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AL VAU MRV VR VY

RECHERCHE THEORIQUE

DES 1.0IS D’APRES LESQUELLES LA LUMIERE EST REFLECHIE ET REFRACTEE

A LA LIMITE COMMUNE DE DEUX MILIEUX COMPLETEMENT TRANSPARENTS ;

Par M. F.-E. NEUMANN [*].

(Traduction de M. Cararr.)

La théorie de la réflexion et de la réfraction comprend deux (uestions bien distinctes :
la question de direction, la question d’intensité. Elle s’est en conséquence partagée en
denx parties , dont I'une a atteint une haute perfection parles travaux de Newton, de La-
place, d’'Huyghens etde Fresnel. Dans la plupart des cas, la théorie newtonienne a donne:
les lois que suivent les directions des rayons apreés leur réflexion ou leur réfraction. La
doctrine des ondulations a appliqué ses principes 4 tous les faits que I'observation a
jusqu’ici rencontrés ; elle ne serait amenée & les modifier "que s'il existait des milicux
dans lesquels les mouvements lumineux se transmetiraient d’aprés des lois nouvelles et
encore inobservées, circonstance qui ne parait pas vraisemblable.

Quant i la seconde partie, celle qui recherche les intensités des rayons réfléchis ot
réfractés, elle est d’une origine bien plus récente. Avant Lambert, on ne s’en était pas
pas occupé, et Pétude expérimentale des phénoménes qu’elle présente avait paru, dit
ce géométre, si difficile, quarcun physicien n'avait os¢ I'aborder. Les essais que Lam-
bert lui-méme publia sur ce sujet, dans sa Photométrie, ne pouvaient gucre avancer une
question dont la clef manquaitencore : je veux parler de la découverte de la polarisation
par réflexion. La science avait as’enrichir en cutrede la découverte de MM. Arago et Fres-
nel relative a I'interférence de deux rayons polarisés, avant que Fresnel pit attaquer le
probléme jusque-ld inabordable des intensités de la lumidre; ses efforts luttérent heu-
reusement contre les obstacles, ct les résultats qu’ils obtinrent ne sont pas le témoignage
le moins éclatant du talent ingénieux et éleve de celui qui fonda pour Poptique unc ére
nouvelle.

Fresnel résolut le probléme de Vintensité de la lumicre apreés sa réflexion et sa ré-
fraction & la surface d’un milieu transparent non cristallisé. Comme conséquences de |a
solution A laquelle il parvint, se développérent & Iui les déterminations théoriques
d’une grande classe de phénoménes (ui avaient depuis longtemps excité Pattention
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des physiciens, et qui étaient en partie expérimentalement appréciés, sans que rien et
fait entrevoir le lien quiles unissait. A cette classe de phénoménes se ratiachaient la po-
larisation compléte par réflexion sous I'angle de polarisation , la polarisation partielle
par réflexion sous des angles quelconques et son accroissement par des réflexions répé-
tées, la polarisation partielle par réfraction et son accroissement par des réfractions suc-
cessives , la rotation du plan de polarisation quand la lumiére incidente est polarisée, etc.

Le point le plus remarquable des travaux de Fresnel est sans contredit I'heurcuse
interprétation de ses formules pour le cas de la réflexion totale, interprétation qui le mena
i la découverte des lois d’une classe de phénoménes qui étaient encore pour hien long-
temps abandonnés aux tatonnements de V'expérience, des lois d’aprés lesquelles la lu-
miére réfléchie se polarise circulairement ou elliptiquement.

Lorsque les travaux de Fresnel furent publics, le cercle des expériences avait déja
depassé les limites que ce grand physicien avait atteintes dans sa théorie de la réfraction
et de la réflexion; depuis lors il a continué i s’étendre. Secbeck a poursuivi avee succes
les recherches commencées par Brewster sur I'influence des surfaces cristallines sur la
fumiére réfléchie. Brewster a fait connaitre plus exactement une classe de phénoménes
qui dépendent de Vaction des surfaces métalliques sur la lumiére polarisée, phénoménes
qjui ont une liaison intime avec les faits observés par M. Arago, et plus tard étendus
par les ohservations de Nobili et d’ Airy. Ces modifications qu’exercent les surfaces métal-
liques sur la lumicre réfléchie se rattacheraient, d’aprés la remarque d’Airy touchant
la réflexion de la lumiére 4 la surface du diamant, aux propriétés que présente la lu-
miére refléchie 4 la surface des corps transparents.

Tai déduit des observations de Brewster { Pogg. A4nn., Bd. XXVI) la loi mathéma-
rique de ces phénoménes; mais on ne peut pas en espérer une théorie rigourcuse avant
fqu'on soit arrivé 4 une définition optique exacte de Ia transparence des corps ct des
causes (qui la modifient & des degrés si différents : ce qui, nonobstant les travaux pré-
paratoires sur P'absorption de la lumiére, notamment ceux d'Herschel et de Brewster,
semble devoir manquer encore longtemps.

De l'autre c6té, la voie se présente tout ouverte, et 'on peut espérer compléter la
theorie de Fresnel en I'étendant aux cas on la réflexion et la réfraction sont produites
par des corps transparents cristallisés. Dans cette vae un essai a déji été tenté. Scebeck
a cherché & deéduire, pour des angles observés par lui, 1a loi de la polarisation com-
pléte par la réflexion i la surface des cristaux. Il s’est appuy¢ sur des principes théo-
riques semblables & ceux que Fresnel avait adoptés comme base de ses travaux. Cette
extension des formules de Fresnel souffre néanmoins encore quelques difficultés, ct ne
s’applique pas 4 Pexplication de tous les phénoménes jusqu'ici connus.

Les questions posées par le progres des recherches expérimentales sont i peu pres
les suivantes :

La loi générale de I'angle de polarisation, quelle que soit la position de la surface
reflcchissante par rapport aux axes optiques, et dans quelque azimut qu’ait lieu la
reflexion

La loi pour la rotation du plan de polarisation dans le rayon réfléchi, rotation qui
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résulte de lu réflexion par les corps cristallisés quand le rayon incident est polarisé pa-
rallélement ou perpendiculairement au plan de réflexion ;

Laloi pour la déviation du plan de polarisation quand la lumiére paturelle est réfléchie
sous angle de polarisation ;

La loi d’aprés laquelle la lumiére réfractée se divise en deux rayons, 'un ordinaire ,
l'autre extraordinaire: cette loi doit faire connaitre & la fois la position du plan de pola-
risation de la lumiére incidente pour laquelle I'un ou P'autre des rayons disparait;

La loi d’aprés laquelle, 4 la réflexion intérieure dans un eristal, un faisceau de lu-
miére produit deux faisceaux réfléchis et un faisceau réfracté. La connaissance des deux
derniéres lois rendra possible une théorie des couleurs que presentent les cristanx 3 la
lumiére polarisée.

On voit que le nombre des phénoménes et des faits qui attendent leur explication du
développement de la théorie de la réflexion et de la réfraction est assez grand pour
rendre ce développement désirable. Tel est le but spécial de ce Mémoire ; il aura encore
pour objet d’expliquer tous les phénoménes de lumiére qui dépendent de la différence
des vitesses de propagation des ondes lumineuses.

Quand on examine avec soin toutes les circonstances qui rapprochent la réflexion
par des corps transparents non cristallisés de la réflexion produite par des milieux cris-
tallins, on ne peut douter qu'une méme théorie puisse les comprendre toutes deux; car
on ne voit pas entre elles de ces différences caractéristiques qui séparent la réflexion sur
les corps transparents de la réflexion sur les métaux. S'il en est ainsi, les principes sur
lesquels on s’appuic pour calculer Pintensité de la lumiére réfléchie et I'intensité de la
lumicre réfractée & la surface des milieux non eristallisés doivent se préter i une gé-
néralisation qui leur permette de s’adapter avec Ja méme rigueur A la théorie des quan-
tités de lumiere réfléchies et réfractées par les surfaces transparentes cristailisées. Les
principes admis par Fresnel ne sont pas susceptibles d’une pareille généralisation , car
ils supposent que dans tous les milieux cristallisés 1'éther posséde une égale élasticite.
Les doutes que j’avais concus antrefois sur I'exactitude de ces principes se sont encore
fortifiés par cette circonstance. Ils m’étaient venus & I'occasion de la définition du plan
de polarisation que Fresnel définit ; le plan conduit par la direction du rayon perpen-
dicalairement a la direction du mouvement des molécules éthérées. Cette définition
est le fondement sur lequel il a appuyé sa théorie des intensités réfléchies et réfractées.
Mais la théorie de la double réfraction (Pogg. Ann., Bd. XXV), que jai déduite d une
maniére rationnelle des principes sur lesquels Fresnel fondait la sienne, condnit 2 une
définition tout autre du plan de polarisation. Ce plan serait celui qui passe par la di-
rection du rayon, et par la direction du mouvement vibratoire.

La thécrie que je vais développer dans les pages suivantes sera fondée sur des prin-
cipes d'une généralité telle, qu’ils sont non-seulement applicables aux corps transparents
non cristalliscs, mais encore aux milieux cristallisés A un axe ou a deux axes , et méme
a des milienx dontI'action sur la lumiére serait d’une nature toute nouvelle et encore
inconnue. La méme théorie comprendra comme corollaire la définition du plan de po-
larisation qu’exige la théorie de la double réfraction. 4

7.
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§ TIer.

Avant d’exposer les principes sur lesquels je m’appuie , je présenterai sommairement
les résultats du travail de Fresnel sur les intensités des rayons réfléchis et réfractes &
la surface des corps transparents non cristallisés. Ces résultats ont recu la sanction d’ex-
périences exactes , et peuvent ainsi servir & confirmer la justesse des vues théoriques qui
m’ont conduit, malgré le désaccord entre ces vues et les principes qui les ont d’abord
produits. .

Représentons-nous un faisceau de lumicre, polarisée dans un azimut quelconque,
tombant & la surface d’un milien transparent. Soient §° Vintensité de la composante de
cc faisceau suivant le plan d’incidence, P Pintensité de la composante perpendiculaire
a ce plan. Décomposons pareillement la lumiére réfléchie (R?) en deux parties R,R et
la lumiére réfractée (T?) en deux parties T?, T2. R}, T} sont polarisées suivant le plan
d’incidence; R}, T, perpendiculairement au méme plan. Ces composantes satisfont
aux égalités

R=R +R, T=T+T,
et, en appelant 1 I'intensité de la lumiére incidente
pp >
§2 + P*=1.

Les formules principales de la théorie de Fresnel sont les suivantes :

( {1y R!= s——————in@—?ﬁ) 2S2
' T sin(e+9)] T

. [tangle—7)] pe

v Re= [tangw ol B
sin2gsin2e’

3 T = S < 8

®) sin? (9 -+¢')

sin 29 sin 2.9’

@ T = Golere)eos (v—9) -

’

» désigne Pangle d'incidence, 9’ l'angle de réfraction.
On a vérifi¢ la justesse de ces expressions de plusienrs maniéres.

§. Par des expériences trés-précises sur Pangle de polarisation, Seebeck a mis hors
de doute la loi de Brewster, qui elle-méme est une conséquence de la formule (2). En
posant R, = o0, on déduit tang 9 = », n étant Vindice de réfraction de la sub-

stance.

2. De trés-nombreuses expériences sur la rotation du plan de polarisation par re-
flexion ont ¢té faites par Fresnel (Pogg. Ann., Bd. XXII), et surtout par Brewster
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7
(Pogg. dnn., Bd. XIX). La tangente de 'azimut du plan de polarisation dévié par ré-
flexion est
R, _ cos(p+¢/) P,
R, ™ cos(p—¢') S’

3 désigne la tangente de Pazimut du plan de polarisation du rayon incident.

3. Brewster a fait pareillement des observations sur Pazimut du plan de polarisa-
tion dans le rayon réfracté (Pogg. Ann., Bd. XIX).

Elles ont donné pour cet azimut

T, 1 P
T, cos (p—o’) )

4. M. Arago a fait deux observations directes sur Vintensité de la lumiére réfléchie
non polarisée. Elles sont relatives aux angles d'incidence pour lesquels la réflexion donne
le tiers et le quart de la lumiére incidente,

Dans le cas de la lumiére non polarisée , quand

S+ PP=1,
on doit poser
s2 —_ PZ ——— %,
et Vintensité que présente la lumiére naturelle réfléchie est

) o [sint(e—2) taﬂgg(?—?’)],
B+ B = [Sinz(?+aﬂ’) T Ganglprg)

Toutes ces observations s’accordent si complétement avec les formules ci-dessus rap-
portées , qu'on ne peut douter que ces formules n’en expriment les véritables lois, au-
tant du moins que la conception d’un milien transparent peut se trouver réalisée dans
la nature.

On doit surtout attacher une grande importance aux observations de Fresnel et de
Brewster, citées n® 2et3, non pas tant 3 cause de leur étendue, qu'a cause de la
preuve directe qu’elles apportent de I'exactitude des formules (A}. Chacune de ces séries

. , . . . . R T )
d’observations vérifie sculement, il est vrai, I'exactitude des rapports R—’, —,I%"; mais ,

P P
prises ensemble, elles prouvent I'exactitude des valeurs absolues R;, R, T, T,.

L’observation a donné les angles que les plans de polarisation de la Tumiére réfléchie
et de la lumiére réfractée font avec le plan d’incidence. On peut déduire de leurs va-
leurs I'intensité de la lumiére réfléchie aussi bien que celle de la lumiére réfractée pour
le cas ol le rayon incident déja polarisé tombe A la surface d'un milien transparent
non cristallisé. L’hypothése d’un corps transparent non cristallisé donne, en effet,

T; = $*—R}, et T)= P*—R,

v
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d’ot I'on tire, en désignant par « et B les azimuts observés des plans de polarisation du
rayon réfléchi et du rayon réfracté,

R P'—R; )
I_{f = tang a, SzTﬁ’i = tang® B.

:
R, R seront par-1a déterminés.

Unc theéorie de la réflexion et de la réfraction qui ne donne pas pour les intensites
des rayons lumineux les valeurs que les hypothéses rationnelles de Fresnel ont four-
nics en (A) doit étre abandonnée; mais une théorie qui se résume dans les mémes for-
mules doit étre regardée comme déja confirmée.

§ II.

Les hypotheses que j'adopte et sur lesquelles je fonde la nouvelle théorie sont les
suivantes.

1. La différence des vitesses de propagation de la Iumiére dans différents milieux, ou
la réfraction de la lumiére, résulte uniquement d’une inégale élasticité de I'éther dans
ces milieux ; la densité de I'éther est dans tous la méme. Dans la théorie de Fresnel , 1l
est essentiel d’admettre dans tous les milieux transparents non cristallisés une élasticité
uniforme, et de faire dépendre la réfringence d’une densité variable. Une de ces deux
suppositions est indispensable ; on ne peut supposer (le principe pos¢ n® 8 de ce para-
graphe le fera clairement comprendre) que I'élasticité et la densité varient ensemble ,
si, comme 'observation parait I'apprendre, les phénoménes dela réflexion et de la ré-
fraction dans les corps transparents ne sont dépendants que de I'indice de réfraction de
ces milicux. Mais on doit se décider pour 'une ou pour Pautre, et incertitude me
semble difficile. On peut bien, dans les milieux cristallisés s sefigurer une élasticité va-
riable suivant les directions, mais une densité variable?... Ces principes ne regardent,
au reste, que les milieux A transparence parfaite ; rien ne nous dit que, dans les métaux

et les autres corps 4 transparence incompléte , 1a variation de densité n’accompagne pas
la variation d’élasticiteé.

2. La lumiere incidente résulte de vibrations transversales : cc sont des v
de la méme espéce qui produisent la réflexion et la réfraction,

ibrations

3. La direction de ces mouvements vibratoires est partont, dans les milienx cristal-
lisés comme dans jes autres, comprise dans le plan de I'onde.

Ces deux hypothéses sont empruntées i la théorie de Fresnel. La premiére sert de
hasc i sa théorie, si souvent citée, des intensités de la lumiére ; la seconde se déduit
comme un résultat de sa théorie de la double réfraction. D’aprés la théorie de la double

réfraction que j’ai donnée, les molécules oscilleraient suivant une direction légérement
inclinée a la surface de I'onde.

4. Le plan de polarisation d’une onde est déterminé par la normale i cette onde et
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par la direction de son mouvement. Cette définition » contraire 4 la définition de Fresnel ,
est une conséquence forcée de mes recherches sur la double réfraction. (Pogg. Ann. ,
Bd. XXV.)

Pappelle plan de polarisation d’un rayon le plan conduit par ce rayon et par la di-
rection du mouvement de ses éléments, Je prouverai plus tard que le rayon est toujours
perpendiculaire 4 la direction du mouvement de ses molécules.

8. Touchant la réflexion et la réfraction 4 la surface des corps complétement trans-
parents, je m’appuie sur les considérations qui suivent.

A. Soit AB, fig. 17, une onde incidente 3 la limite commune GG de denx milieux
transparvents que, pour plus de généralité, je prendrai cristallisés ; BC représentant
I"onde réfractée, BD Ponde réfléchie. Ces trois plans d’ondes coupent le plan réfringent
GG suivant la méme droite. Chacune de ces trois ondes AB, BC, BD se propage paral-
lelement A elle-méme avec une vitesse propre quidépend de la direction de son plan de
polarisation, et de sa position par rapport 4 I'axe optique. J ‘indique par des lignes ponc-
tuées une quelconque des positions que prennent ces plans dans leur mouvement de
progression ; is sont lids entre eux de maniére & atteindre en méme temps le point B,
Cette condition détermine la position relative des trois plans de ce systéme. En effet,
soient I'angle dincidence du plan d’ondes ARG — i, Tangle de réflexion DBG — r et
Pangle de réfraction CBG = s, les vitesses de Propagation respectives n, m et u; la
condition que e point B, quel que soit le plan d’ondes auquel il appartienne, se menve
avec une vitesse identique, est exprimée par les deux équations

. ) . r . I .
—smz:—smr, — SI! == — sIn s,
n m n u

Les quantités z, m et u dépendent des positions des plans d’onde auxquels elles con-
viennent, et sont par conséquent, pour des plans de réfringence et d'incidence détermi-
nés, des fonctions connues des angles #, r et s qui fixentla position des plans d’onde. De
ces deux équations, une donne I'angle 7, Pautre I'angle s. En y mettant i la place de
n, m et « les valeurs données par Fresnel en fonction des angles 7, r, s, chacune d’elles
conduit & une é¢quation du 4¢ degré. Nous verrons que la premiére a deux racines néga-
tives par le moyen desquelles on déterminera deux plans d’ondes réfléchies; 1a seconde ,

deux racines positives qui correspondront au systéme des deux ondes réfractées.

B. Toutes les molécules des mémes ondes ont le méme mouvement, tant en vitesse
quen direction; cette uniformité dans Vintérienr de chaque onde s’étend jusqu’a la
ligne d’intersection des différents plans en B. Le mouvement des molécules en B est Ia
somme des mouvements qui leur sont communiqués par les ondes du premier milien ,
I'onde incidente, I’onde réfléchie » Ou la somme des mouvements produits par les ondes
du second milieu, les ondes réfractées. Ces deux sommes sont égales. Les composantes
du mouvement imprimé avx moldcules en B par Uonde incidente et onde refléchie sont
égales aux composantes du mouvement imprimé aux mémes molécules par les ondes re-



396 JOURNAL DE MATHEMATIQUES

fractécs. Fresnel admettait seulement Iégalité des deux composantes paralléles au plan
de réfringence. Lhypothese que je fais s’appuie sur la considération suivante.

Quand, A l'aide des équations de la Mécanique, on veutrésoudre rigoureusement le pro-
bléme de la réflexion et de réfraction des ondes lumineuses 3 la surface de séparation
de deux milieux transparents, on est foreé¢ de poser les deux conditions suivantes,
(ui déterminent I'état de la limite commune des deux milieux : 1° que, suivant cette
surface , ces deux milieux sont intimement unis; 2° que la pression produite par le
mouvement des molécules en B dans Pun d’eux est ¢gale 2 la pression produite par
le méme déplacement dans 'autre. Ces deux principes servent a établir six équations
de condition au moven desquelles on détermine les fonctions arbitraires comprises dans
Pintégrale générale. La premiére de ces deux conditions, que les deux milieux sont so-
lidaires A leur limite commune , combinée avec hypothése d’un mouvement commun A
toutes les molécules d’'un méme plan d’onde, est exactement la supposition que j'ai
faite; car de I'égalité des vitesses des molécules en B suit I'égalit¢ de leurs déplace-
ments.

6. La force vive que posséde 'onde incidente est égale & la somme des forces vives de
Ponde réfléchie et de onde réfractée.

Fresnel avait déja fait usage du méme principe, et j'avoue que, du coté theorique,
ce principe peut étre contest¢ ; car on ne comprend pas comment une partie de la force
vive de Ponde incidente n’est pas dépensée a produire des ondes & vibrations longitu-
dinales dont Ueffet optique est nul: une partie de la lumiére devrait donc toujours dis-
paraitre, puisque son intensitc est mesurée par la force vive des ondes i vibrations trans-
versales, et qu'il n'cxiste, & proprement parler, aucun corps complétement transparent.
Ce principe ne peut done étre adopié qu'a la suite des expériences qui prouvent quil v
+ effectivement des corps pour lesquels I'intensité de la lumiére incidente est égale a la
somme des intensités que possédent la lumiére réfléchie et la lumiére réfractée.

§ TIL

Je vais appliquer, dans ce paragraphe , les principes que je viens de développer au
cas oi le milieu rifléchissant et réfringent n'est pas eristallisé. La lumiére incidente peut
dtre polarisée ou ne pas 'étre, mais on peut toujours la supposer décomposée en deux
parties, I'une qui est polarisée suivant le plan d’incidence, l'autre qui s'est polarisce
perpendiculaivement an méme plan. La premiére produit une onde réfléchie et une
onde réfractée qui sont encore polarisées suivant le plan d'incidence; la seconde donne
a1a réflexion comme & la réfraction, des ondes polarisées perpendiculairement au plan
d'incidence. Ces deux portions de lumiére peuvent étre considérées séparément. Je
m’accuperai d’abord de la lumiére polarisée perpendiculairement au plan d’incidence.
Soient AB, fig. 2, une onde plane incidente, polarisée perpendiculairement au plan d'in-
cidence; FB I'onde réfléchie, BD Vonde réfractée: dans ces trois ondes le mouvement
s'opére paralléelement au plan réfringent. Les vitesses de mouvement seront respective-

' (RN Wik
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went, dans'onde incidente, 'onde réfléchie et onde réfractée , désignées par p, R, D,.
On a alors, par le principe de Pégalité des composantes, § IT, n° 3, B,

(1} P—f—RP:Dp.

I’équation de la conservation des forces vives fournira une seconde relation pour dé-
terminer Ry et D,. A cause de Iégalité de densité, § I, no 1, on peut, dans ’équation
des forces vives, prendre les produits des vitesses an carré par les rapports des espaces
qu’ébranlent les mouvements d’une méme ondulation dans les trois ondes. Les rapports
de ces trois espaces sont, si l'on désigne par d et d’ les longueurs d’ondulation dans
le milieu ol se meut I'onde incidente et dans le milieu ou elle se réfracte ,

AC X d:BF Xd:BDx d'.

Mais AC = BF, et, si I'on désigne par ¢ P'angle d’incidence CAB, et par o Pangle de
réfraction ABD, on a

AC: BD == cosy : cosg’.
Dailleurs

d:d' i sing ; sing/;
donc, pour les rapports des trois espaces, il vient

3 ’ ’
s1n ©’ COS ¢

M P 3 . M 14 (A . .
SN ¢ oSy ! sing cosg: sing’ cos o’ i1 131 Snpcoy |
I’équation donnée par le principe de la conservation des forces vives est donc
. 5ing’ cosg’
¥ Singoosy
Si on fait passer R} dans le premier membre, etsi I'on divise cette équation par (1},
on obtient

(o} PP=R; +D

sin o’ cos ¢’
P—R, =D, -7 %%
sin ¢ cos ¢

Cette derniére équation, réunie 3 Iéquation (1), nous donne

sinp cos ¢ — sin v’ cos ¢’ tang (¢ — ¢')
Ry=P— — ;=P —_21 T2,

Sl 9 ¢os ¢ - 5in ¢’ cos ¢ tang (o +- ¢’ )
D, = 2Psing cosy

T 7Y
$in (9 4+ ) cos (p— ¢)
St 'on désigne par P Iintensité de la lumiére incidente, R} sera I'intensité de Ia Ju-

3 7 I4
- P sin o’ cos . ., N , ,
miére réfléchie, et D) —L % ¢ ? Vintensité de la lumiére réfractée ; on aura donc, en

sin ¢ cosg
. Sing’cosy’
Jposant D,, m P
5 R; — P2 :ang; ((P_ ?//),
3 ang*(y+¢')

T? — p sin 2¢ sin 29’ .
’ sin’ (g =- o) cos? (p — ¢')
Tome VIL. — Ocronke 1842. 48
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Ce sont les formules que j’ai rappelées au § I (A), et dont la justesse a été démontrée.

Soit I'onde incidente AG polarisée parallélement au plan d’incidence. Le mouvement
de cette onde, aussi bien que les mouvements de P'onde réfléchie et de onde réfractée,
se feront parallélement au plan d'incidence. Les vitesses de ces mouvements dans 'onde
incidente, daus 'onde réfléchie et dans 1'onde réfractée, seront respectivement S, R, D..
La conservation des forces vives donne I'équation
7 . T2 ,sing’ cos g’
@ § =R, +D. singcosg

Si I'on imagine les mouvements S, R;, D,, décomposés suivant des directions parallele
et perpendiculaire au plan de réfringence , on déduit du principe de I'égalité des com-
posantes les deux ¢quations qui suivent :
5) % Ssing + R, sing == D, sin ¢/,

S cos ¢ — R, cos 9 = D, cos ¢

Nous avons ainsi trois équations et seulement deux inconnues R, et D;; mais on voit
facilement que la troisiéme équation est une conséquence des deux autres, et qu'elle
n’exprime rien de contradictoire. On doit étre porté & voir, dans cette circonstance,
ane confirmation des considérations développées au § II, savoir, qu’une transparence
compléte ne peut exister sans une densité uniforme dans les deux milienx vibrants,
car Péquation de la conservation des forces vives serait tout autre si la densité chan-
geait,

Des équations (5) on tire

sin (¢ — ¢) D, = 25 sin p cos ¢

R,=—8S = >
sin (3 + 9")’ sin(y+9')’
.. , sin ¢’ cos ¢’
et si Pon désigne encore D; —i——? ar T2,
sin ¢ cos ¢
R — sin (3 —¢') T — ‘zsinz?sinzag’
' sin(p+¢)" Cosin*(p +¢')

valeurs qui sont identiques avee celles que j'al citées au § It (A).
La nouvelle théorie donne done les valeurs vraies des intensités que possédent la lu-
miére réfléechie et la lumiére réfractée 2 la limite commune de deux corps transparents

non cristallisés.

§ 1V.

Je vais présentement appliquer les mémes principes au cas ot la réflexion et la reé-
fraction se passent & la surface de séparation d’un milieu non cristallisé et d'un milieu
cristallisé & un axe. Je développerai d’abord quelques relations géncrales, en partie
connues, qui trouveront leur emploi dans la suite.

La position des différentes lignes et des différents plans doit étre exprimée par les
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angles que forment ces divers éléments avec les trois axes rectangulaires d’élasticité du
milieu cristallin 4 la surface dugquel ont lieu les phénoménes de réflexion et de ré-
fraction.

Soient A, B, C les cosinus des angles que la normale a 1a surface réfringente fait avec
ces axes.

