayon préalablement polarisé pour qu'il 

disparaisse totalement parla réflexion sous l'angle de polarisation. Cette tangente est à 

la tangente de la déviation du plan de polarisation complète comme — s est à p. On 

voit qu'on peut aussi définir l'angle de la polarisation complète par réflexion l'angle 

d'incidence sous lequel un rayon polarisé dans l'azimut d
s
 ou d

p
 n'est pas réfléchi. 

Du reste, on voit que d
s
 et S

s
, aussi bien que 90 — d

p
 et 3

p
, disparaissent en même 

temps, et que, pour le même angle d'incidence et le même plan d'incidence , 

tang ■?, cot dp 
tang d, ~ tang 3

p 

L'expression générale pour l'azimut 5 du plan de polarisation du rayon réfléchi, 

l'azimut de la polarisation primitive étant a ^tang α = est la suivante, 

n de polarisation du raytm refit 

§ X. 

Jusqu'à présent j'ai admis que π: — était une très-petite quantité par rapport à 
1 — ce qui est vrai lorsque le cristal est entouré d'air. Mais si 1 — u.2 est lui-même 
une petite quantité ou presque égal à zéro, il existe alors des propriétés qu'il est d'au-
tant plus intéressant de rechercher, que Brewster les a depuis longtemps étudiées expé-
rimentalement, et qu'il paraît avoir tout récemment entrepris sur ce sujet des recherches 
qui promettent beaucoup. Ce cas a lieu lorsque sur la face réfléchissante du cristal se 
trouve une couche d'un liquide dans lequel la lumière a sensiblement la même vitesse 
de propagation que dans le cristal. Il résulte de là que quelques quantités qui dépendent 
de la double réfraction reçoivent des valeurs exagérées, par exemple l'angle que nous 
avons appelé la déviation du plan de polarisation, lequel, lorsque la lumière tombe 
de l'air sur le cristal, est seulement de quelques degrés, et qui, pour un choix conve-
nable du liquide, peut aller jusqu'à go°. Ce fut par les énormes accroissements de cet 
angle que Brewster fut conduit à la découverte de la déviation du plan de polarisation. 

(Philos. Trans., 1819.) 
Je vais donc encore une fois m'occuper des équations de l'angle de polarisation et de 
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la polarisation, dans l'hypothèse où ι — μ1 serait une petite quantité, ou bien φ peu 
différent de φ'. 

Si l'on développe l'équation de l'angle de polarisation (16), § VIII, suivant les puis-

sances de sin (<p—<p'(i — p-jsm5® ,) = —.—7—-—77-J et si 1 on néglige les termes du troisième ordrsin ( cp + ep ) 
ou d'un degré plus élevé par rapport à ι — μ* et π2 — μ2, on obtient 

( t) (1 —p.2) cos —(
π

'—ρ') [A2 sin2 ω cos (<p-t-<p')-)-A:!cos2 «cos2 φ'—C2 sin2 φ']—. o. 

Dans cette équation on peut poser avec le même degré d'approximation 

ìlumi un peni. yuatsi dvtx jniciuc ucgit; 

posant ensuite pour cos 2ij/sa valeur cos2 y' — sin2φ', et divisant l'équation par cos2
 γ', 

on obtient 

(i —TT'2) A- -h (f — ¡XT7TJ—- („>-

d'où 

sin ffa2**— (V— U3) A2sinV 

Pour le cas où sin ω = ο, cette expression donne pour le sinus de l'angle de polarisation 
un résultat exact, le même cpie celui qui est donné par l'équation (n), § VIII. 

Aussi longtemps que π2 et μ2 (oubien, si, au lieu de supposer la vitesse de la lumière 
dans le liquide en contact avec le cristal égale à l'unité, on l'appelle μ), aussi longtemps 

que — et ^ seront plus petits que l'unité, sin ψ aura une valeur possible; cette valeur 

sera encore réelle si tous les deux à la fois sont plus grands que ι. On voit cela avec la 
plus grande facilité quand on pose 

F _ir 
par là on obtient 

SE là on obtienif 

et si l'on néglige le produit ψν, 

. 2 . 41 Aa —h- y C2 

Les deux limites sont : 

Ont H ET 

v= 0, sin² 

5a.. 
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La dernière équation a perdu toute signification, car, du moment où le liquide 

ambiant a exactement le même coefficient que le cristal pour la réfraction ordinaire , il 
n'y a plus aucun angle particulier de polarisation complète/Nous verrons que, dans ce cas 
particulier, tout rayon réfléchi est complètement polarisé. Nous éclaircirons plus tard 
cette singulière circonstance que l'équation (4) convienne pour toute valeur de ν aussi 

petite qu'on voudra et ne convienne plus pour ν = ο. 
L'équation (4) donne toujours pour y une valeur réelle, tout autant que ν et ψ sont 

en même temps positifs ou en même temps négatifs. Mais si ces deux quantités ont des 

signes contraires, l'angle de polarisation devient impossible. Si, par exemple, le liquide 
ambiant possède un coefficient de réfraction qui tienne le milieu juste entre le coefficient 
de réfraction ordinaire et le coefficient de réfraction extraordinaire, si en outre ψ = — ν, 

nous obtenons 

P une valeur imaginaire t que 45°, et pour les fa< 

ce qui donne pour sin y une valeur imaginaire, pour toutes les faces qui font avec 
l'axe un angle plus aigu que 45°, et pour les faces qui restent il n'y a qu'un nombre 

limité d'azimuts où l'angle de polarisation soit réel. Sur une face parallèle à l'axe , pour 

o) =o l'angledepolarisation est donné par sin2 9 = l
>our

 parsing = —j—- ; 

l'angle 9 est ainsi très-près de go°, et pour des valeurs plus petites de ω devient bientôt 
impossible. Dans l'azimut ω = ο il n'y a de valeurs réelles pour l'angle de polarisation 
que dans le petit intervalle de 45° à A3 — C2 = ψ des inclinaisons des faces sur l'axe , et 
dans ce petit intervalle ces valeurs passent de o° à go" ; on voit donc qu'en mettant un 
semblable liquide sur la face d'un cristal, l'influence de la structure cristalline sur l'angle 

de polarisation peut être énormément exaltée. 
L'équation pour la déviation du plan de polarisation (ι), § IX, se change dans l'équa-

tion 

5 {fA2 — 7T2) A sin oj (C sin ©' -+- A eos &> eos c Tar>£ a = hr-—r— r/2 T7L.2 ,,2\ A2 

quand à la place de cos 9-4-9') on met sa valeur, tirée de l'équation (ι) de ce para-

graphe , savoir, 

graphe, savoir 

Cette formule devrait représenter les observations que Brewster a fait connaître dans les 

Trans. Philos., 1819, sur les déviations de la polarisation à la limite commune du spath 

calcaire et de l'huile de cassia , si elles avaient été exactement observées sous l'angle de 

polarisation, ce qui ne paraît pas être ; car cet angle varie entre 3o° et 45° environ à la 

face naturelle du spath couvert d'huile de cassia, et Brewster semble n'avoir observe que 

dans le voisinage de l'incidence 45°. Je vais cependant, à l'aide de cette formule, calculer 

la déviation du plan de polarisation pour le cas où la face du spath calcaire couverte 
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d'huile de cassia est le plan réfléchissant, et rapprocher mes résultats des observations 
de Brewster. Si nous ne trouvons pas, en raison de la circonstance que j'ai indiquée, une 
grande concordance entre le calcul et l'observation , la marche des déviations du plan 
de polarisation sera du moins la même, ce qu'on doit déjà considérer comme une sorte 
de vérification de l'équation (5). La formule de la déviation se change, quand le plan 
réflecteur est incliné de go° sur l'axe, ce qui est à peu près le cas des faces de clivage du 
spath calcaire, en 

sin ω ( sin <ρ + cos ω cos φ J 
(η) tang α == 

ι — «.2 — — sin2 ω 

Comme l'indice de réfraction de l'huile de cassia n'est pas connu exactement, je 
prendrai pour base de mon calcul l'observation de Brewster , qui, pour l'azimut 

ω = 4
2

°> donne α = qo° ; on déduit de là, si, au lieu de μ et π, on écrit - et - , 
et» 

l'équation 

v²= u²+dfs 

dans laquelle - doit être à peu près l'indice de réfraction de l'huile de cassia. Si, 

pour ti et π, on met leurs valeurs dans le spath calcaire, savoir, μ = 0,60288, 
π = 0,67254, on trouve r'2 = o,3834 et e = 0,6192. Cette valeur de ν s'accorde 
presque exactement avec une détermination directe de l'indice de réfraction de l'huile 
de cassia , prise par Brewster et calculée par J. Young (Herschel, Traité de la lumière, 
traduct. de M. Quetelet, p. 291), d'après laquelle ν — o,6i58. 

Dans le tableau suivant j'ai placé les angles de polarisation calculés avec <'=0,6192, 
et les déviations du plan de polarisation à la face de clivage du spath calcaire couvert 
d'huile de cassia. 

ANGLES 

de polarisation. 

DÉVELOPPEMENT 
du plan 

de polarisation. 

OBSERVATIONS 

de Brewster. 

0° 4?° 16' o° ο» 
φ. 1 1 - 35.41' - 45 

4a ^7 -47 90 9° 
9° 3t ,3o + 41.53 H— 45 

180 47.16 0 0 

Le cas où le liquide qui entoure le cristal a presque exactement l'indice ordinaire 
de réfraction de ce cristal mérite une considération toute spéciale, μ est alors = 1, et, 
si l'on développe les expressions de ρ, χ, ρ', dans l'éq. (5), § VII, pour ce cas on 
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trouve 

fr1= (C5sm*<j> — A*cos2&) cos"?) sin (? —cp)~ i—7*,_ ' sin (9" + ?) 

8) 
À sin u ( Csin op -f- A cos*) roso} sin (f" — ö)‘ sin. (if* -+- 9) 

A sin «i ( C sin f — À cos w cos <p ) sin ( ?" — y ) 

Csin op -f- A cos*) roso} sin (f" — ö)‘ sin. (if* -+- 9) 

et de là, d'après l'équation (4), § VII, 

R„ = ~ . (Csin<p4-Acoswcosï») — 11 

iCsinÿ—Acos<r>cos<jp)P~f-ÀsinwS A ^ sin —<p) 

d'où il resuite que le quotient de R
p
 par R, est indépendant de Ρ et de S, que, en outre, 

quelle que soit la direction de la lumière incidente, la lumière réfléchie est toujours 
complètement polarisée, et polarisée dans l'azimut a, pour lequel 

Csin op -f- A cos*) roso} sin (f" — ö)‘ sin. (if* -+- 9) 

Le résultat est le même, que la lumière incidente soit polarisée 011 non polarisée. 
L'azimut a a une signification physique simple. Si l'on imagine dans le cristal une onde 
extraordinaire parallèle à l'onde réfléchie , l'azimut du plan de polarisation de cette 
onde extraordinaire sera identique avec celui de l'onde réfléchie avec a. 

Cet azimut est d'ailleurs la limite de la déviation du plan de polarisation dans (6, , 
quand on y fait y. — 1. Si l'on appelle ν l'inclinaison du rayon incident sur l'axe, de 

manière qu'on ait 

sin 2 ν = ι — = A2 sin2 ω H- (C sin φ — A coseo cos 7)J, 

et j' l'inclinaison du rayon réfléchi sur l'axe, d'où 

sin2 ν' — A2sin2w 4- (Csin7 4- A cos« cosy)2, 

on .1 , si la lumière incidente n'est pas polarisée, pour l'intensité de la lumière ré-

fléchie , 

Csin op -f- A cos*) roso} sin (f" — ö)‘ sin. (if* -+- 9) 

Si la lumière incidente est polarisée dans l'azimut b , et si 

Csin op -f- A cos*) roso} sin (f" — ö)‘ sin. (if* -+- 9) 
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il n'y a aucune portion de lumière réfléchie ; le maximum de lumière réfléchie a 
lieu lorsque la polarisation a lieu dans l'azimut c, pour lequel 

tang r = —Γ—; ". 

Si donc on divise la lumière incidente en deux parties polarisées dans chacun des 
azimuts rectangulaires If et c, la partie polarisée suivant c est seule réfléchie, et si 
on la désigne par C2, on a, pour la quantité totale de lumière réfléchie, 

(10) C2sin2v' sin2 (φ" — φ) 
sin5 ν sin2 ( φ -r φ ' ) ' 

ν et -j ' désignant les inclinaisons de l'axe optique sur le rayon incident et sur le rayon 
réfléchi ; les deux azimuts b et c sont ceux suivant lesquels se polarise une onde in-
térieure au cristal parallèle à l'onde incidente, selon que cette onde est ordinaire ou 
extraordinaire. 

J'ai dit précédemment que l'équation (4) a encore lieu pour de très-petites valeurs 
de ν, mais non plus pour ν = ο ou p.2 = ι. Ceci résulte de ce que l'équation 

ps — ρ 's ' = ο, 

dont est dérivée l'équation (4), a le facteur (p.2—i). Pour comprendre comment la si-
gnification de l'angle de polarisation complète disparaît aussi soudainement en appa-
rence , il faut rechercher un point de vue plus général de la polarisation par réflexion à 
la surface des cristaux. Comme les cristaux, les milieux non cristallisés réfléchissent, 
quelle que soit l'incidence, une portion de lumière polarisée, et cette portion augmente 
de plus en plus à mesure que μ approche de la valeur ι, pour laquelle, sous toutes les 
incidences, la quantité polarisée est égale à la quantité réfléchie. 

L'azimut de polarisation de la partie polarisée dans la lumière réfléchie ne coïncide 
pas avec le plan d'incidence, comme dans les corps non cristallisés, mais il dépend ici de la 
direction du rayon réfléchi. SoitI2 l'intensité de la lumière naturelle incidente; décom-
posons la lumière réfléchie en deux portions, l'une polarisée dans l'azimut β, l'autre 
dans un azimut perpendiculaire; la première étant désignée par R'2, la seconde par R, ·, 
on a, d'après le § VIII, 

Ri2 = - [ (p sin β -f- ρ ' cos β)2 -f- (V sin β -+- s cos β)2] , 

Rp2 = - [(/>cos β — ρ' sin β)2 -+- (Vcos β — s sin β)2]. 

La quantité de lumière polarisée dans la lumière réfléchie est le maximum de 
(Ri2 — Rp2) par rapport à β. 

On trouve 

R'2 — Rp2 = {[(p'2 -+- s2) — (pl -H s'2)] cos 2β -t- 2 (pp' -+- s.i') sin 2β } - , 
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et pour le maximum et le minimum , l'équation 

ο = [(//' -f- a'2) — (p'-h î'2)] sin 2(3 — 2 (pp' 4- m')cos ιβ, 

dont les deux racines vers qo° sont différentes l'une de l'autre. 
A l'aide de cette équation, on obtient la valeur de (RÎ2 — R^2), 

r;* — r;! = l~ 4- î")]
1

+4 {pp' -+-+ss 

ou , en écrivant autrement, 

r? — Rp3 = - y/ (ρ3 + s' 4- s'*y — i(ps — ρ 's'y. 

Comme la somme des portions de lumière réfléchies est 

Rp2 — R/ = p2 4- p" 4- + .v'3, 

et comme (ps — p's') contient le facteur (1 — p3), on voit que, pour des petites valeurs 
de (1 —fi-), la lumière réfléchie sous une incidence quelconque est presque complète-
ment polarisée, car ce qui n'est pas polarisé dépend de (1 —p'2)2. La signification de 
l'équation (4) ne disparaît donc pas subitement avec [4 — 1 = 0, mais elle perd peu à 
peu sa signification, et dans la pratique elle ne signifie plus rien longtemps a\ant 
υ.' — l — o. 

L'équation (7), au contraire, qui détermine l'azimut β de la plus forte polarisation, 
acquiert de plus en plus de l'importance. Cet azimut β coïncide avec l'azimut a déter-
miné dans l'éq. (6) ou avec l'azimut de l'cq. (5) st, quand ps — p's' =0, suivant qu'un 
des facteurs de cette équation 1 — y.2 ou l'autre = o. Pour obtenir les valeurs de β, 
en général, avec approximation dans le cas où le cristal est recouvert d'un liquide qui 
réfracte la lumière presque aussi fortement que lui-même , on peut, dans les valeurs de 
ρ, p', s, s', en (5), § VII, négliger les plus hautes puissances de sin (ψ — ο') et de 
sin (γ — φ" ), ce qui donne 

cos 20 sin (ψ — tp') C3 sin ψ — A2 cos2 ω cos'2 y sin (φ — φ' ) 
^ sin 2<j> 1 — -y sin 2® 

sins? 

1A A sin co iti sin co — Acoi 

Sin f- A cos o> cos <p) sin (<p' — vj' ) 

Pour faire usage de la formule (7), j'admettrai que l'angle d'incidence atteigne 45°; on 

obtient alors 

tang 2B= 2 ks sin w (C+Acos) 

Si l'on veut essayer cette formule par la réflexion à la face naturelle du spath calcaire, 
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on <loit poser 

A = C — sj -, et 1 — y2 = i- [sin2 ω -+- L ( ι — cos ω)2 ], 

et 1 ou trouve alors 

5 tang ?.(3 — ,— . I v 2 Sin CO COS- - CO 2 u21 ■7T* (A2 

l'ai calculé cette formule pour le cas où la face naturelle du spath calcaire est cou-
verte d'huile de cassia dont l'indice de réfraction est, d'après les valeurs ci-dessus 
trouvées, égal à 1,6192. .T'ai rassemblé dans la table suivante les azimuts calculés des 
plans de polarisation des rayons réfléchis sous une incidence de 45°; car il n'est pas 
sans intérêt de comparer dans un exemple numérique ces azimuts avec ceux qui sont 
donnes par la réflexion sous l'angle de la polarisation complète, azimuts dont les va-
leurs sont présentées dans la table qui précède. 

§ XI. 

Les équations (3), § VII, contiennent la loi suivant laquelle la lumière réfractée se 
partage entre le rayon ordinaire et le rayon extraordinaire. Les intensités I'2, 1 ' de 
ces rayons sont entre elles comme les forces vives, d'où 

F2 : i"2 = D/2 : D"2 u. 

X} — sm ? I 4- sin 2,’ji 7 i L. sin <p — A. cos w cos <p =7^ (> 

D' et I)" ont la signification qui leur a été attribuée au § VII. 
Si la lumière incidente est polarisée perpendiculairement au plan d'incidence, ou a, 

d'après cela, 

t ') 1 :1 : : γζζψίsin (?+? ): —γζτψΐ—sm (? + ? )L ■ 

Le rayon ordinaire disparaît donc, i° quand le plan de réfringence est perpendicu-

Tome VII.—NOVEMBRE 184^· ^<3 

ω ? 

0° 0° 
12 — 35.45' 
'4 - 4!·'9 
4o.22' 9° 
42 -+- 87.22 

9° + /,3.5
7 

180 0 
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laire à l'axe ; 2° quand le plan d'incidence est parallèle à l'axe. Le rayon extraordi-

naire disparaît quand 

! 2) C sin y' — A cos ω cos y' = ο , 

c'est-à-dire quand le plan de polarisation du rayon ordinaire est perpendiculaire au 
plan d'incidence. Ce sont les mêmes rayons pour lesquels nous avons trouvé tang 3p =o 
au § IX, et qui ont été construits au moyen de la surface conique M , fig. η. 

On a une valeur approximative du rapport γτ
2
 quand pour U on met sa valeur et 

qu'on néglige la seconde puissance et les puissances plus élevées de sin (y' — y"), 

-ττ-·—τ~, 7Γ\ Ι· 
( ο) I .' 1 ζ= A 'sin!M.'(Csin φ ■—Acosacosy )2 ι—2 ——; '-ττ-·—τ~, 7Γ\ Ι· 

Si le rayon incident est polarisé parallèlement au plan d'incidence, on a 

TC (sin y"sin y cos y -f- cos /'sin2'/) — A cos ω (cos/' sin y cos y + sin φ" cos'/Π5. A'sin2 ω 
s y + sin φ" cos'/Π5. A'sin2 ω 

équation d'après laquelle le rayon extraordinaire disparaît, ι" quand A = ο ; 2° quand 

sin '.> = o. Le rayon ordinaire disparaît quand 

(5) C(sin y" sin y cos y -i-cos/' sin2 y') — A cos ω (cos y" sin y cosy + sin y" cos2 y') = ο , 

ou, si l'on élimine y' et y, 

(C sin y" — A cos ω cos y" )' [ρ2 — (fi — π2) (ι — γ2) — sin2 y" j 

= [u.2 cos y" (C sin y" — A cos ω cos ?")-+- ( fi — ~2) A cos ω ( ι — y ' )]2. 

Ces rayons appartiennent à un cône du quatrième ordre. On obtient approximative-

ment pour la racine utile 
A cos w ii e -ue A sin 2 w i- Ae sin e w 

(C) tang y = —[ι + - J, 

de sorte que le cône (2) représente la première approximation. 
Si l'on néglige les puissances supérieures de sin (y' — y" ) on trouve, le rapport des 

deux intensités (4), 

y' 2 : A2 s»n2 ω 1 + 2 U y , γ ' l . 
I'2·!"2 - (Csin y'-A cos ω cosy' 2 : A2 s»n2 ω 1 + 2 U y , γ ' l . 

Si le rayon incident est polarisé dans l'azimut a, on a généralement 

~sin* ( y —l— y' ) j /Csin <p'—Acosw eos y* \ 
sin-fy-hy") Ly *-7 a y'* 

sin-fy-hy") Ly *-7 a y'* ~~sin* ( y —l— y' ) j /Csin <p'—Acosw eos y* \ 
in* ( y —l— y' ) j /Csin <p' 
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Pour un angle d'incidence donné, et un azimut donné du plan d'incidence, on peut 
toujours, par un choix convenable de l'azimut de polarisation du rayon incident, faire 
disparaître ou le rayon ordinaire ou le rayon extraordinaire. Si le rayon ordinaire doit 
disparaître, on a, pour l'azimut a' du plan de polarisation primitif, 

(8) tang a' — x 1— 1 J. cos (φ—ψ" ) -h ί-Κ !_ . 
1 J. cos (φ—ψ" ) -h ί-Κ 

Si c'est le rayon extraordinaire, l'azimut a" est donné par 

A sin M cos (y G sin o'— A cos 

J'ai vérifié ces deux formules par deux observations tjui m'ont été communiquées 
par le Dr Seebeck. 

Lesdeux azimuts a' et a" ne sont pas à angle droit l'un sur l'autre, comme on pour-
rait s'y attendre d'après la règle donnée par M. Biot, dans son Traité de Physique, 
tome IV, page 368. Cette règle s'éloigne surtout de la réalité pour des angles d'inci-
dence qui ne sont pas très-petits. 

Si le plan réfringent est parallèle à l'axe, (C=o); («') et (a" ) étant les azimuts cor-
respondants, on a 

tang (a' ) — — cotang ω cos y cos (y — φ ) cotang ω sin f rJ —-, 

tang ία" ) = tang ω — τ1— · 

La règle de M. Biot, ci-dessus citée, donne 

tang («' ) = — cotang ω, et tang {a" ) = tang ω. 

La formule (9) a une signification simple. Elle détermine exactement l'azimut, 
dans lequel un rayon devrait être polarisé pour qu'après sa réfraction par un milieu 
non cristallisé il fût polarisé dans l'azimut suivant lequel le rayon ordinaire est polarise 
dans un milieu cristallin. Des valeurs de a'de l'éq. (8), celle de première approximation 
convient seule. 

Quand un faisceau de lumière naturelle tombe à la surface d'un milieu cristallise, 
les deux faisceaux dans lesquels il se partage par réfraction n'ont pas , en général, une 
égale intensité. En employant, dans ce cas, les mêmes raisonnements que ceux qui nous 
ont donné, § VIII, les expressions de l'intensité de la lumière réfléchie quand la lu-
mière incidente n'était pas ρ olarisée, on a 

os w cos y") C sin (y-Hp" ) cos (y-y") +7' {siny-sin^JJ^i-y 
I'2 [A sin w sin (yH-y" )j3+[(sin yVAcos w cos y") C sin (y-Hp" ) cos (y-y") +7' {siny-sin^JJ^i-y 

Si l'on développe cette expression, et si l'on néglige tous les ternies qui dépendent 

53.. 
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de sin [y' — y" ), on obtient, comme premier terme du développement, une expression 
(jui depend seulement de la position des plans de polarisation des rayons réfractes, 

(C sin '/— A cos w cos <5/ y'2 A2 
(C sin '/— A cos w cos <5/ y'2 A2 sin2« . .1 sin2 (<f—i — 7 

(C sin '/— A cos w cos <5/ y'2 A2 sin2« . .1 sin2 (<f—i — 7 
(C sin '/— A cos w cos <5/ y'2 A2 sin2« . .1 sin2 (<f—i — 7 

§ XII. 

Jusqu'à présent nous nous sommes occupés des phénomènes que présente la hi mi ère a 
son entrée dans un milieu cristallisé à un axe; nous allons maintenant considérer l'é-
mergence d'un rayon lumineux du même milieu. Les équations fondamentales (ι i), §VL 
ne peuvent plus s'employer ici, comme cela a lieu pour un milieu non cristallise: il 
faut les déduire tout de nouveau des principes développés au § II. 

Soit, fig. 8, Ad une onde plane qui se meut dans l'intérieur d'un milieu cristallise; 
soient AD, A'D' les rayons qui lui appartiennent; cette onde sera à la limite du mi-
lieu AA', partie réfractée dans l'onde plane Ai dont les ravons correspondants sont re-
présentés par AS et A'S', partie réfléchie dans les ondes AV et A'r", la première ordi-

naire, la seconde extraordinaire. 
Les lignes AR.', À'R' et AU", A'R" représentent les rayons qui correspondent à res 

deux ondes. Supposons que l'onde incidente Ad soit une onde ordinaire; soit =; A'A d 
son angle d'incidence; soient ξ' et ξ" les angles de réflexion de A'r' et de A'r"; soit A'AS 

l'angle de refraction égal i'. 
Entre ces quatre angles ont lieu les équations suivantes : 

f,' tsinsin ^ sin'co . 1 1 “ / 
f,' tsinsin ^ sin'co . 1 

où γ" désigne le cosinus de l'inclinaison de la normale à l'onde A'r" sur l'axe; les ro 

sinus des angles correspondants pour les ondes Ad, A'r ' étant 7 ' et 7 ] . 
Si l'onde incidente Ad est extraordinaire, soient désignés par ψ" l'angle d'incidence , 

l'angle de réfraction par i", et par ξ'
;

 et ξ", les deux angles de réflexion. Soient de plus 

V ; Ί,ι "h, 'essinus des inclinaisons respectives de l'onde incidente et des deux ondes 

réfléchies sur l'axe. Entre ψ", i", et ξ" ont lieu les équations suivantes : 

Í7T- U')'/"2 •» fTTf •> -> \ ft 77*—J77 — U 7 
8 (2Ì sinw — // sin n 7T2 Í7T- U')'/"2 •» fTTf •> -> \ ft 77*—J77 — U 7 

Dans l'équation ( ι), sin et sin i' se déterminent immédiatement au moyen de la va-

leur donnée de sin ψ'; pour sin ξ" on obtient, en mettant pour 7 " sa valeur, une équa-
tion du deuxième degré dans laquelle la racine négative donne la valeur de ξ". La rn-
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cine positive appartient à une onde extraordinaire située tout prés de Ad tpii, comme 
Ad, sort du cristal sous l'angle /'. C'est l'onde extraordinaire correspondante à l'onde 
ordinaire Ad Si l'on appelle ψ" l'inclinaison de cette onde extraordinaire sur le plan 
d'incidence, on trouve 

:3) 
í 4ang l " -f- tang •!/' = I -

(Vr À'J -f- [jt'J C~) sin / ' ì f\i il2 i ' -4- Í nr* — u 2i A 2 rn<;2 r.) ei n - / ' 

Par l'équation (2), on déterminera et ξ" au moyen de ψ"; entre ψ" et \"
n
 ont lieu 

des relations qu'on déduit de l'équation (3), quand à ξ", ψ", /', on substitue respective-
ment 'i"

n
, Y, i". J'introduirai les angles ξ' , ξ", ξ'

η
, ξ" avec leurs signes négatifs dans le 

calcul suivant. 
Nommons κ', (3', y' les cosinus des inclinaisons de la normale à l'onde incidente sur 

les trois axes coordonnes, quand elle est ordinaire; a , b', c' et κ' , p\ , 7' , a", (5",7" U s 
mêmes cosinus pour l'onde réfractée qui en provient et pour les deux ondes réfléchies. 
Si l'onde incidente est une onde extraordinaire, nous désignerons ces cosinus par 
α", p", 7"; a", b", c"; , B'„, 7),, et «", (3", 7". On a, d'après l'équation (6), § IV, 

A, B==o, C sont les sinus des angles que le plan réfringent fait avec les trois axes coor-
donnés. On déduit de là a", b", c", en substituant /"à /'; on a de plus p', 7', 
a a a a a!;;;en changeant / ' en Y, Υ,—ξ',, —ξ", — ξ'„, — t". 