Les normales anx ondes planes, incidente, réfléchie, réfractée ordinairement, réfrac-
tée extraordinairement, auront respectivement pour cosinus a, b, ¢, %, 8, vy, «', &,/
‘2”, 6//’ f///'

La normale au plan d’'incidence sera fixée par les angles dont les cosinus sont

E, E., E;

la trace du plan d’incidence sur le plan réfringent par
F, > F?, Fz;

la ligne principale dun plan réfringent par
H,, H,, H;

les angles que le plan réfringent fait avec 'onde plane incidente , Vonde réfractée ordi-
nairement, et ’onde réfractée extraordinairement , seront

17

5 9 9
L’angle que la ligne principale (H,, H,, H;) forme avec la trace du plan d’incidence et
du plan réfringent (F,, F., F;), c'est-d-dire 'azimut du plan d’incidence, sera dé-
signé par w. Enfin soient p/, p” les vitesses de propagation de I'onde ordinaire et de
Ponde extraordinaire, la vitesse de propagation dans le milieu environnant non eris-
tallisé étant — 1.
Pour déterminer E,, E,, E;, on a

et E! + E! 4+ E} = 1,
) AE, 4+ BE, 4~ CE, = o,
' g aE, + bE,+ cE, = o;
pour ¥, F., F;, ona

et F{! +~ F; + Fi =1,
fo AF[ -+ BF, + CF., = o,
( Y { E|F1+ E.F, +E3F3 = 0;
pour la détermination de H,, H,, H;, on a

H! 4+ H} +~ H =1,
et
3 {AH1+BH,+ CH,

XH, +YH. + ZH;

Il

il
o0

X, Y, Z désignent les cosinus de la normale au plan qui est mené par la ligne princi-

48..
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pale perpendiculairement au plan de réfringence ; ils sont définis par les équations
4) Xt +Y'=1, Z=o0, AX 4+ BY = o.
Pour les angles ¢ et w, enfin, on a
(5) cosyp = Aa -+ Bb + Ce,
(6) cos » = H,F, - H.F, +— HF,.
A T'aide des équations (1), (2) et (3), (4) on peut exprimer F,, F,, F,, et H,, H,, H,, au
moyen de a, b, ¢, et, en portant ces valeurs dans équation (6), quon combinera avec
I'équation (5), exprimer a, b, ¢ par les angles ¢ et «, en observant la condition
at 4+ b 4+ ¢t =1,
Pour éviter les longueurs, on peut supposer B = o, car dans les cristaux optiques a

un axe, il n’y a qu’une scule des directions des axes d’élasticité qui soit déterminée.
II vient alors

a = A cosg —Csiny cosw,
o b = singsinw,
¢ = Ccosg -+ Asing cosw;
F,= Ccosam,
{8 F,—=~— sin w,
- Fy=— Acosw;
E—= Csina,
‘Q) E,— coS @,
; E,—— Asinw.

On obtient les valeurs des cosinus «, §, v, «’, ', 7, «”, §”, 9" en changeant dansléqua-
tion (7)p en — g, ¢’, ¢”, les normales que ces cosinus déterminent étant toutes places
dans le plan des normales fixées par A, B, Cet a, &, ¢, c’est-a-dire dansle plan d’in-
cidence.

Soient G, G., G, les cosinus des angles que la trace du plan de I'onde incidente sur
le plan d’incidence fait avec les trois axes d’élasticité, etl,, I,, I, les cosinus des angles
de la ligne commune au plan d’incidence et 4 'onde réfléchie avec les mémes axes; on a

aG, + bG, + ¢G, = o,

EG, + E.G. +EG, = o,
et al, + I, + 9L, = o,

EL + EIL + EI, = o.
On déduit de la, en mettant pour @, &, ¢, «, B, 7, E,, E,, E;, leurs valeurs tirées des
équations (7) et (g),

( G, = Asing—+ Ccosgcosw,
{10} G, —=— cosgsinw,

1 G, = Csing — Acosg cosw;
et

! Asing — Ccosgcoso,

(11} I, = cosgcosw,
= Csing 4 A cos ¢ cos .
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Pour exprimer ¢’ et " au moyen de ¢, on a
p'sing =sing’, et p”sing=—=sin¢",

équations dans lesquelles p’ est une constante p, axprimant la valeur communc des vi-
tesses de propagation des deux systémes d’ondes, quand tous les deux sont perpendicu-
laires 2 'axe. La premicre équation ne réclame donc ancune étude ultérieure. Quant i
”, ¢’est une fonction de 'angle que la normale A I'onde extraordinaire fait avec Vaxe,
c’est-a-dire une fonction de y” que voici d’ailleurs,

(12) pr =t ()

= désigne la vitesse de propagation de I'onde extraordinaire, quand elle est paralléle a
l'axe. Pour déterminer ¢” on a ainsi, en remplagant 9” par sa valeur exprimée en ¢,
I'équation suivante

{(13) sin? g [#? 4 (p* — #%) (G cos ¢” +~ A sin 3” cos )] = sin?o”.

La racine positive de cette équation du deuxiéme degré convient a la question qui nous
occupe; quant 4 la racine négative, elle n’a de signification que pour la réflexion i
Pintérieur d'un milieu cristallin.

Il faut encore trouver les directions du mouvement dans Ponde ordinaire et dans
P'onde extraordinaire,

Soient R/, R;, R/ les cosinus des angles que la direction du mouvement ordinaire
fait avec les axes d'élasticité; R", R}, B! les cosinus des angles que la direction du
mouvement extraordinaire fait avec les mémes axes.

La direction désignée par R/, R;, R’ est l'intersection du plan d’ondes, dont la
normale a pour cosinus o, B/, 3/, avec le plan mené par cette normale et par Paxe; autre
direction, indiquée par R, R}, R, est perpendiculaire au plan mené par I'axe et par
la normale dont les cosinus sont «”, 87, ¢”.

Cette derniére direction doit donc satisfaire aux conditions

ﬁ,/ R:II + pl’ R;’ + 7/I RIU — 0’ B_” —_— 0’

o

ou

(14\ R — J____ RY =— ___L R — o
/ CT Ve Vg T

On obtientles cosinus de la normale au plan conduit par («/, ¢/, 7') et I'axe, en rem-
placant «”, 8" par «’, #’. On a ainsi ’
! ’ 7 I3 ’
R+ R, + 9R' — o,
FR, — «'R, = o,

Lo, ? [ ‘2 ’s
(15) R/ ll R =P g il

VTR T e T Ve
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De la position donnée du plan d’ondes, on doit déduire la direction du rayon qui
lui appartient. Pour I'onde plane ordinaire le rayon est dirigé suivant la normale a cette
onde; pour l'onde extraordinaire le rayon a la direction du rayon vecteur mene du
centre de ellipsoide

y.zxz + P.1 ].2 —+ PP — F.-JT_.-:’
dont Pordonnée z est paralléle & 'axe optique , au point ou cette surface est touchée par
le plan de I'onde. L’équation de ce plan est
zl/x _*- @”‘7 + 'yllz — o.

Le rayon vecteur, mené au point de contact, forme avec les trois axes des angles dont
les cosinus sont X, Y, Z; sa direction est donnée par les équations

X Y
T == = 2 = = Z.
z 7T L

Pour le point de contact commun 3 Pellipsoide et au plan, a extrémité de ce rayon

vecteur, on a

dx 7tz 3"
—_——= t 5 = -+ 7 ?
dz prx 4
dy riz 9"
R
dz pry B

. . x - . . .
tivant de L les valeurs de — ct de)—, et les portant dans les equations qui precédent ,
z z

et obhservant que X + Y* - Z° = 1, on trouve

2,1

X = ﬂ; »
m? ” e
{16 Y = Tp » T = \/a”’n‘—k—@'/’ﬁ"—l-']""y.‘;
A e A
17 = ——;
T

si Pon appelle o” I'azimut de ce rayon par rapport au plan d'incidence, et & son incli-
naison sur la normale au plan réfringent ,

2 2

. —_ T
Ay sine F————, —
o

o~

tang »” = —————-___-——-—-*—y.: =
: 1 ” N
s + Ay” coser ———
in ¢ 7 o

-3

cos ¢’
(18 cos 07 = — -t
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§ V.

Nous allons présentement former les équations qui résultent du principe de I'égalité
des composantes. Le plan d'incidence est i I'azimut w, Pangle d’incidence est ¢, les
angles de réfraction sont g’ et ¢”, Soient ensuite § la vitesse du mouvement dans la lu-
micre incidente , parallélement au plan d'incidence ; P perpendiculairement au méme
plan; R, R, les deux composantes correspondantes dans la lumiére réfléchie; D' la vi-
tesse du mouvement dans I'onde ordinaire; D” la quantité analogue dans I'onde ex-
traordinaire. Nous décomposons ces six mouvements dans leurs composantes paralléles
aux trois axes coordonnés, et nous obtenons, par le principe susnommé, les trois
équations

PE, +- 8G, + R,E, + R.I,
PE; 4+ SG, + R,E. + R.L
PE; + SG; + R,E; + R.L

(l

D'R/ + D'R’,

D'R, -+ DR/,

D'R] + D"R’.

Si I'on multiplie la premiére, la seconde et la troisiéme de ces équations, d’abord par
E/, E,, E,, puispar F,, F;, F;, et enfin par A,B =0, C, et qua chaque fois on
ajoute les trois produits, en ayant égard aux relations

F.G, + F.G; + F.G, = COsyp —= FI, + FI, + F.IL,
et AG, + CG, = sing = — (Al, + CL),

(1l

’
v

on transforme ces trois équations dans les trois suivantes
P + R, = D'(R,E + R E, + R E)+ D’(R'E, + R'E, +R'E,),
) (5 + R)cos¢ = D'(R,F, + R; F,+ R F,) D" (R"F, + R F, + R'F)),
(S — R)sing = D'(R/A -+ R/ C) -+ D" (R’ A + R’ C).
Si des équations (13), (12), (8), (7) du précédent paragraphe on déduit les valeurs de
R,R ., Eyy Fisoony et qualaplace de o, §/, 97, o”, 87, ¢” on mette les valeurs

qui se déduisent des équations (6), § IV, quand dans ces équations on substitue i ¢ les
angles 9’ et 9", on trouve, aprés réductions convenables,

, Asi
R(;E, ~4- RI"EQ -+ IicE3 = ___ir.l_'i_’
Vi— "
. //_A 7
R'E, + R'E, + R'E, =  C90¢ - cosy_cose,
vI _7”

08 ¢’ (Gsing’ — A cos ¢’ cos w)
\/I — " ?
A cos 9" sin w
——,
T
sin ¢’ (Csin ¢’ — A cos ¢/ cos w)
Vi—y? ’
Asing”sine
\/I — 772

R'F, + R,F, + R/ F, = —

a

R'F, + R, F, + R'F, = +

RY A -+ RIC =
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Par la les équations (1) se changent dans les suivantes

. PR, =D /A sin o Y Csin q”t A cos w oS 9"’
Vieq” e

2ot /___A ! A 7 <3
b S—Rjcosy = — py S8 (Coing A cosglcose) |y, Acosy” sine,

s Vi

) ' ine (Csine’ — A . A sino” si

c. (S+Rysing = —D’ sing’( ks lC_OSc,; cosv) + D7 ———s/,l__.nf t/’}i’

~ Vi—q” vi—q™

Je vais actuellement développer I'équation qui se déduit du principe de la conserva-
tion des forces vives, et dans ce but chercher d’abord le rapport d’un volume de 'onde
incidente aux volumes des ondes réfléchie et réfractée qui se partagent, apres Ja reflexion
et la réfraction, la vitesse du premier.

Soient, ffg. 3, ab lintersection d'un plan d’ondes avec le plan d'incidence qui est
le plan de la figure, et AB Vintersection du plan consécutif avec le méme plan; qu'on
imagine cn @ une ligne perpendiculaire au plan d’incidence, figurant intersection
de 'onde incidente avec la surface réfringente, et qu’on suppose cette ligne prolongee
en . Les trois lignes @b, aA, aa’ représenteront les trois cotés d’un parallélipipede
rectangle égal au volume primitif de V'onde incidente auquel nous cherchons & com-
parer les volumes qui recoivent les vitesses du premier dans les ondes réfractees et
dans l'onde réfléchie.

Les extrémités des cotés du parallélipipéde primitif paralléles & aa’, et partant des
points A, B, &, sont désignées par A/, B/, &’. Le c6té Bb rencontre en C le plan rc-
fringent; le c6t¢ B'd’ en C'.

D’aprés Phypothése ue les ondes incidentes se meuvent dans un milieu non cris-
tallisé, je n'aurai & déterminer que le volume de I'onde réfractée extraordinairement ;
car le volume de 'onde ordinaire s¢ déterminera comme dans un milieu non cristallise ,
et le volume de Tonde réfléchie est égal au volume de 'onde incidente. Soient CD le
plan des ondes extraordinairement réfractées qui correspond 4 AR, et cd celul qui
derive de b ; toutes les vitesses qui proviennent du parallclipipéde primitif Aad’
sont renfermees entre les deux plans CD et ¢d , dont Pécartement, mesuré suy la nor-
male aH, est Gg. Soient S et CT les rayons appartenant i ces plans d’ondes, savour,
S rayon réfracté de aE, et CT rayon refracté de CF. Ces rayons réfractes ne sont
pas en général dans le plan de la figure, c’est-i-dire dans le plan d'incidence; les
lettres D, d, ¢ dans la figure doivent se rapporter a I'intersection réelle dn plan des
nndes avee les ravons @5 et CT. Figurons-nous, en outre, par les points ', C’, deux
autres rayons paraliéles & ak et CF, a'E’, C'F’, et representons les rayons refractes qui
leur correspondent par a’s’, C'T’, et par I, d’, ¢’ leurs intersections avec I'onde. Les
mouvements qui ont lieu d’abord dans le prisme rectangulaire ABab A’B'a’{’ passent
dans un prisme oblique CD cd C'D’ ¢’d’ ; le rapport de ces deux prismes est donc le rap-
port des deux volumes qui se correspondent dans I'onde incidente et dans londe ex-
traordinairement réfractee.

1 i ] wre
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Pour déterminer la capacité du prisme C'DD’d, nous allons calculer I’aire de la base
CC’DD'; cette base est figurée fig. 4, et désignée par les lettres qui lui conviennent;
G est le pied d’une perpendiculaire i cette base abaissée de @, et G’ le pied d’une nor-
male menée de a’. Désignons par W laire de cette base, par ¥ 'angle DGC; Pangle
DCG par £ et la ligne CC/ par a. «C étant = 1,

GC' = cos¢”, aG = sing”.
L’angle que le rayon 4D fait avec la normale aG étant ¢, on a

GD = sin ¢” tang ¢,
et

W = DC X CC' < cost = acosé < CD;

mais

CDcosg = CG — GD cosd = cos¢” — sing” tang g cos 4 ;
d’ou
(4) W = a(cos ¢” — sin ¢” cos tang ¢).

On doit, dans cette équation, & la place de tang g, substituer sa valeur.
Les cosinus des angles que le rayon forme avec les trois axes coordonnés ont été dé-
signés, (16), § TV, par X, Y, Z, et les cosinus de la normale A Ponde par o, B, v”.

cos g = "X + B"Y + ¢"Z,
et, en substituant pour X, Y, Z, leurs valeurs tirées de (16}, § IV,
ﬂ.zallz + 71.2@”: —‘»_ szﬂz _ ﬂ,z + ([/.1 . Tr‘)),//ly
\/ﬂJ «? et p”z . f’-")‘ "o \/,n.ﬁ —+ ({’«4 _ 7!.1) 7//2 ’

cos ¢ ==

par conséquent

2 2 I3 "2
(5 — (7 — )y \/1_7 _
A tang q + n? — (ﬂ.z _ l"’z.) ,},I/z

Au lieu de prendre le double signe, on ne prend que le signe déterminé -+ , parce
que, dans les cristaux & un axe, tang ¢ a toujours une valeur positive, en admettant,
comme pour le spath calcaire, que I'axe de I'ellipsoide optique est le plus petit rayon
de cet ellipsvide. Pour P'uniformité, nous admettrons toujours cette hypothése dans la
discussion sur le choix des signes.

De plus, on doit substituer dans Pexpression de W la valeur de cos 45 4 est Pangle
que le plan d’incidence fait avec le plan déterminé par la normale i Ponde et la direc—
tion du rayon. Ce dernier plan forme, avec les trois axes coordonnés 5 ¥, 2, des angles

Y
T—q7 T Vi
plan d’incidence avec les trois axes , nous les avons désignés ci-dessus par E, E,, E..
En employant ces différentes valeurs, on obtient, pour cos ¥,

i E‘ p/! 1 E2 (Z”

———
Vi—y
Tome VIL. — Ocropre 1842. 49

dont les sinus sont ~=

» O quant aux sinus des angles du

cos § =
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et en substituant les valeurs de E,, E,, tirées du § IV (g),

= Cp"sin @ Z= " cos o
imr

Pour décider le choix du signe, posons » = 0, ce qui nous donne

cos § =

— "
cosy = ——'L‘-—a_T,
1 —q"
et en remplacant «” et 4" par leurs valeurs (7), § IV,
—Fsin ()\—?")
+sin* (A -4")

Dans cette équation on a posé A = sin}, C = cos), ce qui donne go¢ — ) pour Pin-

cos Wy =

clinaison du plan réfringent sur I'axe optique.

Si I'on prend maintenant, comme cela est déja indiqué par la formule (3), Pangle
1}, = o0, dans le cas ot le rayon forme avec la normale au plan de réfringence un plus
grand angle que la normale an plan d’ondes avec la méme ligne, et inversement 4==180°
quand le rayon fait avec la normale un angle plus petit, on doit, puisque dans le pre-
mier cas ) est plus petit que o”, et dans le second cas ) est plus grand que 3", prendre
le signe supérienr. On a, par conséquent,

+ Cp”sinw — 2" cos w

cos b = —
Y Vi—q"

En mettant dans cette équation les valeurs que 'on déduit de 'équation (7), § IV, en ¥
changeant 9 en 4", on trouve

cos Y 1 — "2 = Csin 9” — A cos ¢” cos o,
ct par suite
. cosh V1 —< " sin o’ = - € — (Ccoso” + Asin 4’ cosw) cosy”
6. 7 { ? \ ? Y ] 4
) } = + C— " cos ¢”.

Portant, dans I'équation /4), la valeur de tang ¢ (5}, on aura

_ ” o COS"”\/I-——'"’ — )
W :a[comp — sing - Vﬂi_(ﬁg_lp‘zg?”, H'];

mettant dans W, au lieu de cos b 1 — 7 2sin »”; sa valeur (6), on obtiendra
7 ?
" " " 2 2
- _ v "€y cos ") (m* — )
- W=ua [COS l?, - ";’;‘(%Z:Wﬁ .
Le volume du prisme oblique CC'DD’, que je désignerai par Z”, cst donc, Gg re-
presentant la hauteur de ce prisme,

2" = Gg X W.
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Or, cette hauteur Gg est ala hauteur Aa dun prisme rectangulaire correspondant
AA’Ca de onde incidente dans le rapport de la vitesse p” a la vitesse V.
La hauteur Ae étant représentée par H, on a

6= H= fsll% H,
et 'on ohtient enfin, pour la solidité du prisme,
()
(8) 2" =aH s—iwi, T (72— ) 7\095 ?’in—v
sin g ey P

Telle est 'expression du volume ébranlé dans 'onde extraordinaire; le volume corres-
pondant dans ’onde ordinaire sera désigné par Z', et le volume dans 'onde réfléchie ,
qui est égal an volume dans 'onde incidente, par Z. On obtient ces volumes en posant
dans P'équation (8) =* — p*=o0, et changeant successivement ¢" en ¢’ pour obtenir 7',
et 9" en g pour Z. Ainsi

: sin ¢’ cos ¢’
o 2 = o T0F °0%%
9/ s ¢

7 = aH cos ¢.
L’équation qui découle du principe de la conservation des forces vives est

(P + 8 — R! — R} Z = D"Z + D"z,

elle se change dans la suivante quand on y porte les valeurs trouvees pour Z, 2, 77, et
qu’on supprime le facteur commun aH,

(P - 82 — R; — R}) sing cos ¢ = D"sin ¢’ cos o/

C Y
('0) (ﬂz Hz) 7” (COS <Pl/ — 9 )
D/’g : 4 4 —_—— N T .

—+ sin ¢~ €os o 1 RN (m? — HQ) 7”2

§ VI

Pour déterminer lesinconnuesR,, R,, D', D, ona, dans (3)et(10)du§ Vv, le nombre
suffisant d’équations ; mais il semble 3 la premicre vue que ces quantités vont dépendre
d’équations carrées, d'od devrait résulter une ambiguité¢ qui n’est pas dans la nature
du sujet. Je montrerai cependant que le systéme des équations (3) et (10) se résout en
quatre équations du premier degré.

Maultiplions I'une par Pautre les €quations () et (c), {3); § V; nous obtenons

o, iny' — A cosg’ cosw\*
(S* — R?) sin ¢ cos ¢ = D2 sin ¢’ cos ¢’ (C My A cosy (05:.))

()

Asine )’ D' D" (Csiny’'—Acosg’cosw)A sinwsin ('3
s

49.

—+D"*sin ¢” cos ¢”
I — ,y//g
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Si & la place de ¢’ et 9" on met leurs valeurs exprimées au moyen des angles ¢/, 9" et w,
(7),§1V,ona

. Csing’ — Acosg’ cosw\® __ A’sin’w
Vi—y" ”
, < Asino )'2 __ {(Csing” — Acosy” cosw)

\/I_'}'”?

ce qui donne, en retranchant équation (1) de 'équation des forces vives (10, §V,

L —

(2)

— I _71/2 ’

, . _ A sin’
(P?—R])sin g cos g = D*sin g’ cos ¢’ T%PT?
; Csin o’ — A cos ¢” cos ) + A (1— 4"
(3) + D"?sin " cos g” [( ne co I‘P_‘i(;b/:) + A(1—7 )]

Csin ¢’ — A cos ¢’ cos w)

+D’D”A< Nl sine sin (9" + "),

A remplace

C
F002 e 22) oy .
(p—r% (COS?H 7)

tHao

71’—-(712—‘.1.’)7 2

Je vais prouver maintenant que la partie de cette équation qui est & la droite du
signe d'égalité peut se décomposer en deux facteurs M et N,

M= D Asine _|_])"(Csin"?ﬂ—ACOS?”COSw)
h — - —— 3

= e
‘4) N = D’ sing’ cosq’ m

Vi—q"

, ['sing”cosg”(Csing” —Acosg”cosw) = AYI—7 ” sin ¢ cos ¢
+ D = -+ Csi 7 77 )
\/I—'y 2 sin 9"’ — A cos " €O5 »

Multipliant ces deux facteurs Pun par Pautre, et comparant leur produit au second
membre de Péquation (3}, on voit que la décomposition est exacte, si

Asin oA (1—7"%)sing’cosy”
Csing”"— A cosg” cos

Asino{Csing” —A c0s”cos w)(sin ¢'cos ¢/ +sing”cose”) 4+

\/I __7/2 \/l—'y”z
Asine(Csing’ — A cos o’ cosw)sin (3" 4+ ")
o Vi—y Vi—1" '
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Cette velation est donc A vérifier. Supprimant les facteurs communs, on la réduit &

7/;2) A

sin ¢” cos¢” (1
Csing” —Acosg” cosm

(Csing” — A cos ¢” cos w) sin (¢ ¢ ) cos(y'— ¢” )+

(%)

— (Csing’ — A cos ¢ cos ) sin {¢' + ¢”).
¥ ? ¢

Rappelons d’ailleurs que

' p o =)y (C—ycosy")
o = ey w11
/ C — 7" cos ¢ = sin ¢” (C sin ¢” — A cos o” cos v),
i sinty [7* 4+ (p? —7%)y”?) = sin’p”, et p’sin’g= sin’y’,

et que des équations de la derniére ligne on peut tirer
sin? ¢’ — sin®¢” _ sin (¢’ —¢”)sin (¢’ 4 ¢”)

) T St =7 iy (1 —5")
s (e ) g = S
(8) =+ (W w0y =

S; I’on porte ces valeurs dans I'expression de 4, elle se change dans la suivante:
p P ’ B

A sin (¢’ — ¢”) sin (' + ¢”) (Csin¢” — A cos 9" cos w) 37
- sin ¢” cos ¢"(1 — 3”7 '

(9)

Cette valeur de A, introduite dans I'équation (5) qu’on débarrassera du facteur com-
mun sin (y + ¢”), donne

{C sin¢” — A cos 3" cos w) cos (¢’ — ¢") +sin{y’ — ¢” )g” = Csin¢’ — A cos ¢/ cosm,
équation dont il est facile de reconnaitre 'exactitude, en observant que
C[sin g” cos (¢ — ¢”) — sin ¢’} = — Ceos ¢” sin (¢ — "),
A cos w [cos 9” cos (y' — ¢” ) — cos ¢'] = A cos » sin ¢” sin (¢ — ¢” ),
et que
9" = Asingcosw + C cos ¢”.

La possibilité de la décomposition de la seconde partie de Péquation (3) en deux fac-
teurs M et N (4) est donc démontrée ; le premier membre de cette équation se résout
aussi dans les deux facteurs P -+ R, (P—R,) sin 9 cos g. Si 'on compareles facteurs de
chacun des membres de I'équation (3) avec les deux parties de 'équation (3), @, § V, on
voit que 'équation (3) peut étre divisée par celle-ci, et peut étre remplacée par Péqua-
tion suivante ,

Asin w
~/1 — 7!/2

sin ¢” cos ¢” (C sin 9" — A c0s ¢” cos w) +

(P — R,)sing cos g = D'sing cos ¢’

sin g” cos ¢” (1— "4} A
Csing” — A cos¢” cosw

H
_ \/1—7”"

+ D”




{1)

(ll)
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ou, & la place de A mettant sa valeur (g),

Vi—y"
D [sin ¢”cos ¢” (Csin g”— A cos ¢” cos o) + 57 sin (¢’ -+ ¢” )sin (' — 4" )J )

Mettant,  la place de ", dans le facteur de D”, sa valeur

(P—R,)sing cosg =D’

10)

7" = Ccos 9" 4 Asing”cos o,
et remarquant que
sin (5" 4 9”) sin (¢’ — 4" ) = sin’ ¢’ — sin® ¢,
an trouve
sin ¢” cos " (C sin ¢ — A cos 9" cos &) + y” sin (3’ + ¢ )sin (¢ —y")
= Ccos ¢”sin’¢’ — A sin ¢” cos? ¢/ cos w.

Cette valeur substitnée dans I'équation (10), larend un peu plus simple. )
. ’ . L /
Les quatre équations du premier degré qui déterminent les vitesses Ry, R,, D', D",
sont donc les suivantes ;

2

. . "
Asinw + D,,C sin ¢’ — A cos¢” cosw

Vi—q" Vi—y™

Ccosy”sin’y’~Asin ¢”cos*y’cosw

a. P—f—R‘,,: D’

sing’cos¢’Asinw

- 1 — ’ D"
b. (P-R,)singcosp—= D — =+ Vg
. » oy
. -, sing/(Csing’— Acosg’ c05w)+D,, A sin¢” sin o ’
c. (S4+ R)sing=—D N e
d. (S — R,)cos g =—D’ COSga’(Csinq/—Acos?’cosm)+D,, A cosg” sin v
S Vi—y” Vi—"

§ VIL

En éliminant R, entre les équations aet b du paragraphe précedent et R, entre ¢ ot
d, on trouve

. D’ . .
{ 2P singcosyp= ————— sin(y + ¢’)cos (p—¢') A sinw

Vi—y"

in y”si “sin* g’} — A cosw(cos 4”sin ¢ cos g+ sing”cos?y’ )],
[C(sin¢”sin g cos¢—+-cos ¢”sin* ¢ w''sin ¢

D//
Vi—y”

28 sing cosyp = —

-+

s

D
Vi—q™
"

—————— sin (¢'-+ ¢” ) Asinw.
\ +¢1_7//2 sin (' 9" JAsine

sin (p + ¢') (Gsing’ — A cosw cos ¢')
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En éliminant P et S entre les mémes équations, on obtient

/ . D’ . .
{ 2R, smzpcow.—_—\/————l-{ sin (p— ¢’} cos (p -+’ ) A sino
1—y
+ \—/TD__”: [C(sins"cos g sin p— cos ¢” sin?y’ ) — A cosw(cosy” singcos p—siny” cos' ¢’ )|,
. -7
(2] D’
j —_— et — 4 . ’
2R, sin ¢ cos 9 = I_'ynsm((g ¢') (C sin o’ — A cos w cos o)
7
- sin (p — ¢”) A sin .

Vi—y™

Des équations (1) on peut déduire les vitesses dans le rayon ordinaire et dans le
rayon extraordinaire.

Posant, pour abréger,

' C(sing"” sing cos ¢+ cos ¢” sin* ¢’ )
—_— : ’ : 4 — ! .

N = sinfp 4 ¢)(Csin ' — Acosa cosy’) [—Acos:.o (cosg”sing cos g+ sing”cos? ')
—+ Asin’n sin (zp <+ cp') cos(q — tp/) sin (q) + 97),
on obtient

/

D — o «/1—~7’25incpc05cp

N
. C (sin (?” sin 4 COs 9 —+ cos 5"” Siﬂ2 ?/) '
. , _
) > {P sm(?-!-i’ )Asin w —S8 [_ Acos v (cos o” sin p cos ¢ + sin ¢” cos? ?,)]{ ,
' v \/1——7”:’sinqacos<p
D" =2 X

Psin(p + ¢’') (Csing’ — Acosw cos g’ )
\ ><4+Ssin(e‘n+q:’)cos(qz——cp’)Asinm )

Ces valeurs étant portées dans les équations (2), on voit que les expressions des vitesses
dans les deux rayons réfléchis polarisés parallélement et perpendiculairement au plan
®’incidence ont la forme

, By, = pP + &85,
“) R, = p'P 4 s'S.

On trouve, pour p et s, les valeurs suivantes:

. C (sin¢”sin 9 cos ¢ — 7sinty’) "
Np:sin(zp—i-q;’)(Csmzp’—-Acos:.acos?’)[ WHLY SiT g COS 9 — €08 ¢~ sin’ ¢ ) /\J
P

~—A cosw(cos ¢”sin g cos p — sin 9" cos?
-+ A?sin’ wsin (3 — ') cos (9 + ¢} sin (p +¢”),

' C i 7 sl USPr I
Ns=-—sin (p—¢')(Csin ¢'~~A cosw cos<p’)[— (sin 9" sin g cos ¢ +- cos ¢ Siig) ]

—A cosw(cos ¢”sin g cos g+ sin ¢costy’ )
— A’sino sin (y 4 y') cos (p — ¢’ )sin(p — ¢},
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ot pour p’ et s’y aprés quelques réductions,

Np/ = — Asine (Csin ¢ —A cos wcos ¢') sin 29 sin (¢’ — ¢ )
N s’ = — Asin w (C sin ¢’ +-A cos » €0s ¢/) sin 2¢ sin (" — ¢")-

Si I'on fait dans ces formules, qui donnent D, D", Ry Ry¢' = ¢", Cest-i-dire si on
admet que la réfraction simple seulement est produite, elles se changent dans les va-
lours trouvées ci-dessus au § III, pour la réflexion dans les milieux non cristallisés.
s’ et p’ deviennent alors simultanément nulles, et

p= sin(p—g¢)eoslp9) sin(p— ¢')

‘ sin (g + ¢ )cos(p —¢) sin (g + ¢ )

Si Pon porte ces valeurs dans Péquation (4), on trouve pour R, et R, les valeurs
rapportées au § III pour les mouvements réfléchis dans les rayons lumineux polarisés
perpendiculairement et paraliélement au plan d'incidence.

On tire en outre de 'équation (3], en ayant égard 2 la relation

[ — 9" = A’sin*w + (Csin ¢/ — A cosw cosg’ )y
[PAsine sin (¢'+¢)—S (Csing’-A cosw cos ¢/ )sin(¢'~+g)cos (v'-¢)]
sin? (¢ -+ g)cos (3 — ¢) V1 — 7"
b — o sinycosg[P (Csinq)’—ACOSmCOSzp’) sin(qz—{—g;’)—i—SAsinmsin(q/+q>)cos(q/—LQ}.
sin® (4 4+ o) cos(y — @) V1 —7"

. o - G . Asin w
Poit Ton déduit, en multipliant la premiere cquation par —=——==r, la seconde par
y1—<"

by - g NRECOSY

b

Csing' — A cosy’ cosw . G . C sin ¢'—Acos ¢’ cos
—_ I\/ e , €t ajoutant; la premiere equation par \/ ——
I 772 [ — 7 2

Asin o
et la scconde par \7::—,72, et retranchant:
1—7
( o Asinw + D" Csiny'— Acos ¢’ cosw 2P sin ¢ €05 ¢
e 1 —" Vi—q" T sin(g’ o) cos(y’ —¢)
b / . .
Csin o’ — Acos wcosg’ , Asino 28 sin ¢ cos ¢
—D, ?”"*’—i— — D —_— ___.__L .
\ Vi—q” Vi— e sin{y' +9)

Si 7 désigne I'angle formé par le plan d'incidence avec le plan mené par I'axe et la
normale A Ponde réfractée sous I’angle ¢ ou ¢"”, le mouvement D” a lieu dans 1’azi-
mnt go® — y et le mouvement D’ dans I'azimut 180° — y, Vazimut étant compté 4
partir du plan d’incidence. Si done on décompose les mouvements D/ et D” suivant le
plan d'incidence et perpendiculairement a ce plan, et qu’on appelle D; et D, les com-
posantes respectives, on obtient

()

4

; D, = — D’ cosy + D” sin x,
D, = D'siny—+ D"cosy.
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Mais on trouve

co Csing’ — A cos g’ cosw et sin Asine
08 v — — e,
* Vi—q” V=T

et si on combine (&) ct (c) 'une avec I'autre, on obtient

. 2P sing cos o 28 sin ¢ cos v
osin(gbgeos(y'—g) T sin(y/ o)

D,

Ce sont les valeurs que nous avons trouvées ci-dessus, au § III, pour D, et D,.

§ VIIL

Des ¢quations (4) et (5) on peut déduireles lois de la polarisation de la lumiére par ré-
flexion A la surface des milieux cristallins. Je m’occupe de cette recherche avec dautant
plus d'intérét que les précieuses observations du docteur Seebeck sont 1a pour servir
de pierre de touche & mes résultats théoriques, et qu'elles leur fournissent une beile
confirmation.

On peut, en partant des phénoménes de réflexion sur des surfaces non cristallines,
donner une double définition de 'angle de polarisation :

1°. On peut le définir I'angle d’incidence que doit faire avec la surface réfléchissante,
un rayon polarisé perpendiculairement au plan d’incidence pour ne pas fournir de
rayon reéfléchi; 2° ou encore I'angle sous lequel la lumiére naturelle doit étre réflechie,
pour que le rayon réfléchi ne soit composé que de lumiére polarisée parallélement au
plan de réflexion. Mais ces deux définitions ne sont point, rigoureusement et genérale-
ment parlant, applicables aux surfaces cristallines.

En effet, si nous admettons que la lumiére incidente soit polarisée perpendiculai-
rement au plan d’incidence, nous avons pour la lumiére réfléchie, daprés (4),

Ry, = pP, e R, = p'P,
et, pour lintensité de la lamiére réfléchie ,
Rp + RI = (p* + p”) P

Ces deux composantes ne peavent s'éteindre pour une valeur convenable de Pangle 4,
que dans le cas olt p’ est nul indépendamment de Pangle o, ce qui a tonjours lieu pour
les surfaces non cristallisées, mais n’existe que dans certains cas particuliers pour les
surfaces cristallines.

Mais on peut concevoir la premiére définition d’une maniére plus générale, qui la
rend applicable aux corps cristallisés et non cristallisés. Il suffit de dire que 'angle de
polarisation est angle sous lequel un rayon pelarisé perpendiculairement au plan d’in-
cidence doit étre réfléchi pour qu'aucune portion de lumiére polarisée perpendiculai-
rement au plan de réflexion ne fasse partie du rayon réfléchi. Cette définition de I'angle
de polarisation étant adoptée , nous obtenons cet angle en résolvant I'équation p = o.

Tome VII. — Ocrosae 1842, 50
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Kn mettant pour p sa valeur, et négligeant le facteur commun %, cette équation est

‘ 0 = A’sin’ wcos (¢ -+ ¢’ ) sin (p — ¢’ ) sin (o 4+ 57}

. . C (sin 4" sin » c0s » — cosp” sin” o’
? —=sin (v—+") (Csin p'—A coswcos ¢ ) [ (sinp : 7 ¥ 7')

—Acosw(cosg”sin g cos y—sing cos®y) |
~quation dans laquelle o, 5, »” sont liés par les relations suivantes :

‘ sin ¢’ = p.singp,
¢ 212 in?
” " tang® ?"'<I—tj;?%n§$—nf> == p*(C+ A coswtang p” '+ 7? (A*— C cosw tangs” 2.
f

Je vais prouver maintenant que la seconde définition de T'angle de polarisation est
pareillement insuffisante dans le cas de la réflexion sur les surfaces cristallines, et, dans
ce but, je donnerai P'expressivn de l'intensité de 1a lumiére réfléchie dans le cas ot la
fumiére incidente n’est pas polarisce.

La lumiére naturelle peut se représenter par une suite de mouvements vibratoires se
succedant dans toutes les directions avec une rapidité telle que Pon peut supposer que,
pendant la courte durce nécessaire pour produire dans I'eeil I'impression lumineuse , un
méme nombre d’oscillations ont lieu dans chaque azimut.

Soit I* intensite totale de la lumiére incidente ; Iintensité de la lumiére qui produira

. . I . NPT
ses oscillations dans Pazimut § sera — d&; cette partie donne en lamiére réfléchic
or

o

. I
R}) = (pcosB 4 s sin B} - dB,
Ly

2

R

s

— :'])'COS‘G -+ s sin @)" — (lﬁ
27
L’intensite de la lumiére réfléchie polarisée perpendiculairement, et Pintensit¢ de la
lurnicre réfléchie polarisée parallélement , s’obtiennent en faisant la somme des intensités

partielles [R2Y et /R*) pour Loutes les valeurs de 8,

k 2 7y 12
Ry = (P + "),

2

R, = (p™ + ) 5

La lumiére reflechie sera complétement polarisée suivant le plan d’incidence si
p*+ st = o, etPangle d'incidence ¢, déterminé par cette équation, sera I'angle de¢’
polarisation , conformement & la seconde définition.

Mais, comme on le voit, cette équation ne suffit pas en général; elle convient seule-
ment dans les cas particuliers oit s’ est nulle indépendamment de ¢ ; alors I'angle de
polarisation est déterminé par p = o,

Mais on peut donner i cette seconde définition une forme assez génerale pour qu’elle
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Y

puisse s’appliquer tant aux corps cristallisés qu’a ceux qui ne le sont pas, en disant :
L'angle de polarisation cst 1 ‘angle d’incidence sous lequel la lumiére naturelle doit
étre réfléchie pour étre complétement polarisée. Pour les corps non cristallisés, le plan de
polarisation de la lumiére complétement polarisée par réflexion coincide toujours avec
le plan de réflexion; ceci n'a plus lieu pour les corps cristallisés. C'cst le docteur Seebeck
qui a le premier fait connaltre ce fait remarquable (Pogg. dnn. de Phys., Bd. XXI),
‘[uoique Brewster (Philos. Trans., 1819) edit déja précédemment observé dans des cir-
constances particuliéres pour lesquelles I'écart entre le plan de polarisation et le plan de
réflexion est singuliérement augmenté. 11 est facile de déduire des équations (4), § VII,
Pangle défini de polarisation compléte, et azimut dans lequel a lieu cette polarisation.
Jappellerai cet azimut la déviation du plan de polarisation.

Les deux mouvements R, et R;, dontle premier a lieu dans le plan de réflexion, le
second perpendiculairement an méme plan, peuvent se décomposer en denx, P'un pa-
rali¢le au plan mené par le rayon réfléchi, et faisant avec le plan de réflexion Iangle «;
Pautre perpendiculaire. Soient R, la premiére composante, R, la seconde; elles satis-
font aux conditions

R = R,sina + R cose =T (psina - pleosa) -8y sina s cosal,
R/, = Rycoso — R sine =P (pcos« —p'sin 2 4 8(s' cos x — ssin ).
Le rayon réfléchi sera complétement olaris¢ dans lazimut 2 si R* = o, indépendam-
p , ’ 1

ment de P et de 8. On a done, pour qu'une polarisation compléte de la lumiére natu-
relle puisse avoir lieu par réflexion, A satisfaire aux équations

pcosa— p'sin ,

s’cosa— ssin @ = o,

ce qui peut toujours étre pour un choix convenable de « et de Vangle d’incidence o.
L’angle o est I'azimut que nous avons appelé déviation du plan de polarisation. Si I'on
élimine « entre ces ¢quations, on aura, pour déterminer Pangle de polarisation ,

{3) ps — p's’ = o,
et la déviation dn plan de polarisation est

’

y

(A} —_
) tang o — PR

Tappellerai dans la suite I'angle de polarisation compléte détermine par (3}, angie de
polarisation. Cette désignation sera plus bréve, et Pangle qu’elle indique est celui qui
me parait présenter le plus d’analogie avec angle de polarisation des surfaces non cris-
tallines ; c’est le méme angle que Seebeck a complétement déterminé par 'observation
dans le spath calcaire pour différentes faces et différentes directions du plan de reé-
flexion, et qu’il a aussi nommé angle de polarisation. Au reste, les différences entre les
angles d’incidence déterminés par 'équation (3) et ceux déterminés par Uéquation /1),
ol p» = 0, sont du second ordre par rapporta la différence (= — p?); ce n’est que dans

50..
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les cristaux fortement réfringents, comme le spath calcaire, que des différences de cet
ordre n’échappent pas i 'observation.

Dans le cas particulier o le plan de réflexion est paralléle a la section principale ,
c'est-a-dire, »=o0, on as’=o0 et aussi conséquemment « — o, et ’angle de la pola-
risation compléte dépend de p = o, c’est-a-dire de équation
(5) C (sin ¢” sin g cos g — cos¢” sin?¢’) — A (cos ¢” sin ¢ cos ¢ — sing” cos? ') =o,
dans laquelle

sing’ == psing,

(6) tang’¢” = sin*¢ [p? (C 4~ Atangy”)* + =?*(A —Ctange” }*J;
de (5) on tire
tang ¢ = A s‘in ¢ c0s p + Csin?g’
Csingcos ¢ + A cos*¢’’
ctde la
Acos’y’ -——C?sin?¢’ AC—+singcose
A—Ct = - 4 = : .
mnee A cos’¢’ -+ Csingcos g’ A tangg’ + C Acos’y’ +Csingeosy

Avec ces trois équations on peut éliminer ¢” de I'équation (6), et obtenir :

.

Asingcosg -+ Csin’ ¢’
( sing

)’ — p? (AC+-sing cose)? = n* (A cos’ ¢’ — C’sin’ g’ ).

Le premier membre de cette équation revient, comme il est facile de le voir, au pro-

duit suivant : . A
(A*—sin’g’) (1-—pC*— sin’g),

d’on résulte que I'équation est linéaire par rapport 4 sin’ ¢. En ayant egard & la relation
Atcos’ o' — C?sin’ ¢/ — A? —sin’¢’,
elle devient
[1—p C—m A — (1 —n"p?)sin’g] (A’ —sin’9’) — o.
Le premier facteur est seul & considérer; il fournit I'angle de polarisation pour le cas ou
{a section principale coincide avec le plan de réflexion :
(1—=m)A+ (1 —p)C

1 _,NZP.Z

(7) sin’ g =

Clest la méme formule que Seebeck a déduite précédemment de considerations théo-
riques , et dont il a justifi¢ Pexactitude par des observations. ( Pogg. Ann., Bd. XXII.
Je vais maintenant examiner le cas qui, aprés celui que je viens de traiter, est le plus
simple,, celui ol le plan de réflexion est perpendiculaire & la section principale (w=qo°).
Si Yon porte dans (3) les valeursde p, s, p/, §', tiréesdel’équation(5), § VIL, quon déve-
loppe les multiplications indiquées , et qu’on néglige les facteurs communs sin (¢ —¢'),
sin(p-+¢') et N*, dont le premier n’a de signification que dans le cas particulier oit
9 =¢', cest-a-dire ol le milieu cristallisé est entour¢ d’'un milieu non cristallisé dont
I'indice de réfraction est égal & son indice ordinaire (cas particulier que j'étudicrai

[N ] I
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spécialement plus tard), en obtient
A7cos(p—g') cos(y +¢') sin (p+¢") sin (p —¢”)
-+ C?sin?¢’ (sin’¢” sin® ¢ cos? ¢ — cos?¢” sin?¢”)
+ A?C?sing’ cos(p — g’ )sin(p +¢”) (sin ¢” sin ¢ cosg — cos¢”sin? ¢’ )
+ AC’sing’cos (p +¢')sin(p—¢”) (sin ¢” sin p cosp + cos ¢” sin’¢’) = o.

Cette équation se résout en deux facteurs ,

[A?cos (¢ — ¢’} sin (p -+ ¢”) + C*sin ¢’ (sin ¢” sin ¢ cos ¢ + cos¢” sin?¢’)]

[A?cos (9 + ¢’ )sin(p —¢”) 4 C’sin ¢’ (sin ¢” sin ¢ cos ¢ — cos¢”sin’g’)] = o,
dont le premier n’a aucune racine utile & la question actuelle, comme on s’en assure
quand on pose ¢’ = ¢”, c’est-a-dire quand on applique cette équation au cas d’un milien
non cristallis¢. L’angle de polarisation est donc ainsi déterminé par le second facteur
seulement ,

(8)  Acos(p-+¢')sin(p—¢”) + C’sing’ (sin ¢”sing cosp— cos ¢”sin?¢’) = .

11 est facile d’éliminer 9” au moyen de 1’équation(2), que, dans ce cas, ol cosw == 0, on
peut écrire

2 gl
‘J.Sinq)\/l—}—ww——ﬁ Az
tang <p" = £ »

2 2
. w— .
\/I—y’sm’qs——Tﬁ pisiny

ou avec la condition sing’ == psing,

2

A?

i

(9) tang ¢” = tang ¢’

£ tang®¢’

2
Si 'on fait,

(10) g A?cos(p+¢')sing — C’sin’eg' =M,
A’cos{p+9')cosg — C'sing’singcosp =N,

on tire des équations (8) et (g) :

. . wF—
M:cos? ' — N*sin®¢’ = (M’ N*A?)sin?g’ —

2
A T'aide des équations (10), qui donnent

Mcos g’ — Nsing' = (A* + C’sin* 9"} cos (9 +¢') sin(p —¢'),
M cosg’ + Nsing’ = A%cos(g +¢')sin (g + ¢') — C*sin*g’ cos (y — ¢} sin(p + o',
cette équation devient :

2
i o
2

(M2 + A*N?)sin’ ¢

/ S Y= = - e - : -
(11)coslet-s) sin(p—¢')sin (¢ +¢') (A?-+C* sin’y’)[A’cos (p+g") — C*sin’¢’ cos (p—¢ 1]
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On trouve ensuite, en mettant pour M et N leurs valeurs, que M* + A?N? a pour facteur
A® -+ Clsin’p’; d’ailleurs

2

. s [ —p? .
sin(¢ — ¢ Jsin {9+ ¢') = szsm??';
toutes ces velations transforment I'équation (11) en
. 2y e n’—-yi
(Atcos’g - sin’e’ ) +- Atcos*(p+g)sin’(p —¢') ———
/ / 2 1-—put
{12) cos{p+9 )= L.

A*cos(g +¢') — C?sin’ ¢/ cos (p— ¢’ )
(ette cquation ne peut se résoudre que d'une maniére approximative, car clle est du

quatrieme degré ; pour plus de simplicité, on la met sous la forme des équations alge-
briques par la substitution suivante :

cosy
cosg
d’on
Lo Zi— 1 . gt —1
S sin’ 9 = ———, sin’g’ — }—L(—”——Z—),
pal— xt—
i3 H , # \
‘ 1 —pt (11—
. —p ri—p?

Eile se transforme par 1i dans I'équation snivante,

(Al (e G — ) (5= )

4

)@ A (e )i g T Bt Gh

l-—-{}.

Des quatre racines, celle qui convienta la question doit étre déterminée, en raison des
relations (13), par la condition que si p- est plus petit que 1, = soit plus grande que 1,
et réciproquement, si p est plus grand que 1,  soit plus petite, tout en restant toujours
posu:ne

La forme de Péquation (12) est trés-propre au développement de sin’ ¢ suivant les

vl

2
i de T, ltipliant les d b : o), et cerivant
pmssances e 1 e en mu p 1an € eux membres pal cos \cp -l et ecrivan

dans le premier, 4 la place de cos(p + #')cos (p — ¢'), 1— (1 + p?)sin® g, on obtient

Al sin? @24~ A?cos? (p-+¢’ ) sin?(g-o’ ) 2T
sintg = — | (Arcosiesin’y) (o2 )5i0(9°8") g0y T ;L]
1+ p? Atcos(p+ o) — sin‘g’ cos(p —¢') 1—pt
et de 1a T'on tire
1B sinto = — 5 A 6) A1 LAY |
15} sin ?_—I—_;—H(I—I—HC = 4[u (x-5p- pi-pf) A7]C <—_—I—y.‘> —i—‘

Pour essaver 'équation (12), j’ai calculé Pangle de polarisation du spath calcaire
dans 'hypothése d'un azimut o = qo°, et pour les faces sur lesquelles Seebeck I'avait
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determiné par P'observation. Je rassemble les résultats du calenl et de Pobservation
dans le tableau suivant:

INGLINAISOX
de la
surface réfléchissante b
sur axe. " caloulés, observés,
|

ANCGLES ANGLES

de polarisation de polarisation DIFFERENCES.

58 54'.9 58" 567
58. 54,9 58 56,1
59. 19,1 53. 3.9
59.53,4 59 5o,9
59.53,5 1 5g.47,9
59. 541 59. 46,7
Go 26,3 Go. 14,8

I 60.33,4

Pour développer I'équation générale de Pangle de polarisation , je pose

C{sing”sing cosg — cos ¢” sin* 9') — Acosw(cosg” sin pcosy —sing” cos’g’) = M,
C(sing” sing cos ¢ + cosg” sin? ') — Acoso(cosg” sin §C0s¢ + sin 9” coste’) = W/,
Gsin ¢’ — A cos w cos ¢/ = N.

Par a Péquation (3) se change en la suivante, aprés lui avoir fait éprouver quelques

)

réductions faciles A voir, et avoir supprimé le facteur commun Sl“nm#(?i?)
©08(9 + ") cos(p — o) sin(p 4= ") cos(p — ¢”) Afsin* o - N2 MM/

~+ c0s (g -+ ¢")sin (p — ¢') A*sin? o NM/ - cos (p—9')sin(yp +9”) A’sin? o MN } =

et celle-ci se décompose en deux facteurs

[cos (3 — ¢’ )sin (¢ + ¢” ) A’sin?e - NM'],

[cos(p + ¢ )sin (p — 2" )A*sin® w NM],
dont le dernier contient seul les racines qui conviennent A la question. On s'en assure
en faisant comme ci-dessus ¢’ — g”. Sil'on y replace les valenrs de N etde M, on obtient
Péquation suivante, qui détermine généralement 'angle de polarisation :

€0 (p =+ ¢') sin (¢ — ¢”) A”sin? e - (Csin g’ — A cos e cos ¢') }
> [C(sin ¢"sin g cos ¢ — cos 9”sin’g’ J]—A cos e (cos §”sinpcosy — sing” cos’e’) ) T
de laquelle on éliminera ¢” au moyen de I’équation

. » { 1—m*s8in%wsin? ,
{17) tang?¢” <_isinﬁ‘L?> = p2(C 4+ Acos w tang ¢” S+ 7 (A — Ceos tang ¢” j*.
9

M. Seeheck a entrepris une série d’observations sur 'angle de polarisation ila surface
naturelle du spath calcaire dans différents azimuts. Pour ces mémes azimuts, J'ai calenlé
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les angles de polarisation d’aprés (16) et (17) et j'en présente les valeurs dans le tableau
suivant, en regard de celles qu’a données I'observation.

ANGLES DE P ANGLES DE P

DIFFERENCES.
calculés, observés.

57" 20,1 57° 1947

57‘42’9 57‘4:’!")
58.34,9 58 33,9
53.30,1 59. 29,1
59.53,4 59.50,9

Je ne crois pas quon puisse atteindre une concordance plus parfaite entre 'observa-
tion et la théorie ; elle prouve 2 la fois et la justesse des principes qui ont ¢été adoptés,
et la grande habileté de 1'observateur.

Comme le cas particulier que nous avons traité (w = go°) nous aconduits & une équa-
tion du quatriéme degré, on ne peut pas espérer que les racines des équations (16) et
{17) puissent s’exprimer autrement que par une série,

10 est facile de mettre ccs équations sous une forme semblable & celle de (12), et de
Tr2 _— y. 2

1 —pt ’

A Tinspection immédiate des équations ( 16) et (17),, on voit que V'angle de polarisa-
tion est le méme pour + o et — w3 mais on ne peut voir de méme, et sans un examen
attentif , que I'angle de polarisation ne change pas pour w et 180" —w, comme Brewster
I’a observé le premier, et comme Seebeck I'a confirmé.

développer ensuite les racines suivant les puissances de

Pour le reconnaitre, je développai les racines de 1'équation (16) suivant les puis-
sances de =*— p2, etje les trouvai jusqu'a la troisiéme puissance inclusivement in-
dépendantes des puissances impaires de cos o. D’aprés cela il me parut vraisemblable
(ue le développement en était généralement indépendant. L’élimination de 9" dans
I'équation (16) me confirma dans cette opinion; mais mon calcul est trop long pour
I'inscrire ici , d’antant plus qu'on m’a communiqué le calcul suivant, qui est plus court.

De (16) on tire la valeur
{4+ mcosw

tang ¢’ = ~————
£¢ n 4 pcosm’

{, m, n, p, doivent seulement contenir des puissances paires de cosw,

{ = A’sin’wsingcos(p-+g’) — C?sin’g’ + A’cos’e cos¢’ sing cosg,
n = A’sinwcosgcos (p -+ ¢') — Cising’sing cosg + A’cos’w cos’g’,
m == ACsing’ (sing’ cosy’ — sing cosg),
po= AC cos ¢’ (sing cosyp — sing’ cosg’).

Si I'on substitue partout dans ces expressions 3 sing cosg sa valeur

sing cosg = sin g’ cosp’ + cos(p -+ 9')sin(9 —9’),

aoy Hep
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on obtient

i == Atcos(¢ + ¢’ ) [sin’wsin g - cos*w cosg’ sin (¢ — o) |+ sing’ M,
no= cos(q»—-}-(p')[AZSin’mcoszp——-Czsintp'sin(qa—~q:')]+(:05q;'M,

m = — AGsing’cos (¢ + ¢')sin (g —9’),

p o= ACcos:p’cos(q>+cp’)sin(:p—q;’),

ol Pon pose pour abréger
M = A’cos?wcostg’ — C2sin?g”.
SiI'on remplace en outre, dans les valeurs l, n,sing et cosg parles valeurs

sing = sing’ cos (g — ') +cosg’sin (¢ — ¢’ ),

Cosy = cosg’ cos(p — ¢’} — sin ¢’ sin (¢ —19¢'),
un obtient
L = Arcos(gtg) [sinzwsinqa’cos(q;—qﬂ)-%—cosg;’ sin(g—o}] 4 sing’M,
7 = cos{p-+o’} [A'sin’e cosg’ cos {p—g¢') —(C+A? sin’w)sing’ sin (9—9")]+ cosg" M.

Solent maintenant

U+ m' cos e

_)l —f—])cos;’

U +m” cos e
;—l—pcosm

{" == Cn + Ceostom, m' — Cp + A/,
" = An + Ccos*wm, m" — Ap — C4,

C 4+ Acoswtangg” —

A — CCOSwtanng” =

ow, si I'on substitue les valcurs précédemment données pour !, m, n, p,

o= Ccos(cp—4-—q>’)[A’sin2mcos<p’cos(qa-cp’)~sin ¢'sin(g—g')]-+Ceosg’ M,

m = ACOS(?—I—?’)[Azsin%)sin?'COS(_({J—?')—I—COS?’Sin(q)-—cp’)]—l—ASintp/M;
" = Asinzmcos(q}—l—(p')[A’COSgD’COS(:p—-cp’)—~Singo'Sin((p—(f’)]—f—A(',OScy"M,
m’ = A"Csin“msin?’cos(cp—l—q;’)cos(cp—cp’)—-(?sinq;’M.