I ..a vitesse d'oscillation dans l'onde incidente doit être désignée par D' ou par D", sui-
vant que l'onde incidente est ordinaire ou extraordinaire. Les vitesses, dans les ondes 
réfléchies seront représentées respectivement par R/ et R", si elles viennent de 1)', et 

par IV etR^ si. elles viennent de D". 
Décomposons les vitesses dans l'onde réfractée parallèlement et perpendiculairement 

au plan d'incidence, et nommons S'et P' les composantes correspondantes à D', et S", P" 
les composantes de D". Les directions des vitesses D' et D" forment avec les axes coor-
donnés des angles dont je désigne les cosinus par (D'

(
), (D^), (D' ) et(D"), (D"), (D" )· 

Les quantités (R^ „), (X 4), (XJ, (R''
a
),..., (R), .·,,·■·, (R*.),... auront la signification ana-

logue pour les vitesses R), R", R',, R". 
Les directions des vitesses Ρ', P" et S', S" forment, avec les trois axes d'élasticité, des 

angles dont les cosinus sont Ej, Ε',, Ε', ; Ε", Ε,, Ε" ; G',, G',, G'
3
 ; G", G", G" 

Ceci posé, le principe de l'égalité des composantes donne, quand l'onde incident 

a ' = cos / ' - - C cos / ' cos A, 

ί4> b' = sin / sin ω' ? 

c ' C cos r Η- A sin i/ cos &/ ; 
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est une onde ordinaire, les équations suivantes : 

ΡΈ; + S'G' = D'(D;_) + R; (R;„) R;'(R;'„), 

η ! ΡΈ, -μ SO; = D'I'D',) + R; (R;^ + R; (R"
4
), 

ΡΈ; S'G; = D'(D') +- R; (R;
c

) -μ R; (R;„). 

Si l'onde incidente est extraordinaire , on obtient un système semblable; il suffit de 
mettre à la place de R| , R", R) „, R',, R"

r
, R'

/0
, etc. Les cosinus Ε',, Ε',, E'

3
, E",..., 

(V G", —, s'obtiennent îles équations (8) et (g), § IV, en remplaçant œ succes-
sivement par i' et Les cosinus (D' ), et (D*),.... sont les mêmes que ceux 

qu'on a désignés, équations , i3) et (ia\ § IV, par R'^ et R", —, et l'on obtient 

R,R"„,..., R"„, ·.. en changeant a', p', y', et « p", y" en χ, , p',, y', a",... 

et y'
ti
 a" 

Multipliant les equations (5) respectivement, 

i". par Κ', , Ε', , F/. ; 
λ°. Par F, , F,, F,; ces lettres étant prises dans le sens de l'équation (7), § IV ; 
3". Par A, li ο, C, et faisant à chaque fois la somme des produits, on trans-

forme les equations (5) , comme il suit : 

p d woahg h+ skl + / jds 
Asia w+b: 

(6) 

V i — 7 © n ' A_si ' "1 r 
V i — 7 © n ' A_si ' "1 r 

+ r a sin w cos e 
vi - 7 

sin i 1W . , , (CsinV—Acosocos-V) . (Csiii?'+ I) Sin i' —-zrrrrr . — — R SII) C, - — 
vi - 7 vi - 7 

- R A sin w sin e 
v1 - 7 

si l'on a égard aux relations ( a ,, a, § V , et qu'on ν remplace R' , et R ", . . 

successivement par D'. ,...., R|„,...., et R''„,...., et y' par -ψ', ξ',, œ" par ξ", etc. 

Pour former l'équation qui résulte du principe de la conservation des forces vives, 
il faut, chercher le rapport d'un volume de l'onde incidente aux volumes corres-
pondants qui reçoivent le mouvement dans l'onde réfractée et dans les ondes réflé-

chies. J'appellerai "|j ' et "|J'' les volumes ébranlés dans les ondes D' et D". 

Dans les ondes réfractées ces volumes seront ©'et ©" ; dans les ondes refléchies 

R), R" je désignerai les volumes correspondants par , y", ainsi que dans les ondes 

R',, Rj je les représenterai par y , ^V'. Alors on trouve, par les considérations qui 

nous ont conduits, dans le § V, aux équations (8) et (y), quand on y remplace αΗ , par 
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sin i ' si l'onde incidente est une onde ordinaire, par sin i" si l'onde incidente est extra -
ordinaire, les expressions suivantes : 

(2V — cos i ' sin i 

q"=cos i" sin* ", 

ψ = sin ψ' cos ψ', 

6 7"(^77, - 7" 

P—sin ?; cos ξ;, 

§»;, = sin?;, cos ξ;,, 

cos s: 

írosme eos?; 

J .'équation des forces vives , quand l'onde incidente est une onde ordinaire , 

D"|)' = (P" + s") en' + R;2|i; + R;,2fr, 

se change, d'après cela, en 

(8) 

D'2 sin ψ' cos ψ'—R^sin?; cos?; — R"2sin?" cos?;' 

(P'2 + S'a)sin i' cosi'. 

Cette équation du deuxième degré peut se ramener à une équation linéaire. On multi-

plie la seconde et la troisième des équations (6) l'une par l'autre, on retranche le pro-
duit de l'éq. (8), et l'on remarque que , d'aprèsl'éq. (ι), ?; =ψ. On obtient ainsi : 

-p R: R: 

17«», • r„ í(Csin?"+Acosicosa.)2 (?r2 ¡i'¡)y" (C y"cosÇ'') i > 

1P D'R" sin (.y g"' _s^ “ ^SUI y—Acosy coswj 

sinedg 
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(.Vite equation est divisible par la première des équations (6); on obtient : 

i? / ■ ./ T , - ., ., Asino) _, . w A sin o> sin/ cos/ —I) sin -j oos■/ - - —— — R, sin e, cose —=—■ 1 ■> ' ' ’ fu V i 7 V, Vi—V, 
d'i) 

I 5 D„ \ ■ „ (C sin e " -f-A eos o» eosH ’ ) ( 4-R, ^sinc, cosí, v — ( V • “ 7 

Si l'on multiplie cette équation parla première des équations (6), et si l'on compare le 
produit avec l'équation précédente, on trouve que la justesse de l'équation (g) est subor-

donner au\ relations 

In (•!/ — H") cos V) fC sin E" -KAcosH" cos«) -

8=rr — sin (•!/ — £ '') (Csin y — À COS tt COS y ) 

et 

-I a" rff u r 1 vJ / V ' ir \ / vf £ " \ < i' i I I r»/>.o Krt rxe \ V* ) - f 'if ( ^ ~ y , / 

= sin(ξ' -4— ξ" )(CsinE'-f-AcosE'coswq 

de la justesse desquelles on peut s'assurer en éliminant p.- et π- au moven de 

sin2 ξ " = sinJ i [77 - — (77
3 — u.-) y " ] 

et 
— jjt - —fi·) (r — y"!;sin-i = sin; Ε j + ξ J) sin ( ξ', — ξ"). 

Les equations (β) et (g) contiennent la théorie du cas où le rayon direct est un rayon 
ordinaire. J'ai déjà dit en quelles autres équations se transforment les équations (5 

quand le rayon direct est un rayon extraordinaire. 
Si l'on traite ces équations (5) comme on l'a fait à l'occasion des équations 16), on ob-

tient les expressions suivantes : 

ι 1 o) 

1pß D// C si n •} "— A cos 6> cos R, A sin w i 

1pß D// C si n •} "— A cos 6> cos R, A sin w i 

Y Asinwsirt’ì ,c.sin¡: -f-Acost •__! R„ Sin q '• '/ u- ' . ! , > -¿ yi —*0- V r / « 

L'équation des forces vives est 

D"7|j" — (ρ»*+s"
3

) ®t" 4- R;,
j

 -+- R;,
2

 ψ„·, 
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et en y mettant les valeurs de ψ, tirées de l'équation (7), elle donne 

i(ir —¿i.2) (G—y"( 

r cos sin qeert " éaé& 
= (P"2+ S"2) sin ί" cos ί". 

En multipliant l'une par l'autre les deux dernières équations (10) et retranchant 
le produit de l'équation (ι i), on obtient 

Si l'on divise cette équation par la première des équations (10), on obtient : 

Z . (Csin^"—Acoswcos^/") (tt2— f*s)y"(r—//!)sin2xj/' Psinj cos/ "D ( sin y cos Y — — -—- — 

8-K sn< cos?:; Vi — 

(ÜSin£w -f-ACOSWCOSÇff ! (7T- fin„\ 1 - via-vî* v^v-

Si l'on multiplie cette équation par la première des équations (10), et si l'on compare 
ce produit avec l'équation précédente, on voit que les relations suivantes doivent avoir 
lieu : 

\ 1 sin (Ç— Y) cos (£', -f- y' ) (G sin -b" — A cos w cos -î// ) + — * TZ Â —— i 
= — sin (ξ) — ψ") (C sin /, -+- A cos ω cos ξ/, 

a. Sin (ξ), + ξ'Ι) cos(/, -i;;) (C sin ξ" -f- A cos « cos /)) - (π2- ̂ )Ί"„ (ι- γ/j sin2 ξ," 

= sin(?', + 5Ζ) (Gsin S-H A cos ξ;, cos ω), 
5. sin (ψ"— ξ))) cos (ψ"+ ξ") (C sin ψ" — A cos ω cos ψ") (C sin ξ)' -f- Acos ω cos ξ") 

11 7r 
(π2 — ρ2) y" ( ι — 7» ') (C

 s
'
n

 Ψ" — A cos ω cos ψ" ) sin2 ξ " 
π2 — (π2 — ft2) 7" 

— A2sin2 w sin (ψ'7 — ξ"). 
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i(ir —¿i.2) (G—y"( 

Là K sin ç: cos -Rin sin ?: cos «: 1 /1/ L 1 7« (TT>— p») (C — 7„ cos g J 7„ sm g, 7rs — (irs— uJ) 7''2 

Là K sin ç: cos -Rin sin ?: cos «: 1 /1/ L sf1 7« (TT>— p») (C — 7„ cos g J 7„ sm g, 7rs — (irs— uJ) 7''2 

I Ft' Tì" -in _u j^A*nw^suH„ +COS»COS€J + H„ k„ sin (£ -h % j 7'-j=.— V 1 — '& V» —7/ 
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On peut facilement s'assurer de l'exactitude de la première et de la seconde des relations 
en remplaçant lesquantités qui multiplient y " et y "

n
 par sin2 l'

tl
 — sin2 ψ" et sin2 ξ'

(
 — sin2 ξ". 

Pour prouver la troisième relation, nous remarquons que 

— (π-—ρ2) sin2ψ" sin2ψ" — sin2 ξ" — (π2— ρ2) sin2 . 

π
2_(τι·2 —ρ2) γ"2 ~ ^ — —TC (sin y"sin y cos y -f- cos /'sin2'/) 

en substituant ces expressions dans la troisième relation, multipliant par γ"2—y"2 et opé-
rant quelques réductions, on obtient 

[•/"(CsinÇ^ -p A cos ξ" COSM) -PY'^ (Csin^"—A cos Ω cos ψ") — sin (ψ"-Ρ l"„)] 
X[y"(Csin|^ -ρ A cos cosw) -py^ (C sin ψ"— A cos ω cos ψ")]-!- A2sin2w(y"2—y/) = o. = o. 

Si l'on met à la place de y" et y" leurs valeurs tirées de (2), et qu'on exécute les opera-
tions indiquées, on trouve que cette équation est identiquement nulle. 

Les lois d'après lesquelles la lumière à la sortie d'un milieu cristallisé est partie réflé-
chie, partie réfractée, sont entièrement comprises dans les équations (6), (9), (10) et ( 12). 

§ XIII a. 

Pour plus de simplicité, j'adopterai les notations suivantes : 

IU. sin cu . , C sin V—A. cos ^ cos w = sin y , -r S/1 — 7 ' * SÌ I — 7 ' 7COS Y'y 

1Asin w . // 7= = Sin r , Vi—7,/2 C sin ^ " — A cos 4» " cos w __ //2 CM y", 

V t -ì2 7, 
(') 

sin w C§qd 

cos w A cos dsr 

V t -ì2 7, 

On remarquera que ces quantités différentes / et ζ désignent les azimuts des plans 
de polarisation des rayons dans l'intérieur du cristal. Je poserai, de plus, 

-£= sin (ξ', ψ" ) sin (ξ', -ρ ψ" ) = I , 

(a) —2^=r sin (ι; - ξ;) sin (ξ; -ρ ξ;) = κ', 

,-^—Γ sin ~~ ?»)sin + ξ») — Κ"' 
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Ainsi les équations (6) et (g) du précédent paragraphe se changent dans les sui · 

vantes : 

D'sin y' + R'sinz' 
S' cos i'= D'cos y'cos w 

S' sin i' = — D'cos y 'sin ψ', 4- R' cos ζ' sin ξ' , —R" sin z','siriç" ; 
Ρ' sin i ' cos i' = D' sin/'sin ψ' cos ψ', —R( sin z( sin ξ( cos ξ(, —R" (cos ζ ''sin ξ "cos ξ"—Κ'); 

et les équations (10) et (12) du même paragraphe se changent en 

ò sin i " /'Ao A' y/ ~D sin j1- sin f', H-RIcousin gl, — H; sinÇsin g",; T\ (l f //•._!// » / % T\ T\/ ' >-• V») Tf\i^ / tt . • . W/ 
S" cos i'= D" sin y" cos y 
S" sin "= D"sin y"sinw 

V Ρ'cost"sin ί'" — D" (cos/" sin ψ" cos ψ" 4-1), —R(sin z(,sin ξ (cos ξ),, —R(((cosz((sin ξ(( co βξ((—Κ"). 

On tire de l'équation (3), si l'on observe que ξ( = ψ': 

sin cos " skijll qin cos sin cos (5) 

sin co s i' cos_ __\ sin cos 
et de l'équation (4) 

(6)' 

R: = - Τ- . ^,,. Χ 

cos y' sin cos sin z eee E i cos 

D" = { (cos (i"-E) 

Pour l'usage pratique on développera ces expressions suivant, les puissances de la 
dilférence des axes d'élasticité, et l'on n'aura à considérer que le premier ternie. 

Le premier terme, qui est indépendant de la différence des axes d'élasticité et qui ne 
dépend que de leur position, donne 

R, = . .—τ— sin/'sinz, — 4-cos r cosz, , 
(7) 

R, = —ΤΤ; τ-fr- sin?-'cos z j-r —cos/ sin ζ, ; 

R
» = ~ siïïirXn

 smz" ""'J' (8) 
R" = ;—-A -j—i cos/ cosz,, L— lyj 4- sin/ sin ζ . 

54. 
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De l'équation (3) on déduit pour la lumière réfractée, quand on observe que 

ξ' = ψ', cosz"sin^|—ξ") cos (ξ) -+- ξ") + K/ = ^ cos/' sin (ξ)—ξ"), 

et V1-7 ² sin z = V1-y² 

(9' 

P'= + D' din cos y' sin () 

S'= - D'cos +V1-y siny' sin (E-E) 

Pour exprimer les valeurs P" et S" plus simplement au moyen de l'équation (6), j'in-

troduirai une nouvelle onde, à savoir, l'onde ordinaire correspondante à D". Je désigne 
par i}/,

t
 soninclinaison sur le plan réfringent, en sorte que ·]/ = ξ),. Je désigne pary' 

l'y relative à cette onde, et par l'inclinaison de sa normale sur l'axe. On a donc 

x' — G cos ψ'
(
 -ρ A sin ψ) cos ω, 

(to) 
cos y'= C sin y - A cos w 

Si l'on observe maintenant que 

cos y"sin (ξ) -+- ψ") cos (ξ J,— ψ") -+- I == y ——^cos/„ sin (ψ;,-Pf'), 

cos z" sin (ξ'„ — ξ") cos (ξ) -+- ξ"
η

) 4- Κ" = y ' _ * cosy), sin(?;, — H"), 
' 1 / It 

et 
y/i —7"Jsin /' = —7? sinz'= ~

 sin
r|,» 

on obtient 

D"V1-x' cos y' 

(") 

S""= D" 

Dans les expressions (9) et (11) on peut, si l'on ne veut conserver que les premières 

puissances de (π
3
—y), en place de g) et mettre leurs valeurs approchées, dé-

duites des équations (7) et (8). 
Les équations (5), (6), (9), (11) donnent des valeurs imaginaires entre les limites de 

la réflexion totale, comme cela a lieu dans les milieux non cristallisés. 
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On sait que dans le cas de la réflexion totale P' et S', P" et S" disparaissent. 
Les valeurs de Rj, R", R[, R^ peuvent se déterminer pour ce cas par le même rai-

sonnement que Fresnel a appliqué au cas analogue dans les milieux non cristallisés, 
raisonnement peu concluant par lui-même, mais qui a reçu la sanction d'observations 
nombreuses. J'appliquerai ce raisonnement seulement aux valeurs approchées (η) et (8). 
R) prend, quand sin i' ι, la forme A -|- Β y/— ι. D'après l'analogie du raisonne-
ment de Fresnel, l'intensité de la lumière réfléchie serait en réalité 

A!+B! = (A-|-B (A —Β(/—i). 

On obtient A — Β \/—ι, en mettant dans la valeur de R', i8o°—i' partout à la place 
de i'. De cette manière on tire des équations (η) et (8), si, dans le cas de réflexion 
totale, on désigne les vitesses réfléchies par (R) ), (R")> (®,)», (R"), 

(R'2) = D'2[cos1 (y ' — z')— L' sin iy ' sin iz' ], 
(R"J) = D' ' [sin1 (y ' — z')-(-L' sin iy' sin 2z'l, 
(R[2) = D"2[sin2(j"—z")-|-L"sin %y" sin 2z"], 

(R'[2) = D"2[cos2[y" — z" ) — L" sin iy" sin 2z"]. 

L' sin sin²y 

Des quatre rayons réfléchis, deux seulement, (R*), (R[), disparaissent dans certains 
cas particuliers, savoir, i° quand le plan réflecteur est perpendiculaire à l'axe; 
2* quand l'azimut du plan d'incidence = o; 3° quand l'azimut du plan d'incidence 
= yo°, et qu'en même temps le plan réfléchissant est parallèle à l'axe. Les rayons [ IV ) 
et (R)'), au contraire, ne disparaissent pas. 

§ XIII h. 

Des équations (ι i) résulte une loi très-simple pour la position du plan de polarisa-
tion d'un rayon extraordinaire à sa sortie d'un milieu cristallin. Si l'on désigne son 
azimut par rapport au plan d'émergence par a", on a 

tan a"= P"\S"= cotan y' 

Si l'on désigne le même angle pour le rayon ordinaire par a', de telle sorte que 
P' tang α' = — , on a, en négligeant les puissances supérieures de (ξ\ — ξ"), 

tan a= tan y'\cos(i'-w) 

où pour on doit mettre sa valeur tirée de l'équation (7). 
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Des équations (g) et(io) on peut facilement déduire l'intensité de la lumière du 

rayon ordinaire et du rayon extraordinaire à leur sortie du milieu cristallisé, savoir, 
Ρ '■ -+- S'2, et P"2 -f- S"2. Ces expressions seront d'une grande importance pour les re-
cherches photométriques. Pour employer les expressions (g) et (to) dans ce cas et dans 
des cas semblables, on devra connaître les valeurs de D' et D". Dans la plupart des 
cas ce seront les vitesses dans les rayons conjugués, entre lesquels un rayon donné 
se partage à son entrée dans un milieu cristallisé. Elles sont alors données par les for-
mules (3), § VII, si l'on introduit dans ces formules les azimuts des plans de polarisa-
tion D' et D", pour les exprimer indépendamment de la position du plan suivant le-
quel la lumière a pénétré dans le milieu, c'est-à-dire, si l'on pose dans les formules 
(3),§ VII, 

suiw . , Csintp'—A cos w cos®' = sm X , ——1 !- = cos x' I—y* y i—y* 

C sin cp"—Ácos w 4a sin OÍ fi— — sin x ft "2 a VI—7 //2 

et de plus 

F, // sin (o' — ®" )sin fo'+ y") = G. 

On a 

•M) 

9 sin a? P sin x" — S cos.»" cos (? — ?")] sin (çp 4- <¡¡") 

10 r \[P cos x' -f- S sin x' cos (<p — y')\ sin 2 <? j [sin x ' sin x" côlj(ÿ — <?' ) H- cos x' os x" cos (ep — y” )] sin (<¡>—f-cp" ) L 

Si l'on néglige dans ces valeurs tous les termes qui dépendent de la différence des axes 
d'élasticité, on obtient, comme première approximation, 

It sin 2<p sin (f-f-q/) P sin .r ' cos (y—<) — S cos x ' > 

sin 20 i sin (<p+y ) 
15) 

Au moyen des équations (g), (ι i) et (i5), on peut répondre à la question suivante : 
Comment la lumière d'un rayon polarisé , après avoir traversé un prisme d'une sub-

stance cristallisée à un axe, s'est-elle partagée entre le rayon ordinaire et le rayon ex-
traordinaire ? 

.Te vais éclaircir ceci par l'application à quelques cas particuliers qui peuvent être im-
portants pour la pratique. 

1 . Les plans d'immergence et d'émergence du rayon dans le prisme coïncident, et 
les arêtes du prisme sont perpendiculaires h l'axe optique. Alors, pour le rayon immer-
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gent comme pour les rayons émergents, ω = o ; par suite 

sin χ ' — sin χ " — sin y ' — sin y" — sin ζ\ — sin ζ" = sin ζ', = sin z"
n
 — ο, 

et l'on obtient 

-x/3 LsmoK, + V) siìr cos(ï"-+ 

P sin 2,'f sin if -+- y") cos (t£j— if") -f- G ’ 
Ρ = ο, 

il 6) 
cl, D'sin a-\i' ~~ sin (*'-+-1}»')’ 

V I —y * sin (¿"-hÿ") Cos ( . /inilS1P ::)~K" V 1 — 7? sin {¿-f- -y") o 
S"= o. 

D'où le rapport des intensités de la lumière dans les deux rayons après leur sortie du 
prisme, 

r‘ j 13 '-i'* r sin2*' «eî£±ô _t;i2 rsin(?+^)cos(y-| (n) p/2 + s/2 __ » — */s bin (Ç + f')sin («" -H*' ) J L sin (y + y' P"2 + S"5 r c0S(r+^)sin(t-"-^)--I ¡r-Y1 sin (g;, - g 

‘j 13 '-i'* r sin2*' «eî£±ô r‘ j 13 '-i'* r sin2*' «eî£±ô _t;i2 rsin(?+^)cos(y-| (n) p/2 + s/2 __ » — */s bin (Ç + f')sin («" -H*' ) J L sin (y + y' P"2 + S"5 r c0S(r+^)sin(t-"-^)--I ¡r-Y1 sin (g;, - g 

2. Les arêtes du prisme sont parallèles à l'axe, et les plans d'immergenee et d'émer-
gence leur sont perpendiculaires. Alors C = ο et ω = go°; ainsi 

cos.r ' — cosx" ~ cos y ' — cos y" = cosz' : cos ζ" — cos ζ' = cos ζ" = ο, 

7 =7 = 7, =7, =Ί„ = Ί„= * — ο. 
D'après cela 

P sin 2 y sin (?+?') cos(<j>—<p')’ 

Tn, 

P'= sin D' 
S' = ο, 

S'= sin y +y hvp 
P" = o, 
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et le rapport des intensités dans le rayon ordinaire et dans le rayon extraordinaire 

après émergence, 

sin (ç -+- cp' ) cos («p — 9') L D" V ï — 7'* sin(<p'H-<p")J 

sin (ç -+- cp' ) cos («p — 9') L D" V ï — 7'* sin(<p'H-<p")J 

.Te vais encore appliquer les formules (9), (n), (i3) au passage de la lumière à tra-
vers un milieu cristallisé séparé par deux plans parallèles d'un même milieu non 
cristallisé. Ce cas particulier, intéressant par lui-même à cause de son application à 
la théorie des couleurs que les lames minces cristallisées font apparaître dans la lu-
mière polarisée, est surtout propre à la confirmation des formules (9), (11), (i5), par 
le grand nombre et la variété des phénomènes qu'il offre à l'observateur. 

Les formules (i5) restent telles qu'elles sont pour ce cas; on a, au contraire, à faire 
dans les formules (7), (8), (9) et (11) les substitutions que voici : 

y'= χ', a;=z^ = z', y' = χ', 

y"—*", <=< = Λ 
Γ = (" = φ, 
ψ' = <ρ'> ¥== ?"» Ψ', = ?'> 
E'= κ = τ'» c= s::» 
x'= ν > 7,= ν»' 7, = 7„· 

D'après cela nous obtenons, si pour la symétrie de l'expression nous mettons y"' à la 

place de ξ" ou ξ", 

D' sin x1 sin 2 ^ 4 /ï—y'3 cos#' sin (cp'-
D' sin x1 sin 2 ^ 4 /ï—y'3 cos#' sin (cp'-

i'9) D' sin x1 sin 2 ^ 4 /ï—y'3 cos#' sin (cp'-
D' sin x1 sin 2 ^ 4 /ï—y'3 cos#' sin (cp'-

9S'- D' cos xr sin 2 y' t ^ 4 y ri — 7/2 sin xr sin (ç — <p/;/) t 

(20) 

sin (*+*') +K'V 1—7"* sin(ij>-t-<f') 

10 / ! _ 7 '* 
(ai) 

sin(f4-<p') 1 L D" V 1— sin(?' + f")j 
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et 

2 2 } it 7, w'T-

Si l'on ne veut conserver dans (19) et (20) que les premières puissances de (π1 — μ5 )
 5 on peut poser 

< 23) D' sin (y — <p') sin (<p -h <?') sm COS y <p H- # cos z ï') COS ('f — <p' } cos x sm 

= — D // l? — ? ) sin (9 -f- y" ) y cos.r sin 

§ XIV. 

Tin rayon de lumière polarisé suivant l'azimut α est transmis par un milieu non cris-
tallisé que limitent des plans parallèles; il se dirige, après cette transmission , dans un 
azimut β , qui satisfait à la relation 

tung a P COS 2 (çp —- y' ) S OOS 3 (<p 

ce rayon, reçu par une plaque de tourmaline, disparaît totalement si la direction du 
plan suivant lequel elle polariserait la lumière qui la traverse se trouve dans l'azi-
mut β', pour lequel 

(>; fang ρ = —--· 

Substituons maintenant à la plaque non cristallisée une plaque mince de cristal, suffisant -
ment mince pour que le rayon ordinaire et le rayon extraordinaire ne soient pas sépares 
dans le rayon transmis. La lumière incidente doit ainsi rester polarisée dans l'azimut, a où 

Ρ 
tang -J. — -, et je supposerai que la tourmaline soit encore dans l'azimut β', pour le-

quel tangψ — — ^ cosJ(a — φ')· Le rayon ne sera pas complètement détruit, mais 

il v aura toujours certains azimuts de la ligne principale de la petite plaque cristal -
line, pour lesquels la lumière qui traverse est minimum. Ce sont ces azimuts que nous 
nous proposons de déduire de nos formules. Ils paraissent particulièrement propres 
à l'épreuve expérimentale d'où doit résulter la confirmation ou la réfutation des for-
mules (17), (,18) et (20). Je décomposerai la lumière en lumière polarisée suivant V 
et en lumière polarisée perpendiculairement. 