Qu'a aide de ces expressions on forme les valeurs
{4 {'sing, m = {/sing’,
Isine = —1.1", msine 4= V—r1.m",
el qu’on pose pour abréger
Cos(au—{—q.w")[A’Sinzmsintp'()()s(cp~—-tp/)+(cos?'+C)Sin(cp~—q:')]+sil]tp’]\’l =D,
cos g + ?')[A’Sillzwsinq)’COS(g)——qa’) + (COSq:’——C)sin(go-ep’)]+ sing’ M == D,
Asinwcos(g +¢') [Asinwcos(cp——cp’) —{—Tsin (o —zp’)] +~M=E,
A.sinwcos(:p—)—zp’)[A sinmcos(p— ¢’ )+ /1 sin(p—o' )]+ M = E’,
on ohtient
— l'sing’ = (1—Ccosg )D, -+ I'sing’ = (1 + cosp’ ) D',
m — m'sing’ = — Asing’ D, m 4= m'sing’ = Asing’ D’.
Tome V1L, — Ocroes 1842 51
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De plus,
{sinw +\/:1. 1" = (sinwsing’ +\/—————;Ac05c’a’)E,
Isine —\—1.1" = (sinwsing’ —F]Acos:y’)E’,
m sin w +¢:T.m” = — Cg/:sin,qa’.E,
msine —y—1.m" = Cy—1sing’.E’.
Mais on a

(n + pcosw)|tange” — sing’ (C + A coswtangy”)]
— I 4 mcosw — sing’ (I’ +m’ cosw),

(n + pcosw)[tange” —+ sing’ (C + Acosotange”)]
— [ -+ mcosw - sing’ (I’ + m'cosw)},

(n + pcosm)[sinmtangcp” -1 (A — Ccoswtangg”) ]
= sine (I + mcose) ~+ V=1 (I” -+ m"cosw),

(n + pcosw)[sinwtangcp” —V—1(A — CcOSmtangcp”)]
= sinw{l{+ mcosew) — ¥V—1 (" + m"cosm),
et par conséquent, si I'on pose 7 —+ pcosew = N,
N [tange¢” — sing’ (C + Acoswtangg” )} = (1 — Ccos¢’ — Acoswsing’) D,
N [tangy” ~+ sing’ (C - A coswtangg”)] = (1 + Ceosg’ + Acoswsing’ ) D'.
N [sinwtangy” + V—r1 (A — C cosw tang " ) |
= [sinmsincpl —+ \/?—_1 (A cosy’ — Cc05msinq)’)] E,

N [sinmtangq:” — y—1(A — Ccosmtang:p”)]
= [sinwsincp’ — y/—1 (Acosg’ — Ccoswsing’) | E.

Si I’on substitue ces valeurs dans I'équation (17), que 'on peut présenter ainsi,
tang?y”—sin?¢’ (C-Acos wtang ¢")*=m>sin’y [sin’w tang® ¢’ -+(A—Ccosw tangg” '],
on obtient, en tenant compte de la condition

1—(Ccosg’ -+ Acoswsing’)? =sin’wsin’e’ + (Acosg’ — Ceosesing')”,
'équation
0 = [1 — (Ccosg’ + Acosasing’)*] [ DD’ — n’sin’g EE’],

qui se réduit A la suivante, le premier facteur ne pouvant disparaitre pour une valeur
réelle de ¢/,

(18) o = DD’ — =>sin?¢ EE’,

dans laquelle se trouvent seulement des puissances paires de cosw.
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C'est 1a I'équation a l’alde de laquelle on détermine generalement Pangle de polari-

sation apres avoir ¢liminé ¢”. Si 'on met pour D, I/, E, /y leurs valeurs , on arrive
a P’équation

[COS((P + ¢')(A’sin*wsing’ cos(¢ — ¢')4-cosy'sin {(p — (P,):I ?

+ sing’(A’cos’wcos?y’ — C?sin?g’)
(19 = m2sin’e Atsin®o cos(y + 57)cos (g N T
o + A’cos’wcos?y’ — Clsin?g’

—+ w'sin’gp A?sin?w cos? (p -} ¢')sin?(p — ?’)
\ -+ Gsin (¢ — ¢/ )cos*(p <+ ¢').

Si 'on met pour =*sin?¢ sa valeur
wisin’g = sin’y’ 4 (x? — pi)sin’e,
et sil'on donne 4 (19) la forme
(20) R = 8{(nx* — p?)sin’yp,
on trouve

Asin 2o cos (p+ ¢’ )

R = cos(y9+9")sin(¢9—¢ )sin (g4’ .
(p+¢")sin (p—¢')sin (¢+¢ ") +(A%cos* wcos y'~Csin® ¢ ) cos (g9 ) |’

S — {{A“sm ©cos (¢ + ¢') cos (p — 9') + A?c0s® w cos? ¢’ — C?sin? ']} Q
v -+ A’sin® w cos? (g + ¢ )sin ? (g — o'} 1N

on a donc, si, au lieu de sin(¢—¢’)} sin (¢4 9'), on écrit sa valeur (1 —p?)sinty,

2 2
m—p

2

cos (p + ¢’) = —.
(21) o [A?sino cos(p—+4')cos(p—¢')+A’cos™e cos’y' —C2sin’p’ '+ A’sin’wcos? (g4 ¢’ }sin®(yp -Q
A’sin?wcos (p - ¢') 4 (A’cosw cos? o' — C?sin* ¢’) cos (g — o) :

Si 'on multiplie les deux membres de cette équation par cos (9 —¢'), et qu'a la
place de cos(y + ¢")cos (p—g') on écrive sa valeur 1— (14 p.?) sin®¢, on obtient

2 2
Sin'zg; = ! T — T P;
(32) 1p I . .
> [A%sin’o cos(g+¢') cos (g-g') A% cos® w cos’y-C?sin’ ' ]°4-A*sin’w cos* (g~ ¢)sin o)) (o=
- - cos (o-«
{ A*sin’wcos{g -+ ') -+ (A% cos’w cos? ¢'— C*sin? ¢') cos (9 — ') { e

forme trés-convenable pour le développement de sin®g, suivant les puissances de
L _P‘

J —

. Comme cos(p + ¢’) disparait en méme temps que n* — 1%, on obtient im-

mediatement le terme de sin’g qui dépend de la premiére puissance de w? — p?, en

51..
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posant cos (y + ¢') = o0

sinfg = - —ﬂ:_Hz(Azcos’mcos’ " — C*sin?g’)
1+ pt L — pt f ? /s
(23) ou
2,2 2 2 (2,2
sin7g = H T y., A?cos’w— C?p .
l"i“f’-z 1 —pt ‘+'f"2

Si 'on veut encore obtenir le terme suivant qui dépend de (x?—u*)*, on peut poser
dans I'équation (22) cos®(y +¢9') = o, et 'on obtient alors

2

V. il
SRS e —

%

‘}.
' . A?cos’wcos?g’~C2sin 29’4~ 2Asin%w cos " i (omr’
=< (Afcos"mcoszap'—(]zsm*cp)§[~-“o . ? — T o t 5(’?_-}—_?/.0(')5(? ¢/ )} cosig-9"1] |
(A?cos*wcos’¢’—Cisin’g’ Jcos(p— 9" ) -+ A’sin‘wcosip+¢) §§°

ou bien

- ! 7= (}_3 { A2 2 e P ’ 7:.2_‘,-L2 . :
1y = o — ———— (A c08%w cOs’p’ — (i 51N ) — cos A’sin? .
sinty = s — T al weos'y ¥ T cosler ) Alsinto =0 T

! "
€082 (g — ¢’}

Si 'on porte dans le second membre de cette équation la valeur de sin’ de l'équa-
tion (23), et si Pon néglige la troisiéme puissance de =% — p*, on trouve
4 I w— (A%OS’&)—C . ’)

Sln“q::l+y2——>1 —}L3 I+H2

';24) 2,0\ ? Az 2 2 2\ 2
— <;——H> (A% cos’w—Cpt) { LM) g7+Azsin’w[1——<x ¢ >J}

Y — P’i I+P-2 2}"3
. > Yt ’ ’ C
On voit que sin’p = - dans lazimut o’ , pour lequel cose’ = N Dans
1

T
ces quatre azimuts la surface cristalline se comporte donc comme la surface d'un corps

non eristallisé & P'indice de réfraction —, et cos (¢ +¢’) est nul; et ceci n’a pas
H.

lien seulement approximativement, mais rigoureusement , comme on le voit par l'e-
quation (21). D’oui résulte que, si cos(¢-+¢')=0, A’cos’w cos* ¢’ —C*sin’¢’ =0,
et réciproquement.

1l peat étre intéressant d’avoir Péquation (1g) dans la forme ordinaire de I'équation
algébrique. On y parvient de la maniére la plus simple, & Paide de la substitution pre-
cédemment employée , savoir :

(—:ﬁi = X,
cos ¢
¢ qui donne P'équation
[w(Asin® 4+ p? C?) 4 (1 —p? )& — p (1—A%c0s’ w)27]*
— = [A%sin?e + p? GF — (p? — A’cos’w) 27 ]2
+ (1 — p?) [=*A%sin’e + p2 G2 — (m?A’sin’e + C) 2| (1 — px)*=o,

dont je ne m’arréterai pas & donner le développement suivant les puissances de z
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§ IX.

Je vais m’occuper maintenant de I'équation (4) du précédent paragraphe, ¢quation
qui détermine la déviation du plan de polarisation par réflexion. L’angle désigné par ¢
dans cette équation représente angle de polarisation. La valeur de s est, d’apris 1'é-
quation (5), § VII,

57 == — % Asinesin (¢ — ¢”) (Csing’ + A cosw cos¢’ ) sin 2g,
etla valeur de s se change par 1A méme , quand on y met 4 la place du produit
Alsiny >< sin(¢ - o)
sa valeur déduite de I'équation (16), § VIII, dans 'expression suivante :

1 (C?sin®¢'— A?cos’ cos’y’ ) sin (9" — ¢” ) sin 29
N cos (g ¢') ’

5 = —

on obtient d’aprés cela, pour la déviation du plan de polarisation «,

Asinw cos (p + ¢')
Csing’— Acosw cosg’

(1) tang o =

Ce résultat simple et ¢légant se traduit dans le théoréme suivant :

La tangente de la déviation du plan de polarisation est égale & la tangente de Uangle
que le plan de polarisation de Uonde ordinaire fait avec le plan d'incidence, multi-
plice par le cosinus de la somme des angles de polarisation compléte ct de réfraction
ordinaire qui lui correspondent.

Asinw
Csing’ — A cosw cosg
le plan d’incidence fait avec la direction du mouvement dans 'onde réfractée ordinai-
rement , ¢’est-A-dire avec son plan de polarisation, il est facile de se convaincre qu'elle
est exacte d’apres les equations (2), § V, 2, dans lesquelles le sinus de cet angle cst,
d’aprés les notations expliquées aux paragraphes IV et V, exprimé par

Quant a 'expression -, prise pour la tangente de Pangle que

R'E +R,E+R E = ji—s__l—n_—w?
11—y

Si l'on veut savoir dans quel azimut la déviation de la polarisation disparait, on se

servira de I'observation faite ci-dessus que cos (¢ -+ ¢') disparalt en méme temps que

(C?sin’p’ — A?cos’w cos’y’ ), et s’annulle seulement dans ce cas. La déviation du plan

de polarisation sera done nulle si

(2) Asine {Csing’ + A cos¢’ cosw) = o.

D’aprés cela , aucune déviation n’a lieu.
1°. Quand A = o;
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20, Quand w=0 ou 180° c'est-4-dire quand le plan de réflexion est parallele i la
section principale;

3. Quand cose == — % tange’ = — % .

En effet, quand tang(¢ + ¢') = o0, tang e’ = .

1.a troisieme ¢quation détermine, en général, deux azimuts de méme valeur, mais
de signes contraires. Tout plan réflecteur est donce en géncral divisé en quatre parties
analogues i celles que déterminent sur le plan de la figure (fig. 5), la ligne princi-
pale HH', et les lignes AB, BC, de telle sorte que les deux parties adjacentes don-
nent des déviations de signes contraires et soient séparées par des lignes sans déviation.
La direction HH’ divise le systéme total des déviations en deux moitiés symétriques.
Les deux autres lignes sans déviation AB ct CD se confondent en une seule ligne qui
est perpendiculaire 3 HH' quand le plan réflecteur devient paralléle & Paxe. Plus le
plan réfléchissant s'incline sur l'axe, plus les lignes AB, BC s’approchent de HH ’, et
s'en approchent du cot¢ H' qui se trouve dans azimut o= 180°, situé de telle ma-
nicre que la ligne [T fasse en 1L un angle aigu avec I'axc menc par H au-dessous du
plan. 1l y a une certaine inclinaison du plan réflcchissant sur 'axe pour laquelle les
denx lignes AB ¢t BC se confondent avec BH', et pour laquelle il n’y a plus sur la
face qu’une seule ligne sans déviation , la ligne principale ; cette inclinaison est deéter-
mince par 'équation

A ’
< = tang ¢ = u.

Pour le spath calcaire, cette inclinaison est de 58°55".

Si dans Péquation (1) on néglige tout ce qui dépend de la seconde puissance de
‘ui-—r%), on peut, de I'équation {21} du paragraphe précédent , tirer

7 — ' A'cos’wcos?e’ —Csint g’

;-
cos iy g ;= s

1 — cos(o — o'}

, on obtient

rappelant que sin®g =

(= p?
o - , 772—‘0.'! AZCOS"w—C:lu.’\
cus ;= - . i
{9 7 P— o
Cect donne

. it wle—r?
tang z — Asinw (Acosw -+ Cp ) - BT .

< AN 2

2u I —u

1.2 deviation = est donc, pour les substances comme le spath calcaire,, dans lesquelles

= > u, positive depuis « = 0 jusqu’a » = o' = arc (cos =—x H) s de we= o
Jusqu'd o = 180° elle est négative. L'inverse a lieu quand 7 < p. 11 semble néces-
saire de bien éclaireir ce qu'on entend par inclinaisons positives et négatives.

Soient, fig. 6, H'HK un rhomboédre de spath calcaire, H le sommet de l'angle
solide obtus, HH' la ligne principale de la face HH'G.
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Soient en outre EI un rayon lumineux incident réfléchi suivant IR vers Peeil
placé en R; er Pintersection du plan réflecteur HH'G par le plan d’incidence RIE,
IE = 180° — ¢ et HIE = w.

Si le rayon IR est complétement polarisé par réflexion, et si « a une valeur négative,,
son plan de polarisation est 2 gauche pour 'eeil placé en R. Ceci résulte de ce que nous
avons admis dans les formules (11), § VI, que le mouvement P s’¢loigne du plan d'inci-
dence vers la droite, que le mouvement S se fait dans le plan d’incidence de bas ¢n
haut, et que les mouvements R,, R, ont lieu respectivement svivant les mémes di-
rections.

Pour obtenir les mazimum de «, il suffic d’égaler A zéro la différentielle de cette
expression prise par rapporta w; on trouve 'équation suivante :

1 C I 1 &2
TS e— o — — — 2,
(3) COs o =— 7 yi‘\/z—i—“n)“&

Des deux direotions déterminées par cette équation, 1'une change de » == 45° jusqu’a
w =go°, l'autre de » = 135° jusqu’a w = 180" pendant que I'inclinaison du plan réfle-
chissant sur 'axe varie de o° & 9o0°, mais de telle sorte que la derniére atteint beancoup

. . . LA N
plus vite lazimut 180° quela premiére ne s’approche de go°; si et celle- ciest éloignée

de 'azimut go° de I'angle (cos = ), tandis que la seconde direction est déji dans I'azi-
mut 180°, et s’est évanouie en méme temps comme direction correspondante & un maxi-

mam, De la position d’un plan incliné sur 'axe d’un angle correspondant 3 la condition
'C = ¢, & celle d'un plan perpendiculaire & 1'axe, il n'y a qu’une seule ligne de plus

grande déviation ; cette ligne s’approche de plus en plus de Ia perpendiculaire a la ligne
principale,, & mesure que le maximum devient plus petit, et, si ce maximum s’annulle ,
la ligne sans déviation se place perpendiculairement a la ligne principale. Pour le plan
perpendiculaire & I’axe , la déviation est, dans tous les azimuts, égale A zéro.

J’ai ¢i¢ heureux de voir ces résultats de la théorie de la déviation du plan de polari-
sation tellement confirmés par les observations de M. Seebeck , que Paccord le plus par-
fait s’est trouvé entre les valeurs déduites du calcul et les valears observées. Cet accord
est vraiment admirable , dans des phénoménes si délicats et si fugaces , et montre bien la
grande habileté et la rare précision de 'observateur. M. Secbeck publiera trés-prochai-
nement sans doute ses observations, et je dois laisser le lecteur s’assurer par lui-méme
de leur perfection.

Jusqu'a présent nous nous sommes occupés du cas ot de la lumiére non polarisée
etait réficchie par les surfaces cristallines. Nous admettrons maintenant que la lumiére est
polarisée avant de tomber sur la surface réfléchissante. Je désignerai par @ l'azimot de
la polarisation primitive , ce qui revient i faire dans les formules (4), § VI, g =tang a.

Le plan de polarisation de la lumiére réfléchie tournera d’une certaine quantité par
véflexion, et je désignerai par ¢ son nouvel azimut, § satisfaisant A la relation générale
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tang 5 == I—{-” Le rayon incident étant polarisé perpendiculairement au plan d’incidence ,
solt 4, la rotation de son plan de polarisation , c’est-a-dire Pangle quu le plan, de pola-
risation fait avec le plan perpendiculaire au plan de réflexion; soit 8, la rotation du plan
de polarisation d’un rayon polarisé parallélement au plan d’lnc1dence.<

tung d, = l R
s I)
¥ “ o
tang 4, = - .
s

On peut mettre les expressions de p, p’, s, s dans (5) sous les formes suivantes, en or -
donnant les termes suivant la différence des réfractions ¢, 9"
5, { Np= sin(p —¢')cos(p+¢ )sin{g +¢ J{(1—9"%) cos (¢’ —¢" ) — Msin (p' —¢" ),
"l Ns=—-sin{p+g')cos(p —¢)sin(p —¢') (1—"" *) cos(¢'—g¢” ) — Msin(g'—g” .
Sil'on pose pour abréger
T =+"singcosg’ 4 Gsin’ ¢’ + A cos v cos’ ¢,
T" =q'singcosg’ — Csin*e’ — A cosw cos’ ¢,
les valeurs de M et M sont les suivantes :
M =sin(p —¢')cos’ (9 + ¢ ) A’sin’w +sin g +¢’) (Csing’ — A cosw cos ¢ T,
M = sin(p +- ¢’ )cos* (g — ¢} A*sin‘w —sin(p — ') [Csin¢’ — A cosw cosg’ T,
Les valeurs de p” et de " sont dapreés (5), § VI, les suivantes :
© g Np'=— Asinw(Csing’ — A cosw cos ¢’ ) sin 2p sin (' — ¢"}
- Ns" =— Asinw(Csin ¢’ -+ A coswm cos ¢ )sin2gsin (g’ — ¢” }.

Ges valeursde p, v, p', 5', substituées dans les équations (4), donnent
S 95

, ; —"ASinw<CSin‘?l—‘ACOSwCOS¢"}sin2qztang I
ang o, —s - T Y - — — :

\ ¥ sin{g—g¢’ ! cos(p+¢')sin(p +¢’) (1-—-7")—1\Ilangw —¢

. ASinw(C sin (P/ -+ A coso cos (p' sin 2¢ tang (?’—-q@”

~ sing ¢’ Jcoslp—g' Jsin(g—9") (1— > L M tang(y g

‘.v-‘
Y

' tanyg 4,

Latangente (¢"—¢" ) dépend d’une équation du denxiéme degre, qu’on forme fucilement de
sin’g” =—sin‘gri 4w — =y et de sin®y = pisindg,
SiPon retranche ces deux equations 1'une de Pautve, on obtient
: ol Y el / R p— fz\“_»’.u
sin (¢ —o")sin (¢ +¢" == (1 — " ) sind g’ T
}l,
Si dans (ettv(quatum on met partout, & la place de ¢”, ¢' — (g’ —q) > et stlon divise

par cos’ 9" —¢” |, on obtient 'équation qui donne tang (¢'—o”" 1, (lont la plus perite

racine convient seule a I'equation (7). Si I'on veut la valeur numérique de cette racine,

il est preferable de la dedaire de Véquation (8) par un procédé d’approximation.

] ro 0t
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Si dans les valeurs de tang 4, tang 4, ‘on ne veut conserver que les premiéres puis-

L. ..
sances de L{;" » on devra, dans tang d,, ne pas négliger le terme de tang (¢'—o¢”)

2

C T m2\2 . , . . -
ui dépend de (& - dans le cas ot la réflexion a lieu dans le voisinage de
y‘z ) g

I'angle de polarisation, parce qu’alors cos (p -~ ¢') contient aussj Je facteur p> — x2.
Sila réflexion s’'opére sous I'angle de polarisation , les deux déviations 3, et J; sont com-
plémentaires, et 3, devient en méme temps égale A «, cest-a-dire a Vangle de déviation
du plan de polarisation, comme cela résulte des formules (3) et (4), § VIII.

Ces deux déviations d,, d, disparaissent sur la face perpendiculaire i I'axe, et chan-
gent sur chaque face quand le plan de réflexion est paralléle & Ta ligne principale. D’ail-
leurs il existe sur chaque face, pour toutazimut du plan de réflexion entre o° et =+ go*,
un angle d’incidence pour lequel d, = 0, et pour tout azimut entre ~ go° et 180",
un angle d’incidence pour lequel §, disparait. Le systéme de ces deux angles d’incidence
est divisé symétriquement par la ligne principale du plan réfléchissant. Pour obtenir
pour un plan réflecteur quelconque le systéme des rayons & polarisation paraliéle et
perpendiculaire qui ne subissent pas de rotation, on peut employeria constraction
sulvante.

Soit HH, fig. 7, la ligne principale du plan réflecteur qui fait en H an angle aigu
avec I'axe miené au-dessons. Comme centre du cristal , prenons wu point situé sur Ja
normale ¢levée en N i la surface réfringente, et distant de N d'une longueur = .
Faisons

MN = W'N = L 4C

El

et des points M et M, avec le rayon MN, décrivons deux cercles. Toute ligne menée du
centre du cristal 4 la périphérie du cercle M représente un rayon ordinaire, procédant
d’un rayon incident dont Ia polarisation primitivement perpendiculaire n’éprouve
nulle déviation; tandis que les rayons qui vont du centre i la périphérie du cercle
M’ proviennent par réfraction ordinaire de rayons incidents, dont la polarisation pri-
mitivement paralléle n’éprouve aucune déviation.

Quel doit étre Pazimut du rayon incident pour que le rayon réfléchi soit polarise pa-
rallélement ou perpendiculairement au plan de réflexion ?

Je désignerai le premier azimut par d;, le second par . Des equations (4} il resulte
que, si le rayon réfléchi est polarisé paraliélement au plan de reflexion, R, = o; alors

. P s ,
ausst 5 = — —. et par conséquent
5 »
sl
— - = tangd,.
P
Les mémes considérations font voir que
(8) i :
{0) — = tang d,.

P
Towe VII, — Ocrosre 1842, 52
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Ces deux azimuts des plans primitifs de polarisation 4, et d, deviennent égaux quand

1a réflexion se fait sous angle de polarisation compléte , car ce dernier est, d’aprés I'éq.
. s s , . .y

(3), § VIII, déterminé par — = —. Dans cet azimut aucune portion de lumiére n’est

) r r

'
réfléchie. Quand g est mis pour Pangle de polarisation compléte, — ;s, ou — s;) est la
tangente de I’azimut dans lequel doit étre un rayon préalablement polarisé pour qu’il
disparaisse totalement par la réflexion sous I'angle de polarisation. Cette tangente est &
la tangente de la déviation du plan de polarisation compléte comme — s est & p. On
voit qu’on peut aussi définir P’angle de la polarisation compléte par réflexion Iangle
dincidence sous lequel un rayon polarisé dans P'azimut d, ou d, n’est pas réfléchi.

Du reste,, on voit que d et 9, aussi bien que go — d, et d,, disparaissent en méme
temps , et que, pour le méme angle d’incidence et le méme plan d’incidence,

tang 3, __ cotd,

tang d; tang d,

L'expression générale pour Vazimut & du plan de polarisation du rayon réflechi,
Y g p p p y ’

Pazimut de la polarisation primitive etant & (tang &= E»’ est la suivante,
s

}—:tang « + tang 4,
‘o) tang § — —————————-
1 — cot d, tang «
§ X.
Jusqu’a présent jai admis que w' — u? était une trés-petite quantité par rapport A
1 — p?, ce qui est vrai lorsque le cristal est entouré d’air. Mais si 1 — p? est lui-méme

une petite quantité ou presque égal & zéro, il existe alors des propriétés qu’il est d’au-
tant plus intéressant de rechercher, que Brewster les a depuis longtemps étudiées expe-
rimentalement , et qu’il parait avoir tout récemment entrepris sur ce sujet des recherches
qui promettent beaucoup. Ce cas a lieu lorsque sur la face réfléchissante du cristal se
trouve une couche d’un liquide dans lequel la lumiére a sensiblement la méme vitesse
de propagation que dans le cristal. Tl résulte de 1a que quelques quantités qui dépendent
de 1a double réfraction recoivent des valeurs exagérées, par exemple 'angle que nous
avons appelé la déviation du plan de polarisation, lequel, lorsque la lumiére tombe
de Dair sur le cristal, est seulement de quelques degrés, et qui, pour un choix conve-
nable du liquide, peut aller jusqu’a go°. Ce fut par les énormes accroissements de cet
angle que Brewster fut conduit A la découverte de la déviation du plan de polarisation.
(Philos. Trans., 1819.)

Je vais donc encore une fois m’occuper des équations de I'angle de polarisation et de

' " [l I
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la polarisation, dans I'hypothése ot 1 — p? serait une petite quantité, ou bien ¢ peu
différent de o,

SiTon développe I’équation de I’angle de polarisation (16), § VIII, suivant les puis-
(1— p7)sin’g
sin (p+-¢')’
ou d’un degré plus élevé par rapport & 1 — p? et x? — #*, on obtient

sances de sin (p—¢') = et si l'on néglige les termes du troisiéme ordre

(1) (1--p*)cos (p-+¢' )—(n*—pu*) [A’sin w cos (p4¢’ )+-A%cos’wcos® ¢’ —C#sin? ¢/ |= 0.
Dans cette équation on peut poser avec le méme degré d’approximation
2

I — .
c0s (p +¢' )} = cos 29’ —  sin ¢

2

posant ensuite pour cos 2¢’sa valeur cos ¢’ —sin’g’, et divisant I'équation par cos? ¢/,
on obtient

plr—r) A4 (1—p) 7]
1—p? — (m— p)sin? 0] AP - [1— i 2w i)

(2) tang? ¢’ — i
d’on

(=) A =)
t—plri—(n’— p?) A*sine’

{3) sin® g =

Pour le cas ot sinw == 0, cette expression donne pour le sinus de Pangle de polarisation
un résaltat exact , le méme que celui qui est donné par I'équation (7}, § VIIT.
Aussi longtemps que =* et p? (oubien, si, au lieu de supposer la vitesse de la lumiére
dans le liquide en contact avec le cristal égale & 'unité, on Pappelle ¢}, aussi longtemps
n? 2 . . .
que — et FT seront plus petits que I'unité, sin ¢ aura une valear possible; cette valeur
v [4
sera encore reelle si tous les deux 4 la fois sont plus grands que 1. On voit cela avec la
plus grande facilité quand on pose

2 2

:_:’______I_% %:1 — 5
par li on obtient
. AT
2 —_ s WYL
(4) sin? ¢ == [4’—*—“—4‘”— (v_-p)sinZw]A2+(f*P+v-ifJV) c’

et si l'on néglige le produit 4v,

o _ YAy G
) I CER A G o F et vty T

Les deux limites sont :
CZ

1— Asinze ’
AZ

1+ A%sin?e

Y=o, Sinchz

V=0, sin*e=

5a..
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La derniére équation a perdu toute signification,, car, du moment ou le liquide
ambiant a exactement le méme coefficient que le cristal pour la réfraction ordinaire , il
n’y a plus aucun angle particulier de polarisation compléte. Nous verrons que, dans ce cas
pacticulier, tout rayon réfléchi est complétement polarisé. Nous éclaircirons plus tard
cette singuliére circonstance que I'équation (4) convienne pour toute valeur de v aussi
petite quon voudra et ne convienne plus pour v = o.

1. équation (4) donne toujours pour g une valeur réelle, tout autant que v et § sont
en méme temps positifs ou en méme temps négatifs. Mais si ces deux quantités ont des
signes contraires , 'angle de polarisation devient impossible. Si, par exemple, le liquide
ambiant posséde un coefficient de réfraction qui tienne le milien juste entre le coefficient
de réfraction ordinaire et le coefficient de réfraction extraordinaire, si en outre y=—v,
nous obtenons

. Ar—C

sy = Y+ 2A%sin* o ;

ce qui donne pour sin ¢ une valeur imaginaire , pour toutes les faces qui font avec
Iaxe un angle plus aigu que 45°, et pour les faces qui restent il n’y a qu’un nombre
Jimité d’azimuts oti I'angle de polarisation soit réel. Sur une face paralléle & axe, pour

1
2 I+
Pangle o est ainsi trés-prés de go°, et pour des valeurs plus petites de « devient bientot
impossible. Dans 'azimut » = o il n’y a de valeurs réelles pour I'angle de polarisation

» =0 I’angle de polarisation est donné par sin®p= ; pour v=45°, parsin’g = ;

que dans le petit intervalle de 45° 2 A* — (2 =1 des inclinaisons des faces sur 'axe , et
dans ce petit intervalle ces valeurs passent de 0° 4 go®: on voit donc qu'en mettant un
semblable liquide sur la face d’un cristal, Vinfluence de la structure cristalline sur Pangle
de polarisation peut étre énormément exaltee.

L’équation pour la déviation du plan de polarisation (1), § IX, se change dans I'¢qua-
tion

(v —m*)Asin o (Csing’ + A coswcosg’)

A\ ? _"_ 771')_(‘ ¢

tang - .
ang « { — g — (% — p?) Alsino

quand 2 la place de cos ‘»-+4') on met sa valeur, tirce de I'equation (1) de ce para-

graphe, savoir,

(w*— p?) (A% cos? w cos’ ¢’ — Cisin’ ¢’
1 —pi—(mr—p?) A’sin’a

[ p—

6) cos{p+14' )=

Cette formule devrait représenter les observations que Brewster a fait connaitre dans les
Trans. Philos., 1819, surles déviations de la polarisation i la limite commune du spath
calcaire et de I'huile de cassia, si elles avaient été exactement observées sous I'angle de
polarisation , ce qui ne parait pas étre ; car cet angle varie entre 30° et 45° environ i la
face naturelle duspath couvert d’huilede cassia , et Brewster semble n’avoir observé que
dans le voisinage de I'incidence 45°. Je vais cependant, i l'aide de cette formule, calculer
la déviation du plan de polarisation pour le cas ot la face du spath calcaire converte
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d’huile de cassia est le plan réfléchissant, et rapprocher mes résultats des observations
de Brewster. Si nous ne trouvons pas, en raison de la circonstance que j’ai indiquée, unc
grande concordance entre le calcul et l'observation , la marche des déviations du plan
de polarisation sera du moins la méme, ce qu’on doit déji considérer comme une sorte
de vérification de 'équation (5). La formule de la déviation se chunge, quand le plan
réflecteur est incliné de go® sur Paxe, ce qui est & peu prés le cas des faces de clivage du
spath calcaire, en

P‘i —
— sine (sing’ —+ cosw cosy’)

(7) tang « = R :
1 —p?— ———— sin‘e

2
Comme l'indice de réfraction de V'huile de cassia n’est pas connu exactement, je
prendrai pour base de mon calcul I'observation de Brewster, qui, pour I'azimut
w == 42° donne « = go°; on déduit de li, si, au lieu de p et =, on écrit Bt ™ ,
4 14

I’équation
2 2
T .
T=F sin*® 42°,
2

1 - 4+ N . 9 . s . ) . . .
dans laquelle — doit étre & peu prés Iindice de réfraction de I'huile de cassia. Si,
4

pour v et w, on met leurs valeurs dans le spath calcaire, savoir, p == 0,60288,
7= 0,67254, on trouve ¢*==0,3834 et v = 0,6192. Cette valeur de ¢ s’accorde
presque exactement avec une détermination dirccte de I'indice de réfraction de I'huile
de cassia , prise par Brewster ct calculée par J. Young (Herschel, Traité de la lumiére,
traduct. de M. Quetelet, p. 291), d’aprés laquelle ¢ = 0,6158.

Dans le tableau suivant j’ai placé les angles de polarisation calculés avee v==0,6192,
et les déviations du plan de polarisation 4 la face de clivage du spath calcaire coavert
d’huile de cassia,

ANGLES DEVELOPPEMENT OBSERVATIONS
o du plan
de polarisation. de polarisation. de Brewster.

47016/ 00

46.11 — 354U
37.47 9o
31.30 —+ 41.53
47.16 o

Le cas ot le liquide qui entoure le cristal a presque exactement l'indice ordinaire
de réfraction de ce cristal mérite vne considération toute spéciale. p est alors = 1, ct,
st on développe les expressions de p, s, p/, s/, dans I'éq. (5), § VIIL, pour ce cas on
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trouve
(C*sin*p — A’cos*w cos*y) sin (9" — g9)

b= r—q* “sin (9”9}’
, _ Asine (Csing + A cosw cosp) sin (¢ — 9)
8 = 1 — gt T sin(¢” +9)
' , _ Asmo(Csing — A cosw cosg) sin (¢" — g)
= r—y? “sin (¢ +¢)’
o - Arsin’e sin(¢"—g)
1 —y? sin(¢” +79)
et de la, d’aprés I'équation (4), § VII,
1 — A P A sl A : v
R, = V(Csmt_ﬂ#__ioswcos?) + smmS. {Csing-+A cose cos ¢) ?n(?_” W,
Ly sin (9" +g)
R, — (C sinq:~Acowcos?)P—}—AsinmSAsinm fﬂ..(i:_q’);
T sin (9" +¢)

dou il eesulte que le quotient de R, par R, est indépendant de P et de S, que, en outre,
quelle que soit la direction de la lumiére incidente, la lumiére réfléchie est toujours
complétement polarisée, et polarisée dans I'azimut a, pour lequel

R,  Csing +4- A coso cosy

Qi tangag — - =— :
9 8 R, Asinw

Le résulat est le méme , que la lumiére incidente soit polarisée cu non polarisce.
[ azimut @ a une signification physique simple. Si 'on imagine dans le cristal une onde
extraordinaire parali¢le i I'onde réfléchie , Pazimut du plan de polarisation de cette
onde extraordinaire sera identique avec celui de onde réfléchie avec a.

Cet azimut est d’allleurs la limite de la déviation du plan de polarisation dans (6, ,
quand on y fait p. =1. SiPon appelle v I'inclinaison du rayon incident sur Paxe, de
maniére qu’on ait

sin?y = 1 — 9> = A’sin’w 4+ (Csing — Acoswcose)?,
¢t v’ Iinclinaison du rayon réfléchi sur axe, d’ou

sin?v’ = A?sin’w + (Csing -+ A cosw cosg)?,

on o, si la lumiére incidente n’est pas polarisée, pour lintensit¢ de la lumicre re-
flechie,
1 sin*’ sin?(¢"—¢)
2sin*v sin®(g"+¢)
Si 1a lumiére incidente est polarisée dans Vazimut b, et si

tane b — Asine
ANB Y =""Csing — A coswcosg

(R | i
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il 0’y a aucune portion de lumidre réfléchie; le maximum de lumiére réfléchie a
lien lorsque la polarisation a lien dans Pazimut ¢, pour lequel

Csing — A coso 0S¢

tang e — -
3 Asine

Si donc on divise la lumiére incidente en deux parties polarisées dans chacun des
azimuis rectangulaires & et ¢, la partie polarisée suivant ¢ est seule réfléchie, et si
on la désigne par C?, on a, pour la quantité totale de lumiére refléchie ,
h : "
(10) C’sm’v’.smz(qa —9).
sin®y  sin? (g + ¢')’

» et »/ désignant les inclinaisons de I’axe optique sur le rayon incident et sur le rayon
réfléchi; les deux azimuts b et ¢ sont ceux suivant lesquels se polarise une onde in-
térieure au cristal paralléle a Ponde incidente, selon que cette onde est ordinaire ou
extraordinaire.

Fai dit précédemment que P'équation (4) a encore lieu pour de trés-petites valcurs
de », mais non plus pour v = o0 ou p* == 1. Ceci résulte de ce que I'équation

ps — p's’ = o,

dont est dérivée I'équation (4), a le facteur (p?—1). Pour comprendre comment la si-
gnification de I'angle de polarisation compléte disparait aussi soudainement en appa-
rence,, il faut rechercher un point de vue plus général de la polarisation par réflexion A
la surface des cristaux. Comme les cristaux, les milieux non cristallisés réfléchissent,
quelle que soit I'incidence, une portion de lumiére polarisée, et cette portion augmente
de plus en plus & mesure que p approche de la valeur 1, pour laquelle, sous toutes les
incidences, la quantité polarisée est égalc i la quantité réfléchie.

L’azimut de polarisation de la partie polarisée dans la lumiére réfléchie ne coincide
pas avec le plan d’incidence, comme dans les corps non cristallisés, mais il dépend ici de la
direction du rayon réfléchi. SoitI® I'intensité de la lumiére naturelle incidente ; décom-
posons la lumiére réfléchie en deux portions, 'unc polarisée dans 'azimut §, I'autre
dans un azimut perpendiculaire ; la premiére étant désignée par R/?, la seconde parR %,
on a, d’aprés le § VIII,

R =1 [(psin -+ p’cos B 4~ (s'sin B -+ s cos B)]
s 9 ¢ bl
R = I; [(pcos B — p’sin B)? 4 (s’ cos f — s sin B)].

La quantit¢ de lumiére polarisée dans la lumiére réfléchie est le maximum de
(R;* — R,?) par rapport 4 B.

On trouve

' ' . I ’ . I
R — Ry = {[(p” + 5") — (p* + 5")) cos 2B + 2 (pp’ + s5') sin 24 }

Ty
2
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et pour le maximum et le minimum , Iéquation
o =[(p*+ &) —(p'+5'%]sin 28 — 2 (pp’ + 55" )cos 28,

dont les deux racines vers go® sont différentes 'une de Pautre.
A Paide de cette équation, on obtient la valeur de (R;2 — R,’,’) ,

2

' ' I 7 Ty 2 2\ 12 7 I\
R — Ryt = —[(p"+5")— (p* +s")F +4 (pp' + &)

ou, en écrivant autrement,

, L , 7
R — RP2: EV([)z_{_p/z —|—'A‘2—|—S”)z-— 4([)5_]) S/)’-

Comme la somme des portions de lumiére réfléchies est
.y .,
R, — RS = p* + Pt 4+ &+ s

et comme ( ps —p's’) contient le facteur (1 — p*), on voit que, pour des petites valeurs
de (1 -—p?), la lumitre réfléchie sous une incidence quelconque est presque compléte-
ment polarisée, car ce qui n’est pas polarisé dépend de (1 — p?)°. La signification de
Iéquation (4) ne disparait donc pas subitement avec p* — 1= 0, mais elle perd peu a
peu sa signification, et dans la pratique elle ne signific plus rien longtemps avant
wi— 1 =o.

L’équation (7), au contraire, qui détermine I'azimut § de la plus forte polarisation,
acquiert de plus en plus de 'importance. Cet azimut § coincide avec V'azimut a déter-
miné dans I'éq. {6) ou avec Pazimut de I'éq. (5) 2, quand ps — p’s’ = o, suivant qu'un
des facteurs de cette équation 1 — p? on I'autre = o. Pour obtenir les valeurs de {3,
en général , avec approximation dans le casou le cristal est recouvert d’un liquide qui
réfracte la lumiére presque aussi fortement que lui-méme, on peut, dans les valeurs de
P, Py s, s’y en (5), § VII, négliger les plus hautes puissances de sin (¢ — o) et de
sin (3 — "), ce qui donne

cos 2psin (p — ¢’}  C’sing — A’ cos’ w cos® y sin (p— o')

p = . ; -
sin 29 T— sin 29
sin{p—¢’)  A*sin® w sin (¢’ — ")
P TUsiney | 1—q° sin2g
, A sinw (Csin ¢ — Acos w cos ¢) sin (¢ — ")
e et sin 29

"y

A sin w (Csin g -4 A cos » cos @) sin (¢ — ¢
) 1 — sin 2¢

Pour faire usage de la formule (7), j’admettrai que Pangle d’incidence atteigne 45°; on
obtient alors
V2 Asine (CA4 A cosa) [1 — p*— (=2 — pi (1 =) (" — =)

tang 206 — — . [ S— I\ e
g 2 (1-p2) 4 2A%sin? o (p2- 7%) (1- p) 4 [A%sin’ o - § (C4-A cos o] (1-7) (w-7")

Si lon veut essayer cette formule par la réflexion A la face naturelle du spath calcaire,
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-
)

on doit poser

A:C:\/%, et l——-r}/z:%[singw-’r—;—(i——COSw)"],
et 'on trouve alors
- . Lt wd e | 10
V2 $in o €08* o | ——— — cos'
tang 28 == Gl -l

1 [ —pl Y 1, . '
72— —sinew | — —sin’e (sin? 0 + 8cos o)
4 2 16 /

T

Pai caleulé cette formule pour le cas ot la face naturelle du spath calcaire est cou-
verte d'huile de cassia dont l'indice de réfraction est, d’aprés les valeurs ci-dessus
trouvees, cgal & 1,61¢2. Jai rassemblé dans la table suivante les azimuts calculés des
plans de polarisation des rayons réfléchis sous une incidence de 45°; car il nest pas
sans intérét de comparer dans un exemple numérique ces azimuts avec ceux qui sont
donnés par la réflexion sous Pangle de la polarisation compléte, azimuts dont les va-
leurs sont présentées dans la table qui précéde.

§ XI.

Les équations (3), § VII, contiennent la loi suivant laquelle la fumiére réfractie se
partage entre le rayon ordinaire et le rayon extraordinaire, Les intensités T7, I * de
ces rayons sont entre elles comme les forces vives, d’ol

1/2 : If/'z._: D/2 . D”? IJ.

U= sin2¢” - 7" (Csin " — A cos w cos ¢” ) sin (' " ) sin (' — ¢ )
T osin2g {1 — "% sin ¢ cos 5" '

D’ et D” ont la signification qui leur a été attribuce au § VII.
Si la lumiére incidente est polarisée perpendiculairement au plan d'incidence, on a,
d’aprcs cela,

Azsin? . s ‘ e
(1) | EBB RN _SIL”“; sin? (5-+-¢') : (Csing’—A cos wcosy’ )
-7

: Pp— sin’ (p + ¢') C.

Le rayon ordinaire disparait donc, 1° quand ke plan de réfringence est perpendicu-
Tome VII. — Noveusre 1842. 53
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laire A 'axe; 2° quand le plan d’incidence est paralléle a I'axe. Le rayon extraordi~
naire disparait quand

i2) Csin g — A coswcos g’ =0,

’est-a-dire quand le plan de polarisation du rayon ordinaire est perpendiculaire au
plan d'incidence. Ce sont les mémes rayons pour lesquels nous avons trouvé tang d,=o

au § TX, et qui ont été construits au moyen de la surface conique M, fig- .
P

On a une valeur approximative du rapport T quand pour U on met sa valeur ct

(u’on néglige la seconde puissance et les puissances plus élevées de sin (" — ¢" ),

o . . - sin (o — &/ ) sin (o' — 4"
(3) I 11”2 = A’sin’e:(Csino’— Acosw cosg’ )’ [ 1—2 - (v L ! (q)/ ?”-—) .
‘ sin (¢ -+ ¢ )sin (¢ 4 4")

Si le rayon incident est polaris¢ parallélement au plan d’incidence, on a

R C (sin ¢”sin g cos g+ cosy” sin’y’ ) — A cosw (cos o” sin g cos s +sin ¢” cos’y )] | A’sin’w
SR : — . P
sin (3 + ¢') cos (¢ — ') VI —7"

I—

équation d’apres laquelle le rayon extraordinaire disparait , 1° quand A = o; 2° quand
sin » — o. Le rayon ordinaire disparait quand

(5) C{sing¢”singcosy —-cos ¢” sin’g’) — A cos w (cos ¢” sin g cOs ¢ —+- sing” cos’e’} == 0,
ou, si 'on élimine o' et 9,
(Csing” — A coswcos g’ J[p* — (p — 7)) (1— q2) —sin’ ¢" |
= [ptcos ¢’ (Csing” — A cos o cOS ¢ ) 4 (p2— =) A cos w (1— 0
Ces rayons appartiennent & un cone du quatriéme ordre. On obtient approximative-

ment pour la racine utile

. " o__
(6) tang " =

A cosm 7t — p? A?sin® o (1 —A”sin’ o)
— |t : : ,
2pt C
de sorte que le cone (2) represente la premicre approximation.
Si I'on néglige les puissances supéricures de sin (¢ — ") on trouve, le rapport des
deux intensités (4),
sin(g-¢’ )cos(g-+g’ ) (C sing’+-A cosu cos ¢’ )sin(y'—q" ;|

izep o (Using - A© 1 Afsin? 2 - S ;
50" = (Usin g/ - A cOS wCOSE v [1+ sin(y+¢' ) cos (p-g')(Csin g’ -+A cos wcosg’ )sin (¢'+¢" |

Si le rayon incident est polaris¢ dans I'azimuta, on a généralement

. N LA sin :D in (Q§E‘@A9(E?,f25?”) cos ("P,___:PL)_ —+ ” (slgl?/::silili?;;_) (e} (IJ
) = A N - e
sm*(?—%—cp ) [ Csing — A cosm COs 4 ) sina -+ _A:ill_li cos (q}_ ?’)cos a J U
Vi—y" Vi—y”
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Pour un angle d’incidence donné » et un azimut donné du -plan dincidence » On peut
towjours, par un choix convenable de l'azimut de polarisation du rayon ineident, faire
disparaitre ou le rayon erdinaire ou le rayon extraordinaire. Si le rayon ordinaire doit
disparaitre, on a, pour Fazimut &’ du plan de polarisation primitif,

_{Csing"—A COSw cos " )

7 lein? MR/

7 7 (8in° g’ —— sin ")

. COS (@~ -+ L
A sine (7=9")

(8 tang o' LA vt S il O
®) g ’ A sin o sin (cp«}—q;”)

Si c’est le rayon extraordinaire, 'azimut «” est donné par

“\9;’ tang o — __A_Sﬁ?io_g(_?_:?,)ﬁ
Csin ¢'— A cosw cos ¢
Fai verifié ces deux formules par deux observations qui m’ont été communiquees
par le D Seebeck. -
Lesdeux azimuts a’ et a” ue sont pas 4 angle droit I'un sur I'autre, comme on pour-
rait s’y attendre d’apreés la régle donnée par M. Biot, dans son Zraité de Physiquc
tome 1V, page 368. Cette régle s'éloigne surtout de la réalité pour des angles d’inci-
dence qui ne sont pas trés-petits.
5i le plan réfringent est paralléle & Uaxe, (C==o}); {a’) et (a”) étant les azimuts cor-
respondants, on a
sin* ¢’ — sin? "
$in (3 + ")

3

fang (a’ ) = — cotang w cos 5" cos (4 — $”) -~ cotang o sin ¢”

cos{y — o)
cos o’

tang (a” ) = tang

La régle de M. Biot, ci-dessus citée, donne
tang (¢’ ) = — cotang w, et tang {(@") = tang o.

La formule (g) a une signification simple. Elle détermine exactement Pazimut,
dans lequel un rayon devrait étre polarisé pour qu'aprés sa réfraction par un milien
non cristallisé il fat polarisé dans 'azimut suivant lequel le rayon ordinaire est polaris¢
dans un milien cristallin. Des valeurs de a'de I'éq. (8), celle de premisre approximation
convient seule. .

Quand un faisceau de lumiére naturelle tombe & la surface d’un milien cristallise |
les deux faisceaux dans lesquels il se partage par réfraction n’ont pas, en général, une
egale intensit¢. En employant, dans ce cas, les mémes raisonnements que ceux qui nous
ont donné , § VIII, les expressions de I'intensité de la lumiére réfléchie quand la lu-
miére incidente n’était pas p olarisée , on a

[A sin wsin (94" ) '4-{(sin ¢"- Acosw cos ¢” ) Csin (-9 ) cos{p-¢” )+’ (sin*p’-sin* ¢ -9 ")

((Csing’— A cose cos ¢’ ) sin (g—4-¢/ )| - [Asinasin(p—4-¢')cos(p —o' )| (1-—7 SR

Si l'on déve:loppe cetlle expression, et si 'on néglige tons les termes qui dépendent
e
53..
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desin (' —¢” ), on obtient, comme premier terme du développement, une expression
qui dépend seulement de la position des plans de polarisation des rayons réfractes,

(Csin¢'— Acos wcos g’ )?

sin (3—¢')

1'2 n I____,le
= T
1 — ———— §IN° (9 —%
[_f//'_,SIn (‘? ‘f)
§ XII.

Jusqu'd présent nous nous sommnies occupés des phénomenes que présente la Tumicre
son entrée dans un milieu cristallisé A un axe ; nous allons maintenant considérer 1'¢-
mergence d'un rayon luminenx du méme milieu. Les équations fondamentales (11), § VI,
ne peavent plus s'employer ici, comme cela a lieu pour un milicu non cristallise; il
faut les déduire tout de nouveau des principes développés au § 1.

Soit, fig- 8, Ad unc onde plane qui se meut dans Pintéricur d’un milieu cristallise;
soient AD, A’D’ les rayons qui lui apparticnnent; cette onde sera A la limite dn mi-
lieu AA’, partie réfractée dans 'onde plane As dont les rayons correspondants sont re-
présentés par AS et A’S', partic réfiéchie dans les ondes A7 et A7 r”, la premiére ordi-
naire, la seconde extraordinaire.

Les lignes AR', A’R” et AR”; A'R” veprésentent les rayons qui correspondent & ces
deux ondes. Supposons que I'onde incidente Ad soit unc onde ordinaire; soit ' == A"Ad
son angle d’incidence; solent £ ct €7 les angles de réflexion de A’7" et de A'r”; soit A'AS
"angle de réfraction égal i”.

intre ces quatre angles ont liea les équations suivantes :

. ., sinty sintE sin* £7
(r) sin* il = = = ﬂﬂ__(w'_ nff‘:/"i‘“’
L

2 2

ot 7" designe le cosinus de P'inclinaison de la normale i onde A’r” sur Vaxe; les co
sinus des angles correspondants pour lcs ondes Ad, A'r' étant 4/ ety .

Si 'onde incidente A d est extraordinaire, soient désignés par 7 angle d'incidence ,
'angle de réfraction par i”, et par £ et £" les deux angles de reflexion. Soient de plus
Yus s ¥y lessinus des inclinaisons respectives de Ponde incidente et des deux ondes
reflechies sur axe. Entre 47,17, £ et £” ont lieu les équations suivantes :

oo 4/ s opt soa gt
) Gin? 7 = sin® o sin g, sin” £
! 7 -

e T

2 P RIS
- —(77 .u) Tn

Dans I'équation (1), sin & etsini’se déterminent immédiatement au moyen de la vi-
leuy donnée de sin’; pour sin &, on obtient, en mettant poury " sa valeur, une cqua-
tion du deuxi¢me degré dans laquelle Ja racine négative donne la valeur de £V, Tava-
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cine positive appartient & une onde extraordinaire située tout prés de Ad qui, comme
Ad, sort du cristal sous P'angle i. C’est Ponde extraordinaire correspondante i onde
ordinaire Ad Si l'on appelle 4/ Pinclinaison de cettc onde extraordinaire sur le plan
d’incidence, on trouve

2 (7t u?) AG cos » sin? i’
1—x?sin? i’ - (='— ) A?cos? o sin’
(m? A* - p? G2)sin ¢/
1—m?sin?i’ - (ri—p?) A?cos’o sint/’

tang & -+ tang 4, =—

tang £’ —tang §, =—

i

et 27 ont lien

i A7

Par Péquation (2), on déterminera i" et £ au moyen de J”; entre

des relations qwon déduit de Iéquation (3), quand a &, 4/, i, on substitue respective-

ment €7, 4", i”. Pintroduirai les angles €, &7, £, &) avec leurs signes négatifs dans le
calcul suivant,

Nommons o, f’, 3 les cosinus des inclinaisons de la normale A 'onde incidente sur
Jes trois axes coordonncs, quand elle est ordinaive; ', &', ¢/ et o , 0,7, = , (¢ , 4 ls
mémes cosinus pour Yonde réfractée qui en provient et pour les deux ondes yéfléchics,
41 'onde incidente est une onde extraordinaire, nouws désignerons ces cosinus par

- ” yoo, oLt " non > e A -
2 By s aly b ¢ iy By s ety B, v, Ona, d’aprés Péquation (6), § 1V,
5 a’ = cosi’ -— Ceosi’ coso,
b = sini’'sine’,

.4\
': ¢’ == Ccosi’ 4+ Asin¢ cosw’;

A, B==0, C sont Ies sinus des angles que le plan refringent fait avec les trois axes coir-

donnés. On déduit de 1a ”, &7, ¢”, en substituant /2 #'; on a de plus &', ', ',
. s ’” ' " w s
2 iy L ye oy B yaniy @yeeny %5. e, €D changeanti Ten Y, —E, —E, —E ,— &7,

1. vitesse d"oscillation dans 'onde incidente doit étre désignée par D’ ou par D7, sui-
vant que 'onde incidente est ordinaire ou extraordinaire. Les vitesses, dans les ondes
vélléchies seront représentées respectivement par R) et RY, si elles viennent de I, ot
par R/ ct R} sielles viennent de D”.

Décomposons les vitesses dans I'onde réfractée prrallélement et perpendiculairement
au plan ’incidence, et nommons 8’ et P’ les composantes correspondantes 4 D', ct8”, P”
les composantes de D”. Les directions des vitesses D’ et D" forment avec les axes coor-
donnés des angles dont je désigne les cosinus par (D), (D), (D, ] et "}, (D)), (D" .
Les quantités (R, o), (R! o)y (B) o) (R)uyerey (Bi'5oo5 (Ra)ye.. auront la signification ana-
logue pour les vitesses R, R, R ,R.

Les dirvections des vitesses P/, P” et 8/, 8” forment, avec les trois axes d’élasticite, des
angles dont lcs cosinus sont E,, E,, E; E}, E}, E; G, 6, G; G, G, G,

Ceei posé, le principe de égalité des composantes donne, quand Vonde incident
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est une onde ordinaire, les équations snivantes :

C PE, + §G, = D'(D)) + R (R.) + B (R,

) prE, 4 86, = D/(D)) + R (R + R (R,
PE, = $G, = D/(D') + R (R.) -+ R (Ro).

Si Ponde incidente est extraordinaire , on obtient un systéme semblable; il suffit de

mettre i la place de R, R!, R, R/, R}, R, etc. Les cosinus E,E,ELE

G,y G,...., s'obtiennent des ¢quations (8) et (g}, § 1V, en remplacant ¢ succes-

sivement par i/ et 7. Les cosinus (D'),.... et (D/],.... sont les mémes (ue ceux

quon a désignes, équations (13) et (127, § IV, par R et R",....,etlon obtient
,

. .o
Ry R0y R,y .. en changeant o/, 87, /5 et 2", B7, 4" en %y By e

) . PrEINs
7 "
it .
(5 S S

Multipliant les équations (5) respectivement ,

. par B\, K, B

2o, Par F,, Fy, F,; ces lettres etant prises dans le sens de Tequation (5), §1V;
3o, Par A, B=o, C, et faisant & chaque fois la sorame des produits, on trans-

torme les ¢quations {5),, comme il suit:

e D Asin o Y Asine R CsinE” +AcosE) coso
- — N ' s ’
Vi—y, Vi—q." vi—7,
e . {Csind/ - Acoswcosy’ sing’ +4- AcosE, cose;
§ cosi = —D"cosy’ i — — V) -+ R cosk’ (,”.,;_!_ S
vi—y'? Vi—q,
Asinw cos &”
" r
+R, '*'\/,_..__—'[ _;X';V-\ ?
. . (Csind’—A cosmcosd’) . Csiné’ 4+Acosé’ cose
S sini'=——D"sin’ : S - ) —B: sin & (» A L TR T
Vi—q'" Vi—a®
= . "
g Asinosing)
— R = =
v 7

si on a égard aux relations {2i,a, § V, et quion v remplace R ,.... ¢t RV, ...
successivement par D ..., R4y 0t R gyy et o/ par 475 8, ¢” par £7, ete.
Pour former I'équation qui résulte du principe de la conservation des forces vives,
il faut chercher le rapport d’'un volume de Tonde incidente aux volumes corres-
pondants (ui recoivent le mouvement dans Vonde réfractée et dans les ondes vefle-

chies. I'appellerai 3’ et ‘”” les volumes ébranlés dans les ondes D/ et D”.