Les composantes du mouvement suivant β' proviennent de P' et S' dans l'équa-
sioniao;; je les désignerai par O; j'appellerai Ε celles qui dérivent de P" et S"; 

Tome Vil. — Noyehbre iSja. 55 
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on aura alors 
Ο = Ρ'sin β' 4- S' cos p', 

Ε = Ρ" sin β' 4- S" cos β'; 

et en remplaçant sin S' et cos β' par leurs valeurs déduites de l'équation {ι ), et 
Ρ', P",. . . par leurs valeurs tirées de l'équation (20), § XIII, 

Ο y PJ -H S- cos2 (tp — 9' ) 

= -—; -y? iPcosx 4- Ssinx'eosfy—y')] — R \ ττ-—7 '-y ΓΡ sinx'-S cosx cosiy-y)] 

(a) 
Ε y/ P2 4- S2 cos2' (y — y' ) 

— —t / L- [Pstnx—Scosx cos(y— a )] —-—-4- p— 4- R, \/ rç " 

D'après ces expressions, on voit que Ο2 4- E2 ne peut, en general, être = o, car 0 

et Ε ne contiennent aucun facteur commun qui puisse être = o; en sorte que la tour-

maline, tout en se trouvant dans l'azimut p', ne peut faire disparaître en général le rayon 
transmis. Mais si la double réfraction est très-faible, et si l'on peut négliger les termes 

qui dependent de (y'—y" ), on obtiendra, en mettant pourD' et D" leurs valeurs tirées 

de l'équation (19), 

(O2 -t- E!) [ P2 4- S2 cos"' (y — y' ) j 

= 2 ΓΡ cosx'4- S sin χ' cos (Φ — CP'II
2 IP sin χ'— S cos Χ' cos (y — y'11'" -7—7 h τι~ r 

d'où il suit que O2 -4 E2 est presque = o, à des quantités du deuxième ordre près, 

dans deux cas : 

ι °. Quand P cos χ ' 4- S sin χ ' cos (y — y' ) = ο , 

(3) 2°. Quand Ρ sin χ' — Scosx'cos(y — y')=o. 

De là on tire deux valeurs pour x', et de celles-ci, au moyen des équations ( i4)> § XIII, 
deux azimuts ω, dans lesquels doit être placé le plan d'incidence pour que O2 4- E2 dis-

paraisse. On tire de la première, en posant 

$7cos (? — <p') P COS a/ — tang ri/ 

18 ros in. -4- ») = \ t -- tang o' 
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et de la seconde, en posant 

D" \J ï _ 1 "2sm *'sm (?'+?") 1 r. : RV'-7"’sin1 

sin (*+*') +K'V 1—7"* sin(ij>-t-<f') 

On voit qu'il n'y a pas pour toute valeur de γ une valeur possible pour ω. Aussi 
longtemps que le rayon réfracté fait avec la normale à la surface réfringente des angles 
plus petits que l'inclinaison de l'axe sur la même ligne, l'azimut ω est possible pour toute 

ρ 
valeur de o, quelle que soit d'ailleurs la valeur de - , c'est-à-dire de l'azimut du plan 

Ο 
de polarisation du rayon incident. 

Si tang '/ γ,, on doit avoir, quand la première équation est satisfaite par une va-
leur possible de ω , 

?-<[ S cos (cp -T; 

et si la seconde est aussi, et sous la même condition, vérifiée par une valeur possible 
de «, on doit avoir 

8lrr? A5 S cos 

Si les deux valeurs de ω déterminées par l'équation (3) sont à la fois possibles, ces 
deux équations de condition doivent en même temps subsister. En les multipliant 

l'une par l'autre, on obtient encore une troisième condition indépendante de — qui 

doit être remplie , savoir , 
sin2 çp' 2 A2. 

JNous pouvons ainsi poser 

sin tf' = ( l α ) A2, α ι : 

nous n'avons besoin que de considérer les valeurs de α entre ο et ι ; car pour 
une valeur négative de α on a 

tang ² y A² 

et dans ce cas, comme nous l'avons déjà remarqué, les deux valeurs de ω sont tou-
jours possibles. On peut donc écrire ainsi les deux premières conditions: 

it) c-irf- -, X > A, 

55. 
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On obtient, si ω est déterminé par la première des équations (3), 

I *7^ 2 

R," doit être déterminé par les équations (23) et (?.4)> avec cettfl restriction que 
Ρ 
- = — tang χ' cos (y— ■./). 

Si ω est déterminé par la seconde des équations (3), on a 

Rn r ■ .. ^.. / t\ :—r—■ i . ... 1 :—h *■ 

où l'on doit faire entrer la valeur de D' tirée de l'équation (i6), avec l'attention de 
ρ 

faire - = cotang χ cos (y — y') ; ce qui donne, quand on s'arrête seulement aux pre-
& 

mières puissances de ( <p' — y")> après quelques réductions : 

TV _ sin gy p/sin (y y') V;r — y',a ^ ¿ rosy' I sin (_y— ■ y')J s V I f— - & . 7 » I . f — 

Quand la double refraction sera considérable, par exemple comme dans le spath 
calcaire, les observations donneront pour ω des valeurs un peu différentes de celles 
qu'on calcule à l'aide de l'équation (3). Cela aura lieu surtout dans les azimuts, pour 
lesquels Ο2 + E2 est un minimum après substitution des valeurs complètes de l'équa-
tion (2). Les expressions (3) ne seront donc pas — ο, mais auront des valeurs de 
l'ordre y' — y", que je désignerai respectivement par X' et X". Je chercherai les con-
ditions sous lesquelles Ο2 -+- E2 est un minimum, mais j'y tiendrai seulement compte 
des premières puissances de ' — φ")· Posons donc 

(8) Ρ cos χ' + S sin χ' cos (y — -f') = X'. 

En négligeant les puissances supérieures de (9 — y' ), nous obtenons 

(9) 

' * ■ ein er, £ I lì O fr» T 

r fp. + s.co.n,-/) = I ïïïilîhïi; x'1-5-,. 

Ceci posé dans O2 -4- E2 — min., donne 

R" * / 1 — 7 ' SW ~ ? > r°S ^ ~ ) Sln W ~ '■ ■ ' V t - Ï'.'TÏX 2 sin a y sin 2 y' ’ 
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ou, en observant que d'après l'équation (16) du paragraphe précédent, eu égard à l'é-
quation (8), on peut poser 

M 
Sin Qi in ( tri 

(5)' = - Sill sin [o 

R" 
—7 se remplace, d'après l'équation (23), § XIII, par 

Ε' ,'ρ. + Ε.οο,Ο,,^Τ) =Ε' ,'ρ. + Ε.οο,Ο,,^Τ) = x-,x-, 

Des equations (8) et (11), on déduit χ'. Si l'on désigne par Y' la première approxi-
mation de .r', de sorte qu'on ait 

tangY
 s cos (9—φ')' 

on obtient 

Ε' ,'ρ. + Ε.οο,Ο,,^Τ) =x-,Ε' ,'ρ. + Ε.οο,Ο,,^Τ) = x-, 

d'où l'on peut tirer ω au moyen de l'équation (i4)> § XIII. Cette valeur dew réduit 
0; -f- E2 à la moitié de la valeur fournie par l'équation (5). 

Si l'on pose dans l'équation (2) 

f'i 3) Ρ sin χ ' — S cos a;'cos (9 — 9') = Χ", 

et si l'on ne conserve que les termes du premier ordre par rapport à (9' — 9"), <>n 
obtient 

! «4) 
O" VP* + S '2 cos 116 (y — ?') ““ D' sin 2 sin (çp H-

Ε' ,'ρ. + Ε.οο,Ο,,^Τ)
 = x

-, 

On tire de l'équation (i5), § XIII, si l'on ne conserve que les termes du premier 
ordre , et si l'on réduit, 

sm 2 y sin2 (<p H- <¡>') cos ( a «?') 

jx" sin (9 -1-9') -t- S ^ ■ - cos (9 -H 9')-)- cos χ' sin (9 -I-9') J sin (9 — 9') sin (9' —■ 9" ) j , 
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expression qui peut se transformer en 

ί 15) I) — X Sinf&+o ) + S ' ' sin ( a—y j sin la— y j , 

d'où résulté: 

J (0"- -f- F/' *' ’= [ P ■ -4- S cos 1 {y — y ' ; j ' sin 29 sin S2 ^fCcos© — A coso sin 9 ; sin { o — ?' . . „.1 i —: r 7^ : < X — 1——r-rrr-.=r :—H Sin « ? — ü )( sin' ,<p 4-<p j sinJ.r ( j V',-RÂ/* sin(?-h<p) J -H X' 

et la valeur pour laquelle 0"--f- E" J devient minimum est 

7 ^ X" - SfCcosv—A sin y coso sin (<j> — o' /; * i/. — -i* Hl sin(s-ho' 

De cette equation et de l'équation (i3), quand on désigne par Y'' la première ap-
proximation de .r', Y" satisfaisant à la condition 

.»β. tang Y' = U ï-, 

on déduit : 

I I , .(üsiny — A cosacos w. sin ¡9 —9 ; sin ^ 1 «S‘ sui \.r — Y i = — sin Y y f y' 2 COS »' o Sill (O O » 

La valeur de ',·> qui lui correspond sera trouvée à l'aide de l'équation 

13 , A lan-r.r — •—-— A sin rr> C sin <p'— A cos o' cc 

Il est bon de remarquer quelques cas particuliers. 
il ' 

Si dans l'équation : 12,1 on fait Ρ = o, tang x' devient = ο, car dans ce cas ^ 

devient aussi ;= ο , sin χ et sin ζ' disparaissant en même temps. De même, si l'on fait 
S = o dans l'équation , 18 , tang χ' ~ o. Gcci est strictement juste, comme le font 
voir les expressions 0 et Ε dans l'équation ι ; le résultat qui s'en déduit immédiate-
ment n'est pas moins exact, à savoir qu'un rayon polarise parallèlement ou perpendi-
culairement au plan d'incidence, conserve son plan de polarisation rigoureusement 
quand il est transmis par une plaque mince cristallisée, de maniéré que son plan d'in-
cidence coïncide avec la section principale du cristal. Les deux cas suivants offrent un 
intérêt plus grand qu'aucun des autres. 

1. Si dans l'équation ;'i2) on fait S = ο, on determine les conditions sous lesquelles 

un ravon polarisé perpendiculairement au plan d'incidence se trouve, le moins pos-
sible , modifie dans son azimut de polarisation par son passage à travers une lame 

mince. 
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Comme en même temps que S = o, cos Y' est aussi = ο , et sin Y' = ι, on a 

et 

^ = — tang(? — <f')cot g(y + <p')cosz\ 

; 19) sm [χ — Y ) = — cos χ = — γ/ t
all

g ̂  — φ ' j cotang ; φ + φ ) cos ζ, —-4—2y 

Les formules (12) et (18) donnent en particulier la relation qui doit exister entre y 
et. ω pour que O2 4- E'- devienne un minimum. On peut y regarder y comme donne, 
et s'en servir pour déterminer ω, et c'est ce que nous avons fait jusqu'ici; mais à l'in-
verse on peut se donner ω et se proposer de trouver y. Cette dernière signification de 
la formule (12) a de l'intérêt parce que les expériences peuvent en fournir la vérifi-
cation dans le cas particulier représenté par l'équation (19). Il s'agit donc de deter-
miner, à l'aide de l'équation (19), l'angle d'incidence y correspondant à une valeur don-
née de ω. On peut, dans la formule (19), pour y, y' et (φ' — y'" ) mettre leurs valeurs 
qui résultent de cosr' — o, c'est-à-dire de 

(20. C sin y' — A cos y'cos 6) = o. 

Si l'on désigne par cos (χ') la valeur de cos χ' qui, d'après cette relation , doit sortir de 
l'équation (19), on a 

11? = V /l“ 7 7 cos (x ' ) . 

équation qui servira à trouver y' et par conséquent cp; si l'on désigne la valeur de y qui 
doit se déduire de l'équation (20) par (y'), et celle qui doit se déduire de l'équa-
tion (21 ) par (y ' ) -f- ξ, ξ étant une quantité de l'ordre cos {χ ' ), c'est-à-dire , à cause de 
l'équation (19), de l'ordre (y' — y "'), on a, en négligeant les puissances de :'·/ — y" ), 

V1-7² 

Si l'on désigne par (y) la valeur particulière de l'angle y correspondante à (y'), et par 
(tp) -t- ψ, la valeur de cet angle correspondante à (y') -f- ξ, on a, par suite de l'équation 
sin (y' -[- ξ) = ρ sin [(φ) -+-ψ,], 

j, _ 008 Op') r _ s/' — ί"1 «*»(?')j, _ 008 Op') r _ s/' — ί"1 «*»(?') 

si Γ011 observe que dans le degré d'approximation usité jusqu'ici, 

sin (φ' - y'") — |i-~—sin (φ' — y"), 
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on a finalement 

; tang (φ — Φ > colang ι y-f-<p J sin ι φ — ο ι 

du pour les valeurs respectives de φ on doit mettre relies qui résultent de IVqua 

rion (20). 

2. Si dans l'équation (18) on fait Ρ = ο, cos Y"= ο, comme cela résulté clairement 

de l'équation (18 a), et l'on a 

cos f> —A sin g? cos m — 7 ' coa (<? -f- y )T 

ou bien , comme à la suite de l'équation cos Y" = ο on a 

C cos p —-A sin φ cos ω = -/ ' cos (φ -t- y'), 

8> .IO ì (’.OS X — _ _7 V' I — "/D tangO — *p')cc 

Λ l'aide de cette relation on peut encore determiner la valeur de y qui correspond a 
une valeur donnée pour ω. Si l'on désigné la valeur de » déterminée par l'équation (a3) 
par pj | ψ ι, t, se rapportant à la valeur de y' déterminée par l'équation (20), pour la -

quelle 

tan y= A_C cos w 

on trouve, par des considérations semblables à celles qui, ci-dessus, nous ont l'ait trou-

ver ψ;, 

1,2 y — » // V I 7'- COS 0.0? 

on doit remplacer cos x' par sa valeur tiree de l'équation (23;. On a ainsi 

T il _ - tang (y — ç/) cot (y -f 

pour y et y' on doit mettre les valeurs qui ressortent de l'équation ι 20 . 

Si l'on compare ψ
;
 à ψ,,, on voit qu'on a 

w= 1-7z sin 

Au moyen des relations 

y'i — 7 ■ cos ζ ' — — G sin y' — A cos 7' cos ω, et C sin >J— A cos ν cos J — ο, 
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on trouve 

v'i —7"2 cos s' \/1 — γ"2 

7 ' sin 2cp' — ' 

ce qui permet de poser, puisqu'on néglige les carrés de (φ' — φ" ), 

L ~+~ Ψ,/ — °· 

§ XV. 

Il faut présentement appliquer les principes établis dans le § II aux milieux cristallisés 
à deux axes optiques. A cette fin , j'établirai d'abord les formules générales qui déter-
minent les vitesses de propagation des ondes, les directions de leurs mouvements et la 
position des rayons qui leur appartiennent. Soient ρ, ν, n les valeurs des trois axes 
d'élasticité ; soient ρ et π la plus petite et la plus grande de ces valeurs et ν la valeur 
moyenne. Prenons pour axes coordonnés oc, y, ζ des parallèles aux trois axes d'élasticité 
ρ, ν, π. 

L'équation de la surface d'élasticité de Fresnel est, d'après cela, 

( 1) ρ2 = p2 a'2 -+- V2 b'2 -f- π2 e2. 

ρ désigne le rayon vecteur de cette surface et a, b , c les cosinus des angles que ce 
rayon vecteur fait avec les trois axes. Les deux vitesses de propagation d'une onde, selon 
qu'elle est ordinaire ou extraordinaire [*], s'obtiennent en menant par le centre de la 
surface d'élasticité un plan parallèle au plan de l'onde, et déterminant le plus grand et 
le plus petit rayon vecteur de cette section. Si a, (3, 7 désignent les cosinus des inclinai-
sons de la normale à l'onde plane sur les trois axes d'élasticité ρ, ν, π, la valeur υ du 
plus grand ou du plus petit rayon vecteur est déterminée par l'équation suivante 

(2) — , + — -h- ——1—, — o. 

Je désignerai les deux racines de cette équation par ο et e, de sorte que υ ou e de-
signe la vitesse de propagation d'une onde plane parallèle à xoc 4- ρ y 7 ζ = ο, selon 
que cette onde est ordinaire ou extraordinaire. 

La direction du mouvement dans cette onde est perpendiculaire au rayon vecteur 
de son intersection avec la surface d'élasticité, rayon vecteur qui exprime sa vi-
tesse de propagation. On trouve pour les cosinus ο,, 0

2
, o

s
 des angles que la direction 

[*1 Remarque, Le sens de cette dénomination impropre ne peut être douteux que lorsque les deux 
axes optiques sont inclinés l'un sur l'autre de 90°. J'appelle onde ordinaire celle qui, dans le sens 
propre du moi, serait en réalité l'onde ordinaire, si l'on supposait l'angle des deux axes optiques 
diminué jusqu'à ο 

Tome VII —NOVEMBRE 56 
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du mouvement dans le plan de l'onde ax -+- fiy -+- yz = ο forme avec les axes d'élas-

ticité dans le cas d'une onde ordinaire, 

(3) 

01= a_ (e² - u²)E 

o2= B (e²-v²) 

O3= 7_ (e² -ii)E 

en posant, pour plus de simplicité, 

E= Vxssdffgsdq 

Si l'on désigne les cosinus correspondants au cas où l'onde est extraordinaire par 
Ci, e2

, on a 

(4) 

e1 = &- 02 -u² 

e2= B_ o2-v² 

yscvO 

0
 - y/ (^T

2

)
 +
 (i

-2

)
 +

 (ίώ) · 

Ces valeurs (3) et (4) résultent immédiatement des expressions que j'ai données dans 
mon Mémoire sur la double réfraction (Pogg. Ann., Bd. XXV, p. 44^)· 

A un autre endroit {Pogg. Ann., Bd. XXXIII), j'ai démontré que les racines ο et r 
de l'cquation (?.) reçoivent une expression très-simple quand on rapporte la posi-
tion du plan αχ ~b fyy + y ζ = ο aux axes optiques, c'est-à-dire aux normales aux sec-
tions circulaires de la surface d'élasticité. 

Si le plan d'ondes forme avec ces axes les angles 90" — u et go° — «', il vient 

;5) 
(17o¡¿: — (fi?— 7r)sirruu7T‘(17o¡¿: — (fi?— 7r)sirruu7T‘ 

S is r u —|— (u? — 7T“) sin2 u' Lt 2-+-7T2 TT COS 

Le rayon correspondant à l'onde ax -f- fif-h yz = oa pour direction la ligne dans laquelle 
se meut le point d'intersection de cette onde avec d'autres ondes a'ar -f- S'y -+- 7 'ζ = o, 
qui dans leurs directions diffèrent infiniment peu de la première. Cette direction dans les 
cristaux ne coïncide pas avec la normale à l'onde ax -f- fty-hyz — o, car avec 
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la direction des ondes les vitesses de propagation changent aussi. Soit αχ -4- py γζ = ο 
une onde extraordinaire, et soit, après l'unité de temps , sa position donnée par l'équa-
tion 
(a) α χ + py + γζ = e. 

La position de deux autres ondes infiniment peu différentes en direction s'obtiendra en 
différentiant cette équation successivement par rapport à « et par rapport à p, 

* H- dy da 

^ γ+ Tp = dp-

line ligne menée du centre χ = ο, y — ο, ζ = ο au point indépendant de da et de dp, 
des trois plans (a), (b), (c) est la direction du rayon qui appartient à l'onde extraordi-
naire aux py + y ζ = ο. On doit éliminer les différentielles par rapport à da et dp. 

Les quotients différentiels de γ se tirent de la condition 

•(d) 
α2 + p2 + γ2 = ι , 

dy a dy (3 
dcx. γ' dp y' 

les valeurs des quotients différentiels —, — se tirent par differentiation de Γ equa-

tion (2.) qui devient, en faisant ν — e , 

&²_+ B²+ y² 

Si l'on différentie cette equation par rapport a a, qu on y remplace par sa valeur ti-

rée de (d), et qu'on pose, d'après l'équation (3), 

& B ² E ii v² 
on obtient 

E² & & & & e& e² 
on trouve tout pareillement 

BB e²siii ii 

Les valeurs de (il), de (g) et de (h), substituées dans(b) et (c), les changent dans les 
équations suivantes : 

e² r u ² 

() edszg 

56. 
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auxquelles on joint 

(I) ζ — ζ = ο, 

si l'on multiplie les trois équations (i), (k), (1) respectivement par a, (3, y, et qu'on les 

ajoute, on a pour la somme 

(m) αχ + py yz = ( 4- r ; ; 1 =rr î 

mais, d'après l'équation (a), on a 
tzx 4- py -t- yz — c, 

et d'après l'équation (b), 

e* — u> c2 **r- V2 e1-

En observant ces conditions , on trouve, d'après l'équation (m): 

2
 - [

e
 + eW^]

 γ
· 

Cette valeur, substituée dans les équations (i) et (k), conduit aux valeurs de χ et de/. 
Il vient donc, si les ordonnées du point d'intersection sont designees par x

t
, y„ z

e
, pour 

indiquer qu'il appartient à un système d'ondes extraordinaires, 

ionhqski & + E 

'V 
fe

 & [/
 +

 E
2

e (e
2

 — v
2

)]' 

^=4
e+

E
2

c(e
I
-.

2

J" 

Dans le même temps que le plan d'ondes parcourt l'espace e, le rayon qui lui corres-

pond parcourt l'espace \j xi 4- yl 4- zj, que nous poserons — r
t

. La vitesse de propa-
gation du rayon est donc r

e
 ; on trouve, en ajoutant les trois équations (6), ayant égard 

a l'équation (e) et observant qu'à cause de l'équation ( f), 

(7) 

E &+B +r 

r² = e² + 1_e² 

Les cosinus des angles (S
e
«), (S

e
b), (S

e
c) que le rayon forme avec les trois axes d'élas-

ticité , sont 

î 8) cos (S, β) = —, cos (S« i) = —, cos (S
e

c) = —. 

Quand l'onde αχ 4- py 4- yz = ο est une onde ordinaire, des considérations tout à 
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fait identiques donnent pour les composantes de la vitesse du rayon suivant les trois 
axes d'élasticité, 

*"=
 α

[°
 +

 O'o (r/' — p'jJ ' 

(9) *=4°
+

 0
2

° ("' ~ *')] ' 

Z
* =

 7

 [°
 +

 O'o (J— π')]
 5 

et pour la vitesse elle-même, 

M =
 0

» + -L·. 

Au moyen de cette formule, on peut donc toujours , quand une onde est donnée, 
trouver le rayon qui lui appartient [*]. 

Je vais maintenant m'occuper du problème inverse , savoir, quand le rayon est 
donné, trouver l'onde dont il dérive. 

Par l'équation (10) on trouve, en retranchant p2 des deux côtés, 

(»0 r.-μ- — , 

pendant que de l'équation (9) on tire 

« [O’^(o3—^2)+ i 02ûj(o2 — u2) 

Si l'on divise cette équation par la précédente, on obtient 

Xg «a 

rl — Ρ
2 _ ο- — P

2
' 

On obtient deux équations semblables en remplaçant successivement χ, %, ρ pa r 

[*] Remarque. Au moyen des équations (6) ou (g) on peut facilement déterminer α, β, ■/ et la vi-

tesse de l'onde, et ces valeurs, portées dans (e), donnent une équation entre x, y, t. C'est l'équa-

tion de la surface des ondes. C'est M. le docteur Senf, maintenant à Dorpat, qui le premier a em-
ployé ce mode de calcul simple et élégant qui y conduit. Fresnel ne regardait pas son procédé 
comme présentable, et l'on abandonnera volontiers maintenant la marche suivie par Ampère (Ann. 
de Chimie, t. XXXIX1. M. le docteur Senf a aussi le premier donné à l'équation de la surface des 
ondes la forme si convenable que voici : 

us² +v²y²+ ii²z² 

De cette forme résulte en même temps la construction donnée par Fresnel de la surface des ondes 
au moyen de l'ellipsoïde décrit autour des axes de la surface d'élasticité. 



446 JOURNAL DE MATHÉMATIQUES 

y, S, -j et par z, 7, r.. On a donc 

? fra) U O -, > Xo rj — V ' P. V' 

Si l'on ajoute les carrés de ces équations, et qu'on pose 

(l3j
 C:-/*

2

) * C
2

-0
 + Ci-7?) ~ s"' 

on a 

( 14) S3 = ο102. 

Si l'on porte cette valeur dans l'équation (10), il vient 

( 15) ο2 = rl — -É. 

Au moyen de cette equation, on déduit de la position et de la vitesse de propagation 
du rayon la vitesse de propagation de l'onde. A l'aide des équations ( i4) et (ta) 
on obtient les cosinus de l'inclinaison de la normale à l'onde sur les axes d'élasticité, 

savoir, 

( [6) 

- = -.(■- ;^prsl)> 

«*='· C -ÎTZ^)· 

(|W=«. ( 

On obtient des valeurs semblables, quand le rayon est un rayon extraordinaire, en 
remplaçant partout ο par c, et au lieu de S„ mettant S„ qui peut être donné par l'équa-
tion ( 13), en remplaçant partout l'indice ο par l'indice e. 

Si l'on divise les équations (12) par l'équation (i4), savoir, par S„ = oO, et qu'on 
tienne compte des équations (4)» on trouve les cosinus e,, c., e

3
 de la direction 

du mouvement dans le rayon ordinaire déterminés par la direction de ce ravon , 
savoir, 

(r7) 

x0 _ (ro² - u²) S0 

yo_ (r²- v²²)S0 

zo _ (r²0 -ii²)) 

De même on obtient les cosinus des angles que la direction du mouvement dans un 
rayon extraordinaire forme avec les axes d'élasticité, déterminés par les cosinus du 
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rayon même, 

(18) 

e1 = xe_ (r²e - u²) Se 

e2 = ye_ (r²e - v²) 

e3 = ze_ (r²e - ii²)Se 

Pour le cosinus de l'angle qu'un rayon, quand il est ordinaire, fait avec la direction 
de son mouvement, on a 

0x0+ 02yo+ 03zo 

si l'on porte dans cette formule les valeurs de ο,, o,, o
3
 tirées de l'équation ( 3), et 

celles de x„,y
0
, z

0
 de l'équation (9), et qu'on observe que 

&²+ B+y² 
et que 

|_(e
2
—4

2
)(o

2
 —ρ

2
)
 + {f — ν'

2
) (ο

2
 — ν

2
)
 +

 (e
2
—π

2
) (ο

2 — π
Γ
)_| OE

 ==0 

Puisque tel est le cosinus de l'inclinaison des deux directions déterminées par ο,, o
2
, ο·, 

et e,, e., e
6
 qui sont perpendiculaires l'une à l'autre, on trouve alors 

(18b) o,x
0
 4- o

2
y

0
 4- o

3
z

a
 = o, 

d'où il suit que le rayon ordinaire est toujours perpendiculaire à la direction de son 
mouvement. On trouve de même 

(18 c) e
2
x

e
 4- e

2
y

e
 4- e

3
z, = o. 