Dans les ondes réfractces ces volumes seront (@) et @ ; dans les ondes refléchies
R’, R’ je designerai les volumes correspondants par ‘11]', ) ‘311]:’, ainsi que dans les ondes
R, R je les veprésenterai par 31]:, ) 'iﬁ)',', Alors on trouve, par les considérations qui

nous ont conduits, dans le § V, aux équations {8) et (7}, quand on y remplace =H , par

il [ HEd
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sin i " si 'onde incidente est une onde ordinaire, par sin:” si 'onde incidente est extra-
ordinaire, les expressions snivantes :

' = cosi’ sini’,

@ '=cosi” sini”,
aﬂ’ =sin{’ cos J’,

A 7 C " -
1—(n* ——H“/"/' (W - )

7t — (ﬂ.‘z_ H_z) 9 "

k]

aﬂ” = sin” cos”
'ﬂ]; =sink cosk,
7 _— . ’ s
”ﬂ — sm&ﬂ COSE”,
C
[—(71,'2— 2 " R I
(m'—p) cosE? T

2 {2 2N 4
= (m— )y,

. . ‘G -
1— (=" —pt )y, (————7"
J e N " "
cosk,
2 {2 2 "2
T '_nu')'}'u

3]] "= sinE’ cos§’

H . ” - h
'”” —sing’ cosE,

1équation des forces vives , quand I'onde incidente est une onde ordinaire,

v

DY = S @ KPR

se change , d’aprés cela, en

D’:sin cosy’ — R, *sink’ cos&, — R)?sing’ cos!
" C
o s, (s =)
4 =(P>+8"¥sini’cosi’.

>
2 2 2 "

Cette équation du deuxiéme degré peut se ramener a une ¢quation linéaire. On multi-

plic la seconde et la troisiéme des équations (6) une par P'autre, on retranche le pro-

duit de V'éq. (8), et I'on remarque que , d’aprés I'éq. (1), §, ==. On obtient ainsi :

. A?sin? e , Azsin?
P’ zsin i’ cos i’ = D’*sin Y’ cos Y’ l—im—,?——R, *sing cosk, T—’i’)
T —
. Csink” 4-AcosE” cosw)? e p?) g (C— cos £”
. R”ZSIHE’,’ cos E'/’ s( 1 El -+ "§I w) — (7’ “fl‘ )j/ ( i 7 LOS‘E,)
t 1—q) cosE ] [w*— (m* —p?)y)?]
- M ’ 14
DR sin(Y—£7) Asinw (gsmwp —Acqiq; CO5 )
Vi—y" Vi—o®
. ,. Asinw (Csin¥ -+ AcosE, cos
e

Viear | =7
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Cette equation est divisible par la premiére des équations (6); on obtient :

4 . . . Asinem . A sin o
sl”sm/’mm —=D'sin ) cos Y > — R sin E/ (‘()Sii ——
y J
S L

vi—7’
(+ R’ % sinZ’ cosk — — ( L
: Vi—7” Vi—y”

i S
Vi—v,

—p?)singy gy (11—

"oy

Y
|

(G sin£’ +Acosw cost’)
’ : 2 EAMIL
—(w—pi)

Si Pon multiplic cette équation parla premicre des équations (6), et si Pon compave lc
produit avecl'équation precedente, on trouve que la justesse de I'¢quation (4) est subor-

donneée aux relations

. . e e s . (m2—u
sin (b — ') cos Y+ E7) (Gsin E' A cosE) cosm} - S

ysin?E’ o (1— 47 )
. IR 7

P (T‘-"'—AU.? \ ,/t':'

= —sin (4 —%) (Csin ' — Acoswcosy’

et
4 s 2\ o - " " Mot
N . I mi—pisin g gy, (1—7, 7}
51n(c_,4—4,')('05(:_',——-E_',’)(‘(,sm‘g','—{—Acosi',’ COS&)/—-{ A _'l'w(,_/r__/_:.;

= sin (&' 4+ £ )(CsinE'+AcosE cosn’,
de la justesse desquelles on peut gassnrer en éliminant p? et = au moyen de

sin?g’ —sin*{ [z —(r— w)yt]

—mr—pt) (1 =y sm = sin &) £ )sin (& —E7).
Les équations (6) et () contiennent la théorie du cas ol le rayon direct est un rayon
ordinaire. Jai déji dit en quelles autres équations sc transforment les ¢quations (O
quand le rayon direct est un rayon extraordinairc.
Si P'on traite ces equations (5) comme on I'a fait i Poceasion des equations 6), on ob-
tient les expressions suivantes :

vl

, Csind”— Acoswcosy” . Asine Csing” 4+ cosk cosm
P R, == R —— e =
7 NG 7
Vi—y vi—1v, Vi—1v,
o) §" cos i — D’ Asinesing” R cosk’ (Csin &), +A cosE, cose) LR Asinwcos &,
(10) = e, " " y - y =
' Vi—v - Vi—1" ve—q,"
A sinem sin 4" Csin¥’ + A cosE! cosw) A sipwsin )
oo Ty - T T an L ol i S R" - Sy,
§ sini = i . R" s, A R” ! "
\ yi—v¢ Vi—%. vI—%."

Léquation des forces vives est

Dy = (P8 @ B P, R P
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et en y mettant les valeurs de ‘w”, @’,..

425
., tirées de Iéquation (7), elle donne
2 —_—2 —_ ” " 7”7
D”’sin 4" cos §* J 1— (=" —p?) (C—9"cos§ )7.
cos §” [ — (m* — p?) 9"
— R} *sin &, cos&, — R} *sin&" cos&” {1 _ (@ p)(C—v, cost))y,
’ 00 £ [r* — (m*— 29, ]
= (P> §”%)sin {" cos {”.

En multipliant Pune par I'autre les deux derniéres équations (10) et retranchant
le produit de I'équation (11), on obtient

. Csin 4" —A cosw cos” 12
P sini” cos "= [sm 4)1/ cos ‘«!'” ( v ‘p )

_ (@ —=p?) (C— 9" cosd”) " sin "
T— " 7wt —(m — pt) "
2
- R' sin E' cos g A__sirl—t:)— R"2 l-sinE cOoS E" (Cs_lngl—{—AC(’)’Szw(,osE ) (71' ¥ );C—(-Z COS)E,,I),'Y,, SIn grr]
! ! I/ I—9, T T \F" 71/"
— DR, sin (§’ —£)) Asinw Csing, +Acoswcosk, — D'R” sin (" —&”) A”sin? @
" " 7, —_—
Vi—y” Vi,

\/'_72 \/l—_-'y”.
] ’ "y Asino (C Sing:/ +COS(‘)COSE:/)
-+ Rn Rn s (gn + gu} —.-r—; = "y *
Vi— Vi—q

Si I'on divise cette équation par la premiére des équations (10), on obtient

Psini”cosi” —=D” {Sin 4 cos 4" (Csinx[»”_Acoswgos¢”) e 1 e Z)Sina\p,/}
\/I //1 \/I ”2[71' _‘(’"‘—f‘) //,]

Asine
— ’ : r z!
R, sin§ cos§ -————~\/ ==
— s

C " A
4R %smi cos E"( sin¥) --AcoswcosE, )

@—FMO“VFMV%
Vi—y, Vi mt— (et ) 7]
Si 'on multiplie cette équation par la premiére des équations (10), et si 'on compare

ce produit avec 'équation précédente, on voit que les relations suivantes doivent avoii
lien :

2 " _ 9 //
sin(€, — ") cos (£, 4" ) (Csind” — A cosw cosd”) + (ﬂ B (L )/s:m
‘ ‘ « ——(1: — )y
= —sin(E, — ") (C sin &, 4+ Acosw cos &' ),
sin (£}, -+ &, ) cos(§, — &) (Csin &) + A cos w cos &) — (m*— p?)y) (1— %) sin? £/

= sin (g, + &7) (Csm £+ AcosE cosa),
sin (Y”— E) cos (4" + E ) (Csin 4" — A cosw cos 4”) (Csin&) + Acosw cosE")

+ (mi—p?)y " (1—y ") (Csin &, +A cos wcos E) )sin* "
w—(r—pl) "
(m* — p)) 9! (1 —4)?) (Csind” — A cosw cos 7 )sin*E"

w— =,
= A’sin® w sin (" — &) ).

Tame VII.— Novexere i8]2.

54
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On peut facilement s’assurer de I'exactitude de la premiére et de la seconde des relations
enremplacant lesquantités qui multiplient y” et ¢/ par sin? &, — sin® " etsin’ £/, — sin’ gl
Pour prouver la troisiéme relation, nous remarquons que

—(m—p) sinty? _sinty —sin’gy _ —(wi—psin’E)

w’—(r’—y’)-y o ?

yy T -

" ” 2
=t 7 — (7' —p) 7,
en substituant ces expressions dansla troisiéme relation, multipliant par ¥ —, " etope-
rant quelques réductions , on obtient

[4”(Csink” + A cosE! cose) 4 (CsinJ”— A cosw cos §” ) — sin ($” +- £
> [4”(CsinE) +- A cosE! cosw) + -, (Gsin §”— A cosw cos P+ A2 sinZo (y”2—, %) = 0.
Si I'on met a la place de ” et ¢, leurs valeurs tirées de (2), et qu'on exécute les opera-
tions indiquées , on trouve que cette équation est identiquement nulle.

Les lois d’aprés lesquelles la lumiére & la sortie d’un milieu cristallis¢ est partie réfle-
chie, partie réfractée, sont entiérement comprises dans les équations (6), (9), (10} et {(12).

§ XIII a.

Pour plus de simplicité, j'adopterai les notations suivantes :

Asin w ., Csin ' — A cos ' cos» ,
T = sin y, — - COS ¥y
\/1_‘7 \/1—7
Asin e . Csin ¢” — A cos " cos »
=== = siny” = cosy”
Wil ’ - 7 - ?
Vi—y”" yi—g"
Asin o . Csin &) + A cos & cosw ,
7_——II:5H1Z” = = — 08 Z,,
(1) / =7 I—1,
Asinw . C sin £’ -+ A cos §) cos w p
———= = sinz], — = —cosz,,
I1—79, yi—v,
Asine . Csin £ -+ AcosE cosw
——— — sinz : 4 phihL = — cosz
\/—,, - n? — . - 2
I—% \/I —
Asinw . Csin " 4 A cos &) cos w
= sin z, & 2 = —cosz,.

i E—g

On remarquera que ces quantités différentes y et z désignent les azimuts des plans
de polarisation des rayons dans l'intérieur du cristal. Je poserai, de plus,

\

1 sin(g, —)sin(e, + ) =1,

() _ Y sin(g — E")sin(E + E') =K/,

D sin(g, — &))sin (%, +5,) =K.
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Alnsi les équations (6) et (g) du précédent paragraphe se changent dans les sui-

vantes :
P’ =1 sin 57, ~+Rsinz, -+Rcosz];
(3) §cosi’ = 1 cos ' cosy/, —R/ cosz cosE!, + R sinz"cos £;
8’ sin i’:—D’cosy’sinm}/, —+R; cosz’ sin £, —R sin z)sink’;
P’sini’ cos i/ — 1 sin ysin P cos —R;sinz/ sin £ cosk!, —R:’(cosz;'sinEf’cosE:'— K');

et les équations (10) et (12) da méme paragraphe se changent en

s . P’ = D" cos 7 +Rysinz, + R, cosz,;
) o Lf)s f” = DU sTny” c?s x};ﬂ, — R;, cos z;, c'osE;, , -+ R// SI'n ZI,I,C-OSEE",,;
ot im0 (g sy g COHSE R sinsin -
, =D"(cos y”sin { cosy”+4-1), — R’ sin z,smk cosk), —R!(cosz"sin £, cost’ —K*).

On tire de I’équation {3) » si on observe que £ = :

R — _p Ln(i_’:_\pg [iiny’sin 7 cos (l"ﬁ—x")')-{— cosy’ cosz! cos(i’—E”) |sin (i’—i—E’,’)—cusVV’K’%
5) ' Sin (77 +47) [sinz:sinz;’cos(i’~4a’)+cos 3, €083 €os (i'—&7)]sin (i'4-¢7)—cosz K’
R D’ sin (i'— 4/ sin ¥’ cos 2’ €os (4 4") — cos y /sin 3/ cos (i’ —g')
. i e - ~ . -
‘ Sy sinz; sinz) cos(i'—37)4-cosz’ cosz’ oos i'—& )]sin (i"+-£ \—cos 2 K/
I3 ’ ( \{ 7 " L 4

et de Féquation 4)

DII
Ro—= ——
sin (i - &’
[ P 1/ iy . " I/( 73 u”) : R N AV i . s E” I sin '”Siﬂrll'--"”‘K//
(6) @%w&]—-@ )-Sln-y cosz, COS(I - //)]_Sln(l - )Sln\l +E& (—SI'DZ, sz ”-*‘ n) +: J L) l
Isinz, sin =) cos (17— £]) 3-cos cos, cos(i7—& |[sin (1" 1 17— coma K i
R — —p” {fCOSy” €08z, cos (1" + $”) + siny”sinz’ cos (i” — g’)] sin(i”—y" ) — cos 21

L]

[sinz sin 2] cos (7 — §,) + cosz) cosz” cos (" —&)]sin(i” 4-¢") —cosz, K7
Pour Pusage pratique on développera ces expressions suivant les puissances de |a
différence des axes d’élasticité > et 'on n’aura & considerer que le premier terme.
Le premier terme, qui est indépendant de la différence des axes d’élasticité et qui ne:
dépend que de leur position, donne

) D sin (¢/ — 4/ e ; ’

R = —M sin ¥’ sinz’ M +c0sy’ cosz) |,
sin (i 4- /) cos (¢ — /)

e R” — D'sin (i — )

scos (/4 47)
- sin (¢ - §7)

—_—
"cos (i’ — )

{sin 2’ cosz — cos ¥’ sin z

. D”Sin (ill_ Hb/f-- 08 ”Sin Z” cos (i” +_4Jl/)
(8) ” Sin (l’”+'4}”) ‘(’ e " m

D// : '//.__ /B (‘05 l‘/l_'_ 'I/
= — T ) sy cas sy 2L )
sin (i +¥) | cos (i —7)

7
.
C p
—siny” cosz!
-+ sin y” sin 2

54.
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De P'équation (3) on déduit pour la lumiére réfractée, quand on observe que

—
g =19, cosz, sin (&) —E/ ) cos (&, +EN+ K = \/]———Z,,- cosy’ sin (£, —E)),
et o o
Vi—qsinz] = Vi—q'sin y’,
P 4+ D'siny 51n2.1; + \/ ——7 cosy " sin (8) — &)
o = Sl ¥ Jeos(i'- 7 Sin (e ¢ )eos (0~
Ay "y

g — D cos y'sin 2y T—qsiny sm(E — &)
_Dcosy AV LRI\ — it :
sin (i + ') I — sin (i’ +9¢/)

Pour exprimer les valeurs P” et §” plus simplement au moyen de équation (6}, J'in-
iroduirai une nouvelle onde, 4 savoir, I'onde ordinaire correspondante 2 D". Je des:gne
par . soninclinaison sur le plan réfringent, en sorte que Y =g, Je désigne par ¥,
Iy relative i cette onde, et par 4 Pinclinaison de sa normale sur 'axe. On a donc

o, I3 . I3
# = Geosy,+ Asin, cosa,
{10) , Csiny,—Acos}, cosw . Asine

cos y., = et siny =
\ T 1—x'* ’ T Vi—x
Si on observe maintenant que
—x?
cos y” sin () + ") cos g —y)+1 = iz cos y! sin (¥, +4")
cos 2 sin (£, — £1) cos (£, + &) + K’ —\/ L cosy sin(E, — By
"
et
JVi—q7sin y" = ¥1—17," sinz’ = Y1 —=""siny,,
on obtient

2 1 —x'?
D”\/ i , S . i " . ' "
o T ANCAN AN PN N [t T X i
T T s R ) o' V i sin (L
”\/ —smy” sin (\x‘,,—i'\?) " — w2 g r g
[H-R \/ 77 sin (£, m]_

S (7 ) D’ T Sin(y, V]

(11)

S/I pa—
"

Dans les expressions (g) et (11) on peut si Pon ne veut conserver que les premiéres

n

puissances de (n*—p?), en place de D " D;l” mettre leurs valeurs approchées, de-

duites des équations (7) et (8).
Les équations (5), (6), (9), (1 1) donnent des valeurs imaginaires entre les limites de
1a reflexion totale, comme cela a lieu dans les milieux non cristallisés.
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o

On sait que dans le cas de la réflexion totale P’ et ', P” et §” disparaissent.

Les valeurs de R), R}, R, R, peuvent se déterminer pour ce cas par le méme rai-
sonnement que Fresnel a appliqué au cas analogue dans les milieux non eristallisés ,
raisonnement peu concluant par lui-méme, mais qui a recu la sanction d’observations
nombreuses. J’appliquerai ce raisonnement seulement aux valeurs approchées (7) et/8).
R/ prend, quand sini’ >> 1, la forme A -+~ B {/— 1. D’aprés Vanalogie du raisonne-
ment de Fresnel , P'intensité de la lumiére réfléchie serait en réalité

A+ B =(A+By—1) (A —BYy=1).

On obtient A — B y/—1, en mettant dans la valeur de R/, 180°—i’ partout & la place
de i’. De cette maniére on tire des équations (7) et (8), si, dans le cas de réflexion
totale,, on désigne les vitesses réfléchies par (R)), (R)), (R ), (R}),

(R = D'*[eos?(y’ —z') — L' sin 2y’ sin 22" |,
(R/*) == D'*[sin* (y' —2z’) 4L/ sin 2y’ sin 22’ ],
(R:’ 2) _— D”’[sin’ (J’ /I__zll) + LI/ sin 2),// SiIl 2z,,]’

(R)*) = D"[cos*(y” — 2"} —L" sin 2y " sin 22" ].
sin® ' sin® 37
L’: 2 \p o 2 et L”: 3 “P TR
pr— (1--p?) sin® i (14 p?) sin®

Des quatre rayons réfléchis, deux seulement, (R}, (R ), disparaissent dans certains
cas particuliers, savoir, 1° quand le plan réflecteur est perpendiculaire 2 I'axe;
2¢ quand l'azimut du plan d'incidence = 0; 3° quand l'azimut du plan d'incidence
== go°, et qu’en méme temps le plan réfléchissant est paralléle 4 I'axe. Les rayons (R}
et (R}, au contraire, ne disparaissent pas. , '

§ XTI 5.

Des équations (11) résulte une loi trés-simple pour la position du plan de polarisa-
tion d’'un rayon extraordimaire & sa sortie d’un milien cristallin. 8i 'on désigne son
azimut par rapport au plan d’émergence par «”, on a

P” cotang y/
t: S = B

Si Ion désigne le méme angle pour le rayon ordinaire par o', de telle sorte que
P’ , 1 . "
tang o' = goonaen négligeant les puissances supérienres de (£ —¢"),

’

tan ! R" S : "y
(13) tang aI:——ﬁTg!-_—l‘ [I+_/l - 7//‘ < S (g’ B E,/
cos (i’ —/) D 1 *sin y/cos y'sin(§! +¢") |

”

oll pour ]~)—’—, on doit mettre sa valeur tirée de I'équation (7).
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Des équations {g) et {10) on peut facilement déduire lintensité de la lumiére du
rayon ordinaire et du rayon extraordinaire i leur sortie du milieu cristallisé , savoir,
P’ + 8, et P2 -4~ 8”2 Ces expressions seront d’une grande importance pour les re-
cherches photométriques. Pour employer lcs expressions () et (10) dans ce cas et dans
des cas semblables, on devra connaitre les valeurs de D’ et D”. Dans la plupart des
cas ce seront les vitesses dans les rayons conjugués, entre lesquels un rayon donné
se partage & son entrée dans un milieu cristallisé. Elles sont alors données par les for-
maules (3), § VII, si I'on introduit dans ces formules les azimuts des plans de polarisa-
tion D’ et D”, pour les exprimer indépendamment de la position du plan suivant le-
quel la lumiére a pénétré dans le milieu, c’est-a-dire, si 'on pose dans les formules

3),§ VII,
A 3 M /— 7
Asmo sin 27, Csing'—A cosw cosp — cos
Vi—y! Vi—y}
A M . : II_ 14 ,
sine o s Csing Aco_ﬁwcos:p —cos z”,
\/I—'y ”2 —y 72
et de plus
-7 sin (¢' —¢” )sin (¢ +¢”) = G.
Vi—y”
On a
, sin 2.9 [Psin &” — S cos 2” cos (g — ¢” )] sin {9 + ¢”) — SG 1
= sin (3 +¢') {[sin #,sinz, cos (p—¢') + cos = cos =" cos (p—¢" )] sin (p—+¢”) -+ cos.&’ GY’

(14)

. [P cos 2’ + Ssinz’ cos (3 —g¢')] ]
Di=sin 27 [sin 2’ sin 2” cos (p — ¢ ) 4+ cos ' cos = cos (¢—¢” )] sin (¢+¢") + cos ' G

Si 'on néglige dans ces valeurs tous les termes qui dépendent de la différence des axes
d’élasticité , on obtient, comme premiére approximation ,

oy — ‘sinzq:, [ Psinx’, —SCOSz'Ja
sin (p-¢') L.cos (p—¢')

(D”* sin 29 [Pcos:c' —i—Ssinx’]
Tsin{pe’) Leos(e—¢/)

15

Au moyen des équations (g), (11) et (15), on peut répondre & la question suivante :

Comment la lumiére d'un rayon polarisé, aprés avoir traversé un prisme d’une sub-
stance cristallisée & un axe, s'est-elle partagée entre le rayon ordinaire et le rayon ex-
traordinaire?

Je vals éclaircir ceci par Papplication & quelques cas particuliers qui peuvent étre im-

portants pour la pratique.

1. Les plans d’immesgence et d’émergence du rayon dans le prisme coincident, et
les arétes du prisme sont perpendiculaives a I'axe optique. Alors, pour le rayon immer-
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gent comme pour les rayons émergents, » = o; par suite
sinz’ =sinz” =sin y’ = sin y " = sin z, == sin z" = sin z, =sinz! = o,

et ’on obtient

D — _ _Ssinzg
T sinfp+g)’
D’ — Psinag
- sinfp+y")cos(g—9") ¥ G’
P = o,
{16) g — __ _Dsinaiyf
T s YY)
”\/1 —x
pr D Vi) o ing— g1 T &, —z)
T sin(i"~") cos =0 [ - cos(i”—E")sin (74 )K"V 1 — o7 sin (¥ 107 ,)_, !
S$”= o.
D’oit le rapport des intensités de la lumiére dans les deux rayons aprés leur sortie dn
prisme,
T e [ sinay _sin(i'y’) (" — g7 ):]’ [Sin (p+¢" )eos(o—g” ) + "Ji
(17) 11:¢/Z+S—-,,2 = ! — " Sln(\p”—-f—q;”) Sin (‘,+‘1‘,) sm(cp—i—qf)' i
+S7 008 (" +4") sin(i'—4") —1 = /1 —+ "% sin (£, —&") ]
[I_ cos(("—E7)sin (7 +- &) —K V 1= 7, sin (Y, +47)

2. Les arétes du prisme sont paraliéles a laze, et les plans d’immergence et d’émer-
gence leur sont perpendiculaires. Alors G = o et ¢ — go°; ainsi

cosz’ = cos 2” = cos y ' = cos y"=cosz, =cosz" = 082, == cosz! == o0,
V=9"=9 =9/ =y,=9 = =o.
D’aprés cela
_ Psinoyg
~sin(g+¢7) cos(p—g')’
s__ sinz2g
" sin (p4¢7)’
D'sin24’S
sin (" +/ ) cos (i'—')’
§ = o,
1= D ], i e
o sin (7)) sin ({74 4" )sin(§, +")
Pl/ —_— o’

/

P =

2




(a1)

R = — D' sinfg—g’) {

R = —
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et le rapport des intensités dans le rayon ordinaire et dans le rayon extraordinaire

apres émergence,

sin 29’ sin ({”" +,) 1 Tesin?(p+9”) P
TS B Earate= =) S
e [1__ sin (" —¥") SIIL(E:L:ED] .
sin (7 +47) sin(},+3")

Je vais encore appliquer les formules (g), (1 1), (13) au passage de la lumiére a tra-
vers un milicu cristallisé séparé par deux plans paraliéles d’'un méme milieu non
cristallisé. Ce cas particulier, intéressant par lui-méme A cause de son application &
la théorie des couleurs que les lames minces cristallisées font apparaitre dans la lu-
miére polarisée, est surtout propre A Ia confirmation des formules (g), (11), {15), par
le grand nombre et la variété des phénoménes qu’il offre & I'observateur.

Les formules (15) restent telles qu’elles sont pour ce cas; on a, au contraire , a faire
dans les formules (7), (8), (g) et (11)les substitutions que voici :

e [ FR—
Y = Z o Z’—- Z”_Z, yn_ Z
" 7 I [
.y = &, “p— z"__.z >
= i" = 9,

A ’ \ [/ " [ L — f
\1‘ - ? 7 # - ? ? YI/ - ?,
Y S " "
E, - E" = %, El E"II’

P (2 v "
LA / ’ 7= Tus 1, = Tw-

D’aprés cela nous obtenons, si pour la symétrie dc expression nous mettons ¢" ala

" "
place de E] ou £,

P — - D’'sinz’sin2¢ 4R 1 —'? .cosx’ Si“,(?'—,‘?ﬁ_ ’
: sin(p+¢)cosfg—g ) ¥V 1" sin (g+9')cos(¢—¢')
\IQ) 13 ! o3 4 12 o3 [ "
g — D' cosx’smm2¢ p I— g sz sin (9 — ¢ )
I, —_—— '——-.——_—— " : ’
sin (g +¢') ! 1—%  sin(p+¢’)

P 1_7/2 :
D” z ! ” s
Vi 7o sin(y +7') [H—R" \/I———/—’ sin (¢ — o >]’

sin (¢ + 7' )cos (p —¢') D"V 11—y sin(y +¢")

{20) -~
l/‘ /I_'y i o) ’ ” e
D 1_7,,25111.1' Sln(? +¢P ) [ Rll \/I __'y//;, sin (q’/__?m)]
5

SII — . — = y
sin (p +9¢') 1— v sin (¢ +9¢”)

PI/ —_—

sinx’ cos 2’ cos(p+g¢’) — cos ' sinz” cos (g —¢')

"

sin 2 sin 2" cos{p— ¢’ ) -+ cosz’ cos 2" cos (p— 9" )] sin{p+¢") —cosz’ K
99 S O P9

[sin 2 sn z” cos (p—¢' ) =+ cos 2’ c0s 3" cos (g—7" ) | sin (p + ") —cos 'K
o g[cos 2 cos 2 cos(p 9" ) + sin 2" sin 2’ cos (p— o' )] sin (p—¢") —cos 2’ G‘%
)

},
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af
"

{n2) K= V:L" sin (p’ — " ) sin (p/ 44",
1=y,

Si I'on ne veut conserver dans (19) et (20) que les premiéres puissances de (7t —p),
on peut poser

i3 [ _— 4 - I !
gRi’ = — p A (P,)[sin x’cosz’cislu) -—COS»’L"SiHZ']:
3y sin (¢ + ¢') [ cos(p —¢')
LS ’ M Ié — s . H) .
(B; = — D"Sﬂur) [cosx’sm z’ gﬂi‘% ~+ sin 2’ sin z’]“
sinfy -+ ¢”) | cos (p — o)

§ XIV.