Donc les deux rayons, tant ordinaire qu'extraordinaire, sont perpendiculaires à ta 
direction de leur mouvement. Tel est le beau théorème qui s'élève contre une assertion 
de la théorie de Fresnel, comme une conséquence nécessaire de la définition du plan de 
polarisation adoptée par nous, nettement accusée par une construction géométrique 
simple de la surface des ondes et du rayon. 

Les formules qui déterminent les rayons qui appartiennent à une onde donnée, aussi 
bien que celles qui déterminent l'onde correspondante à un rayon donné , deviennent 
dans quelques cas indéterminées. Je vais discuter ces cas, et cette discussion me conduira 
d'une manière très-simple il deux beaux théorèmes de Hamilton sur la réfraction co-
nique (Pogg. Ann., Bd. XXVIII). Je vais à cette fin m'occuper des formules (12), dans 
lesquelles je laisserai de côté l'indice o, et à la place de 0 je mettrai v, qui désignera aussi 
bien la vitesse ordinaire que la vitesse extraordinaire des ondes ; de même r sans indice 
représentera les deux vitesses de propagation des rayons, mais de telle manière que r 
et ν désignent à la fois les vitesses ordinaires ou à la fois les vitesses extraordinaires. 
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Les relations ( 12} sont donc 

9) uv y _ í3. V* 7T 

Quand on y fait ρ — ο, et qu'on détermine en même temps « et y de manière que 

0 = v, fa valeur de y devient = ^, et l'on doit conclure, puisque β et υ — -j devien-

nent indépendamment l'un de l'autre = o, que y n'a aucune valeur déterminée, mais 
un très-grand nombre de valeurs, à savoir, toutes les valeurs qui satisfont à la pre-
mière et à la troisième des équations (19)· Or ces deux équations déterminent une 
courbe, et tous les rayons qui sont menés de l'origine des coordonnées à cette courbe 
appartiennent à une seule et même onde, savoir, celle pour laquelle β = ο et ν = υ ; à 
cette onde appartient donc non-seulement une paire de rayons, mais un cône rayon-
nant. Cette onde, pour laquelle β = ο et ν = υ, est parallèle à la section circulaire de la 
surface d'élasticité. On obtient les valeurs de α et de y qui lui correspondent quand dans 

l'équation (2) on pose β = ο, d'où l'on déduit 

a* 4- r __ 

κ et y y sont déterminés de manière que υ = v. On trouve 

1»' ·<=\/^· 

Si l'on porte ces valeurs dans la première et la troisième des équations (19), et la valeur 

dé r7 = x7 -t-y7 -h z2, il vient 

(21; 

R u >! (~J SK) (»• — k’) 

V {* — n ; \ 1=— {x1 H- y2 -i- z1 — 7T2) 

D'où il résulte que la courbe est un cercle. Le plan de ce cercle est perpendiculaire 
au plan y = ο, son centre est dans ce plan, et si l'on appelle les coordonnées des 
deux points d'intersection du plan des coordonnées y = ο avec le cercle χ ', ζ' et χ", ζ", 

on a 
^

=νν
/ΞΞΖ,

 Χ
"^^,βΞΖ, 

z'
=

 , ι/ξΞΙ
2

,
 =

 £\βΞ2. 

Le diamètre du cercle est donc 

\'ix'—.r")2H-(z'—z")7— — \l(y7 — v2) (v2 — ft2) = 2R. 
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La ligne tirée de l'origine des coordonnées au point d'intersection {χ', y', z') est per-

pendiculaire sur le diamètre du cercle qui serait mené de ce point d'intersection au 
point d'intersection marqué par (x", y", z"), et est par conséquent aussi perpendicu-
laire au plan du cercle. La comparaison de cette équation avec l'équation (ao) fait 
voir que cette ligne, menée du centre au point [χ', y ', z' !, est en même temps la nor-
male à l'onde correspondante au cone radieux, c'est-à-dire l'axe optique. 

La distance du point d'intersection χ', y', z' au centre est v. On peut donc , d'après 
cela, construire le cône de rayons qui appartient à l'onde plane parallèle à la section 
circulaire de la surface d'élasticité. 

Si l'on appelle « l'inclinaison sur l'axe « déterminée par α et 7 dans l'équation (ao ), 
η étant la demi-inclinaison de l'axe optique , il vient 

sin n= V u² - u² _ ii² - y² cos n= 

Si l'on introduit ses valeurs dans l'expression du diamètre, on obtient 

2R = i/v ii²- u² 

Si par l'axe optique on conduit un plan incliné d'un angle ω sur le plan déterminé par 
les deux axes optiques, la corde qui, dans le cercle (21), est tracée par ce plan, a pour 

expression — — sin 2η cos ω, et par conséquent, si l'on désigne par q l'inclinaison 

du côté du cône situé dans ce plan sur l'axe optique , 

tan q = ii² - u² _ 2v² sin 2n 

C'est la forme la plus simple de l'équation du cône radieux. 

Si l'on pose dans l'éq. (iq) y— ο et r ~ v, c'est-à-dire, si l'on suppose que le 
rayon se meuve dans la direction de la normale d'une section circulaire de l'ellipsoïde 

qui servit à Fresnel à construire les vitesses des rayons, (3 devient — ^, ce qui, dans ce 

cas, doit vouloir dire que (3 a toutes les valeurs possibles, pourvu que la première et la 
troisième des équations(ig) soient satisfaites. Quand r ■— ο et r — -j, on trouve 

(24) 

M:H12 

et 

M:H12 ezéaz 

Tome VU. — JSOVRMBRE rS-P5 7 
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Si l'on substitue dans la première et la troisième des équations (19) ces valeurs pour 
χ, z et r, etsil'on pose en même temps ae = x', (3 v — y\ γμ—ζχ', y', ζ étant les 
coordonnées du pied de la perpendiculaire abaissée du centre sur l'onde relative an 

rayon y— o, r~n, on obtient 

x,__ 7T (V2 — z; ft (<•'' — **) V' (’>' — — {*’) Ti V — >2) “ P2} 

c = x'7 4- y'7 4- z". La courbe déterminée par ces équations est un cercle dont le plan 
est parallèle à l'axe y, et dont le centre est dans le plan (χ, z). 

Soient les coordonnées des points de rencontre de ce plan avec le cercle χ", z" et 

x'", z" ; on a 

( X ft _ f¿2 7T \! iy — ^) (n* — y--) n /// 
'26.) 

r \ i / * - I re' p, y/ (r2 — V2 ) (rr* —* a2) 7// 0 : . > — UL V 

Ke diamètre de ce cercle s'obtient au moyen de l'équation 

?.R — y'' (x" — x'")- 4- [z." — z'")
1

- —- y/ * ' f , "²) 

La ligne tirée de l'origine des coordonnées au point x", y", z" est perpendiculaire 

au diamètre qui joint x", y", z" et x"', y"', z"', et sa longueur est iir_Vu² 
La ligne tiree de l'origine des coordonnées au point x'", y'", z'" coïncide avec la nor-

male à la section circulaire de l'ellipsoïde de Fresnel, et sa longueur — 
Les lignes menées de l'origine des coordonnées à la périphérie du cercle, dont la 

construction est facile à la suite de ce qui a été dit, forment un cône elliptique qui est le 
lieu des normales aux ondes planes correspondantes au rayon perpendiculaire à la sec-
tion circulaire de l'ellipsoïde. Si nous rapportons ce cône à un système d'axes coordon-
nes , semblable au système d'axes auquel nous avons rapporté précédemment le cône 

de l'équation (23), nous obtiendrons l'équation 

(
27

) tang
 (î

)
 =

 cos» y/fc—^X—= v'cos
M

y/(É - _ l). 

{</) représente l'inclinaison d'une génératrice quelconque de ce cône sur la génératrice 
qui va du sommet au point x", y", z" ; m désigne l'inclinaison du plan mené par ces 
deux génératrices sur le plan des deux axes optiques. 

Si l'angle que la génératrice menée du sommet au point a:'", y'" fait avec l'axe est de-
signé par \ n), 2 («) étant l'inclinaison de la normale à la section circulaire de l'ellip-
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soïde, on déduit immédiatement de l'équation (24), 

1 1 
sin(n) = 1-ii² 

v1 1 
u2 II2 

1 1 
cos (n )= V 1 -

1 1 
u2 v2 

Ces valeurs, substituées dans tang (q), donnent 

28 ) tan (g) = v² (1 -ii² ) 

Les différents coefficients de réfraction du rayon qui se meut le long de la normale 
à la section circulaire de l'ellipsoïde sont représentés par l'unité divisée par les lignes 

qui vont de l'origine à la circonférence du cercle (25), c'est-à-dire par -. On trouve 

1*9) .•i - - ./** sin- « 

D'où l'on voit que les coefficients de réfraction sont constants quand on se borne à 
prendre la seconde puissance de la différence du plus grand et du plus petit axe d'élas-
ticité. On arrive à l'équation (29) le plus simplement possible de la manière suivante. On 
déduit de l'équation (25) 

(3o) = - ; \J = - -5 COt rt. 

Si par le côté du cône qui est déterminé par l'équation (28), on fait passer un plan 
perpendiculaire au plan des deux axes optiques, et si l'on appelle α l'angle que la ligne 
d'intersection de ces deux plans forme avec la ligne qui est tirée de l'origine des coor-

données au point χ", 2", dans l'éq. (26), et si l'on pose de plus --,
7
 = tang ρ ; χ", ζ" 

ayant les valeurs déterminées dans l'équation (26), on obtient pour équation ( 3o), 

une nouvelle expression, savoir, 

tangí#,-!-*). 

5
7

. 
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On a, d'après l'équation (26), 

tan p = u_ii tang n 

η étant la moitié de l'inclinaison des deux axes optiques ; on a d'ailleurs 

tang α = cos ω tang (η), 

equation dans laquelle pour cos (7) on doit mettre sa valeur déduite de l'eq. (28), et 
dans laquelle ω a la même signification que dans l'éq. (28). Si l'on porte ces valeurs pour 

ρ, α et(V/) dans tang (p -f- α), et si l'on met l'expression qui en résulté à la place de -

dans l'équation (3o), on trouve l'expression donnée dans l'équation (29' . 

Si l'on rapporte la position du plan de l'onde aux axes optiques au lieu de la rappor-
ter aux axes d'élasticité, on obtient, pour la plupart des formules ci dessus, des ex-
pressions très-simples que je présenterai ici, à cause de l'utilité dont elles nous seront 

plus tard. 
Si u et υ! sont les angles que la normale à l'onde fait avec les deux axes optiques , 

c'est-à-dire avec les normales aux sections circulaires de la surface d'élasticité, pendant 
que, comme ci-dessus, ζ, (3, 7 désignent les cosinus de la normale à l'onde avec les 
axes x, r, z, il vient 

Sin ( li ~f~ II sin'2 

cus 2 a 

On a, d'après l'équation (5), 

c- -0 — U -jfen (7T- — p-J sin- — 

et par conséquent, 

12 , o* — p.2 = (TT- — fX2) sin- 12 

1,3. >• = p.- — v2 + (tt2 — fi2) sin2 il—u 13 

— (V —* p.2) cos u 2 _ iff U 

Si Ton place ces valeurs dans l'expression de Ο2, équation j savoir, 

02
 - (,Γ-Γ^) + („. L.,} -ο ( ,:= ! · 
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on obtient, en multipliant l'équation par (π2 — υ.-), 

cos'('«— u'\ Vjr* — V2/ 

cos'('«— u'\ Vjr* — V2/ 

. .u-hiï . a—a' TZ-—W- \ fu-\-iï 

. .u-hiï . a—a' TZ-—W- \ fu-\-iï 

cos²(u+u'_e) ii 

cos²(u+u'_e) ii 

Si l'on réduit les termes du second membre de cette équation au même dénominateur, 

en multipliant le premier terme par — ; sin2 , et le troisième 

par o²-v² = ii²-v²-, ilm on obtient, après quelques réductions, 

Ο2 (ττ — μ2)2 = 

(π -,-)cos- jsin
2

—- + [ν
2

—μ.
2

) sm
2

 j cos
2

 J Η-(ρ'-π>η» jcos-(_— 

" " ii² -u²) sin (u-u²) 

Le numérateur de cette fraction se décompose dans les deux facteurs qui suivent : 

f
si

"
2

(V
1

) -
sinJ

 (nr)] |/
 si«2 (—)]; 

on obtient donc 

12 o 4 H U sin si sin2 (12 o 4 H U sin si sin2 ( 

12 o 4 H U sin si sin2 ( 
ou bien 

1\O² = sin (u-u²) sin² () 
1\O² = sin (u-u²) sin² () 

Par un calcul tout semblable, on trouve 

16 (32) Cío I R2 71" a2V .sill2 («-}-«') 
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Les quantités renfermées entre parenthèses, dans les équ. (3i) et(3z), ont une signifi-
ration géométrique simple. Si l'on considère, en effet, la pyramide triangulaire dont 
les arêtes sont les deux axes optiques et la normale à l'onde, et si l'on appelle 2η l'angle 
que les deux axes optiques font entre eux , et zj l'angle sous lequel sont inclinées entre 
elles les deux faces qui se coupent suivant la normale à l'onde, on a 

cos z.n — cos u cos 11 -f- sin u sin u' cos 2 j ; 

et si l'on observe que, d'après l'équation (22), 

% 

on tire 

. .u-hiï . a—a' TZ-—W- \ fu-\-iï 

Les valeurs , mises dans les équations ; 3i) et (3a), donnent donc 

(34 i ~ = rh sin
 (" — "')

sin
 J j 

(35) — — ± sin (a H- u j cos j. 

.le désignerai dans la suite par k l'angle j pour l'onde extraordinaire; je conserverai 

la lettre j pour l'onde ordinaire seule. 

§ XVI. 

Il nous faut maintenant rechercher l'équation qui dérive du principe de la conserva-
tion des forces vives. Nous reprendrons encore les considerations qui nous ont conduit 
au rapport des volumes de l'onde incidente et de l'onde réfractée dans les cristaux à un 
axe, § V, et nous emploierons aussi la même notation. Le volume de l'onde incidente 

est donc aH cos « et le volume de l'onde réfractée ^ S1" *** W. 

Nous tirons de l'équation (3), § V, pour l'onde ordinaire, 

, 1 1 W = α (cos y' — sin φ' tang r/ cos -b'). 

r/' désigné l'inclinaison du rayon sur la normale à l'onde et ψ' l'angle sous lequel le plan 
mené par la normale à l'onde ordinaire et le rayon de cette onde rencontre le plan 
d'incidence. Cet angle ·(/ est calculé de manière que si l'on mène par le centre d'une 
sphère les deux normales Ν et Λ à l'onde incidente et à l'onde réfractée, et le rayon S, 
le eéifé NS du triangle spherique N/iS, déterminé par leurs rencontres avec la sphère, 
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soit opposé à l'angle 180" — ψ', on, ce qui revient au même, que ψ' = ο si le rayon est 
dans le plan .d'incidence et si l'inclinaison de S sur Ν est plus grande que celle de « 
sur N. 

Il est facile de déduire les valeurs de tang q' et de cos ψ' des formules données. On a 

cos q' = — ; 

si l'on γ substitue les valeurs de x
0
, y

0
, z„, et r

Q
 de l'équation (9), § XV, on trouve 

cos q'= 0_ Vo²+ze 

et par conséquent 

w
 tan

^' = ôb· 

Dans le triangle sphérique NraS, ci-dessus cité, le côté Ν η — q' et η S = q-, le troi-
sième côté NS est l'inclinaison du rayon sur la normale à la surface réfringente. On a 
donc 

12 o 4 H U sin si sin2 ( 

A, B, C étant les cosinus des angles sous lesquels la normale Ν à la surface réfringente 
rencontre les parallèles aux trois axes d'élasticité. En mettant dans cette formule les 
valeurs de x„, y

0
, z„, et r„ tirées de l'équation (9), § XV, on obtient 

cos NS = 0 cos y( Ax'+BC 

cos NS = 0 cos y( Ax'+BC 

Enfin on a, pour l'angle 1800 — ψ' opposé au côté NS, 

cos y'= cos NS 

et de là, quand pour cos NS, cos q et sin q on met leurs valeurs, 

l3) — S1« t co« Ψ = « I "A —, + ) ■ 

Les considérations du § V nous donnent pareillement, pour l'onde extraordinaire, 

(4) 3V" = α (cos y" — sin «ρ" tang q" cos ψ") ; 

q" et ψ" ont la même signification pour cette onde que q' et ψ' pour l'onde ordinaire. 
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Nous trouvons ici, d'une manière toute semblable , 

ί 5) tang η" — r^p, , 

et 

(ι — sin y cos -i = -, ( 4- 1 , ) ; 

pour l'uniformité de la notation, j'ai désigne les cosinus des angles que la normale à 
l'onde forme avec les trois axes d'élasticité, par α", β" et y". 

A la place des angles ■'/ et ψ", j'en introduirai d'autres; je prendrai les angles que les 
directions du mouvement dans l'onde ordinaire et dans l'onde extraordinaire font avec 
le plan d'incidence. J'appellerai ces angles x' et χ". 

Comme il a été trouvé que les rayons sont perpendiculaires aux directions de leur 
mouvement, 

x' — go° 4- ψ', χ" = go° 4- ψ". 

On doit remarquer que, dans ces inégalités, x' et x" sont comptées dans le même 
sens que ψ' et ψ". D'après cela, on a 

7 

cos ψ sin φ — sin χ sin φ = — — ; 4- „ 4- . 

cos ψ sin α — sin χ sin φ = — — I Η 4- — |. 

Les volumes correspondants, dans l'onde ordinaire et dans l'onde extraordinaire, de-
viennent , par suite, 

—-- isin β cos 'j — sm x sin «' tang a , 

cl 

— (sin® C0S9 —si η A- sin-o tango .. 

L'équation des forces vives est donc la suivante 

\ (P- S5 — B.p — Rji sin y cos y = D'- (sin y' cos φ' — sin x sin- ©' tang q' 
) 4- D"-(sinφ"cosy"—sin.r"sin3o"tangy'']. 

P, s, R,,, R, ont la même signification que ci-dessus, et D' et D" représentent les vi-
tesses dans l'onde ordinaire et dans l'onde extraordinaire. 

Pour former les équations qui résultent du principe de l'égalité des composantes, 
je décomposerai les vitesses D' et D" dans le rayon ordinaire et dans le rayon extraor-
dinaire suivant les directions suivantes : 

i". Perpendiculairement au plan d'incidence; 2° perpendiculairement à la surface 
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réfringente ; 3° parallèlement au plan d'incidence et parallèlement à la surface réfrin-
gente. Ces composantes sont respectivement 

I. D' sin χ ' et D" sin χ", 
II. D' cos χ' sin y' et — D" cos χ" sin y", 
III. D' cos χ ' cos y' et — D" cos χ" cos y'". 

Si nous décomposons suivant les trois mêmes directions les vitesses dans le rayon inci-
dent et dans le rayon réfléchi, nous obtenons 

I. Ρ et R^, 
II. — S sin φ et — R

s
 sin y, 

III. — S cos y et + Rj cos y ; 

d'où nous déduisons, par le principe de l'égalité des composantes, 

(9) P 4- R^, = D' sin χ ' -f- D" sin χ", 

(ι ο) (S 4- R
s
) sin y — — D' cos χ' sin y' 4- D" cos χ" sin y", 

(11) (S — R^cosy = — D' cos Λ;' cosy' -f- D" cos Λ;" cos y". 

Ces trois équations, combinées avec l'éq. (8), déterminent les quantités cherchées. 
Je vais montrer maintenant que l'équation (8) peut, dans ce cas comme dans le cas des 
cristaux à un axe, se remplacer par une équation linéaire. 

Si l'on multiplie les équations (ιo) et(n) l'une par l'autre, 

(S5 — Ri ) sin y cos y = D'2 cos2 χ ' sin y' cos y' -|- D"2 cos2 χ" sin y" cos y" 
— D'D" cos χ ' cos χ" sin (y' -|- y") ; 

et si l'on retranche ce produit de l'équation (8), on obtient 

( P2 — R2 ) sin y cos y — D'2 (sin2 χ ' sin y' cos y' — sin χ ' sin2 y' tang q' ) 
-f- D"2 (sin2 χ" sin y "cos y" — sin χ" sin2 y" tang q") 
-1- D'D"cos x'cos ^"sin (y' 4- y"). 

Cette équation est divisible par l'équation (9), et l'on obtient, par cette division, 

i (P — R^siny cosy = R'(sin Λ;'sin y' cosy'— sin2 y' tang q') 
12)I 4- R"(sin χ " sin y" cos y"— sin2 y" tang q") ; 

dans l'hypothèse où la relation suivante a lieu, 

sin l'y' 4- y" ) [sin χ ' sin χ!' cos (y' — y" ) — cos χ ' cos χ" ] 
= sin2 y'tang q' sin χ" 4- sin2 y" tang q" cos Λ·'. 

Pour démontrer la justesse de cette relation, je la mettrai d'abord sous une autre 

forme. 
Tome VU· — NOVEMBRE 1842. 58 
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Si l'on remplace, à l'aide des équations (?.) et (5), tang q' et tang q" par leurs va-
leurs, savoir, 

tang q' = 1/ o²0, tang q"= 1/ e²E 

qu'on remarque en outre que 

Sin-nr sin5 y" tD e} 
et que 

sin!'/— φ" ) sin (/ -+- /') = sin2 φ (ο2— e2) = — [cos(α—a')—cos(i>—e')]sin2», 

on trouve 

) — COS X COS X =:• 

<mi irouvc 9~ sin .r'sin .r "cos(<p' sin x" sin // \ / // V - ^ 'f ) — COS X COS X =:• 77 “P'r 

Avant de mettre pour — et — leurs valeurs déduites de l'équation (34), § XV, nous 

devons rechercher de quel signe nous les affecterons. Posons, dans l'cquation (η), 

A = o, C = o, 
nous obtenons 

"cos(<p' sin x" sin 

D'après l'équation (5), § XV, on voit que puisque sin
2
 ^ " ne peut être plus grand 

que sin1 n — , o2 ne peut être plus grand que v2 si, comme nous le supposons 

pour la symétrie, π p. Par conséquent o2 — -j2 est une quantité négative. Mais la va-
leur décos / est, dans ce cas où nous supposons A—o, C=o, toujours positive, comme 
cela paraît clairement par l'angle que le rayon fait avec l'axe d'élasticité v, quand y '= o, 

angle plus grand que l'angle correspondant avec la normale à l'onde ; ~ doit donc être 

pris positivement, et par conséquent 

rr² az mo qs sinj 

« doit toujours être plus grand que u'. 
Si l'on passe d'une normale a', p', y 'à une autre — a', (3', y', les angles u, u' échan-

gent leur signification : l'arc qui précédemment était désigné par u doit être maintenant 
désigné par et réciproquement. 
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Pour discuter le signe qui convient à ~, nous poserons dans l'équation (η) 

Β = ο, C = ο, 
de maniéré que 

Sos Y sin y" = sin sin a _£ r2 — 

La valeur de e2 — p2 est toujours positive ; la valeur de cos ψ, quand on suppose de 
nouveau que π2 )>p!, est, comme on voit, négative, si l'on pose β" = ο, auquel cas le 
rayon fait avec l'axe d'élasticité ρ un plus petit angle que la normale correspondante. 

Par conséquent il faut prendre aussi pour dans l'équation (34}» §XV, le signe positif. 

Tant que la valeur de cos ψ" a son signe négatif, le signe de y " peut être positif ou né-
gatif, c'est-à-dire que la normale à l'onde peut faire avec l'axe π un angle aigu ou obtus ; 

ce n'est pas ~—- qui change de signe avec y ", mais bien la valeur de ψ , donnée au 

§ XV, équ. (34), car si y " est pris positivement, κ + κ'< i8o°, et si y " est négatif, 
11 + U' )> 1800. D'après cela, on doit écrire 

— = ± — sin (υ -+- u' ) cos k . 

où l'on prendra le signe négatif quand sin lu +- u') sera négatif. 

J'introduirai dans ce qui suit le signe pour la simplicité de l'expression, avec la 

réserve de changer ce signe + en signe — quand ~ devra être négatif. 

Si l'on met ces valeurs, maintenant plus exactement appréciées, de et de ~ dans la 

relation (18), elle se change en la suivante · 

P'4) cos x9 cos x" — sin x ' sin x " cos(?'— y") sin x" siny sin(u—u' ) -f- sin V cos k sin (u-f-*/ ¡ COS ì — C.OS Aj-4-u' \ sin ì ai 

Cette relation peut se traduire par une construction géométrique à la surface de la 
sphère. Nous menons par le centre d'une sphère les deux axes optiques et les deux nor-
males à l'onde ordinaire et à l'onde extraordinaire; soient A, A', Ο, Ε,fig. 9, les inter-
sections de ces quatre lignes avec la surface. Le plan d'incidence coupe ainsi la sphère 
suivant le grand cercle OE. Les arcs AO, ΑΌ sont u et a'; les arcs AE , A'E sont ν, υ 
l'arc EO = (9' — φ"); l'arc AA' — 2n. La direction du mouvement dans l'onde ordi-
naire Ο est dans le plan bisecteur de l'angle AOA' — ay ; la section de la sphère par ce 
plan est 00'. Si l'on construit EE' de manière à diviser en deux parties égales l'angle 
AEA' = 2k, et si l'on tire E<? perpendiculaire à EE', Ee est la section de la sphère par 
le plan dans lequel se fait le mouvement de l'onde extraordinaire Ε Comme ces direc-

58. 
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tions de mouvements sont perpendiculaires sur leurs normales respectives O'OÎÏ = x' 
et cEN = χ". Ν désigne l'intersection de la sphère avec la normale à la surface réfrin-

gente. 
A l'aide de cette construction je me suis convaincu de l'exactitude de la relation (i4J> 

mais d'une manière quelque peu pénible. La démonstration plus simple que voici m'a 

été communiquée par M. le professeur Jacobi. 
Soient les angles EAO et EA'O désignés encore par α et a', et soit EO = (<p'—φ" ) = 4 ; 

les triangles EAO et EA'O donnent les équations suivantes : 

sin & cos & = cos (x"-k ) cos (x"-j) cos A - sin (x"-k)sin(x'+j) 
sin a'cos u'= cos {x"+ k) cos (x'—y ) cos 4 — sin (x"-f- k) sin (x '—j), 

sin a cos -J = sin [x"— k) sin (x'-t-y ) cos Λ — cos (χ"— k) cos (x'-f-y )> 
— sin a'cos v>' = sin (x /) sin (x'—j) cos Δ —cos(x"-f- k) cos (x '—j). 

Si l'on multiplie les deux premières par sin χ", les deux dernières par sin χ', et qu'on 

pose 
cos k = cos k) cos .r "-4- sin (χ"+ k) sin χ", 

= cos (χ "— k) cos χ"-Η sin (χ"— k) sin χ", 
sin y — — sin (x' — j ) cos χ' -t- cos(x' — j ) sin x', 

= — cos (χ' -f- j) sin x' sin ('χ' cosx', 

on obtient 
— sin α cos u sinx"= sin(x' -f- j) cos if — [sin (x' 4-y )cosx"-f- cos (x'-hy')sinx" cos 4] cos (χ"—/-) 
— sin a'cos w'sinx"= 'sin (χ' —y) cosk — [sin (x' —y'Jcosx"-}- cos(x'— y )sinx" cos4]cos (X"H-/·) 

sina ('os -i sinx'= cos(x"—/j sin j —[cos(x"—k)cosxr — sin (x"—kjsinx' cos Δ] sin (x'-f- j) 
— sin a'cos u' sinx'=—cos(x"-M)sin j —[cos (x" 4-^) cosx'— sin (x"-M)sinx'cos4]sin (x'—j) 

On a de plus 
— sin α sin u — sin 4 cos (x"— k), sin α sin υ = sin (x'-f- j'j sin Δ, 

(c) — sin a'sin «.' = sin 4 cos(x"4- k), sin a'sin υ = sin(x'—y) sin 4. 

On déduit des équations (b) et (c) 

sin α sin α ^
 χ "sjn (u —u· j _ cos /. [COs(x "— k)sin (x '—j) — cos(x"-f- k) sin (x y')] 

4- 2cos(.r"-+-i)cos(x"—X)siny(cosx'cosx"—sinx'sinx"cos4j, 
sin α sin α

 sjn E'sjn;,j -j-υ') = —siny'[cos(.r "—k) sin(x'—j) — cos(x" 4-k)sin (x'-f-/)] 

4- 2 sin (x'—y ) sin (V4-y) cos k (cos x' cos χ"—sin x'sin x"cos 4), 

et de la 

(d) 
[sin χ sin j sin (u — u ) -h sin x' cos /■] sin (υ 4-υ' J 

= ?.[cos (x"4-f) cos(x"—k) sin5/ 4- sin (x'+j) sin (x'—j) cos
3

 /fj(cosx'cosx"—sinx'sinx"cos4): 
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d'où se déduit la relation obtenue. 
On a, en effet, 

(e) 
cos 2« = cos κ cos «'-f- sin u sin «' cos ay — cos (a—«') — 2 sin «sin «'sin2,/» 
cos an = cos υ cos υ' -+- sin υ sin υ' cos 2k — cos (υ -+- υ') -+- 2 sin υ sin m' sin2£. 

Par consequent 

cos («— «' )— cos (υ + u' ) = 2 (sin u sin «' sin2/' sin υ sin u' cos2 k), 

d'où l'on déduit, d'après (c), 

sin «sing ^, —j — cos )]= 2 [cos (χ"—Ί) cos (x"-{-k ) sin
2

/ -+- sin (χ'—y) sin (χ'+j) cos
2

 /■]. 

Si l'on divise (d) par cette équation, on obtient 

11 sin x " sin j sin (a—u' ) sin x' cos k sin (y-t-V ) ' ’ COS (U li' ) ■=*■ cos ) sin A 

laquelle est la relation qu'il s'agissait de prouver. 
On déduit encore de l'équation (a), d'une manière semblable, quelques relations qui, 

plus tard, nous seront utiles. Si l'on multiplie les deux premières équations (a) par 
cos χ" et les deux dernières par sin χ', on obtient 

sin α cos « cos χ" =: + sin k sin (χ' +y ) —cos [χ"— k) [sin (χ' -+-y ) sin χ" — cos [χ! -\-j ) cos x" cos Δ], 
sin «'cos«'cos χ" ~ — sin k sin (χ' — j) —cos fx" -+- k) [sin (χ' —y) sin χ" — cos [x' -t-y) cos x" cos Δ], 

— sina cos υ sin x' -- sin j cos ix"—k)—sin (a:' + j ) [cos [x"—k) cos χ' —sin It"—k) sin x' cos Δ], 
— sin a'cos /sin χ ' — — sin y cos (x"-hk) —sin (a/ — y) [cos (x"+k) cos χ' — sin [x" -f- k) sin χ ' cos Δ], 

et de là 

sin α sin « ,—
cos χ" = sin/· [sin (g/ —j)cos(x"—/i) + sin(a;'+y)cos(gr"-4-/')] 

— 2 sin y cos (x"-h-k) cos (χ"—k) (cos x' sin x"-+- sin χ cos x" cos Δ), 

sin « sin «^ ^, —
u' ) sin a:' = sin y [cosfx"—k) siri (x'—j ) cos (x"+k) sin (x'+ j )J 

— 2 sin k sin (x'~\- y) sin [x'—y) (cosx' sin χ" -I- sin x' eos x" cos Δ). 

Par conséquent 

(g) 
—: [sin ( «—u ) cos χ smy — sin ( υ—a ) sin χ sin k 

= — 2 [sin2y cos (x"-hk) cos (x"—k) — sin2/·sin (x'-hj ) sin fx'—y ](cos.r' sinx"+ cos ,z"sin id cos Δ). 

On a, en outre, par l'équation (e), 

cos («—«') — cos (it—-J ) = 2 (sin u sin «' sin2y — sin υ sin v' cos2 k), 
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et à cause de l'équation (e), 

sinxsinx'_sin²A 

En prenant cette équation pour diviseur de (g), on obtient 

- s i n A 

On obtient une autre relation utile de la manière suivante. On multiplie les deux pre-
mières équations (a) par sin χ" et la troisième et la quatrième par cos χ', 

sin y. cos u sin«" = — cos X' sin (χ' -4-y) -t- cos (x"—k) [sin(.r' -4-y J cosar" -f- cos («' -f-y ) sin a·" cos Δ] , 

sina'cos«'sina// = — cosksin (x' — y) -f- cos («"-|-X")[sin(a?' —j) cosx" -+- cos (χ' —y ) sinx"cos Δ] , 

— sin a cos υ cos.r' =—cosycos(a/'—k) -(-sin (xk -|-y')[cos(a7"—Λ) sin x' -f-sin(«"—/)cosa/ cos Δ], 

— sina'cosu' cos χ' = — cos y cos (x"-j-k) -+· sin (a;' — j) [cos («"+/!■) sin χ' -|- sin (a;" —Λ) cos a:' cos Δ], 

D'où résulte 

—" sin x" sin (u-\-u' ) — — cos k [sin («'·+·y ) cos (x"-+-k) -+- sin (x'—y) cos (x"— /■)] 

+ 2 cos ( 

— cos x sin (u -h ν) = — cosy [cos (x — k) sin (x — JJ-h cos («4- k) sin (x 4-y )] 

4- 2 sin («'4- j ) sin (xk—j) cos k (cos «"sin x'+ cos a/ sin x" cos Δ). 

Par conséquent 

+sinxsinx' 

— 2 j cos (x"—k) cos (x"-+-k) cos'y — sin f«'4-y) sin («'—y'jcos3/] (cos«"sin«' 4- sin x" cos x' cos Δ). 

D'ailleurs 

sin .t sin y. — cos = — 2 [cos
3

y cos (χ" — Λ) cos («"-M) — cos
3

 k sin («' 4-y ) sin («' —y )]; 

par conséquent 

s i n A 

§ XVII. 

Les equations d'où dépendent les intensités des rayons réfléchis et réfractés sont donc 
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les suivantes : 

(S +Rj )sin φ = — D' cos χ' sin φ' -t- D" cos χ" sing", 
(S —Β.,) cos q — — D' cos χ' cos φ' 4- D" cos χ" cos q", 
P-f-Rp = D' sin χ' 4- D" sin χ", 

( Ρ—Rρ) sin q cos φ = D' (sin χ' sin q' cos q' — sin2 q' tang q') 

4- D"(sin ar"sin ç"cos q" — sin2 <p"tang q"). 
On déduit de là 

ω 
R/> — pv -+- ''S, 
Rj = p'P + iS, 

où les coefficients ρ, p', s, s' ont les valeurs suivantes : 

(2) 

Νρ = cos χ" sin («ρ4-φ" ) [sin je' sin (<p—q' ) cos(<|>4-</ ) 4- sin2 q tang q' J 
4- cos χ' sin (φ+φ' ) [sin χ" sin (φ—q" ) cos (φ4-φ" ) 4- sin2 q" tang q"], 

Ν s = — cos χ' sin (q—q' ) [sin χ" sin (φ4-<ρ" ) cos (φ—q" ) — sin2
 q" tang q" ] 

— cos χ sin (<p—ip )[smx sin (φ-t—φ Jcos(tp—q' ) — sin2 φ' tang q' ], 
INp'— — sin 2q cos x' cos x" sin ( q'—q" ), 

sina ('os -i sinx'= cos(x"—/j sin j —[cos(x"—k)cosxr — sin (x"—kjsinx' cos Δ] sin (x'-f- j) 

IN a pour valeur 

N = { 

Pour les vitesses dans les rayons réfractés, on trouve 

(3) ND' = 2 sin q cos q {Ρ cos x" sin (q-\-q") — S [sin χ" sin (®4V')cos (q—q") — sin2
 q" tang 7" ] [ , 

ND" = 2 sin q cos q | Ρ cos x' sin (f 4-φ' ) 4- S [sin a/ sin [q+q' ) cos (q—q' ) — sin
2

 q' tang q' ] [ . 

De là, on déduit les intensités de la lumière dans les rayons réfractés ordinaire et ex-
traordinaire. Leurs valeurs sont respectivement D'2U', D"2U" , 

(4) 

U, sin q' cos q'— sin x! sin2 q' tang q' 
sin φ cos q ' 

U sin φ" cos φ"—sin.r/'sinV'tangy" 
sin <p cos q 

Employons ces formules, pour les faire mieux comprendre, aux trois cas très-simples 
que voici : 

1. Quand le plan d'incidence divise en deux parties égales l'angle aigu des axes op-
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tiques, alors 

u— u — o, — =tang<7 =o, u-f-u'=2u. 

En outre 
sin χ' — ο, cos χ" — ο, cos χ' — qz ι, 

selon que la normale à la surface réfringente est du côté de l'axe π ou du côté de l'axe v, 
par rapport à la normale à l'onde réfractée, supposé, pour la commodité de la démon-
stration, que l'axe π est celui qui divise en deux parties égales l'angle aigu des deux axes 

optiques. Dans les mêmes conditions sin χ" ~ ± ι. 
D'après les équations (i), (2), (3), on trouve ρ' = o, s' =o. 

(5) 

_ sin (y g' ) S 
sin (?+?') 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± Ρ 

sin (φ+
?
" ) cos (?—φ" ) ζμsina ('os -i sinx'= cos(x"—/j sin 

D', ± 2 sin φ COS tf S 
sin (ί+φ' ) ' 

D'„ ± 2 sin q cos q Ρ 

sin (?+?" ) COS (φ—φ" ) qzsina ('os -i sinx'= cos(x 

U', sin φ'COS φ' 
sin φ COS φ ' 

U"= 

2. Quand le plan d'incidence divise en deux parties égales l'angle obtus des deux axes 

optiques, ou, ce qui est la même chose, coïncide avec le plan des axes μ et y; alors 

u υ' = 18o°, 

et, par su te, 

-L — tang q" = o, (u — u') = 180" — 2u'. 

En outre 
COSJ;'=O, sin.r" = o, 

et 
sin χ' = zfc 1, cos χ" — ζμ ι, 

selon que la normale au plan de réfringence est du côté de l'axe y ou du côté de l'axe 
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[i. par rapport à la normale à l'onde réfractée. On trouve p' — o. s' ~ o. 

Rs = 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 
(6) Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 
Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ±Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

5. Le plan d'incidence coincide avec le plan des deux axes optiepies. Ici nous avons 
deux cas à distinguer : 

i°. Les normales aux ondes réfractées sont dans l'angle obtus des axes optiques, 

sinar' = o, cosx"=o, / = o, I = o, - = o, 
et 

cos χ' = ιρ 1, sin χ " — dt 1. 

On doit prendre le signe supérieur ou le signe inférieur selon que la normale au plan 
réfringent est située du côté de l'axe π ou du côté de l'axe ρ par rapport à la normale à 
l'onde réfractée. On trouve p' = o, s' = o. 

Rs= 

Rp=[ sin (?—?" ) cos (φ+φ" ) ±Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

(7) D'= 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ±Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Tome "V 11. DÉCEMBRE 184*2. ^9 
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2". Les normales aux ondes réfractées sont situées dans l'angle aigu des axes op-

tiques , 

cos χ ' — ο, sin χ " ~ ο, ij — 18ο°, 2k = 18ο°, -, =: ο, 

et 
sin χ' = ± Ι , cos Λ;" = ΖξΖ Ι , 

scion que la normale an plan de réfringence est du côte de l'axe TTOM du côte de l'axe y. 
par rapport à la normale à l'onde réfractée. On a encore p' — o, s' = o. 

i») 

Rs= 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ±Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 
Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

U'= 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 
Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Je démontrerai, dans le paragraphe suivant, que celles de ces formules qui se rap · 
portent aux rayons réfléchis sont encore exactes pour le cas particulier, intermédiaire 
entre les deux cas i° et z", où la normale à l'onde réfractée coïncide avec l'axe optique; 

il suffit alors de poser '/ =P". 

§ XVIII. 

Je vais actuellement appliquer les formules (i), (2), (3) du precedent paragraphe à un 
cas plus diflicile en apparence que celui de la double réfraction, au cas de la réfraction 
i onique. Je rechercherai les intensités de lumière et la position des plans de polari-
sation pour diverses arêtes du cône lumineux que forme le rayon incident en s'épa-
nouissant. Les formules (1), (2), (3) deviennent, dans ce cas, complètement indéter-
minées, puisque x' et x",j et k peuvent avoir toute valeur; elles prennent la nature 

des expressions qui deviennent ^ par des valeurs déterminées de deux quantités in-
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dépendantes l'une de l'autre. Dans des cas semblables, la signification du symbole-

mérite un examen tout spécial. J'aurai recours à la fig. ίο. Soient menés par le 
centre d'une sphère les deux axes optiques qui rencontrent sa surface en A et A'; 
par le même centre faisons passer la normale au plan de réfringence, les normales aux 
ondes ordinaire et extraordinaire, et le rayon incident correspondant ; ces lignes 
rencontrent la surface sphérique respectivement en Β, Ο, Ε et S. Le plan d'inci-
dence est ainsi celui du grand cercle BEOS. J'ai supposé que la normale au plan de 
réfringence se trouve située dans le plan des axes optiques, et dans l'angle aigu de ces 
axes; plus tard j'examinerai le cas général. Les mouvements de l'onde ordinaire Ο se 
font dans le plan du cercle 00'qui divise en deux parties égales l'angle ΛΟΑ'; le rayon 
ordinaire est en o, de manière que l'angle oOO' soit un angle droit, et que la tan-

gente de l'arc oO = — , ο et Ο étant pris avec la signification donnée, § XV, équa-

tions (5) et (4). Cela résulte des équations (a), § XVI, et (18 b), § XV. Dans l'onde ex-
traordinaire Ε le mouvement a lieu dans le plan du cercle EE', bisecteur de l'angle 
AEC; le rayon extraordinaire est en e, de manière que eEE' soit un angle droit, et 

que la tangente de cE = — . Les angles AOA' et AEA' sont ceux que nous avons déjà 

désignes par 2 j et 2h, l'angle SEE" est notre χ", et SOO' notre χ '. 
Imaginons maintenant que le rayon incident se déplace successivement de S en S' 

et en S", mais de telle sorte que la normale à l'onde ordinaire se meuve dans le cercle 
AO pendant que le plan de réfringence Β demeure invariable; Ο et Ε tombent toujours 
très-près l'un de l'autre et ils coïncident quand Ο est arrivé en A, S' eu S". En suivant 
les différentes positions des plans de polarisation de Ο et de Ε pendant le mouvement 
de Ο suivant AO vers A, nous voyons que lorsque 0 et Ε coïncident l'un et l'autre en 
A, ces plans de polarisation ont pris les positions A a et kb ; A b divise en deux parties 

égales l'angle A'AO et Aa divise semblablement l'angle OAS". Nous avons ainsi à cette 
limite 

S" A a = x', S "Ab = x". 
F," angle 

2 j = al = BAD = 36o° — ιχ' — m" — 180", 

et par conséquent 
x' -f- χ " = 270°. 

T.e rayon ordinaire relatif àla normale à l'onde A est situé en b', le rayon extraordi-
naire correspondant en a'. Je désignerai les arcs kb' et An' par q' et q", ce qui donnera 

tang q' = = r- sin in sin χ , 

tant; q" — —sin 2η sin χ" = — sin 2ηcos λ?", 

>9·· 
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car ο- — e- = v2, et dans la formule — = —sin (« — «') sin j, l'angle u' — ο et 

ii — in
t
 que de même dans^ = sin (R+ <>') COS l'angle P'= Ο et O= m. Si, 

ne plus, nous posons 

i8o° — i' = », (ω = l'angle «'AS"), 

il viendra 

(1) tang q'= 

En écrivant ces formules, on doit observer que l'arc q" est dans l'azimut ω, pendant 
que l'arc q' est situé dans l'azimut ω — go" ; si l'on appelle cet azimut ω',

 ω
 = ω' -+- go". 

Cette valeur étant substituée à ω dans tang q', donne 

tang q'= 

d'où résulte, pour ω = ω', q' — q". 
La ligne AO peut être inclinée d'un angle quelconque sur AA', c'est-à-dire 

l'angle S"AO peut croître de ο à + τ: et de ο à —π; en même temps ω, qui est 

toujours égal à la moitié de S"AO, peut avoir toutes les valeurs entre -4- ~ π et — -
 π

 . 

Par conséquent les équations (i) représentent un cône dont les arêtes figurent tous les 
ravons qui correspondent à la normale A. C'est le même cône auquel nous avons été 
conduits ci-dessus, § XV, équations (a3), par d'antres considérations. 

Les considérations actuelles font pénétrer d'une manière plus précise dans sa nature 
physique. On doit considérer le rayon incident S" comme un cône dont tous les côtés 
ont été réunis à l'axe. Chaque côté du cône, quoique tous aient maintenant la môme di-
rection , a produit deux rayons a' et b' dont le lieu est un cône elliptique autour de 

l'axe A, lequel est coupé suivant un cercle par un plan perpendiculaire à A. 
J'appelle les deux rayons a' et b' rayons conjugués. Quand le rayon a' est donné, on 

trouve son conjugué b' en menant par l'axe A et le rayon a' un plan, et un second plan 
par A perpendiculairement au premier ; ce second plan coupe le cône suivant le rayon b'. 
Les deux ravons conjugués sont polarisés perpendiculairement l'un à l'autre, et chacun 
d'eux perpendiculairement au plan qui passe par sa direction et par A. Si l'on désigne 
par I l'amplitude de la vibration dans le rayon incident, les deux rayons conjugués a' h' 

proviennent de la partie ̂  , 2π représentant la circonférence d'un cercle dont le 

ravon est i, et. β un élément de cette circonférence, car on doit se représenter les côtes 
du cône qui se confondent en S" comme doués tous de vitesses oscillatoires égales. Je 

désignerai les vitesses dans les rayons b' et a' par ̂  - et Pour trouver l'expres-
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sion de leurs valeurs, nous avons à poser dans l'éq. (3), § XVII, 

P= 
Xf — l8o° — (Ο, x" — C)0° -f- ω , 
j = k — ω, ?' = <p", 

D'= 
On trouve, d'après cela, 

Ν — — sin (φ H- φ' ) [sin (<p -t- cp') cos (<j—φ' ) — sin
2

 -/ sin 2« —"~r~J > 

NQ' = — a sin φ cos<p |p 8ίη(φ+φ' ) sin ω S j^sin (tp+φ') cos (γ—φ') —^ ^ J sin an sin
2 ©'J cos « j, 

NQ"= — 2 sin φ cos φ jp sin (ψ+ψ') cos ω — S j^sin (φ+φ') cos (φ—φ') —
 T

' ^ sin in sin
2

 y
f

 sin «|, 

Rp=[ sin (?—?" ) cos (φ+φ" ) ±Rp=[ sin (?—?" ) cos (φ+φ" ) ± 
Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 
Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

La valeur de Q'' appartient au rayon dont l'inclinaison sur l'axe A est q" et qui se 
trouve dans l'azimut ω. La valeur de Q' appartient au rayon dont l'inclinaison est q' et 
qui se trouve dans l'azimut ω — go0. Si à la place de ω on introduit ω' = ω — go°, on voit 
que pour o>'= ω, Q'= Q". On peut, par conséquent, remplacer les deux équations (2), 

comme nous l'avons vu à l'occasion des deux équations (1), par une équation dans la-
quelle la vitesse est exprimée en fonction de l'azimut correspondant du rayon, par con-
séquent par la valeur de Q". 

A ce propos on doit observer qu'alors chacune des arêtes du cône doit être regardée 
comme double, comme représentant en premier lieu un rayon ordinaire, en second lieu 
un rayon extraordinaire, quoique dans ces deux cas la même vitesse et la même direc-
tion appartiennent aux mouvements. On peut donc les ajouter, et obtenir la vitesse 
correspondante à chaque côté du cône, en multipliant Q" par 2. Je désignerai par q 
l'inclinaison d'un côté du cône sur l'axe A dans l'azimut ω, et par Q la vitesse dans le 
rayon lumineux représenté par ce côté ; il viendra alors 

(3; 

tang q= 

Rp=[ sin (?—?" ) cos (φ+φ" ) ±Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 
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Cette formule contient la loi d'après laquelle un rayon incident s'épanouit suivant les 

arêtes du cène de réfraction, quand, polarisé primitivement dans l'azimut dont la tan-

nciite est - , il tombe sur un plan de réfringence dont la normale est situee dans l'angle 

aigu des deux axes optiques. 
L'intensité de la lumière qui vient suivant l'arête dn cône situee dans l'azimut ω par 

rapport au plan des axes optiques est donnée par l'équation 

Rp=[ sin (?—?" ) cos (φ+φ" ) ±Rp=[ sin (?—?" ) cos (φ+φ" ) ± 
Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Kntre y et y on a la relation 

■J sin Y — sin <p'; 

■j est ici l'inclinaison de la normale à la surface réfringente sur l'axe optique. Si for, 
pose -J = 0, c'esl-à-dirc si l'on suppose que le plan suivant lequel la lumière pénétré 
dans le cristal est perpendiculaire à l'axe optique, on obtient 

(Q) = 4 (P cos M — S sin ω), 

d'où l'on voit clairement que, suivant le côté du cône situe dans l'azimut de ia polarisa-
tion primitive, la lumière est nulle, et qu'elle est un maximum suivant le côte dont 
l'azimut est perpendiculaire au plan de polarisation primitif. Un rapport semhiabh 
a lieu généralement; il est seulement modifié par la réfraction des ondes, car on peut 

toujours mettre l'équation (3i sous la forme 

Ο =; A sin (Β — ω). 

Mais, en realite, ce n'est pas un rayon qui tombe à la surface du milieu que nous con 

sidérons, mais un faisceau cylindrique tic rayons; celui-ci n'engendre pas un cône lu-
mineux simple, mais la lumière réfractée s'épanouit dans un espace qui est circonscrit 

par l'enveloppe d'une infinite de cônes réfractés. Il resuite de là que la distribution de 

la lumière, aussi bien que la position de son plan de polarisation, se trouvent modifiées. 

Avant de m'occuper de ces modifications, il est bon d'examiner ce qu'il advient des 

formules (i) et (2), $ XVII, pour la lumière réfléchie dans les cas particuliers où l'onde 

réfractée est perpendiculaire à l'un des axes optiques. Les vitesses réfléchies R,, et H, 

doivent être considérées comme composées des vitesses réfléchies qui appartiennent aux 

ravons réfractés isoles dans les azimuts x' et χ" \ les vitesses partielles réfléchies, ayant u s 

mêmes directions, s'ajoutent et donnent en consequence 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 
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Le signe J*indique une sommation par rapport à toutes les valeurs de .·/: ' et χ de 

ο à lit. 

Les quantités ρ, p', s, s' sont, en général, des fonctions de ces quantités. Mais on 
trouve par les équations (2), § XVII, 

(4) 

V/3 = — sin (<p+tp') |"sin (φ—φ') cos (<p-t-<p') -t- sin
2

 <p' sin m —~r~ J 1 

ΊΝ
τ

 s H- sin (y—φ') j^sin (œ+<f')cos (φ—φ') — sin
2

 y' sin m ——-J , 

Ny>' =r o, 
Ν s'= o, 

d où il résulte que 

J"pfy = ρ iv , J*s Ά— s2tt , J'ρ' — o , J" t' = o 

et que , si au lieu de Ν on met sa valeur tirée de l'équation (2), on obtient 

(5) 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rs= 

Ce sont exactement les formules que l'on déduit des équations (7) et (8), § XVII, quand 
on y fait f' = <p". La réfraction conique n'exerce donc aucune influence sur la ré-
flexion. 

Les mouvements Q, donnés par l'équation (3), se font perpendiculairement à l'azi-
mut ω ; si l'on décompose ces mouvements suivant l'azimut o° et 90°, et si l'on fait les 
sommes des composantes correspondantes respectivement à ces deux azimuts, leurs va-
leurs doivent coïncider avec celles de D'et de D" déduites de l'équation ί 7) ou de l'équa-
tion (8) du § XVII, quand on y fait '/ — o"; on le trouve en effet. 

Les composantes des vitesses dans l'azimut o°, sont 

Q sin w 
et dans l'azimut qo°, 

Q cos w 
Les sommes 

/ Q sin w 



4 η->. JOURNAL DE MATHÉMATIQUES 
doivent donc être égalés aux valeurs de D' et de D'' des équations (7) et (8), § XVII, 
ces sommes étant prises pour tons les côtés du rayon incident que nous nous sommes 

imaginé comme un cône lumineux réduit à son axe. Nous devons rappeler que ω est 

toujours la moitié de l'angle S"AO , je le désigne par x. Si l'on donne à χ toutes les 
valeurs entre -+- π, — π, on obtient les rayons réfractés qui correspondent à tous les 

côtes du rayon incident ; on peut en place de (3 écrire (la.. 
Par là la première somme se change en 

/ Q sin w B 
ou encore 

1 

/ Q sin w B /2ii= 

De même 
1 

/Q cos w B/2ii= 

En substituant pour Q la valeur que lui assigne l'équation 3), on obtient 

/ Q sin w B/ 2ii 

/Q cos w B /2ii= 

Ce sont les valeurs que donnent, au § XVII, les formules (7) et (8) pour D' et D", quand 
on fait oj — tp". 

Jusqu'à présent j'ai admis que le plan de réfringence est perpendiculaire ait plan des 
axes optiques. Je considérerai présentement le cas général pour lequel le plan de ré-
fringence a une position quelconque. 

Soit φ' l'angle de la normale à ce plan avec l'axe optique, et λ l'angle que le plan 
mené par cette normale et l'axe optique, c'est-à-dire que le plan d'incidence fait avec le 
plan des deux axes optiques. Cet angle ). est compté dans le même sens que l'angle 0, 
ci-dessus. Les plans de polarisation de deux rayons conjugués quelconques du cône el-
liptique sont situés dans les azimuts x' et χ" ; ces deux lettres ont la même signification 
que dans les formules (1), (2), (3), § XVII. 

Soit 
ω' = 18o° — x' — x" — qo°, 

o>' désigne ainsi l'azimut du rayon extraordinaire par rapport au plan d'incidence. Alors 
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l'angle que précédemment nous avions désigné par ω, c'est-à-dire, l'azimut du rayon 

extraordinaire par rapport au plan des axes optiques — ω' -1- I. On a, par conséquent, 

d'après l'équation (ι), § XVIII, 

tang q'= 

tang q"= 

En introduisant ω' à la place de x' et de x", et ces valeurs de tang q' et tang q" dans 

l'équation (3), § XVII, et en substituant -b, —t- à Ρ et à S, on obtient, si l'on désigne 

encore par , -^-3- les vitesses dans les deux rayons conjugués, 

Rp=[ sin (?—?" ) cos (φ+φ" ) ±Rp=[ sin (?—?" ) cos (φ+φ" ) ±Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

cos (φ+φ" ) ±Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

Rp=[ sin (?—?" ) cos (φ+φ" ) ± 

?" ) cos (φ+φ" ) ± 

Les valeurs de q' et Q' appartiennent aux rayons qui sont dans l'azimut «' — qo' ; si 
l'on introduit cet azimut dans les formules qui les expriment, c'est-à-dire si l'on rem-

place ω' par V -f- 9ο0, on trouve 

q' = q", Q' = Q". 