Un rayon de lumiére polarisé suivant Pazimut o est transmis par un milien non eris-
tallisé que limitent des plans paralléles ; il se dirige, aprés cette transmission , dans un
azimut 8, qui satisfait 2 la velation

tang o« P

tang = - = H
e cos*(p—¢')  Scos’{y —¢')’

ce rayon, recu par une plaque de tourmaline, disparait totalement si la direction du
plan suivant lequel elle polariserait la lumiére qui la traverse se trouve dans I'nzi-
mut §’, pour lequel

(1)

Scos? (9 —¢')

£ ; SAY ¢

tang = - ——— 17

gp P

Snbstituons maintenant i la plaque non cristallisée une plague mince de cristal, suffisam -
ment mince pour que le rayon ordinaire et le rayon extraordinaire ne soient pas scpares
dans le rayon transmis. La lumiére incidente doit ainsi rester polarisée dans azimut = on

P . . . ,
— oY 3 P, 1 4 "
tang « == g et je supposcrai que la tourmaline soit encore dans azimut B, pour le-

-

quel tang ' == — P cos*(y -— ¢'). Le rayon ne sera pas complétement détruit, mais

il ¥ aura tonjours certains azimuts de la ligne principale de la petite plaque cristal -
line, pour lesquels la lumiére qui traverse est minimum. Ce sont ces azimuts que nons
nous proposons de déduire de nos formules. Tls paraissent particuliérement propres
i I'épreuve expérimentale d’ott doit résulter la confirmation ou la réfutation des for-
mules (17), (18) et {20). Je décomposerai la lumiére en lumiére polarisée suivant 5’
ct en lumiére polarisée perpendiculairement.

Les composantes du mouvement suivant £’ proviennent de P’ et S’ dans Pequa-
sion (20,3 Je les désignerai par O; jappellerai E celles qui dérivent de P” et §7;
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on aura alors
O = P'sinf’ + S’ cosf,
E = P’sinp’ + S"cosf;

et en remplacant sin 8’ et cos®’ par leurs valeurs decduites de Fequation (1), et
P’, P”,... par leurs valeurs tirées de I'équation (20), § XIII,

OVP S oor (5 =¢)

[Pcosa’+ Ssinz’cos (p—y' )] — R \/

2 ol ’ 1
1 — o isinflo’—o" . . : -
/,,’A = LA [Psinz’-Scosz’ cos {o=t i
t—q,7sin (g +¢")

. D'sin 20’
Tosin(y+97)

(2)
Ey P4 §cos’(y — ')
— /2 i (el 7 RS ":‘.__AII/‘\"
= —\/;-1—:;'72 [Psinz'—S$ cosx’ cos(p—7'}] [%-} + R \/jw:f‘,f %r;—k(if_::jﬁ{ |
D’aprés ces expressions, on voit que 0 + E° ne peut, en general , étre == o, car O
et E ne contiennent aucun facteny commun qui puisse élre = o0; en sorte que la tour-
maline, tout cn se trouvant dans Pazimut §’, ne peut faire disparaitre en géncral le rayon
transmis. Mais si la double réfraction cst trés-faible, et si I'on peut négliger les termes
qui dépendent de (y'—¢” ), on obtiendra, en mettant pour D et D” leurs valeurs tivees
de I'équation (1g),

(0® 4+ E= [ P24 8% cos’ (9 — 7'} ]

sin® 24 sin’ 24’

= 2 [P cos &'+ Ssinx’ cos (g —¢' )} [Psinz’— S cosa’ cos (p—g" )

T S H
A sint (p 45" Jeos* (v —g”

Qo 1l suit que O + E? est presque = o, & des quantites dn deuxiéme ordre pres,
dans deux cas :

§ oo Quand Pcosax’ + Ssinx’cos{y —¢') = o,
3 .

(3) | 2°. Quand P sina’—Scosz’cos(z—9' )= 0.

De la on tire deux valeurs pour z’, et de celles-ci, au moyen des ¢quations (14}, § XIII,
deux azimuts «, dans lesquels doit étre placé le plan d’incidence pour que 0 - E? dis-
paraisse. On tire de la premiére, en posant

S cos (p—9g’
= 7<'\°4"ﬂ~) — tangll ,
P cos ¢
C ,
—- tang o
, A
cos (I, 4 w) =

L [Seoste—eJ )’
1 i
P cos

R it
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et de la seconde, en posant

P
tang 07" —
A6 8 cos g’ cos (p — ¢')’
C /
— tang ¢
. A
sin (11

m): —
\/ p I ?
S ,—§ COS(:?—q)') COScp':,

On voit qu’il n’y a pas pour toute valeur de ¢ une valeur possible pour w. Aussi
ngtemps que le rayon réfracté fait avec la normale i la surface réfringente des angles
plus petits que 'inclinaison de Paxe surla méme ligne, 'azimut w est possible pour toute

lo

e P, . .
valeur de ¢, quelle que soit d’ailleurs la valeur de o ¢ est-d-dire de I'azimut du plan

de polarisation du rayon incident.

. A . . o , . g
Sitang ¢’ > = | on doit avoir, quand la remiere equation est satisfaite par une va-
g9 ¢ ' q P | P

leur possible de w ,

siny’ Scos(p — PN
< [,

et si la seconde est aussi, ct sous la méme condition,

vérifiée par une valeur possible
de o, on doit avoir

sing’ P 2
T < [é,‘eo;‘(;;:,;f—)] -
Siles deux valeurs de o déterminées par I'équation (3) sont

a la fois possibles, ces
deux équations de condition doivent en méme temps subsi

ster. En les multipliant

2 » . ey o . ’ P .
I'une par Pautre, on obtient encore une troisidme condition indépendante de g qu
doit étre remplie , savoir,
sin? ¢’ < 2 A2,
Nous pouvons ainsi poser

sing’ = (1 +a)A’, 2 <1

nous n'avons besoin que de considérer les valeurs de o entre o et 1

; car pour
unc valeur négative de « on a

2
tang? ¢’ < (z%,

et dans ce cas, comme nous Favons déis remarqueé
> H

les deux valeurs de w sont tou-
Jours possibles. On peut donc écrire

ainsiles deux premiéres conditions :

, __ P - P Ly
L S(-os(¢—¢’)>¢’ Scos(<p-—-<p’)<\/;

-

55,
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On obtient, si » est déterminé par la premiére des équations (3),
pre L sin(e’ — ")’

C 1y sin (o + ¢)
sin? x -+ cos® x cos® (3 —9’)

5

(5) 0! + E* =

R,/ doit étre déterminé par les équations (23) et (24), avec cettc restriction que

P ’
g = tang z’ cos (g — 7' ).

Si  est déterminé par la seconde des équations (3), on a
D' *sin’ 2’
Sn*[(g & ) (€08 @+ sin*z cos* [y — ¢ 1)

(6) 0; + E2 =

ot l'on doit faire entrer la valeur de D’ tirée de I'équation (16}, avec Tattention de
. P , . _
faire = cotang x cos (¢ — ¢’} 5 ce qui donne, quand on s'arréte sculement aux pre-

micéres puissances de { ¢’ — ¢”), aprés quelques réductions :

(7) . sin2g ['/ sin (g 4 9 )+ Vi—q ¢ cos & vos ¢’ J sin (¢ — ¢

~ sin(p+¢) T =y cos (g —¢')| sin(¢ -+ o)

Vi—""

Quand la double réfraction sera considérable, par exemple comme dans le spath
calcaire, les obscrvations donneront pour o des valeurs un peu differentes de celles
qu'on calcule & l'aide de I’¢quation (3). Cela aura lieu surtout dans les azimuts, pour
lesquels O® + E? est un minimum aprés substitution des valeurs completes de Pequa-
tion (2). Les expressions (3) ne seront donc pas = o, mais auront des valeurs de
Pordre ¢ — ¢”, que je désignerai respectivement par X’ et X”. Je chercherai les con-
ditions sous lesquelles 02 -~ E? est un minimum , mais j'y tiendrai seulement compte
des premicres puissances de (»* —¢”). Posons donc

(8) Pcosx’ + Ssinz’ cos(y — 3') == X'.
En négligeant les puissances supérieures de (9 — ¢}, nous obtenons

; —— sin2gsin 2’ " 1—¢4'% sin{y’ —¢") : ]
/P 2 2 —o )= | ————= X/ R N g —_—
O P2 Sicost(y— ) I:sz(? 7 + R, \/ T sin g ?/)(05(\? ¥
- ’ sinagsin2¢’ 1 8
' P 2008t (@ —— o ) — X
E' VP + o’y — o) [silﬁ 9+ ) J cos.x

7

Ceci posé dans 0? + E* = min., donne

K

X = — R \/__I —/* sin(y — ") cos (g — o' sin(p = o',

(10 , - :
(1) ’ 1— 25in 2.¢ sin 2¢’

S

R
cos x’
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ou, en observant que d’aprés I'équation (16) du paragraphe précédent, eu égard i I'¢-
guation (8), on peut poser

= R /1—ysin(p — ¢") Scos(p— ¢7)
D’ L —<o/ 2sinag cos.a’
) pr— _ _Sin2g 8
sin (9 — ¢’} cosz’’

X/

?

4

B’—, se remplace, d’aprés I'équation (23), § XIII, par

Bl sin{e—o) [, cos(p+ ') ,
57 e Slnh(q; + (P,) ASID.Z C0S83 E—(E(so~;~4)—,—)0051‘ SII]ZJ. )

Des equations (8) et (11), on déduit «’. Si on désigne par Y’ la premiére approxi-
mation de x’, de sorte qu’on ait

p

i r Y’ e e
e Y Scos(p —¢')

on obtient

. . R /1 — 7 sin(y’ — ")
f :’ Y/ — 7 A
12) sin (a ) + D"V 1 —y"* asinag’ ’

d’ott 'on peut tirer » au moyen de I'équation (14), § XIIL. Cette valeur de w reduis
0’ <+ E? ala moitié de la valeur fournie par 'équation (5).
St P’on pose dans I’équation (2)

{13) Psinz’ — Scosz’cos(p — ¢') = X,

et si I'on ne conserve que les termes du premier ordre par rapport i (3" — 4"}, on
obtient
/ D'sin2¢" Scos(y — o)

0" \/P’—l—s’cos‘(?—-?’)“‘sin(?_i_?r) sinz’ ’

4
(14)
D" sin 2 ¢’ sin 29 sinag’ S
VP2 4-8%cost (¢ — @) = —m T Tom T 7777 2 g
E \/ cos' (3 —¢') sin(g +- /) sz(qa—}—q)/) sin x

On tire de I'équation (15), § XIII, si I'on ne conserve que les termes du premier
ordre, et si 'on réduit,
, sin 2¢
- sint(g +¢7) cos(g —4)

- I4
zX”Sin(cp +¢')+8 [—7-* c0s (9 =4~ ¢') -+ cosz’ sin ((p—i—:p’)] sin (p — ') sin(y’ — ¢”) z s

Vi—"
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expression qui peut se transflormer en

sin

s
+4" ) cos

X”sin(y+9¢') +8 — =

[ . Ccosy — Acosmsing
) vi—oy'

d’ou resulte:
(07* 4+ E/: [P 4 8:cos' (v—¢')]
. sin‘2gsiniag’ 87 %[X” ‘ g(C(‘,OSq)v—ACOSmSiIl?} sin{g —7';

sin’ ‘¢ +p') sintr Vi—ot sin (g +¢)

Sin /\?1_ ?// )J + X!' 2

et la valenr pour laquelle 07 -+ E¥* devient minimum est
1

3 1 o1 ’ : o N
o v - _ 8/Ceos: - Asing cosw sin(p —¢/) sin(¢'—¢"),
! Vi — o7 sin(s +¢') 2

;

De cette équation et de Iéquation (13), quand on designe par Y” la premiere ap-
proximation de »‘, Y” satisfaisant a la condition
Scos{v — ¢
i8a tang Y' — Scos(y —¢) )
i P
on deduit
(Csing — Acospcos o) sin (9 —g’) sin A

a8 stncr’ —Y'i = —sin et
N : NE] ; NS IR
vi—y'tcos{e—g isin {(o+o o

1a vaieur de » qui lui correspond sera trouvée i laide de Péquation

Asine
AN & == o e e
Csin ' — A coso’ cosm

Tl est bon de remarquer quelques cas particuliers.

'

Si dans Péquation (12} on fait P = o, tang 2" devient = o, car dans ce cas l),’

devient aussi = o, sin 2 et sin z’ disparaissant en méme temps. De meéme, si l'on fait
$ = 0 dans 'équation 18}, tang x’ == o. Ceci est strictement juste, comme le font
voir les expressions O et E dans 'equation 2 3 le resultat qui s'en déduit immediate-
ment n’est pas moins exxct . & savoir gu'un rayon polarisé parallélement ou perpendi-
culaivement au plan d'incidence , conserve son plan de polarisation rigoureuscment
quand il est transmis par une plagie mince cristallisée , de maniere que son plan d’in-
cidence coincide avee la section principale du cristal. Les deux cas suivants offrent un
intérét plus grand qu’aucun des autres.

1. $i dans I'¢quation {12) on fait S = o, on determine les conditions sous lesquelles
an ravon polarisé perpendiculairement au plan d’incidence se trouve, le moins pos-
sible, modifié dans son azimut de polarisation par son passage X travers une lame
mince.

' O ey

2YY sin(g—y ) sin (' —4") I,

et



19)

PURES ET APPLIQUEES. 439
Comme en méme temps que S = o, cos Y’ estaussi — o, etsin Y/ = 1, 0na

”
’

=" tang (¢ —¢') cot g(y +- ¢’ ) cos 37,

et
[~ 2 ’ r— '}',2 ’ ; ’ 4 (
sin (2" —Y') = — cosa’ =— ——\/I—_T2 tang (p — ¢) cotang (9 4’} cos z’ -
!
Les formules (12} ct (18) donnent en particulier la relation qui doit exister entre 4
¢t o pour que 0° 4~ E* devienne un minimum. On peut y regarder ¢ comme donne,
el s’en servir pour déterminer w, et cest ce que nous avons fait jusqu’ici; mais a l'in-
verse on peut sc donner o et se proposer de trouver 5. Cette derniére signification de
la formule (12) a de l'intérét parce que les expériences peuvent en fournir la verifi-
cation dans le cas particulier reprisenté par I'équation (1g). 1l s'agit donc de diter-
miner, & I'aide de I'équation (1g), langle d’incidence  correspondant 4 une valeur don-
née de w. On peut, dans la formule (19), pour g, ¢’ et (9’ — 2"} mettre leurs valeurs
qui résultent de cos »’ == o, c’est-a-dire de

’

(20 Csingp’ — Acosg’cosw — o.

51 'on désigne par cos (2’ ) la valeur de cos z' qui, d'aprés cette relation , doit sortir de

'équation {19}, on a

Csin g’ — Acosy’ cosw s
— = cos (&’
s /2

{21} ——
o 2
V1 —y

¢quation qui servira i trouver o’ et par conséquent ¢ si I'on désigne la valeur de o' qui
doit se déduire de Péquation (20) par ('), et celle qui doit se déduirve de Iéqua-
tion (21) par (3’ ) - £, £ étant une quantité de Uordre cos (z' ), c’est-d-dire , & cause de

équation (1g), de Pordre (s’ — 9”), ona, en négligeant les puissances de 7o/ — 4"},

P4 E——
E = Yi— r (. cos (z').
7

Si Ton désigne par () la valeur particuliére de 'angle ¢ correspondante i {v'), et par

(9) + ¥, la valeur de cet angle correspondante i (3') + £, on a, par suite de I'équation
sin (3" + £) = psin[ (g) -+ 4,1,

s ('), _ VT 37 cosls)

= ——= cos (2’ };
pcos(g) py' o cosfp) Y

si 'on observe que dans le degré d’approximation usité jusqu'ici ,

A;)/ =

”y
”y

sin (' — o” :(I Z ) sin (0! —
(9 Y ¢ ¥

=)

Jiry

sin{y'— o .

2 s5in 24
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on a finalement

; vy ’ I
Vi—. 7 cosg co$z , . .
VIT7, 0008 "7 tang (g — ¢’ ) colang v+ ') sin (¢'— 0"

7

(22) Yy, = 7 - ’
2py CcOs g SIN 29
ol pour les valeurs respectives de ¢ on doit mettre celles qui resultent de T'equa
tion (20).

2. Si dans I'équation (18) on fait P = 0, cos Y=o, comme cela resulte clairement

de 'équation {18 a}, et I'on a
C(cos g—A sin g cos o) tang (3 —9 Y sin(3’ — 9"}

Vi—qy" sin(y + ") 2

cos = y

ou bien , comme a la suite de equation cos Y = o0 ona

Ccos p—Asing COS w == 7 "cos (9 + 9"},
e tang(o— ¢ )cot (¢ +¢')
\/l —'\/’: 2

. ’ 1
SINL (o =%
cos a2’ — ﬁ_ii____‘.—

2
[&8)

A Uaide de cette relation on peut encore determiner la valeur de ¢ qui correspond a
une valeur donnée pour . Si I'on designe la valeur de o déterminde par Péquation (23
par (v { $,1, » se rapportant 2 la valeur de ¢’ déterminée par I'équation (20), pour la-

quelle

-

tang o’ = = COS,

C

on trouve , par des considérations semblables 2 celles qui, ci-dessus, nous ont fait trou-

arp Sl
ver b,

I

vI— 7” cos q)'
= - —_— COS ¥

K

7

py’  coso
on doit remplacer cos ' par sa valeur tirée de léquation (235, On a ainsi

1 cosy’ , Lo ;
— 27 tang(y — ') cot (g 4 &' Isin(s’— 5" 1
2u COS ¢ ST ‘

4

pour u et 3’ on doit mettre les valeurs qui ressortent de U'équation (20 .

Si Pon compare &, a3, on voit qu’on a

/ Tor?

x/“—’—"a ‘05 7'
R VI, B08E
i Y 7

¥ sin 25"

Au moyen des relations

Vi— fcosz’= —Csing' — A cosg’ cosw, et Csing'— A cosmeass’ ==,
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- on trouve

vf::/:“ cos 7’ Vi—yl

7 0 y — T Bl
- sin 2 e
7 ? Vi—y

ce qui permet de poser, puisqu’on néglige les carrés de (3 — 4" ),
q"/ ~+ l1’// = 0.
§ XV.

Il faut présentement appliquer les principes établis dans le § IX aux milieux cristallisés
a deux axes optiques. A cette fin, jétablirai d’abord les formules générales qui déter-
minent les vitesses de propagation des ondes, les directions de leurs monvements et Ia
position des rayons qui leur appartiennent. Soient p, v, = les valeurs des trois axes
d'élasticité ; soient g et « la plus petite et la plus grande de ces valeurs et v la valeur
moyenne. Prenons pour axes coordonnés z, v, z des paralléles aux trois axes d’¢lasticité
ey v, B

L’équation de la surface d’élasticité de Fresnel est, d’aprés cela,

(I) P‘“‘:yzﬂz—l—uzbz—f-ﬂjc".

p désigne le rayon vecteur de cette surface et @, &, ¢ les cosinus des angles que ce
rayon vecteur fait avec les trois axes. Les deux vitesses de propagation d’une onde, selon
qu’elle est ordinaire ou extraordinaire |*}, s’obtiennent en menant par le centre de la
surface d’élasticité un plan paralléle au plan de onde, et déterminant le plus grand et
le plus petit rayon vecteur de cette section. Sia, B, y désignent les cosinus des inclinai-
sons de la normale A onde plane sur les trois axes d’élasticité %, v, 7, la valeur v du
plus grand ou du plus petit rayon vecteur est déterminée par I'équation suivante

(2) N S

u? — f"? 02— y? w2

Je désignerai les deux racines de cette équation par o ct ¢, de sorte que o ou ¢ de-
signe la vitesse de propagation d’une onde plane paralléle { az -+ By + 9z = o, selon
que cette onde est ordinaire ou extraordinaire.

La direction du mouvement dans cette onde est perpendiculaire au rayon vecteur
de son intersection avec la surface d’élasticité, rayon vecteur qui exprime sa vi-
tesse de propagation. On trouve pour les cosinus o, 0,, 0, des angles que la direction

[*] Remarque, Le sens de cette dénomination impropre ne peut éire doutenx que lorsque les deux
axes optiques sont inelinés un sur autre de goo. J’appelle onde ordinaire celle qui, danrs le sens
propre du mot, serait en réalité Ponde ordinaire, si l'on supposuil 'angle des deux axes optigues
diminué jusqu’a o

Tome VII — Novewsee 1842. 56
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du mouvement dans le plan de Ponde az + 8y + 7z = o forme avec les axes d’clas-
ticité dans le cas d’une onde ordinaire,

a
0y =
T (e —w)E’
_ b
(3) = e E
_ 1
0, = (L“’—frz)E’

en posant, pour plus de simplicite,

=V (=)~ () - ()

Si P'on désigne les cosinus correspondants au cas ot 'onde est extraordinaire par

Py €2y €5, ON1 A

(0" —p3) 0’

; _ B
%) eyt
€y == v 3
o —r)0’

o=V () + () - ()

Ces valeurs (3) et (4) résultent immédiatement des expressions que j'ai données dans
mon Mémoire sur la doublc réfraction (Pogg. Ann., Bd. XXV, p. 445).

A un autre endroit (Pogg. dnn., Bd. XXXIII), j'ai démontré que les racines o et ¢
de I'équation {2) recoivent une expression trés-simple quand on rapporte la posi-
tion du plan ez + fy -+ 9z = o aux axes optiques, c’est-a-dire aux normales aux sec-
tions circulaires de la surface d’élasticité.

Si le plan d’ondes forme avec ces axes les angles go° — u et go° — «’, il vient

uw—u' it pr—n’

0t = p*— (p? — n%) sin? =— cos (u— u'},
. 2
' 5’! . ] . . u + u/ P‘2+7"2 P'Z — T‘.I ,
et = p? — (u? — x*} sin? =t cos (n —+ w').
l - o )

Le rayon correspondant i onde «x -4~ 8y~ 4z == 0 a pour direction laligne dans laquellc
se meut le point d'intersection de cette onde avec d’autresondes o’z + &y + ¢’z == o,
qui dans leurs directions différent infiniment peu de la premiére. Cette direction dans les
cristaux ne coincide pas avec la normale a onde wz 4 fy + vz =0, car avec
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la direction des ondes les vitesses de propagation changent aussi. Soit ax By +yz=o0
une onde extraordinaire, et soit, aprés Punité de temps , sa position donnée par I’équa-
tion

{a) o -+ By + 9z = e

La position de deux autres ondes infiniment peu différentes en direction s’obtiendra en
différentiant cette équation successivement par rapport i « et par rapport a

. d de
(b) SRl bt
d de
{c) 't =
(e TR aGE T a

Une ligne menée du centre 2 = o, Y == 0, 2== 0 au point indépendant de dx et de dp

des trois plans {a), {b), (c) est la direction du rayon qui appartient i 'onde extraordj—

naire ex + fy -+ yz = 0. On doit éliminer les différentielles par rapport i du et dp.
Les quotients différentiels de v se tirent de la condition

a2+@2+77:I’
(d) d-y__ @ dy_ ﬁ
da 9’ d—@_“_-y’

de de

les valeurs des quotients différentiels a2 T se tirent par différentiation de Péqua-
[+ A ¢

tion (2) qui devient, en faisant v —= ¢,
| a? 2 .
(¢ e A

et et — y? &2 or?

2

= 0.

dy

Si Pon différentie cette équation par rapport & «, qu’on y remplace T
74

par sa valeur ti-

rée de (d), et qu'on pose, d’aprés 'équation (3),

0 () () -

on obtient

de 3 o
B = %,
(g) € du £ e f‘L2 et 2 ’
on trouve tout pareillement
de g B
h ) D e
( ) ¢ dﬁ e — 42 €t —p?

Les valeurs de (d), de (g) et de (h), substituées dans (b) et (c), les changent dans les
équations suivantes :

. @ I 1 i1
(1) v ; E= &t — - — 1) Fig’
g 1 I I
k — -z = — =
( ) Y ¥ z @ e — Y2 eé—nx? | Ele

56.



444 JOURNAL DE MATHEMATIQUES
auxquelles on joint
{n z — 2 == 0,

si I'on multiplie les trois équations (i), (k), (1) respectivement par «, f, , et qu’on les
ajoute, on a pour la somme

z w? Fﬁz P pz 1
(m) “"+@f+7‘-n;:<ez_yz+;:‘$—m e’

mais, d’aprés I'équation (a), on a

ax 4+ Py + 78 = &
et d'aprés I'équation (b),
* —+ .—2—— -+ ——2—- - 0.
e?_p_z ot — y? & — ¢

En observant ces conditions , on trouve, d’aprés I'équation (m):

I
FT +ir:—(':'_7)]7

Cette valeur, substituée dans les équations (i) et (k), conduit aux valeurs dex et dey.
1l vient donc, si les ordonnées du point d’intersection sont désignees par &g, ye, 2., pour
indiquer qu'il appartient a un systéme d'ondes extraordinaires,

I
w= o+ mE=a)
- 1
o = ———
J JYe p € -+ Ele (ez _ vz)]’

I -
=7[+E——(—"::]

Dans le méme temps que le plan d’ondes parcourt Pespace ¢, le rayon qui lui corres-
L

pond parcourt espace Vzl 4 ¥? + 2! que nous poserons = 7. La vitesse de propa-

gation du rayon est donc r; on trouve, en ajoutant les trois équations | 6), ayant ¢gard

a Péquation (e) et observant qu'a cause de Véquation (f),

2 1 ol - pz 77 “ . 1
) s e (& — p.“)2 (¢ — vy - (2 — ) ~ Ee’
(7) i 2 .
re — ¢ -+ EZ—'EZ
Les cosinus des angles (S.a), (S¢); (Se ¢) que le rayon forme avec les trois axes d’élas-
ticité , sont
2.

8) cos (Sea) = =, cos (S.b) =2, cos(S.c) =

€ rE rf

Quand I'onde «r -+ By + 43 = 0 est une onde ordinaire, des considérations tout &

LU | i
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fait identiques donnent pour les composantes de la vitesse du rayon suivant les trois
axes d’élasticité,

(9) fazﬁ[ﬂ‘f‘(jzo(o:—“—_——u,)]’

I
2o = 7[0 -+ bzo(o’— w’)]’

et pour la vitesse elle-méme,

. 1
(10] ry = o + pTeS
Au moyen de cette formule, on peut donc toujours, quand une onde est donnée,
trouver le rayon qui lui appartient [*].

Je vais maintenant m’occuper du probléme inverse , savoir, quand le rayon est
donné, trouver onde dont il dérive.

Par I'équation (10) on trouve, en retranchant g* des deux cotés,

0202/02___ 2) 4y
(11) o= TS

pendant que de U'équation (g) on tire

« [0°0° (" —p2) + 1]
O (‘02 — “2) *

Z, =
Si 'on divise cette équation par la précédente, on obtient

Zo %o

2 : T g2 2"
P, — 0 —

On obtient deux équations semblables en remplagant successivement ., =, w par

[*] Remarque. Au moyen des équations (6) ou (9) on peut facilement déterminer o, 3, y ¢t la vi-
tesse de 'onde, et ces valeurs, portées dans (e), donnent une équation entre x, y, z. Ulest 'équa-
tion de la surface des ondes. C’est M. le docteur Senf, maintenant & Dorpat, qui le premier a em-~
ployé ce mode de caleul simple et ¢légant qui y conduit. Fresnel ne regardait pas son proced¢
comme présentable, et ’on abandounera volontiers maintenant ]Ja marche suivie par Ampeére ( Ann.
de Chimie, t. XXXIX). M. le docteur Senf a aussi le premier donné a Véquation de la surface des
ondes la forme si convenable que voici:

lu'i x? v’yi 7t gt

- Mi 7 — Pt

=0.