On peut donc encore ici considérer le rayon situé dans l'azimut ω' comme resultant de 
deux rayons, l'un ordinaire, l'autre extraordinaire, tous deux de même vitesse et de 
même direction. On obtient, d'après cela, la vitesse dans un rayon situé dans l'azimut 
ω' en multipliant Q" par a. Si donc on appelle Q la vitesse vibratoire d'un rayon dans 
l'azimut ω', et q son inclinaison sur l'axe optique, on a, en mettant à la place de «'sa 

valeur ω ■— \, 

Q= 2Q"= 

Q= 2Q"= 

Si l'on pose λ = ο, on voit se reproduire le cas représenté par l'équation (3) ; mais 
λ = i8o° représente le cas où la normale au plan de réfringence est dans l'angle obtus 

Tome VU. — DÉCEMBRE 18 ja. 60 
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des axes optiques ; on obtient, dans ce cas, 

Q= - qg sin og sin ouot cos S -sosr ls -q y siy2 2 2ssfs 

sin sjituo sin y + cos so log 

Pour les rayons réfléchis, on obtient les vitesses en faisant les sommes des vitesses 
partielles qui correspondent à chaque rayon réfracté du cône elliptique. 

On a ainsi 

Rp= 

Rs= 
On trouve 

L solqoz sfgomsqù / B/2iip 

/ sis 2 II sin y +qyo socs -s sin y y sin i co 

B/2iir 

//= ο, 

iI -u 2 sin sins sin 

/ sin y +y sin +y cos y slsosjj+++++ 

Pour obtenir ces mêmes formules on peut se fonder sur des considérations totale-
ment indépendantes delà réfraction conique, en cherchant les valeurs de ρ, s, ρ', 
pour un plan réfringent quelconque, quand le plan d'incidence passe par l'un des axes 
optiques, et que le rayon est réfracté de telle manière que l'onde réfractée soit perpen-
diculaire à l'axe optique, ce qui revient à poser, dans l'équation (2), § XVII, 

.r ' = 18o° -f- 4 \ χ " — qo° — - λ , 

tang q'= 

La refraction conique n'exerce donc, en général, aucune sorte d'influence sur les phé-
nomènes de réflexion. 

Il nous reste encore à examiner comment s'opère la distribution de la lumière dans 
le cône elliptique, quand la lumière incidente n'est pas polarisée. La lumière naturelle 
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doit être regardée comme résultant d'une série de mouvements vibratoires exécutés sui-
vant des directions quelconques et avec une rapidité telle que dans un temps très-court 
on puisse en supposer un même nombre dans toute direction. 

Si dans l'expression de Q on met pour Ρ et S leurs valeurs Ρ = I sin β et S = I cos β, 

Ι- désignant l'intensité de la lumière incidente, et β un azimut d'oscillation ; si l'on forme, 

en outre, le carré de Q, et si l'on multiplie ce carré par —, on obtiendra l'intensité de 

la lumière I'
2

 dans un rayon quelconque du cône en prenant l'intégrale de IJO
2
 de 

ο à H- air, On a ainsi 

I 1/2= 
c'est-à-dire 

cos u sin p + p +sin kk qoqnn gsi n cos o 

qin 8 siosj shoilg shki sin 

cos y cos y, - so cosn sn 

U sin y cos p 
Si l'on néglige π

2
—ρ

2
, on obtient comme première approximation , 

I'2 = 2 Ρ -fi —fi L -f. sin2 (ω—).) , 
-fi —fi 

d'où l'on voit que c'est seulement lorsque le plan de réfringence est perpendiculaire à 
l'axe optique que la lumière est uniformément répandue sur le cône. En général, l'in-
tensité de la lumière a un maximum pour ω= λ, et un minimum pour ω -- λ — qo° ; le 
rapport du maximum au minimum est comme 1 est à cos

2

 (a—<p' ). Dans les observations 
de M. Lloyd sur l'arragonite (P°gg■ Ann., Bd. XXVIII), cette différence était assez pe-
tite pour échapper à l'observation, car (φ — tp' ) surpassait à peine 9

0

. 

En réalité nous n'avons pas affaire à un rayon de lumière, mais à un cylindre de 
rayons. Soient, fig. i5, AA'DD' l'intersection du plan d'incidence avec le faisceau cv-
lindrique incident, ABC et A'B'C' les intersections du même plan avec les surfaces co-
niques de réfraction qui appartiennent aux deux rayons incidents AD, AD'; ÀB et A ' B' 
les directions des axes optiques. Les mouvements qui sont envoyés vers un point quel-
conque F émanent de tous les points de la section AA' du faisceau cylindrique incident par 
le plan réfringent. Si par ce point on tireFG parallèle à l'axe optique, et si, avec FG comme 
génératrice , on décrit le cône FGE , ce cône sera coupé par le plan de réfringence, en 
général, suivant une ellipse. La portion de cette ellipse comprise dans l'intérieur de la 

bo. 
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section ÀA' du cylindre des rayons incidents par le plan de réfringence, contient tons 
les points de cette section A A' dont les mouvements atteignent en même temps le point 
F. Ces mouvements n'ont pas lieu tous dans la même direction, ils doivent être d'abord 
décomposés, puis ajoutés pour donner le mouvement de F. Cela conduit ;l des calculs 
pénibles, et le résultat dépend encore, dans les cas les plus simples, des transcendantes 

elliptiques. ■leme bornerai à traiter la question dans un cas simple et tout particulier; le calcul 
n'offre pour ce cas aucune difficulté analytique, et il est utile pour mettre le principe 
dans tout son jour. Je supposerai que le plan réfringent est perpendiculaire à l'axe 
optique, et que les rayons incidents forment un cylindre droit. Soit ABC, β§. ii, l'in-
tersection de ce cylindre avec le plan de réfringence, le diamètre AB de cette section 
circulaire = 2p. Par un point quelconque D intérieur au cristal, et distant de d du plan 
réfringent, menons une ligne parallèle à l'axe optique qui rencontre en E, le plan ré-
fringent. Menons, en outre, par DE le plan des deux axes optiques dont la trace sur 

ce même plan réfringent est EF. Sur cette ligne prenons 

EG= 

et du point G comme centre, avec GE pour rayon, décrivons un cercle. Le cône deter-
mine par le point D et par ce cercle est le cône de réfraction correspondant au point D. 
Les mouvements du cylindre incident transmis vers D émanent des rayons qui coupent 
le plan de réfringence suivant l'arc de cercle HI. Il est, d'après cela, facile de détermi-
ner sur le plan parallèle au plan de réfringence mené par D, quels sont les points qui 
ont part au mouvement. Les limites de ces points sont telles que les cercles décrits par 
les points Ε aux conditions données touchent le cercle ABC, telles, par conséquent, 
que GN = R rt p, Si par le point Ε on mène la ligne EM parallèle à GN, et la ligne BA 

parallèle à EF, on a 

NM=EG= 

Le point M est donc indépendant de d quant à sa position, et ME est toujours la dis-
tance du point central Ν au centre G du cercle décrit par E. Aux points limites D qui 
reçoivent encore la lumière de ABC, appartient donc la série des points E pour les-

quels ME = R± p. Ces points sont ainsi compris entre deux cercles concentriques PQ 

et P'Q' décrits du point M comme centre avec les rayons 

M P = 

On n'a plus qu'à faire passer par ces deux cercles deux cylindres droits pour obtenir 
les points limites du plan parallèle au plan réfringent (mené par D), qui reçoivent encore 
les ravons du cylindre incident dont la base est ABC. Si R = p, le rayon du cercle iiite-
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rieur ABC devient égal à o. Si R <4 p, le rayon de ce cercle devient négatif, ce qui 
veut dire qu'il devient, comme dans la fig. 12, tangent intérieurement au cercle ABC 
Mais ce cercle a encore ici une autre destination; il circonscrit tous les points Ε qui 
sont tels que si des points G avec R comme rayon on décrit des cercles, ces cercles 
ne coupent pas le cercle ABC. Vers les points D correspondants à ces points Ε ar-
rivent, par conséquent, tous les rayons d'un cône complet de réfraction. Dans l'anneau 

compris entre AQP et RQ'P' se trouvent les points qui ne reçoivent qu'une partie des 

rayons de ce cône. 
Soit la position du point D déterminée par sa distance R + χ à l'axe optique mené 

par M et par l'angle des deux plans menés l'un par l'axe optique et le point D, 
l'autre par ce même axe et le point N, c'est-à-dire par l'angle PME r— n. Si l'on décrit 
du point M comme centre et du rayon ρ le cercle abc, et du point Ε avec le rayon R 
un cercle qui coupe le premier aux points h et i, l'arc hi sera égal à HI et les rayons Eh, 
E/, EM seront inclinés sur Ρ A d'un angle double de l'angle d'inclinaison des lignes EH, 
ΕΙ, En ; η désignant l'intersection de GN avec le cercle décrit du point G. 

Soit l'angle M Κ Λ = ME i = z on a 

sin² 1/2 z'= 

Supposons qu'un rayon Er forme avec EM l'angle z, et que le point V dans l'intérieur 

du cercle ABC réponde à r, de telle sorte que EV forme avec En l'angle - z. Soit de-

signée par Q la vitesse du mouvement de V à E. Cette vitesse est une fonction de l'in-

clinaison deVE sur AB, c'est-à-dire de~ (Π-t-z), et elle est dirigée perpendiculaire-

ment à VE. 
Si nous la décomposons suivant EN et perpendiculairement à cette direction, et si 

nous nommons la première composante p', la seconde s', nous aurons 

p'= 

Si nous multiplions ces composantes par l'élément de l'arc III, c'est-à-dire pat R dz et 
si nous faisons une somme de composantes élémentaires semblables de — z' à 4- z' nous 
obtiendrons les composantes p et ν du mouvement envoyé en Ε par l'arc HI, 

p = 

Si nous portons dans cette équation la valeur de Q de l'équation (4), nous aurons 

ρ = T+
-

 J'
 C0S

 2 ^ — S sin - (Π H- z)] sin - z dz, 

i- — j* £p cos ^ (Π + z)—S sin i (Π + z) cos ̂ zdz, 
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d'où 

1 1 ο 
p= -4R 

s = 

avec la condition 

sin ² 1/2 z= 

ρ -- χ désigne la distance du point D ou du point Ε au bord intérieur, et ρ —χ la dis 
tance du même point au bord extérieur de l'anneau à l'intérieur duquel sont placés ton-, 
les points qui reçoivent l'ébranlement. Quand ρ2 — x2 devient négatif le point déterminé 
en position par R -f- x, par Π et par d ne reçoit plus aucun mouvement; mais quand 

p² -x²/ 2R(R+x)= 1 ou >1, on doit substituer à z dans l'équation (10) la demi-circon-
férence d'un cercle dont le rayon est égal à ι, c'est-à-dire π. 

Dans ce cas on obtient 

ι ι ; 
p sin I/2 II 

p cos 1/2 

Les quantités du premier membre sont les composantes des vitesses envoyées vers D, 
perpendiculairement et. parallèlement au plan des axes optiques, ainsi que Ρ et S sont 
les composantes correspondantes dans la lumière incidente. Dans ce cas, le plan de po -
larisation demeure donc le même pour la lumière réfractée et pour la lumière inci-
dente. Ceci subsiste pour tous les rayons dont les points Ε sont situés dans l'intérieur 
du cercle APQ, fig. 12; à partir de là, c'est-à-dire pour les points qui sont situés en 
dehors de ce cercle, lejplan de polarisation tourne jusqu'à ce que les rayons qui éclairent 
les points les plus extérieurs dans le cercle BP'Q' soient polarisés perpendiculairement à 
leur azimut, c'est-à-dire perpendiculairement à la ligne tirée du point Β à chacun d'eux. 

Les formules (11) sont, au reste, les mêmes que nous avons trouvées pour D' et D" 
au § XVII, equations (7) et (8), quand nous avons posé 

ν sin a — sin y — sin ©" et y — o. 

Quand Rj> ρ il ν a la moitié de l'espace APQ sans lumière. Les rayons lumineux de 
la surface extérieure, aussi bien que ceux de la surface intérieure de l'anneau, sont de 
polarisés perpendiculairement à leur azimut, c'est-à-dire que les premiers sont pola-
rises perpendiculairement au plan qui serait mené par leur direction et l'axe optique 
B, les derniers perpendiculairement au plan qui serait conduit par leur direction et 
l'axe optique A. 
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Si la lumière incidente n'était pas polarisée, nous déduirions de l'équation (to) 

p²= 

*'=(irÎT.
r!!

'
+

™"
r 

Pour ζ' = ο, c'est-à-dire χ = ± ρ , la lumière est polarisée perpendiculairement à 

l'azimut, - Π. Pour sin ζ = ο et ζ = π la lumière est à l'état naturel. Pour les autres 2, 

directions la lumière est seulement polarisée en partie perpendiculairement à l'azimut 

- Π, et la portion polarisée est donnée par l'équation 

,s,!—ρ2 2 ζ sin ζ 
s2 -+- ρ- ζ2 sin2 ζ 

§ XIX. 

.Te m'occuperai, dans ce paragraphe, de la recherche de l'angle de polarisation, et 
d'abord des cas les plus simples pour lesquels le problème permet une solution complète. 
Ce sont les trois cas où le plan d'incidence coïncide avec l'un des trois plans rectangu-
laires déterminés par les axes d'élasticité pris deux à deux. Il suffît de poser, dans les 
formules (5), (6), (7) et (8), § XVII, == o, et d'en tirer φ. Cet angle ψ est l'angle de 
la polarisation complète. 

I. Le plan d'incidence est bissecteur de l'angle de deux axes optiques ; on a, d'après 
l'équation (5), § XVII, 

(<) 
ο = R

p
 = sin (f— φ" ) cos (φ+<ρ" ) ±

 SI
"E" , 

I/2= 

Si l'on appelle ξ l'inclinaison de la normale de l'onde extraordinaire sur l'axe d'élas-
ticité qui divise en deux parties égales l'angle aigu des deux axes optiques , on a 

sin 2 ν sin k — sin 2η cos ξ, et cotang / — sin ξ cotang η, 

ces valeurs, substituées dans - , donnent 

I/E= 

Substituant cette valeur dans la première des éq. (i), et observant en même temps que 
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— = sin y, on obtient 

''■?.) υ — sin (φ—γ" ) cos (f+ γ" ) zfc ——— sin 2 ξ sin2 ®. 

D'après cela, on peut éliminer ξ au moyen tie l'inclinaison du plan réfléchissant sur 
l'axe d'élasticité qui divise l'angle aigu des deux axes optiques. Soit go° — lia valeur de 

cette inclinaison ; on a 
(3) ξ — f" = I, OU ξ +

 ?
"=Ι. 

selon que, dans l'équation (2), le signe de —-— est additif ou soustractif ; car, d'après 

l'équation (5), § XVII, on doit prendre le signe supérieur ou le signe inférieur, selon 
que 1<ζξ ou ΐρ>ξ. Si l'on substitue la valeur de ξ, donnée par l'équation (3), on 
peut réunir les deux équations en une seule qui réponde à la fois aux valeurs positives 

et négatives de I, et l'on obtient 

(4) ο = sin (φ—φ" ) cos (f+f" ) — -—sin
2

 <p sin
2
 (I — ο" ). 

D'ailleurs entre φ et y" a lieu la relation 
sin2 φ" = sin2 φ [ ρ2 -+- ( ττ! — ρ2) sin2 ν] , 

qui, par l'élimination de u au moyen de ξ et de I, se change eu 

( 5 1 Sin' φ = Sin2 tp — COS 2(1 — Φ ) . 

Si l'on développe les équations (4) et (5) par rapport à sin 2 φ" et à cos 2<p", on en 

déduit facilement les valeurs suivantes : 

sin 2y"= 

cos 2y"= 

Si l'on ajoute les carrés de ces deux équations, on trouve, après quelques réductions 

pour l'angle de polarisation cherché, 

(β) sm
2
 ο = '■ 

2. Si le plan d'incidence est bissecteur de l'angle obtus des deux axes optiques, et 

perpendiculaire a leur plan, on a l'équation (6), § XVII, à traiter de la même ma-
nière. Il est facile d'ailleurs d'en avoir le résultat. Ce résultat peut aussi se déduire de 
l'équation (6) en changeant π

2
 en ρ

2
, I en I' ; go° — Γ est l'inclinaison du plan réflecteur 

sur l'axe d'élasticité qui divise en deux parties égales l'angle obtus des axes optiques. 
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On a, par conséquent, dans ce cas, 

sin²y= 

5. Si le plan d'incidence coïncide avec le plan des axes optiques, on doit poser dans 
les formules (7), § XVII, R,, =r o. Cette équation R? = ο se change, par une introduc-
tion de ξ et de I analogue à celle qu'on a faite dans l'équation (2) de ce paragraphe, en 

1,7) 0 — sin (y—<p")cos(ij)-)-f") sin2 (I — o") sin2 <j> ; 

pour la relation entre ψ et φ" on obtient 

(8) sin2 ψ" = sin2 φ —~~
 cos 2

 (I — f") > 

d'où l'on tire 

(9) sm2 φ = Γ~ι — L 

Cette dernière équation fournit la solution de l'équation R^, = ο |8), § XVII, en 
changeant α2 en π2 et it2 en μ2, et remplaçant I pari'; l'ayant la même signification que 
ci-dessus. Mais comme on a ici I —f—1'= go°, on voit que la formule (9) de l'angle de po-
larisation ne subit pas de changement par ces substitutions. 

D'après les considérations qui, dans le § VIII, nous ont conduits à l'équation (3), 
et qui peuvent s'adapter à tous les milieux réfléchissants cristallins, à quelque classe de 
cristaux qu'ils appartiennent, l'angle de la polarisation complète dépend aussi, dans ce 
cas, en général de l'équation 

(10) ps p's' — o. 

Je vais mettre cette équation sous une forme plus simple. Si l'on pose 

sin χ ' sin (y — ψ' ) cos (φ -f- φ' ) -+- sin2 <p' tang q' = A', 

sin χ " sin (β — ο" ) cos (φ + φ" ) -+- sin2 q" tang q" — A", 

— sin a;' sin (φ φ' ) cos [ρ — ?')-!- sin2 ?' tang l' — ι 
— sin χ " sin (φ q" ) cos (φ — sin2 φ"tang q" = Β", 

les formules pour ρ, ρ', s, s', (2), § XVII, se transforment dans les suivantes : 

Ν/) = A' cos x" sin (<ρ+φ") -f- A" cos x' sin (φ+φ'), 

Ν s = Β' cos χ" sin (φ—φ") -f- Β" cos χ' sin (α—q ), 

= Α' Β" — Α" Β', 

fi ρ' = — cos λ;' cos χ" sin 2 φ sin (φ' — φ"). 
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Ces expressions , substituées dans l'équation (10), donnent 

[A' COS x" sin (<j>-f- q" ) + A" cos χ' sin (φ -4- <ρ')] [Β' cos χ" sin (φ — <ρ") + Β" cos λ:' sin (φ — φ')] ΐ
 ο 

+ (A'B"- A"B') cos x' cos x' cos" sin 2 y 

Si l'on développe les multiplications, on voit bientôt que cette équation peut s'écrire 

sous la forme 

[A' cos χ" sin (φ—q") -+- A" cos χ' sin (q —<f')} [Β' cos Λ;" sin (ο -+- φ") -+- Β" cos χ' sin (φ + φ')] = ο . 

Des deux facteurs de cette équation, le premier contient seul les racines qui répon-
dent à la question; on peut s'en convaincre en posant la différence des deux axes 
d'élasticité = 0. L'angle de la polarisation complète dépend donc seulement de 

A' cos χ" sin (φ — q") -|- A" cos χ' sin (<p — φ') = ο, 

ou , après remplacement des valeurs A' et A", de 

(11) sinx COSx'cOs(q-hq ) -hSinx COSX COs(q~hq )-) *——j-. H :—-, -jp, —°· 

Si pour tang q' et tang q" on met leurs valeurs tirées des équations (2) et (5), § XVI, 

et pour —et —~ la quantité sin2 0, on obtient 

sin a:' cos x" cos (q+q') -+- sinx "cos χ' cos(q>-+- q") 

+ sin² y 

Je déduirai une expression approchée de sin y, en ayant seulement égard aux premières 
puissances de la différence des axes d'élasticité. Dans le terme multiplié par π2—μ2 on 
peut alors poser j = h, u, = ν et u,' = υ', sin χ' = — cos χ" et cos χ' = — sin χ", et 

enfin tp' = <p" . 
Si l'on pose d'ailleurs 

cos (q+q") = COS (φ-4-φ') -+- sin (<p4-<p') sin (q'—<p ), 

on obtient 

cos (tp-t-tp') + cos2x'sin(ip + tp') sin(tp'—q") 

= sin²y/sin²() 

Si l'on pose 

sin(y'-t") 
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on obtient 

(12) cos (y+y')= 

le désignerai par & la quantité multipliée par ii² - u²/2, de sorte que 

cos(y4-y') = α -—^4A. 

En négligeant les puissances supérieures de —
 > 0n obtient 

sin2 φ + sin
2 y' = I — sin y COS y α (ττ2 — ρ2) ; 

et comme sin² y² = 

sin²y= 

remettant pour α sa valeur 

1 
sin2 y -

ι 4- - (τΓ24-μ2! 

* { 1 + { cos() 

x + i +* { 1 + { cos()* { 1 + { cos() 

sin p p 
On peut donner à cette formule plus de concision en posant 

cos² x'= 
et en observant que la première approximation cos (y 4- y' ) = ο donne 

sin (y+y') sin2y 
Elle devient 

sin y = 1 + x x + u2 

cos syu cos s- din y s 
x s tan g ep cos s s 

61. 
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Dans cette expression de sin29 doivent être placées, à la place de u, χ', leurs valeurs 

expriméez en fonction de la valeur approchée de sin²y= et des quan-

tités qui déterminent la position du plan réfléchissant et l'azimut du plan de réflexion. 
Supposons que la normale au plan réfléchissant forme avec les deux axes optiques 

les angles U et U'. Soit X l'azimut du plan de réflexion compté à partir du plan qui di-
vise en deux parties égales l'angle que font entre eux les deux plans menés par la nor-
male au plan réfringent, et les deux axes optiques. Soit 2J cet angle lui-même. On a 

/ cos u — cos 9' cos U -+- sin 9' sin U cos (X -I- J ), 
I cos'i'= cos 9'cos U' + sin 9' sin U' cos (X — J), 
I —cos (xr+j) sin u = sin 9' cos U —cos 9'sin U cos(X-+-J), 

(*4) \ —cos (χ'—y) sin u' = sin 9' cos I," — cos 9' sin U' cos (X — J), 
I sin (x'-hj) sin u = sin U sin (X-f-J), 
V sin (χ '—j) sin a' = sin U'sin (X — J). 

Si l'on élimine, >\ l'aide de ces formules, u, χ', j dans l'équation (i3), et qu'on 

fasse dans la partie multipliée par π2 — , 9' = 9ο0 — 9, on obtient, après quelques 

réductions, 

(15) sin² y = 

(15) sin² y = 

On peut éliminer J au moyen des relations 
2 sin U sin U' cos2 J = cos 2/2 — cos (U -H U' ), 

— 2 sinU sin U' sin2 J = cos in — cos (U — U'), 

et I on obtient 

sin²y= 

XÎ( cos U cos U'+ [ cos ( U— IF) — cos 2η] cos
2

9 1 sin
2

 9
 π

' — ρ
2

) 

et en substituant à sin2
 9 et cos2

 9 leurs valeurs approchées, 

(*4) \ —cos (χ'—y) sin u' = sin 9' cos I," — cos 9' sin U' cos (X — J), 

(*4) \ —cos (χ'—y) sin u' = sin 9' cos I," — cos 9' sin U' cos (X — J), 

(*4) \ —cos (χ'—y) sin u' = sin 9' cos I," — cos 9' sin U' cos (X — J), 
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Mais on peut, puisque nous avons négligé le carré de π2— p!, écrire 

in u' = sin 9' cos I," — cos 9' sin 

(*4) \ —cos (χ'—y) sin u' = sin 9' cos I," — cos 9' sin U' cos (X — J), 

cos 9' sin U' cos (X — J), 

et cette formule se change, quand on substitue à cos 2 « sa valeur - , dans 

i- u²+ii²/2/1-

de là on déduit enfin 

(*4) \ —cos (χ'—y) sin u' = sin 9' cos I," — cos 9' sin U' cos (X — J), 

(*4) \ —cos (χ'—y) sin u' = sin 9' cos I," — cos 9' sin U' cos 

Les conséquences les plus remarquables qui dérivent immédiatement de cette expres-
sion approchée de l'angle de polarisation complète sont les suivantes : 

1. Il existe pour tout plan réflecteur deux azimuts du plan d'incidence perpendi-
culaires l'un à l'autre, dans lesquels l'angle de la polarisation complète est un maxi-
mum et un minimum. Ces azimuts divisent symétriquement le système des angles 
de polarisation, c'est-à-dire que dans les deux plans d'incidence qui s'inclinent 
également sur le plan du maximum ou du minimum de l'angle de polarisation se 
trouvent les angles de polarisation d'égale inclinaison. Les deux plans du plus petit 
et du plus grand angle de polarisation sont parallèles au plus grand et au plus petit 
rayon vecteur de la section déterminée dans la surface d'élasticité par le plan réflé-
chissant. 

2. Si le plan réfléchissant est perpendiculaire à l'un des axes optiques, auquel cas 
U = o, ou U' = o, les angles de la polarisation complète sont égaux dans tous les 
azimuts. 

Ces théorèmes ont la plus grande analogie avec les théorèmes que nous avons don-
nés pour les cristaux à un axe, et je présume qu'ils ne sont pas non plus ici approxi-
matifs, mais rigoureux. 

§ XX. 

Le plan de polarisation du rayon complètement polarisé par réflexion, forme avec 
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le plan d'incidence, l'angle a, et pour la détermination de cet angle les considérations 
du § VIII, dans le cas des cristaux à un axe, ont conservé toute leur valeur. On a donc 

tang & = s'/s 

■t' et s doivent être exprimées au moyen des valeurs de q, /, q" déterminées par 
l'angle de polarisation complète correspondant, § XIX. Nous avons trouvé ci-dessus , 
§ XVII, équation (2), 

Ns'= sin 2y 

Pour.* on tire de l'équation (2), § XVII, en éliminant tang q' et tang q" au moyen 
de l'équation (11), § XIX , 

Ni = — sin 2· [cosχ' sin χ" sin (q — f') + cos χ" sin χ ' sin (φ — ®") ] ; 

on a , par conséquent, 

(3) tang & = 

Si, d'après les équations (2) et (5), § XVI, on pose 

tan^'=^ô' tanS?" = ^Ë' 

* t d'après l'équation (34), § XV, 

1 \ 0 = 

et 

—τ— ~ —— — sin2 φ 

ft 

sin²y ii²-u² 
on obtient 

(4) tang x= 

Numériquement on peut toujours calculer la déviation du plan de polarisation au 
moyen de l'angle de la polarisation complète, de l'azimut du plan d'incidence et des 
quantités qui déterminent la position du plan réfléchissant ; mais on peut encore donner 
à l'équation une forme plus convenable pour cet objet. L'élimination analytique com -
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plète àe χ', χ " u, u', u, W paraît conduire à'descalculs trop longs; je me conten-
terai , en conséquence, d'avoir égard dans cette élimination à la première puissance de 
π2— ρ2, ou, ce qui revient au même, de sin (y'— y" ). Si l'on s'en tient à cette approxima-
tion , on peut poser dans la formule (4) 

a = m , u! = υ ', sin χ " = — cos χ ', cos χ" ~ — sin χ ', k = j, 

et dans la partie multipliée par sin (φ'— y" ), y' — y", on obtient 

(5) tang &= 

De l'équation (i4) du précédent paragraphe on déduit 

sin u cos u'sin (x+j) 

sin u sin u' sin 2x 

Ces valeurs, substituées dans l'équation (5), donnent, après avoir posé 
— sin (φ — y ) π2 — p2 sin2 ίρ 
2 sin α sin 11' 2 sin 2 φ' ' 

(6) tang x= 

De tang ci = ο on déduit 

(7) sin U sin U' sin 2X cos y' -+- [sin (U -I- U') sin X cos J -t- sin (TJ—U' ) cos X sin J] sin y - o, 

d'où l'on déduira X après avoir posé pour y' la valeur correspondante à l'angle de 
polarisation. Examinons les cas les plus simples où le plan réflecteur est parallèle à 
l'un des axes d'élasticité. 

I. U — U' = o. Ceci donne 

(sin U cos y' cos X + cos U cos J sin y' ) sin Χ = ο. 

La polarisation complète sans déviation du plan de polarisation a lieu ainsi 

(a ) pour sin X = ο, 
(b) pour cos X = — cotang U tang y cos J. 

Ces conditions déterminent quatre azimuts de polarisation complète sans déviation. 

2. U + U' = ο nous donne 

(sin U sin X cos y' -+- cos U sin J sin y') cos Χ = ο, 
d'où 

(c) cos Χ = ο, 
(d) sin Χ = — cotang U' sin J tang y . 
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3. Quand le plan réfléchissant est parallèle à l'axe moyen d'élasticité, il vient ou 

I — o, ou J = 90". Nous avons, dans le premier cas , 

(e'i sin X = ο, 

,
f) cosX=

_^+jî;^', 

et dans le second cas, 

(g) cos X = ο, 

ι h > sin X = —:—
TT

 . ° ■ 

il y a donc, en général, dans ces derniers cas, outre la section principale, deux autres 

azimuts où la polarisation complète a lieu sans déviation de son plan. Ces azimuts le-

ront l'objet d'un examen plus approfondi. Les équations (b) et (d) peuvent être com-

prises dans une même équation. 
Soit go° — ξ l'inclinaison du plan réfléchissant sur l'axe d'élasticité qui divise en 

deux moitiés l'angle 2η des axes optiques, de sorte que 

cos U = cos ξ cos η, 

sin ,Τ = -—Γ · 

Ces valeurs, portées dans l'équation ( b), donnent 

8, cosX = —tang®.· · 

L'équation (d) donne une équation toute semblable, à cette difference près qu'à u on 
substitue n' — go"— η et que ξ ne désigne pas, comme dans l'équation (8), l'incli-
naison sur l'axe π, mais sur l'axe μ. Les propriétés du plan réfléchissant exprimées 
par l'équation (8) se déduisent plus facilement delà même équation quand on écrit 

ta-ee = —- ;
o
,x

 ±
V^ar^-""

=

-· 

d'où il résulte qu'à chaque valeur de cos X correspondent deux valeurs positives de 
tang |, mais que cos 'Xaiin maximum qui ne peut être dépassé. Nous distinguons 
deux cas : i° le maximum de cos X est réel. 

La condition de réalite est 

(10) tang2 ο <Γ- -— 

Le maximum même est 

xos X= 



PURES ET APPLIQUÉES. /,89 

et il a lieu pou)· un plan défini par la condition 

( ι 1 '» tang ξ — sin η . 

La limite de possibilité de ce maximum est 

tang²y'= 

Alors cos Χ = ■— ι ; pour le plan réfléchissant reste tang ξ = sin η , 
2° Le maximum de cos X n'est pas réel. Ceci a lieu quand 

tang2 φ' > ï—-2— ■ 

cos X devient ici — ι pour 

(12) 

tang ξ' = ~ tang ψ' cos2 η — ^ y/ tang2 tp'cos" η — 4
 s
'
n2

 " ' 

et 

tang ξ" — - tang φ' cos2 η -- y' tang2 a/cos' η — 4 sin2 η. 

Sur tous les plans réflecteurs compris entre les deux plans déterminés par ξ' et ξΛ il 
n'y a que la section principale pour laquelle la polarisation complète puisse avoir lieu 
sans déviation du plan de polarisation. Entre ξ = ξ' et ξ = ο, et entre ξ = ξ" et 
ξ = go° paraissent, outre la section principale, deux nouveaux azimuts qui ont sem-
blable propriété. 

Comme l'angle de polarisation ne varie pas beaucoup pour le même cristal, ces ré-
sultats peuvent être rendus plus sensibles par un exemple. 

Soit l'angle de polarisation = 56°, ce qui donne pour tp' environ 34". lie l'équation 
; ι (> ; on déduit 

tang²n> 

<f' = 34° donne η > '7° "■ Quarlcl donc Wangle des deux axes optiques, c'est-à-

dire 2n, est. compris entre 35 et 180" — 35", les azimuts sans déviation du plan de po-
larisation sont possibles aussi bien sur les plans qui sont parallèles au plus grand des 
axes d'élasticité que sur les plans qui sont parallèles au plus petit. Si l'angle des axes 
optiques est en dehors de ces limites, il n'y a plus qu'un seul système de plans réflec-
teurs qui présente des azimuts semblables. 

J'arrive aux plans réfléchissants, qui sont parallèles à l'axe moyen d'élasticité. Si l'on 
désigne encore par ξ leur inclinaison sur l'axe d'élasticité qui divise en deux parties 
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('■gales l'angle des deux axes optiques, on a à poser, dans l'équation ( f); 

U _ n ξ, 
U' =r η — ξ, 

et dans l'équation (h), 
U — n -f- ξ, 
U ' — η — ξ 

Comme dans l'équation (h) l'angle X est compté à partir du plan perpendiculaire à la 
section principale, je ferai correspondre son zéro à celui de X dans l'équation (f) 
où cet angle est compté à partir de la section principale elle-même; dans l'équation 
f h), à la place de X je mettrai X — 90° ; par là les équations (f) et (h) rentrent dans 
une même équation 

ί ι 31 cos Χ = tang γ . 

Les azimuts Χ sans déviation forment donc toujours un angle obtus avec l'azimut de 
l'axe optique le plus voisin , que la normale au plan réfléchissant soit dans l'angle 
aigu ou dans l'angle obtus des axes optiques. Si l'on renverse l'équation ('τ 3) , on 
peut l'écrire 

(, 4) tang ξ = + tang „ , 

où cos X peut être positif ou négatif. On voit que cet azimut sans déviation ne subsiste 
plus, ou plutôt à cause des équations (e) et (g), qu'il n'y a de plan de polarisation sans 
deviation que lorsque le plan d'incidence coïncide avec la section principale, de 

tang E'= 
a 

tang ξ" = ν//*"
6

,'' + tang2 n -1- -tanb' f . 

En dehors de ces limites apparaissent de nouveaux azimuts sans déviation qui 
croissent jusqu'à 90", limite qu'ils atteignent sur les plans perpendiculaires aux axes 
d'élasticité. L'angle que forment entre eux les plans correspondants à ξ' et ξ", a une 
expression très-simple que voici : 

tang ( ξ"—ξ') — tang a'. 

Si l'on désigne par \'C') et (ζ") en général deux valeurs de ξ dans l'équation i4) 
qui correspondent à X et à go" — X, on a 

tang (C" -C') 
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C'est assurément un résultat inattendu que, relativement aux plans qui sont per-
pendiculaires aux axes optiques, il y ait pour chaque azimut, excepté pour sinX = o, 
une. déviation du plan de polarisation, et que cette déviation ait lieu malgré l'égalité 
de l'angle de polarisation dans tous les azimuts. Cette déviation se déduit de l'équa-
tion (6) quand on y fait Ο = ο, .1 — ο. On trouve 

tang &= 

Sur chaque plan réfléchissant il y a toujours au moins deux azimuts dans lesquels 
la déviation du plan de polarisation est égale à o, c'est-à-dire que l'équation (η), qui 
est du quatrième degré par rapporta X, a toujours au moins deux racines réelles. 
Ceci résultera du paragraphe suivant. 

Pour l'azimut de la plus grande déviation , on déduit de l'équation (6), en la diffé-
rentiant par rapport à X, et regardant y, y' comme constants, ce qui est permis dans 
un calcul approximatif, 

( ι η) 2 cos y' sin I] sin U' cos 2 X -1- sin y' [sin (U 4- U' ) cos J cos X — sin (U — U' 1 sin .1 siu Χ ; — ο ; 

et si l'on désigne par m cet azimut maximum , on obtient 

(18) tang m= 

§ XXI. 

Dans le paragraphe précédent nous avons cherché la relation du plan de polarisa-
tion par la réflexion sous l'angle de polarisation. Pour déterminer en général les 
rotations des plans de polarisation par réflexion, nous ferons les conventions qui 
suivent. 

1. Je désignerai par ô, la rotation que fait éprouver la réflexion à uri rayon primiti-
vement polarisé parallèlement au plan d'incidence ; 

2. Par <)0° — la rotation que subit un rayon primitivement polarise perpendi-
rnlairement au plan d'incidence ; 

3. Par l'azimut de la polarisation primitive d'un rayon incident, tel que dans 
le rayon réfléchi le plan de polarisation soit parallèle au plan d'incidence ; 

4 Et par go° — d
p
 l'azimut de la polarisation primitive dans lequel le rayon r« 

fléchi est polarisé perpendiculairement au plan d'incidence. On a 

(') 
tang op= 

tang tang d
p
 == — -- -

63. r 
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s, s p, j) ' ont les valeurs données au § XVII, équations (a), d'après lesquelles ces 

angles peuvent être calculés dans chaque cas donné. La relation de ces angles entre eux 

est générale et subsiste pour tout milieu réfléchissant. 
J'examinerai dans quelles circonstances ces angles S„ 3

p
, d

s

, d
p
 disparaissent ; nous 

avons en conséquence à étudier les équations 

ρ' — ο, et s' = ο, 

qui deviennent, si l'on y substitue les valeurs tirées des équations (2), § XVII, 

(VI sin(tp' — φ" ) cos.r'cos œ" — o, 

V) sin.τ' sin χ" sin (»'—ç")cos(<p'-t-<p") + sin χ ' sin ,;<ρ" tang q" — sin sin'œ'tang <y':=o. 

Je m'occuperai seulement de la première approximation de ces équations, et je né-
gligerai ce qui dépend de la seconde puissance et des puissances supérieures de 
sin (φ' — ψ"). Si l'on s'en tient à ce degré d'approximation, l'équation (77) se change en 
sin >,x ' — ο, et cette équation, développée au moyen de l'équation (i4)> § XIX, donne 

V) 0 = sinip'[sin(U -t-U' )cos J sinX + sin (U-U')sin JcosX] -cosç'sinUsin U'sin 2X; 

la seconde équation (σ) donne la même formule qui a été trouvée, équation (7), § XX, 
à cela près que, dans l'équation actuelle, φ' ne se rapporte pas à l'angle de polarisation, 

mais peut recevoir toute valeur. On a ainsi 

(V ) ο = sin φ' [sin (U+U' ) cos J sin X -4- sin (U-U' i sin J cos X] J- cos <p' sin U sin U' sin 2X. 

Ces equations représentent deux surfaces coniques intérieures au cristal : si l'on 
prend les arêtes de ces cônes normales aux ondes, et si l'on construit les directions 
qu'elles prennent à la sortie du cristal, on obtient l'ensemble des directions suivant 
lesquelles les rayons doivent tomber sur le plan du cristal pour que leur plan de 
polarisation, primitivement parallèle ou perpendiculaire, n'éprouve pas de change-
ment par réflexion. Les deux surfaces coniques sont du troisième ordre; elles sont 
égalés entre elles; elles ont commune la normale au plan réflecteur, mais l'une est 
par rapport à l'autre tournée autour de cette ligne de 1800. Je n'ai donc qu'à exa-
miner avec attention le cône [V). Ce cône nous sera très-utile dans l'étude de la re-

fraction. 
Comme tang φ' = ο, aussi bien quand sin X = ο que lorsque cos X = ο, deux 

branches du cône doivent passer par la normale au plan de réfringence et se couper 

à angle droit suivant cette normale. Si X — .1, 
tang φ ' = tang U ', 

et. si X = — J, 
tang y' = tang Li. 

Le cône passe donc toujours par les deux axes optiques. 

Si tang X — ■ tang J , 

?' = 9&"· 
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L'azimut X déterminé par cette équation est toujours négatif, puisque nous prenons 
toujours U'-<j U. Si nous l'appelons — X', il vient 

tang U sin [ J ■— X' ) = tang tJ' sin (J -+- X). 

Soient X, U, U' les intersections du plan réflecteur par sa normale et les deux axes 
optiques; ces trois lignes étant menées par le point Ο au-dessous de ce plan. Si l'on sup-
pose que la ligne NP divise l'angle UNU' de manière à donner 

sin UNP : sin U' NP = tang U' : tang U, 

NP sera une ligne parallèle au côté du cône. 
Si l'on suppose, en outre, mené par Ν un plan perpendiculaire au plan des deux 

axes optiques, la ligne d'intersection des deux plans OS est un côté du cône. Cette der-
nière propriété du cône (π' ) se vérifie très-facilement si l'on considère N,U, U' comme 
les points de rencontre d'une sphère décrite du point O, avec la normale et les deux 
axes optiques. On n'a plus qu'à mener par Ν un grand cercle perpendiculaire à UIJ', 
et à démontrer que 

NS=rf, SNU'=J—X et UNS = J 

satisfont à l'équation (π' ). 
Nous avons donc pour le cône (V) cinq côtés déterminés et la position de deux plans 

tangents. Ce cône coupera le plan réfléchissant, en général, suivant une courbe qui a 
sensiblement la forme ÀNSU'NUB. Les lignes NII et NH' représentent les directions 
du plus grand et du plus petit rayon vecteur de la section que le plan réflecteur déter-
minerait dans la surface d'élasticité. 

Une propriété générale de ce cône est digne d'attention : dans l'intérieur de l'angle 
azimutal HNP il n'existe jour y' que des valeurs négatives, qui sont telles que la 
polarisation primitivement perpendiculaire du rayon incident ne subit pas de modi-
fication par réflexion. Nous avons appelé X' cet angle HNP, et nous l'avons déter-
miné par l'équation 

tang U sin (J — X' ) = tang U' sin (J X' ). 

Dans la partie du cône NU'S φ' atteint un maximum. On déduit ce maximum de 

l'équation (V ) en faisant —L
 = 0 : il a lieu dans l'azimut 

3 

(3) tangX^y/tangJ^-^; 

sa· valeur est 

(4) tan y'= qgqonblqùùq sqml,lmvqlm 
si n (4) tan y'=(4) tan y'=(4) tan y'=(4) tan y'= 
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La valeur de ce maximum est importante pour la question des azimuts suivant lesquels 
la polarisation primitive, parallèle ou perpendiculaire, n'est pas changée pour un angle 
d'incidence donné y'. Tant que la valeur de y' correspondante à cette valeur de φ n'est 
pas plus petite que la valeur donnée, éq. (4), il existe toujours quatre azimuts qui 
répondent à la question ; dans le cas contraire il n'y en a plus que deux. Ceci s'applique 

à l'équation (η) du paragraphe précédent, qui est la même que celle notée (a'j dans ce 
paragraphe, laquelle, comme on l'a déjà remarqué, ne se distingue de (τ') qu'en ce 

que à chaque valeur de X doit correspondre une valeur négative de γ . Dans l'équa-
tion (η) <f' est l'angle de réfraction donné en fonction de l'angle de polarisation, et X 
es! à déterminer. 

Après les considérations qui précèdent, on peut toujours se représenter clairement la 
position de la surface conique (V), quel que soit le plan réfléchissant; mais nous men-
tionnerons encore les cas limites où ce plan est parallèle aux axes d'élasticité. Si le plan 
réflecteur est parallèle au plus grand ou au plus petit des axes d'élasticité, on posera 

U — U' = ο ou U + U'=i8o", 

l'équation (π') se résout alors en deux facteurs dont l'un représente un plan , l'autre un 
cône du deuxième ordre. Le plan passe toujours par la normale au plan réfléchissant, 
et est perpendiculaire à celui des axes d'élasticité qui est parallèle à ce dernier plan. Le 
cône passe toujours par les deux axes optiques et par la normale au plan réfléchissant 
qu'il coupe suivant un cercle. Quand le plan réfléchissant est perpendiculaire à l'un des 
axes d'élasticité , (π') représente deux plans qui se coupent à angle droit parallèlement 
aux deux autres axes d'élasticité. Quand le plan réfléchissant est parallèle à l'axe moyen 
d'élasticité, Ιπ') représente pareillement un plan et un cône du deuxième ordre. Le 
plan passe dans ce cas par les deux axes optiques, le cône par la normale au plan ré-
fléchissant qu'il rencontre suivant un cercle. 

Soient, Jig. ι j, X, U, L' les traces sur le plan réflecteur de la normale et des deux 
axes optiques, ces trois lignes étant menées par le même point 0; soit Κ S le cercle sui-
vant lequel le plan est coupé par le cône ; la proportion harmonique suivante a lieu : 

sin UON : sin L'ON' = sin UON : sinU'ON. 

Le cône est donc le même, quelle que soit celle des lignes ON ou ON' qui soit normale 
au plan de réfringence, et il existe toujours deux plans réfléchissants correspondants 
dans l'angle obtus et dans l'angle aigu des deux axes optiques qui ont le même cône 
elliptique.Ce cône se change en line ligne droite quand le plan réfléchissant est perpen-
diculaire à l'un des axes optiques. 

L'azimut S d'un rayon polarisé primitivement dans l'azimut a est, après la reflexion, 

tang q= 
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§ XXII. 

Le cône (π'}, considéré au paragraphe précédent, est important pour l'étude des 
cas dans lesquels un des deux rayons réfractés disparaît, dans l'hypothèse où la lu-
mière incidente serait primitivement polarisée parallèlement ou perpendiculairement 
au plan d'incidence. Si la lumière est polarisée perpendiculairement au plan d'inci-
dence, on a, par l'équation (a), § XVII, 

D' : D" :: sin(y4-<p")cos,:r" : sin (y -+- ■/) cos χ' ; 

d'où résulte que le rayon ordinaire ou le rayon extraordinaire disparaît selon que 

cosx' = ο ou cos xf — o. 

Mais comme, en général, x' est compté de telle manière que si y' = φ", 

cos χ" — — sin χ', 

les deux angles sont racines d'une môme équation, savoir, de sin sx' = o, c'est-à-dire de 
l'équation (■*'). Si l'on imagine,7%. i3, une sphère décrite du point 0 commun à la 
normale et aux axes optiques OU et OU', chaque côté OD' du cône fi') pour lequel 
l'angle ND'tf = go°, D'D étant bissectrice de l'angle UD'U', est un rayon réfracté d'après 
la loi du rayon ordinaire, issu d'un rayon incident qui, polarisé perpendiculairement 
au plan d'incidence, n'a pas produit de rayon extraordinaire. Chaque côté OD" pour 
lequel TvD" divise en deux parties égales l'angle UD"U' est le rayon extraordinaire d'un 
rayon incident qui, polarisé perpendiculairement au plan d'incidence, ne produit pas 
de rayon ordinaire. Il est facile de trouver, d'après cela, les directions des rayons inci-
dents. Désignons dans le premier cas l'inclinaison de D' sur X par tp', dans le second 
cas l'inclinaison de D" sur Ν par y", et les angles d'incidence correspondants à o' et à >/ par ξ' et ξ", il vient 

sin E'= 

sin E"= 

Il n'y aura, dans un cas donné, aucune difficulté à discuter pour quelle partie 
du cône (π') cos χ' — o, et pour quelle partie sin x' = o. Dans la fig. i3, par 
exemple, pour la partie du cône UND'U, cos a;' est partout =o, tandis que pour les 
deux parties U'SXD" et UB, c'est sin x' qui est nul. Si le plan réfringent est parallèle à 
l'axe d'élasticité qui divise en deux parties égales l'angle obtus des deux axes optiques, 
c'est-à-dire si U — U' = o, cos x' — o pour tous les côtés du cône elliptique pour les-
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quels 9' <^ U; mais sin χ' — ο pour tous les côtés pour lesquels «/ ^>U et pour les 
rayons qui suivent la section principale. L'inverse a lieu pour les surfaces réfringentes 
parallèles à l'axe d'élasticité qui divise en deux parties égales l'angle aigu des axes op-
tiques , c'est-à-dire pour lequel U + U'= i8o

u

. Si le plan réfringent est parallèle à 
l'axe moyen d'élasticité, les rayons du cône elliptique satisfont à la condition cos χ' — ο 

quand la normale au plan réfringent est située dans l'angle obtus des axes optiques, et 

à la condition sin χ' = ο quand elle est dans l'angle aigu. Pour les rayons incidents 

dans la section principale compris dans l'angle obtus des axes optiques, sin χ' est - ο; 

pour les rayons qui sont dans l'angle aigu , cos χ
1 — ο. 

Quand les rayons incidents sont polarisés parallèlement au plan d'incidence, on a, 

d'après l'équation (3), § XVII, 
D' : D" = sin χ" sin (y -4- 9" ) cos (9 — φ" '' 

— sin
2

f" tang 9'' : sin χ' sin (9-4-9' ) cos (9 — 9') — sin' <J tang q'. 

Le rayon extraordinaire est donc tout près de disparaître, car tang q' et tang q" sont 

seulement de petites quantités dépendantes de (9' — 9"), quand sin χ' = o, et le rayon 
ordinaire est à son tour dans le même cas quand sin χ" - - ο. Ces deux cas sont com-

pris encore dans sin ix' — o, c'est-à-dire dans l'équation (π ' ). 
Les côtés du cône, fig. i3, pour lesquels sin χ' = o sont approximativement les 

directions réfractées d'après la loi du rayon ordinaire que doit suivre un rayon polarise 
parallèlement au plan d'incidence pour que le rayon extraordinaire disparaisse, et les 
côtés pour lesquels cos χ' — o sont les rayons réfractés d'après la loi du rayon extraor-
dinaire qui, polarisés parallèlement au plan d'incidence, ne produisent pas de rayon 
ordinaire. Au moyen des valeurs approchées fournies par l'éq. (π'), c'est-à-dire par 

sin zx' — ο, on calcule facilement des valeurs plus exactes 

sin 2x'= 

sin 2x"= 

La relation qui doit exister entre la position du plan de polarisation du rayon in -
cident, son angle d'incidence et l'azimut du plan d'incidence, pour que le rayon 
ordinaire ou le rayon extraordinaire disparaisse, résulte généralement de l'équa-
tion (3}, § XVII. Quand l'angle d'incidence et l'azimut du plan d'incidence sont 
donnés, on a immédiatement, pour l'azimut a ' du plan de polarisation primitif dans 

lequel subsiste le rayon ordinaire seul, 

(1) tang a'= 

et pour l'azimut α" dans lequel un rayon extraordinaire seul paraît, 

(2) tang a"= 
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Quand les rayons incidents sont polarisés dans les azimuts a' ou η", les expressions 
des vitesses dans les rayons réfractés et réfléchis sont d'une simplicité remarquable. 

1. Dans Γ azimut il vient 

e 

2 sin cos 
cs sos 

3 Rs= 
ssin p p 

rP Rp=Rp=Rp=Rp=Rp=Rp= 
cos sin 

:t ρουν l'azimut ô ' du plan de polarisation dans le rayon réfléchi, 

tang g'= 

2. Dans l'azimut a", on a 

vD"=D"= 
cos ss so qg 

Rs= dfjktc ffjrfktkrd dgze 
din p s q 

Rp= sin sin p - q cos p + y sin + 

et pour l'azimut S" du plan de polarisation du rayon réfléchi, 

tangU = — tangn" —ψ- Vx f- T,
7

, . b, ' —. 
cso s qgqo scos 

§ XXIII. 

Je vais étudier actuellement l'émergence d'un rayon d'un cristal à deux axes. Je dé-
signerai la vitesse dans le rayon émergent selon que ce rayon est ordinaire ou extraor-
dinaire par D' ou D", et les vitesses dans les deux rayons réfléchis, selon qu'ils provien-
nent de D ' ou de D", par R) et R'' ou R', et R". Je décompose le rayon émergent en 
deux rayons, l'un polarisé parallèlement au plan d'émergence, l'autre polarisé perpen 
diculairement à ce plan, et j'appelle les vitesses respectives S' et P' quand elles déri-
vent de D', S" et P" quand elles dérivent de D". Je désigne, en outre, les azimuts 
des directions des vitesses D' et D" par rapport au plan d'incidence, par/' et et 
je les compte de telle manière que y' — 90° et y" — go" soient les azimuts des 
rayons correspondants à D' et à D". Ces angles y' — gou et y" — go" doivent tou-
jours être positifs et sont égaux à ο, quand les rayons sont placés dans le plan d'inci-
dence , et font un plus grand angle avec la normale au plan de réfringence que les nor-

Tome VII. — DÉCEMBRE I84'2 63 



493 JOURNAL DE MATHÉMATIQUES 

males des ondes planes qui leur correspondent; au contraire, si le rayon est place 
entre la normale à l'onde et la normale au plan de réfringence, y' —- go° et y " — go" 
doivent être égaux à i8o". Soient z' et z" pour R' et R|r, z'

n
 et z" pour R|, et R'(, les 

azimuts par rapport au plan d'incidence des directions des mouvements dans les rayons 
réfléchis à l'intérieur du milieu. Ces angles sont calculés de telle manière qu'ils coïnci-
dent respectivement avec les angles y' et y" quand le rayon émergent est perpendicu-
laire au plan de réfringence. Soient encore ψ' et ψ" les angles que les normales aux 
ondes de D' et de D" font avec la normale au plan de réfringence; les angles des nor-
males aux ondes R', , R" et R),, R(j, avec la même normale, seront ξ' , ξ'', et ξ'

;
, ξ". 

Je désigne par ι ' l'inclinaison du rayon émergent sur la normale au plan réfringent 
quand il derive de D', et par t" quand il provient de D". J'appelle enfin p ' et p" les 
inclinaisons des rayons D' et D " sur la normale à l'onde qui leur appartient, et /, 
r ' et / , r"

n
 les inclinaisons des rayons Rj, R" et [V , R" sur les normales à leurs ondes 

respectives. Les angles p' et ρ " doivent être toujours positifs, les angles z\, z'n et ζ", z" 
négatifs quand les rayons R) , R'

(
 et R" ne sont pas dans l'azimut z) — go°, z'n — go° et 

z" — 90", z" — 90° relativement au plan d'incidence, mais dans les azimuts z\ 4-go", 
z« 9°° et z'„ + 9°"> z"„ + 9°"· Ces notations admises, on trouve, en désignant les 
valeurs qui reçoivent le mouvement des ravons incidents D ' et D ", dans les rayons ré-
fléchis R(, R" et R|

(
, R((, et dans les rayons réfractés P ', S ' et P", S ", par Q', Q" , 

Q; , Q:, Q:, Q:, Τ, τ»·. 

• Τ' = a sin 1' cos t', 
l Τ" = α sin ι" cos t", 
1 Q' = α (sin ψ'cos ψ'— sin2 ψ' sin/' tang ρ'), 

S"= & (si, cos) 
S ' = 

Q" = α (sin ξ" cos ξ" + sin2 ξ" sin z(' tangr"), 
Ο ( — α : sin ξ'

η
 οοβξ(, sin- ξ ^ sin z'

n
 tangrj), 

Q" = α (sin ξ" cos ξ" + sin2 ξ" sin z" tangr" ). 

Les équations qui résultent du principe de la conservation des forces vives sont 

1. Quand Ponde incidente est une onde ordinaire, 

D,2Q' = R(2Q; + R;,2Q;' + (P" -+- s,s) r-, 
2. Quand l'onde incidente est extraordinaire, 

D"2 Q" = R;,2Q;
;
 + R;;2Q;; + (p"2 ■+■ s"2) τ". 

En remplaçant dans ces équations les volumes par leurs valeurs tirées des équations(i), 
nous obtenons, dans le premier cas, 

(2) 
D'2(sinJ/ cos -ψ' —■ sin' ψ' sin y ' tang ρ') — R(2 (sin ξ( cos ξ] -i- sin2 ξ( sin z\ tang / 

— R"! (sin ξ" cos ξ" + sin2 ξ" sin z" tang r") — (P'! S'2) sin 1' cos 1' ; 
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et dans le second cas, 

{ D"² (siny ) 

Quant aux angles ι', t.", ψ', ψ", , ζ", ζ'„, on a pour les déterminer les relations 
suivantes : 

(4) 

a. sin- ψ —ο1
 sm' ι = ■—-— — — cos [u —■ « J sin

2
 ; , 

b. sin
2
?

;

 = sin-1 = |
!
 — cos («,— u

t

} 1 sin-1 , 

c. sin
2

 ξ= rj sin
2

1 ' = J —— — I——cos (u
/
 -4- d ) sin'' t ', 

( fA * Ίζ ' "J7 ^ — »/ ' | a. sin
2
 ψ" — 1:'· sin

2

 ι" — 1 —— cos (υ 4- ■/ ) I sin
2

 t", 

3. sin
2

 ξ( = ο
2

 sin
2

 t" = Ι
 ί
—-— — cosi«„— if) sin

2

 i", 

y. sin
2
 ξ„ = <?„ sin-1 = — — eosf-x, -4- υ ) sin

2
1 . 

où la signification de ο, c, o
y

, iq, ο
λ

, e„ est claire par elle- même, et où les inclinaisons 
des normales aux ondes D', D", R(, fi", IV(, R" sur les axes optiques sont respective-
ment désignées par u, u' ; u, υ' ; «„ d, ; ·■>,, υ) ; «

Λ

, if ; v„, υ),. Ces angles sont déterminés 
par les relations suivantes. Soient U et U' les inclinaisons de la normale à la surface 
réfringente sur les deux axes optiques, et soit le plan d'incidence situé dans l'azimut X, 
cet azimut étant compté à partir de la direction que suivrait le mouvement si le plan 
réfringent était le plan de l'onde ordinaire, et tel que pour ·|ι' = ο, ~K — r'. Soit 9,1 
l'angle que les deux plans déterminés par la normale au plan de réfringence et les deux 
axes optiques forment entre eux; soient zi et zk les angles correspondants pour les 
normales aux ondes D'et D"; et. soient 2 i ' et zk ' ces angles pour les normales R( et R", 
et 2 i" et zk" pour R'

r

 et R". Les relations suivantes ont lieu : 

cos u =r cos U cos ψ' + sin U sin ψ' cos (X-j- I ) 

cos«' = cos U'cosψ' 4- sin U' sin ψ' cos (X — I), 

— sin u cos (χ ' -4- / ) cos U sin ψ' — sin U cos ψ' cos (X - f- 11, 

— sin u'cos (r ' — i) = cos U'sin ψ' — sinU' sin ψ' cos (X — I), 

sin u sin (/' -4 ;'}- r= sin U sin (X-4-I), 

sin «'sin (y' — ί ) sin U' sin (X — I) ; 

63.. 
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(6) 

cos -J = cos U cos sin U sin ψ" cos (X-f-I ), 

cos W = cos U'cos ψ"+ sin ll'sin ψ" cos (X — I), 

sin -j sin (y"— /·) = cos U sin ψ"—sin U cos ψ" cos (X-f-I), 

sin v' sin (y" -f- k ) — cos U' sin ψ"— sin U'cos ψ" cos ( X — I ), 

— sin ο sin (y " — k) = sin U sin (X -f-1 ), 

— sin '/sin (/" h) — sin U' sin (X — I). 

On déduit facilement ces formules de trigonométrie sphérique de la fig. 9, où sont 
indiquées les points de rencontre avec une sphère des normales aux ondes I/ , [)" des 
axes optiques et de la normale au plan réfringent; toutes ces lignes étant menées par 

le centre de cette surface. 
Au moyen des équations (5), on peut exprimer «, u', y', i en fonction de l'angle 

d'incidence vj/' et des angles U, U' et X qui déterminent la position du plan réfringent et 
la position du plan d'incidence ; et comme ces deux plans sont donnés dans tous les cas, 
on peut, au moyen de l'équation (5), exprimer les angles a, a', y', i en fonction 
de y' Pareillement, les angles u, ·/, y ", k sont donnés par l'équation (6) comme des 
fonctions de l'angle ψ". L'angle I est déterminé par U et U', et l'angle des deux axes 

optiques m. On a, en effet, 
cos 2η — cos U cos U' sin U sin U' cos al. 

On déduit des équations (5) et (6) deux systèmes semblables en mettant pour ψ et ψ" 
— ξ' et — ξ", à la place de y' et de y" les angles z) et z", à la place de i et k les 
angles i' et k', à la place de u et u' les angles u

/
 et u\, et enfin à la place de υ, -/ les 

angles u
y
, u' : 

(?) 

cos u
/
 — cosU cos ξ) — sin U sin ξ' cos (X-f-I), 

cos «) = cos U'cos ξ)— sin U'sin ξ) cos(X — I), 

sin u
f
 cos fz' -t- ί') = cos U sin ξ) -+- sin U cos ξ) cos ( X 1 ), 

sin «) cos (z) — i ' ) = cos U'sin ξ) -1- sin U' cos ξ) cos (X — I) 

sin u
/
cos (z) —f— r ' ) = sin U sin (X-f-I), 

sin sin (z) — i') = sin U' sin (X— I) ; 

i«) 

cos v. = cos U cos ξ" — sinU sin ξ" cos (X —f— I), 

cos u — cos U' cos ξ" — sin U' sin ξ" cos (X — I ), 

— sin υ, sin(z" — k' ) = cos U sin ξ)' -+- sinU cos ξ" cos (X-hI), 

— sin/ sin (zj -I- k') — cos U' sin ξ)' sin IJ' cos ξ)' cos (X—I), 

— sin ν, sin (z" — k'~j— sin U sin (X 4-If, 

— sin υ) sin (ζ" -+- k') = sin U'sin (X—I). 

Enfin on obtient deux systèmes de relations semblables pour «
(

, u„, ν),... en 
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changeant partout l'indice inférieur , en , et en remplaçant i' et / ' par i" et k". 

Je désigne ces relations par (g)et(io). 
Si l'on substitue, dans les équations (4), a, b, c, les valeurs de «, u', u'

t
 , ù , on 

obtient trois équations dont la première contient seulement ψ', la seconde ξ) et la troi-
sième ξ". Il est facile de s'assurer que toutes les trois, développées, conduisentàla même 
équation du 4e degré, de telle sorte que -ψ', ξ' et ξ" sont trois racines de cette équa-
tion. La quatrième racine, que je désignerai par ·{/' est l'inclinaison sur le plan réfrin-
gent de l'onde extraordinaire correspondant à ι'. On trouve pareillement que ψ", ξ'

α
, ξ" 

sont trois racines d'une autre équation du quatrième degré dont la quatrième, , est 
l'angle de réfraction de l'onde ordinaire correspondant à ι". Quand i' = t", on a 

·*'=+;, r=v, ^ %: = %, 

etde plus V, ψ", ξ) = ξ'
π

, \"
η
 — ξ" sont les quatre racines de la même équation du 

quatrième degré. 
Il existe certains cas particuliers, faciles à voir, où ces équations du quatrième degré 

se laissent facilement'décomposeren deux équations du deuxième degré. On peut aussi, en 
général, recourir pour les résoudre à des méthodes d'approximation, et les relations 
de (5) à (io) servent alors. Quand le rayon incident est un rayon ordinaire, et d'après 
les équations (4), a, on détermine l'angle ι au moyen de l'équation (5); cette valeur, 
portée dans les équations (4), b, c, fournit pour et ξ" une première approximation 
dans laquelle on néglige les carrés de π2 — μ2 quand on substitue ψ' à ξ' et ξ" dans les 
valeurs de tip n' et υρ dans les équations (7) et (8). Si l'on porte, d'après cela, dans 
les équations (7) et (8), les valeurs approchées trouvées ci-dessus pour ξ| et H", on ob-
tient up et υ,, 11, exactes jusqu'à la première puissance de π1 — a1; de celles-ci on 
forme les expressions de 

cos («' — u'), cos (υ, -4- υ) ), 

qu'on porte dans l'équation (4), b, c, d'où l'on déduit les valeurs de ξ[ et ξ" exactes 
jusqu'à la seconde puissance de π2 — pé. Ce degré d'approximation sera suffisant dans 
tousles cas. Une route toute semblable conduit aux valeurs approchées de ξ'

7
 et ξ", 

quand le rayon incident est un rayon extraordinaire, au moyen des équations (4) , 
a, (5, 7, et des équations (5), (6), (7), (9), (10). 

Je vais former maintenant les équations qui résultent du principe de l'égalité des 
composantes. Je décompose encore les vitesses D', D", R', R", Rj, Rj' suivant trois di-
rections : i° perpendiculairement au plan d'incidence ; 20 perpendiculairement au plan 
réfringent ; 3° parallèlement au plan d'incidence et au plan de réfringence. Je présen-
terai dans le tableau suivant les cosinus des angles que les directions des vitesses D', D", 
R),..., forment avec ces trois directions perpendiculaires entre elles. 
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Pour les vitesses des rayons émergents décomposées suivant les trois mêmes direc-

tions , nous avons, selon qu'elles dérivent de D' ou de D", 

(12) 

l. P' ou P", 
2. — S'sini' ou — S "cost", 
5. — S'sini' ou — S" cost". 

Par suite, le principe de l'égalité des composantes fournit les équations : 
1. Pour un rayon ordinaire incident, 

P' =.· D'sin/' 4- R' sin z\ 4- P" sin , 
■:ι3) ■ S'sini' = D' sin V cos y' — R' sin ξ' cos ζ' 4- R" sin ξ" cos z\ 

— S'cosi' = D' cos -ψ ' cos y' 4- R' cos?( cos z\ — R" cos ξ" cosz" 
2. Pour un rayon extraordinaire incident, 

(4) 
P" = D " siny" 4- R>in< 4- R"sinz^, 

— S sint" = — D sinf cos/ — R„ sm ξ„ cos z
n
 4- R„ sin ξ„ cos z(, 

— S"cost" = -— D"cos ψ" cos/" 4- R(cos ξ„ cos z,
;
 — R

(
" cos ξ" cos z"

n
. 

Il faut maintenant démontrer que les équations du deuxième degré (2) et (5), se chan-
gent, au moyen des équations (i3) et (i4)>

 en équations linéaires. Je m'occuperai d'a-
bord des équations (2) et (i3). Le produit des deux dernières des équations (13) nous 
donne 

S'2 sin t' cos t' = D'2 sin ύ'οοβψ' cos2 r' — R^2 sin ξ( cos2 ζ' 

— R(2 sin ξ" cos ξ'' cos2 ζ" 

4- D R'sin (ψ' — ξ, ) cos/'cos ζ( 
— D'R,sin(\J/ — ξ, ) cos/' cos ζ" 
4- R' R"sin (ξ' 4- ξ")cos ζ) cos ζ". 

Ce produit, retranché de (2), donne 

P'2 sin t ' cos t' = D'2 (sin ψ ' cos ψ' sin2/ ' — sin2
 ψ ' sin / ' tang ρ ' ) 

— R^2 (sin ξ ' cos ξ) sin ζ'/1 ~f- sin2 ξ( sin z\ tang / ) 

— R"2 (sin I " cos ξ " sin2 ξ "
r
 4- sin2 ξ " sin ζ "

r

 tang r") — D'R( sin (ψ '— ξ( ) cos/ ' cos ζ ( 
4~ D'R"sin(ij/ — ξ() cos/'cos ζ" — R(R('sin(?J 4- ξ J) cos z,' cosz(. 

Cette équation, divisée par la première des équations (i3), donne 

P'sini'cosi' = (sin -ψ ' cos ψ ' sin / ' — sin2 ψ' tang ρ' ) 
— R( (sin ξ', cos ξ', sin z( 4- sin2 ξ( tang r \ )—R'( (sin ξ '' cos ξ " sin z" 4- sin

2
 ξ" tangV'j, 

dans l'hypothèse où les relations suivantes subsistent : 

(sin ξ( cos ξ( — sin ψ' cos ψ') sin/' sin z\ 

4- sin2?,' tang r\ sin/' 4- sin2 ψ' tang/i' sin z\ = sin (ψ' — ξ( ) cos /' cos z\, 
(sin·}/ cos ψ' — sin ξ" cos ξ") sin /' sin z" 

— sin2 ψ ' tang ρ ' sin ζ" — sin2?}' tang r" sin/' = sin (ψ' — ξ") cos/' cos ζ", 
(sin cos?} 4- sin ξ" cos ?} ) sin z\ cos z" 

4- sin2?', tang r'
t
 sinz" 4- sin2?}' tangr}' sinz} = sin(?} 4- ξ)') cos z\ cosz,", 
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nu , un écrivant un peu différemment, 

sin (ψ' — ξ[ ) [sin /' sin z\ cos (ψ' -Η ξ[) -4- cos j'cos ζ'j 
— sin2 ξ[ tang r( sin/' 4- sin3·[/ tang p' sin ζ' , 

sin(4i' — ξ") [sin/' sin z" cos(i[i' + ξ") — cos/'cos ζ"] 
= sin2 ξ" tang r" sin/' + sin2 ψ' tang p' sin z", 
— sin ( ξ' -f- |")[sinz) sinz"cos^| — ξ") — cos ζ) cos ζ"] 
= sin3 ξ | tang / sin z" + sin3 ξ" tang r" sin z\ . 

Je vais prouver la justesse de ces relations. Posons les valeurs 

TANG
 = tjô;

 TANG

 = C'k; tang// = ώ· 

1/0= 

1/E= 

1/0= 

Posons de plus , 
sin2 ξ" sin2 ξ, sin2 ψ' . „ , 

ι: ' ο2 ο2 

et enfin , 

('7) 

sin2 ξ" tang r" sin/' + sin2 ψ' tang p' sin z",sin2 ξ" tang r" sin/' + sin2 ψ' tang p' sin z", 

sin31' _ sin ( ψ' -+- ξ")_ sin (4/ + ξ', ) 
sin (ψ' — ξ") ο-' — e2 π2 — fi3 ,. , ν, 

si"21' sin ( ξj —ξ") sin ( ξ', — ξ j 
si" ( É -Ρ ξ J

 0
,
J
 —

 c
î ~~~ — P" r r " /sin2 ξ" tang r" sin/' + sin2 ψ' tang p' sin z", 

au moyen de ces substitutions, les équations (16) se changent dans les suivantes : 

(.8) 

sin2 ξ" tang r" sin/' + sin2 ψ' tang p' sin z", 

1. sin y' sinz' 

2. sin/' sin z" cos (ψ' -j- ξ") — cos/' cos z" 

= - cosk' 
5. sin z\ sin z" cos (ξ[ — ξ") — cos z\ cos z" 

= - [ 
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La justesse de ces trois relations se voit par celles du § XVI, équations (f) et (h). 

De la troisième, il résulte immédiatement qu'elle est pour les deux rayons réfléchis 
R(, R", ce qu'est la relation ( f), § XVI, pour les deux rayons réfractés D ' et D seu-
lement, dans ces deux cas, les arcs (ξ( — ξ") de l'équation actuelle, et (φ' — φ" ) de 
l'équation (f), ont une position inverse; par conséquent on doit poser ici 

(ξ', — ξ") = — sin Δ. 

La seconde relation (18) correspond pareillement à l'équation (f), § XVI; on s'en as-
sure le plus facilement possible en construisant cette formule sur une surface spherique 
comme on a fait § XVI; on voit alors que la formule (18, 2) est pour les rayons D' 
et Rj, ce que la formule ( f J, § XVI, est pour les rayons D ' et D", et que par consé-
quent on doit remplacer dans celle-ci υ, ■/, k, x", par υ,, x> \, k', z" et (7'—γ"), c'est 
à-dire l'angle que les deux normales D' et D" font entre elles, par l'angle ψ' -+- ξ", c'est-
à-dire l'angle que les deux normales D' et R" font entre elles. La première relation (i8) 
correspond à celle en (h), § XVI. La relation (18, 1) est par rapport aux normales D' 
et R'

(
 ce qu'est la relation (h), § XVI, par rapport aux normales D ' et D ", dans la-

quelle υ, υ', k sont remplacés parles angles «
y

, a' , et (φ' — a") par ψ' -f- ξ' . 
Quant à l'angle x" en ( h), § XVI, on doit considérer que si l'on désigne par z" l'angle qui 
lui correspond relativement à la normale R \, on a 

z" -|- z\ = 270", 

et que, par conséquent, x" doit être remplacé par 

z, — 270° — z, . 

Ces substitutions introduites en (h), § XVI, donnent la première des relations (17; de 
ce paragraphe. 

L'équation du second degré (2) peut donc être remplacée par l'équation linéaire (15). 
Cette équation (i5) et les équations (13) contiennent par conséquent la solution com-
plète du problème de la réflexion et delà réfraction à l'intérieur d'un milieu cristallisé, 
quand le rayon incident est un rayon ordinaire. 

Je vais maintenant montrer comment l'équation (3), à l'aide de l'équation é 14), 
peut être pareillement remplacée par une équation linéaire. Le produit des deux der-
nières équations ft4) donne 

S"' sin t" cos · — D''2 sin -ψ" cos -j>" cos2 y" — R^» sin cos ξ' cos'zj 
— R(j2sin?|( cos cos2 ζ" — LUR', sin (ψ"— ξ() cosy"cos ζ( 
+ d"r;; sin (r - ξ';) cos*;; + r: r;; sin (?;, + r.) < coS

 z;;. 

Ce produit, retranché de l'équation (3), nous donne 

P"2 sin t" cos t " = D"2 (sin ψ" cos ψ" sin2 y" — sin2 ψ" sin y" tang ρ" ) 
— R(,2 (sin ξ'

ί(
 cos sin'1 z'„ 4- sin1 sin z'

H
 tang / ) 

R/ (sin l"
a
 cos?" sin2 z( 4- sin2 sin z"

rl
 tang rj) 

4- D" R( sin (f — ξ ( ) cos y "cos z( — D" R" sin (ψ" — ξ * ) cos y " cos ζ ( 
— R( R(( sin (?( 4- ξ"„) cos z(, cos ζ" . 

Tome VIL — DÉCEMBRE 1842.6 4 
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Cette équation, divisée par la première des équations (ιή), donne enfin 

ί J9) 

Psint" cost" = D" (sin ψ" cos ψ" sin/"— sin2 ψ" tang//' 
— IV (sin ξ( cos ξ|, sin z|, -+- sin2 tang r'

n
) 

— R" (sin ξ" cos ξ" sin z" ~f- sin2 ξ" tang r"
n
), 

car 

cos/" cos z( — sin / "sin a(, cos (ψ" -+- ξ'J 
sin2 ξ" tang r" sin/' + sin2 ψ' tang p' sin z", 
sin2 ξ" tang r" sin/' + sin2 ψ' tang p' sin z", 

cos y" cos z'l -h sin y" sin z"
ff
 cos (ψ" -+- ξ'^) 

- sin²y 

cos z\ cos ζ" — sin z\ sin z"
n
 cos -+- ξ") 

sin2 ξ'„ tang / sin z" -f- sin2 ξ", tang /( sin z,', 
~ sin (ξ'„ ξ") 

Ces relations se changent, par les substitutions (17) et semblables, dans les suivantes : 

(20] 

I. cos y " <OS ζ — sin / " sin ζ (, cos (■'/' -+- ξ (, ) 

sin2 ξ" tang r" sin/' + sin2 ψ' tang p' sin z",sin2 ξ" tang r" sin/' + sin2 ψ' tang p' sin z", 

sin2 ξ" tang r" sin/' + sin2 ψ' tang p' sin z", 

sin2 ξ" tang r" sin/' + sin2 ψ' tang p' sin z",sin2 ξ" tang r" sin/' + sin2 ψ' tang p' sin z", 

5. cos z(
(
 cos ζ" — sin z'

n
 sin z" cos (ξ(, — ξ") 

= - sini " 

L'exactitude de ces formules se déduirait, pour la première et la troisième, de l'équa-
tion (f), § XVI, et pour la seconde, de l'équation (i) du même paragraphe. Si l'on 
substitue, en effet, dans l'équation (f), à u , u', χ', (</— φ") les angles u

n
, «/, z(, 

— (ψ"-+-ξ'„), on obtient la première des relations (20), et si aux angles a, a', χ", (ο'— ο"), 
on substitue les angles a

/(
, a)

(
, /", — (ξ'„ —ξ"), on obtient la troisième. On peut d'ail-

leurs s'assurer facilement de l'exactitude de ces substitutions. La seconde relation (20) se 
tire de l'équation (i), § XVI, par la substitution des angles a„, aj,, — (ψ" -+- ξ",) aux 

angles «, (φ' — φ" ), et par la substitution de 270 — /( àx'· 

On petit donc remplacer l'équation de la conservation des forces vives (3) par l'équa-

tion (19). 
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§ XXIV. 

Les équations complètes de la réflexion et de la réfraction dans l'intérieur d'un mi-
lieu cristallisé sont donc les suivantes : 

(«) 

P' sin Ρ cos t' — — D'(sin ψ'cos ψ' sin /'— sin2 ψ' tang/?') 

— R) (sin ξ) cos ξ) sin ζ) -t~sin2|) tang/·) ) 
— R)' (sin ξ)' cos ξ )' sin ζ )' -+- sin2 ξ)' tang r"), 

P' = D'sin/' -|-R)sinz) -t-R)'sin ζ)', 
S'sint' — — J)' cos r' sin ψ' q-R) cosz) sin ξ) —R)'cos ζ" sin ?)', 
S'cost' ——D' cos y ' cos -V —R) cosz)cos|) 4-R)'cosz)'cosH)' ; 

et 

(2) 

P"sin t " cos 1 " = D"(sin -("cos ]»" sin /"— sin2 ψ" tang ρ ") 

— R),(sin?) cos ξ (sin Ρsin2 ξ (tang /·),) 
— R)) (sin ξ )) cos ξ", sin2z)) + sin2 ξ )) tang /·)) ), 

D"sin/ -hR„sinz„ q-Rnsinz„, D"sin/ -hR„sinz„ q-Rnsinz„, 
S"sint" = D" cos/" sin ψ" 4-R), cos ζ [sin ξ), —R(cosz(sin?f, 
S"cosi" — D"cos/"cosé»" —R)

(
cosz[«^), 4-R)) cosz)) cos ξ)). 

On en déduit 

(3) 

ί sinji' — TjP)sin(Pq~ ξ)') [cos (Pq-ψ' ) sin/' cos ζ" q- cos (Ρ — ξ)') cos/' sins)' J \ 
R'= -D' { 

J sin (Ρ 4- ξ)') sin (P-f- ξ)) [cos (Ρ — ξ) ) sin z) cos z)' -+- cos ft' — ?)') sinz)' cos ζ) ] 1 
+ s i n ² E 
sin()sin i'E 
+ sin²y'sin(i'E) 
R"= - D ' 

4-sin2?) sin(P-4- ξ") tangr) cos z" -+- sin2 ξ)' sin (Ρ 4- ξ) ) tang r" cosz) / 

(4) 

sin(i ' -y) 
R'= -D'4- sin

2
 ψ sin (ι " -+- ξ") tang/»" cos ζ)) — sin

2
 ξ)) sin (Ρ'— ψ") tangr)) cos y" ( 

sin (i"+E) 
+ sin ² E 
sin(i"-y") 
R"=+D" 
sin(i"+E) 
+ s i n ² E 

64.. 
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On obtient les valeurs de première approximation en négligeant complètement la 

différence des axes d'élasticité, et en posant, en consequence, 

Ç, = ï,> 
et 

cos ζ" = — sin ζ' , sin ζ" = — cos ζ\ ; 

de plus 
É = C 

et 
cos z"

M
 = — sin z„ , sin z

a
 — — cosz,,. 

On obtient alors 

Φ 

R — — D . , , —-y-, hA si η / sin ζ J- cos..)' cos ζ, , 

R — +D' -~τ, - . , r, ; sin / cos ζ, — cos / sin ζ, ; 

(6) 

R„ — 4- D" \
T
, ~A Yy, ~r, sin/ cos z„ — cos / sin ζ, 1 , 

R = — Ο" i -p — sin r sin ζ -+- cos/ cos ζ 

Si l'on multiplie la première des équations (ι) par sin /' et la seconde par 

sin ψ' cos y sin/' — sin3 ψ' tang ρ ', 

et si l'on ajoute les deux équations, on obtient, en ayant égard aux relations ( 16), 
§ XXIII, P' sous une forme qui convient aux calculs approximatifs de sa valeur. On 
obtient aussi d'une manière analogue S', P" et S". 

il) 

P ' = 

, Γ2θ' sin·]/ cos ψ' cos/' R' cosz) sin (ψ' — ξ')—R,'cos ζ, sin (ψ'—Lit. 
sin(i+y) 

(8) 

p„ l D"(2sinij<"cos-ysin/"-sin,'ti" tangp" )sin/"-[Rj
/

 cos z'^sinfj· -£y-R'jcosz)|siii(y"-i",)Jcos/" j 

sin(i"+y) 

S " = 

Si l'on ne veut conserver dans ces valeurs que la première puissance de ia difference 
des axes d'élasticité, on devra mettre pour R', R", R',, R" leurs valeurs approchées 

déduites des équations (5) et (6). 
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Les formules de (3) à (8) deviennent imaginaires quand les angles d'incidence sont 
compris dans les limites de la réflexion totale. On peut, dans ce cas, déterminer les 
intensités réfléchies, comme on l'a fait dans le cas des cristaux à un seul axe. 

J'appliquerai encore les formules (7) et (8) au cas du passage de la lumière à tra-
vers un milieu compris entre deux plans parallèles; car ces formules sont impor-
tantes pour la théorie des couleurs que présentent les lames minces dans la lumière 
polarisée. Alors D' et D" sont deux rayons conjugués qui sont dérivés d'un même 
rayon incident, et leurs valeurs sont données par les formules (2), § XVII. Alors aussi 

«' =
 t

", ψ'= r = 9", y'=x', 
y"=x", p'=q', p"=q", ?: = ?:, 
? tf γ η t r if ii; 

je désignerai les angles ξ' , ξ", ζ' , ζ" par ξ', ξ", ζ', ζ". 
Ces substitutions faites, on obtient. 

(9) 

p
;
 lD'(2sintp'cos y'sin^'-sin2 q' tang q')1 sin #'-[R( coszj sin (q'-ξ', j-R'coszJsHLV-Ç")]cosx' 1 
sin (y+y') 

, _ fa D' sin q' cos q cos x' -h R| cos z\ sin [q' — ξ( ) — R" cos z" sin (φ'— ξ")1 _ 
( sin (φ 4- q') J 

(1 ο) 

„ 1D" (a sin y"cos q sin.z"-sin2ip"tang q") - [R|
;
 cos z\ sin (q"- ξ") -4- Rj cos ζ (sin (q"~ ξ " )] cos λ·" 1 

sin (y+y") 

S " = 

où pour D' et D" on doit mettre les valeurs tirées de l'équatiou (2), § XVII. 
Si l'on veut seulement avoir égard à la première puissance de π2 — μ' dans les équa-

tions (g) et (10), on doit poser 

(II) 

R , = 

R , = 

(12) 
R„ = D hi -Γ hi cos X Sin ζ' — sin x' cos ζ , 

R = — D - γ- Jyr cos x cos ζ -(- sm x sm Ζ . 

Mais, en négligeant, dans les équations (g) et (10), tout ce qui dépend de la diffe-
rence des axes d'élasticité, on conserve seulement le terme qui dépend de leur posi-
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tion, on obtient, en remplaçant D' et D par leurs valeurs, 

P ' = 

S ' = 

P " = 

S " = 

Ce sont les mêmes formules approchées que j'ai déduites de considérations directes 
dans un Mémoire sur les couleurs des cristaux à deux axes dans la lumière polarisée 

;Pngg. Ann. rte Ph., Bd. XXXIII, page 271). 