De cette forme résulte en méme temps la construction donnée par Fresnel de la surface des ondes
au moyen de Pellipsoide décrit autour des axes de la surface d’élasticité.
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¥y, B,vetparz y, . Ona donc

(12) z, % Yo Bo 2, Yo
L . ot —pt’ g — 0t — * ri—r 0t — 2

] h

R =
Si Pon ajoute les carrés de ces équations, et qu'on pose

e Z, : Jo :
" (=) + )+

on a

(14 S = o'0°.

Si 'on porte cette valeur dans I'équation (10), il vient

I

) P =yl — =
(15) 0 7 5

Au moyen de cette ¢quation, on déduit de la position et de la vitesse de propagation

du rayon la vitesse de propagation dc onde. A l'aide des équations (14) et (12)
on obtient les cosinus de Finclinaison de la normale A I'onde sur les axes d’élasticite,

1
o =— T, (I — =735 |
ro—f*zsu

([6} op:}/u <I__.—I__>’

savoir,

ry — 8]

1
0y = % {1 — —————
4 < rg_ﬂzs;)

On obtent des valeurs semblables, quand le rayon est un rayon extraordinaire, en
remplagant partout o par ¢, et au lieu de S, mettant S, qui peut étre donné par 'équa-
tion (13), en remplacant partout I'indice o par I'indice ¢.

Si l'on divise les équations (12) par I'équation (14), savoir, par 8, = 00, et qu’on
tienne compte des équations (4), on trouve les cosinus e, ¢., ¢; de la direction
du mouvement dans le rayon ordinaire déterminés par la direction de ce rayon,

savolr,
0, = o
(re —#*)S,’
Yo
(17\, 0y =— (7‘0 _..,2) So,
2y
0; = _(rj —s,

De méme on obtient les cosinus des angles que la direction du mouvement dans un
rayon extraordinaire forme avec les axes d’élasticité, déterminés par les cosinus du
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rayon méme,
Lo

(ri —w)S.’

e =

«\’18) e, =

e —
8 (ré —=%)8,
Pour le cosinus de I'angle qu’un rayon, quand il est ordinaire, fait avec la direction

de son mouvement, on a
0%, ~+ ™Y, + 0,2,

b

7o

si I'on porte dans cette formule les valeurs de o, » 02, 0 tirées de I'¢quation (3), et
celles de z,, y,, 3, de I'équation (g), et qu’on observe que

a? ﬁZ 72
P Bl sy B
et que
- a'_’ _'— pl + 72 - I — 0
E—p) =) T F=A o= T =) i) OE =

Puisque tel est le cosinus de Pinclinaison des deux directions déterminées par o, o,, o,
et e, e, ¢; qui sont perpendiculaires I'une i Fautre, on trouve alors

(18b) &, + 0¥, + 0,2, = o,

ol il suit que le rayon ordinaire est toujours perpendiculaire & la direction de son
mouvement. On trouve de méme

{18 ¢) er, + ;% -+ ez, = o.

Donce les deux rayons, tant ordinaire qu’extraordinaire, sont perpendiculaires & la
direction de leur monvement. Tel est le beau théoréme qui s’éléve contre une assertion
de la théorie de Fresnel, comme une conséquence nécessaire de la définition dy plan de
polarisation adoptée par nous, nettement accusée par une construction géométrique
simple de la surface des ondes et du rayon.

Les formules qui déterminent les rayons qui appartiennent i une onde donnée, aussi
bien que celles qui déterminent 'onde correspondante A un rayon donné , deviennent
dans quelques cas indéterminées. Je vais discuter ces cas, et cette discussion me conduira
d’une manicre trés-simple a deux beaux théorémes de Hamilton sur la réfraction co-
nique (Pogg. Ann., Bd. XXVIIL). Je vais A cette fin m’occuper des formules (12), dans
lesquelles je laisserai de coté Pindice o, et la place de o je mettrai v, qui désignera aussi
bien la vitesse ordinaire que la vitesse extraordinaire des ondes ; de méme 7 sans indice
représentera les deux vitesses de propagation des rayons, mais de telle maniére que r
et v désignent a la fois les vitesses ordinaires ou  la fois les vitesses extraordinaires.
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Les relations (12) sont donc

—_— —
2? 2 2 o

x av Na go F3 G

19) - - -
( 9 rie—p’ u’——y” r?—v o? v ri—m —?

Quand on y fait f =0, et quon détermine en méme temps « et y de maniére que
. o . . .
v = v, la valeur de y devient = ) et Pon doit conclure, puisque § et v — v devien-

nent indépendamment I'un de Pautre = o, que y n’a aucune valeur déterminée, mais
un trés-grand nombre de valeurs, a savoir, toutes les valeurs qui satisfont & la pre-
mitre et 2 la troisiéme des équations (rg). Or ces deux équations déterminent une
;cou_r'b'.é, ‘et tous les rayons qui sont menés de Porigine des coordonnées & cette courbe
lapﬁé{ﬂt:fennent % une seule et méme onde, savoir, celle pour laquelle p = oetv =v; 4
cetie onde appartient donc non-seulement une paire de rayons, mais un céne rayon-
nant. Cette onde, pour laquelle f =0 et y==, est paralléle & la section circulaire de la
surface d’élasticité. On obtient les valeurs de « et de 7 qui lui correspondent quand dans
I’équation (2) on pose (i = 0, d’oir ’on déduit

2 2

« v

'91'—#-2 Ul 7t

= 0,
« et y y sont déterminés de maniére que v = v. On trouve

(20) ac:\/l;—_—fl—z, b :‘:\/T:——:.
} ml—p mt—

$i Pen porte ces valeurs dans la premiére et la troisieme des équations (19), et la valeur
de r° = 2 + y? + 22, il vient

I = (.172 —~+ 2 -+ PR — 2‘) - v B

(21, S g E ==
._:____( 2 - oyt 3] — 7':2) —_ i_

( ‘ * d ¢(7r‘— N (rt— )

Dol il résulte que la courbe est un cercle. Le plan de ce cercle est perpendiculaire
au plan y = o, son centre est dans ce plan, et si on appelle les coordonnees des
deux points d'intersection du plan des coordonnées y = o avec le cerdle z’, 2’ et ", 37,

on a

e bt —

' = v x”:—\/_-——fiu

N T g2’

v b 7

2 v] 2

m—

z’:l ”:E—- e

" 7!.‘2___”2

Le diametre du cercle est done

VA =@ e = V@ =) =) = R
v

1 [EENT hin
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La ligne tirée de I’origine des coordonnées au point d’intersection (x, y, z') est pers
pendiculaire sur le diamétre du cercle qui serait mené de ce point d’intersection au
point d’intersection marqué par (z”, y”, z"), et est par conséquent aussi perpendicu-
laire au plan du cercle. La comparaison de cette équation avec I'équation (20) fait
voir que cette ligne, menée du centre au point (#’, y '/, 2’ }, est en méme temps la nor-
male & I'onde correspondante au céne radiewr, c’est-a-dire 'axe optique.

La distance du point d’intersection xz’, ', 2" au centre est v. On peut donc , d’aprés
cela, construire le cone de rayons qui appartient A I'onde plane paralléle  la section
circulaire de la surface d'élasticité.

Si Pon appelle # I'inclinaison sur I'axe = déterminée par = et y dans Péquation (20),
» étant la demi-inclinaison de 'axe aptique,, il vient

2

- Cos n — ————

-, -.
w2 —-}Al w— f"l

(22} sin 2 ==

Si P'on introduit ses valeurs dans I'expression du diamétre , on obtient

2 z
[ 7wl —
2R — - —
v

sin 272.

Si par I'axe optique on conduit un plan incliné d’un angle o sur le plan déterminé par
les deux axes optiques, la corde qui, dans le cercle (21), est tracée par cc plan, a pour

- 2
T —

expression — SI0 27 COS w, et par conséquent, si Ion désigne par ¢ I'inclinaison

2v

du cité du céne situé dans ce plan sur 'axe optique,

et
———— SIN 27 COS w.
!

(23] tang g =

C’est la forme la plus simple de "équation du cone radieux.
Si I'on pose dans I'éq. (19) ¥y = 0 et r ==y, c'est-a-dire, si l'on suppose (ue le
rayon s¢ meuve dans la direction de la normale d’une section circulaire de Pellipsoide

. s 5 . . . o .
qui servit & Fresnel & construire les vitesses des rayons,  devient = —, ce qui, dansce
0

cas, doit vouloir dire que £ a toutes les valeurs possibles, pourvu que la premiére et Ia
troisieme des ¢quations (19) soient satisfaites. Quand » = o et » = 4, on trouve

,

Y —_— 2
r = 5 PLQ = v
.
(24) et
i 1
\/77“'—- v? v? 2
Z = - Ty .
¢ 7 — @t 1 1
y-‘} e

Tome VII. — Novemere 1852
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Si I'on substitue dans la premiére et la troisiéme des équations (19) ces valeurs pour
x, z et r, et sil’on pose en méme temps av=z', fr== gy, qe==2z; &', y', 7 étant les
coordonnées du pied de la perpendiculaire abaissée du centre sur Ponde relative aun
rayon y=o, r == v, on obtient

e 02— Bl [T q— ﬂ.z
(?‘5) ' = ( B f e P‘( )

= T T s z

Y3

Vo — ) ]

¢ = &* 4 y"* 4+ 5. La courbe déterminée par ces équations est un cercle dont le plan
est paralléle d Paxe y, et dont le centre est dans le plan («z, 2).
Soient les coordonnées des points de rencontre de ce plan avec le cercle 27, 7" et

R ., .
2", 2”5 on a

126)

La ligne tirée de Uorigine des coordonnées au point z”, y”, z” est perpendiculaire

. N e. i
au diamétre qui joint z”, ¥”, 2" et x”, r",y 3", et sa longueur est

i
\/ 1‘"2 4 2 vz-

La ligne tirée de l'origine des coordonnées au point Z", y", 2" coincide avec la nor-
male A ta section circulaire de Pellipsoide de Fresnel, et sa longueur = ».

Les lignes mences de Torigine des coordonnées i la périphérie du cercle, dont la
construction est facile & la suite de ce qui a été dit, forment un eone elliptique qui est le
lieu des normales aux ondes plancs correspondantes au rayon perpendiculaire i la sec-
tion circulaire de Uellipsoide. Si nous rapportons ce conc a un systéme d’axes coordon-
nés, semblable au systéme d’axes auquel nous avons rapporté précédemment le cone
de I’équation {23), nous obtiendrons I'équation

¢ ang — ,._>Ag;_ffz) — \/ ! k 1 1
(27) tang (g ) = cos w cp — L = Jlcosw i {_T—F .

{¢) représente I'inclinaison d’une génératrice quelconque de ce cone sur la generatrice

qui va du sommet au point x", ¥, 2’ « désigne linclinaison du plan menc par ces
deux génératrices sur le plan des deux axes optiques.

Si I'angle que la génératrice menée du sommet au point £”, »" fait avee axe est de-
signé par n), 2(z) étant Uinclinaison de la normale 2 la section circulaire de ellip-
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soide, on déduit immédiatement de équation (24),

I I
w A
- N v
sin (n) = ® ,
’ I 1
i
X 1
v? ?
cos (n) = .
1 I
H? sz

Ces valeurs, substituées dans tang (¢), donnent

1 10

“

(28 - tang (¢) =" sin 2(z) cos w.

Les différents coefficients de réfraction du rayon qui se meut le long de la normale
a la section circulaire de Uellipsoide sont représentés par I'unité divisée par les lignes

. e . , s . 1
qui vont de l'origine i la circonférence du cercle (25), ¢’est-d-dire par —. On trouve
v

b p T\ L : :
(29) otz v . sin* n €os* 7 cos? w,
k T

D’ot I'on voit que les coefficients de réfraction sont constants quand on se borne i
prendre la seconde puissance de la différence du plus grand et du plus petit axe d’élas-
ticité. On arrive & I’équation (29) le plus simplement possible de la maniére suivante. On
déduit de Iéquation (25)

x 7 vt —p? e 42 et 2
(30) _———= - & \/ =T ot

z fL 02 ___P"Z .J‘I ___772 y‘ 0'2__7.[.2

Si par le cote du cone qui est déterminé par Péquation (28), on fait passer un plan
perpendiculaire au plan des deux axes optiques, et si 'on appelle « 'angle que la ligne
d’intersection de ces deux plans forme avec la ligne qui est tirée de Vorigine des coor-

"
. - s . s 10 x
données au point x”, 37, dans I'éq. (26), et sil'on pose de plus — = tang p; 2,

r’

ayant les valeurs déterminées dans Péquation (26), on obtient pour -, équation ( 3o0),
z

une nouvelle expression, savoir,

m/

o= tang { p - =).
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On a, d'aprés Vequation (26},

fL

tang p = - tang »,
™

n ¢tant la moitié de Vinclinaison des deux axes optiques ; on a d’ailleurs
tang « — cos  tang {q),

équation dans laquelle pour cos (g) on doit mettre sa valeur deduite de I'eq. (28}, et
dans laquelle » a la méme signification que dans I'éq. (28). Si 'on porte ces valeurs pour

’

. . . . N x
», z et (¢) danstang { p + «), et si lon met Pexpression qui en résulte a la place de —
P 7 o P p q 1 iy

dans P'équation (30), on trouve I'expression donnée dans I'équation (29 .

Si I'on rapporte la position du plan de onde aux axes optiques au lieu de la rappor-
ter aux axes d'élasticité , on obtient , pour la plupart des formules ci dessus, des ex-
pressions trés-simples que je présenteraiici, A cause de l'utilité dont elles nous seront
plus tard.

Si u et &' sont les angles que la normale & 'onde fait avec les deux axes optiques,
Cest-d-dire avec les normales aux sections circulaires de la surface d’élasticite, pendant
que, comme ci-dessus, z, 8, y désignent les cosinus de la normale & I'onde avec les

. fuu'N . fu—u
« == SIn SIn
2 2

u—~u' u—u
7 == COSs cos
2

axes x, v, z, il vient

u—u
0 — y.z — (712 . {J'z) sin? ,
2 PR 2 2 2Y cin? u—u : . 2\ 3 u—u’
0=y = pt—y +(ﬁ‘——y-) Sin? —— = 7 — 7t — pt) cos? . ,
. . R u—u
0 — wmt = — (* — ) cos? .
2

Si I'on place ces valeurs dans expression de 0%, équaticn !, savoir,

- 2 AN .
02:(1‘( 7>+(q? ,) +< ’ "\‘
0f——p 0F— v S

[N iy
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on obtient, en multipliant I'équation par (z* —u?},

utu’
2

)#—W

’ 2 2

-, [u—u v —

sS1m- #
2

453

. utu u—u' [mi—pl? -’ u—u'\ wi— py?
1 — sin? sin? 2 HZ — cos? cos? - &
- 2 v e—p 2 Tl 2
0 — y?
772_sz
, futu
cos
2 2
+ 2 (e
T2 32

Si Pon réduit les termes du second membre de cette équation an méme dénominateur,

en multipliant le premier terme par

) cos® -1’
)

u—u'
sin?
2

!
- (¥ —p?) sin? (#) cos? (u

02— y? pr—v?

PR . Sl 4
, + sin? )
. 2

14

wh— p? -
—— u, . N
, on obtient, apré

2

Tt —

0z (ﬂ.z_ H2)2 —

__u’

s quelques réductions,

u—u'

)+l ysine

et le troisicme

=

(7% — p?) sin <

u—u'

, fu—u
cos® { ——
2

f‘2_‘ »2
ﬂz_Hz

2

L, fue— 174
-+ sin —_
2

)

Le numerateur de cette fraction se décompose dans les deux facteurs qui suivent :

. u—u’
sin?
2

on obtient done

) .q<w+w
-— S1m-
2

Il =+t (53]
Elcy)

O (2 e 2} =
( ©) ] @ — v . u—a'\’
sin® (' — u) { = ~+~ sin?
. I\t — !_,'2 2
ou bien
22— . fue—u'\]
: \ N F———-—z H'Z—sm2 P
(31} — = f—-——‘uv sin? (u — u') ﬁ—y'. — - .
’ 02 2 sin & sin & N
Par un calcul tout semblable, on trouve
- u_|_uf Y227
sin? | ——— ) — &
2 71'2——}1.2

(32)

I _ 7.[.'.’ — (}.2
| DER 2

i

H]
) sin? (u + ')

sin & sin &’ |
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Les quantites renfermées entre parcnthéses, dans les équ. (31) et(32), ont une signifi-
cation géométrique simple. Si l’on considére, en effet, la pyramide triangulaire dont
los arctes sont les deux axes optiques et la normale & I’onde, et sil’on appelle 22 Pangle

que les deux axes optiques font entre eux , et 27 I'angle sous lequel sont inclinées entre
elles les deux faces qui se coupent suivant la normale & Uonde, on a

cos an = ¢osu cosu — sinasinu cos 23

et si Pon observe que, d’aprés 'équation (22),

} C v —p
cos* n = et st = -— -,
E—
on tive
SL— \ u—u' Suu Pp—
- fe = SN sin? { ——— ) — - by
. . w— 2 ml—u?
(33; sin? j == —"=— - —— cos®j = T A

(34 = ﬂﬂf{sin(u-—-u’)sinj,

h

(35) sin {u + ' cos /j.
Je designerai dans la suite par £ Pangle j pour I'onde extraordinaire; je conserverai
la lettre j pour 'onde ordinaire seule.

§ XVI.

It nous faut maintenant rechercher I'équation qui dérive du principe de Ja conserva-
tion des forces vives. Nous reprendrons encore les considerations qui nous ont conduit
au rapport des volumes de 'onde incidente et de Vonde réfractée dans les cristaux a un
axe, § V, et nous emploierons aussi la méme notation. Le volume de onde incidente

Hsing’ W.

s

est done «H cosg et le volume de I'onde réfractee

i

Nous tirons de I'équation (3), § V, pour 'onde ordinaire,

Y W' = a(cos ¢’ — sin o tang ¢’ cos 5.

q' désigne inclinaison du rayon sur la normale & Ponde et §' I'ungle sous lequel le plan
men¢ par la normale 4 I'onde ordinaire et le rayon de cette onde rencontre le plan
d’incidence. Cet angle §’ est calcul¢ de manicre que si on méne par le centre d’une
sphere les deux normales N et # 4 Ponde incidente et & I’onde réfracteée , et le rayon S,

le coté NS du triangle spherique NS, déterminé par leurs rencontres avec la sphére,
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soit opposé & Pangle 180° — /', ou, ce qui revient au méme, que ' == o si le rayon est
dans le plan.d’incidence et si Vinclinaison de S sur N est plus grande que celle
sur N.

de »

11 est facile de déduire les valeurs de tang ¢’ et de cos ' des formules donnces. On

A

o 2y + By, 49z,
N 2

7o

cos g/ =

sil'on y substitue les valeurs de z,, ., 2,, et 7, de équation (g), § XV, on trouve

’ [
COS ¢° == e |
\/ 2 !
0° = o
O’
et par conscquent
[P t o 1
{2 ang ¢ — oo

Dans le triangle sphérique N#S, ci-dessus cité, le c6té Nn — ¢’ et nS = g¢; le troi.

siéme cdté NS est l'inclinaison du rayon sur la normale 4 la surface réfringente. On
done

it

Az, + By, 4+ Cz,

?

cos NS —
rﬂ

A, B, € ctant les cosinus des angles sous lesquels la normale N a la surface réfringente
rencontre les paralléles aux trois axes d’élasticité. En mettant dans cette formule les
valeurs de x,, ¥, 2,, €t 7, tirées de I'équation {9), § XV, on obtient

I ( Az’ BE Cy’ )
0 COS 9 = -4 . —+

0% 2 2 02—y 0'—q?
cos NS —= —-— -

0 —p.
0% -

I
0*(Q)?

Enfin on a, pour angle 180° — ' opposé au cHié NS
’ ol bl

os b/ — COSNS — cos ¢/ cos ¢
—eosy/ = - ~2F 7T
i sin ¢’ sin ¢’ ’

et de 14, quand pour cos NS, cos 4 et sin ¢ on met leurs valeurs,

’ 14 I3
(3). —-siny'cosd/:%(o Az —+ Bp . Cy >

T w 0 — 32 0t—pr?

TLes considérations du § V nous donnent pareillement, pour I'onde extraordinaire,
4) W = « (cos ¢” — sin ¢” tang ¢ cos " );

7" et 4" ont la méme signification pour cette onde quc ¢’ et ' pour Vonde ordinaive.



456 JOURNAL DE MATHEMATIQUIES

Nous trouvoens ici, d’'une maniére toute semblable,

tang ¢” = —

Cy” )
—+ = 2 )3
Pl

pour 'uniformité de la notation, jai désigné les cosinus des angles que la normale &

I'onde forme avee les trois axes d’élasticité, par o”, B” et 4",
A la place des angles -’ et 4, J’en introduirai d’autres; je prendrai les angles que les
directions du mouvement dans 'onde ordinaire et dans I'onde extraordinaire font avec

1 -~ sin ¢” cos Y = —

le plan d’incidence. J'appcllerai ces angles 2 et 2",
Comme il a {té trouvé que les rayons sont perpendiculaires aux directions de leur

mouvement,
= go" + YV, 2= qo° Y7

On doit remarquer que, dans ces inégalités, »' et #” sont comptees dans le méme
sens que o’ et 7. D’aprés cela, on a

BY cy'
Yo )

0= y? [T

cos ' sing’ —sinz’singp’

~1

cos " sin 9” — sin x” sin ¢”

Les volumes correspondants, dans 'onde ordinaire et dans 1'onde extraordinaire, de-
viennent, par suite,
«H

—- - isin s’ cos o' — sin.xz’sin* o’ tang ',
SN o ° ' ! .

aH . . -
—— (sin¢” cos »” — sin 2" sin " tang ¢” .
sin o

L'equation des forces vives est done la suivante

e o 2 2\ ol e I ofel P ol : oroa .
g (P +~ 8 — R, — R)siny cosy = D" (sin cosg’ —sin 2" sin*e’ tang ¢
i < - - -, .
{ -+ D”3sin¢" cos” — sinx” sin*e” tang ¢

2, 8, R,, R, ont la méme signification que ci-dessus, et ' et D” représentent les vi-
tesses dans I'onde ordinaire et dans l'onde extraordinaire.

Pour former les équations qui résultent du principe de I'egalité des composantes,
je decomposerai les vitesses D’ et D” dans le rayon ordinaire ei dans le rayon extraor-

dinaive suivant les directions suivantes :
1°. Perpendiculairement au plan d’incidence; 2° perpendicnlairement i la surface

] Hite
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réfringente; 3° parallélement an plan d’incidence et parallélement 4 la surface réfrin-
gente. Ces composantes sont respectivement

I Dsinz’ et D” sin 27,
II. D'cosz’sing’ et -— D”cosaz”sing”,
III. D'cosx’cosy’ et — D”cosx”cosz”.

Si nous décomposons suivant les trois mémes directions les vitesses dans le rayon inci-
dent et dans le rayon réfléchi, nous obtenons

I. P et R,,
II. - Ssing et — R;sing,
III. — Scosg et + R;cosg;

d’olt nous déduisons, par le principe de V'égalité des composantes,

(9) P+ R,= D'sinz’ 4+ D’sina”,
(10) (S + R,)sin g = — D’ cos ' sin ¢’ 4 D" cos z" sin¢”,
(11) (S — R)cosg = — D' cos z’ cos g’ -+ D” cos 2" cos ¢”.

Ces trois équations , combinées avec I'éq. (8), déterminent les quantités cherchées.
Je vais montrer mainlenant que I’équation (8) peut, dans ce cas comme dans le cas des
cristaux d un axe, se remplacer par une équation linéaire.

Sil'on multiplie les équations (10) et (x1) I'une par l'autre,

(8 — R!)sin g cos ¢ = D' cos’x” sin g’ cos ¢’ + D"
—D'D” cos x’ cos x” sin (¢ + 9" );

cos® z” sin ¢” cos ¢”

et si l'on retranche ce produit de équation (8), on obtient

(P? — R})sin ¢ cos g = D" (sin® #’ sin ¢’ cos ¢ —sinx’sin*¢’ tang ¢')
—+ D"2(sin* 2” sin ¢”cos ¢” — sin &” sin’ ¢” tang ¢”)
4+ D'D"cos z’ cos 2”sin (¢ + ¢” ).

Cette équation est divisible par I'équation {9), et 'on obtient, par ceite division,

(12)

(P — R,)sing cos g = R’ (sin 2’ sin ¢” cos ¢" — sin? ¢’ tang ¢ ')
-+ R”(sinz” sin 9" cos " — sin® ¢” tang ¢” );

dans I'hypothése ot la relation suivante a lieu,
sin (¢’ -+ ¢” ) [sinz’ sin xcos () — ") — cosax’cosz” ]
— sin® ¢/ tang ¢’ sin & + sin® ¢” tang ¢” cos z'.

Pour démontrer la justesse de cette relation, je la mettrai d’abord sous une autre
forme.

Tome VI1. — NoveMBrE 1842. 58
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Sil'on remplace, a Vaide des équations (2) et (5), tang ¢’ et tang ¢” par leurs va-
leurs , savoir,

1 1
ot wo__ -
tang ¢’ = —5,  RNgG = -,
((u’on remarque en outre que
sin® ¢’ sin? 5"
LA = sin? p,
n? e?
et que
. . § e i ? e
sin{y’— 9" ) sin (p" 4 ¢”) == sin g (0 — &%) = — —2—5— [cos (a—u')— cos(r—0')}sIn? 5,

on trouve

sin z” o+ sin x/
0 E

w—:—ﬂ {cos (& — u') = cos (v +¢")]

sin (¢ — 9" ).

stn.rsin.g” cos (o' —¢" ) — cos 2’ cos 2" =

L
0

devons rechercher de quel signe nous les affecterons. Posons, dans Péquation (77,

I ’ . . -
Avant de mettre pour — et £ leurs valeurs déduites de I'¢quation (34), § XV, nous

A =90, C=o,
nous obtenons

o

0 or—y7

cos P’ sin ¢’ = sin 2’ sin ¢’ =

!

: S . . L —u .
D'aprés Pequation {5), § XV, on voit que puisque sin* —5—— ne peut étre plus grand

. wi—?
que sin? 7 = o
pour la symetrie, = > p. Par conséquent 0* — »? est une quantité négative, Mais la va-

o’ ne peut étre plus grand que v? si, comme nous le supposons

leur de cos ¥’ est, dans ce cas olt nous supposons A==o0, C=o, toujours positive, comme
cela parait clairement par I'angle que le rayon fait avec I'axe d’élasticité v, quand y'= o,

A l M [}
angle plus grand que Pangle correspondant avec la normale a I'onde; o) doit donc étre

pris positivement , et par conséquent

2

t m—ut\ N
6:< —) sin (u — #') sin j;
u doit toujours étre plus grand que «’.

Si on passe d’une normale &, 'y ¢ auneautre — o/, f/, ¢’ les angles u, «’ échan-
gent leur signification : 'arc qui précédemment était désigné par « doit étre maintenant
désigné par ', et réciproquement.

! Vo g
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Pour discuter le signe qui convient 3 f 2 Dous poserons dans Péquation (7

B=o0, C=o,
de maniére que

cos V"’ sing” = sinz” sing” = — . % __

La valeur de ¢ — p2 est toujours positive; la valeur de cos ¢, quand on suppose de
nouveau que = >>p?, est, comme on voit, négative, si I'on pose " = o, auquel cas le
rayon fait avec 'axe d’élasticité ¢ un plus petit angle que la normale correspondante.

Par conséquent il faut prendre aussi pour ]% dans I’équation (34), §XV, le signe positif.

Tant que la valenr de cos 4" a son signe négatif, le signe de y” peut étre positif ou né-

gatif,, c’est-d-dire que la normale a Ponde peut faire avec ’axe = un angle aigu ou obtus ;
”
ce n’est pas

. . N 1 ,
;> qui change de signe avec v”, mais bien la valeur de B donnée au
e — R Y

§ XV, équ. (34), carsi 7" est pris positivement, & 4 ' < 180°, et si ¢ est negatif,
#~+ o' > 180° Daprés cela, on doit écrire

2

EIT: iwiz_{i sin (v 4 v') cos 4,

ol 'on prendra le signe négatif quand sin (v + v’} sera négatif.
J'introduirai dans ce qui suit le signe +, pour la simplicité de I'expression, avec la

; . . ! \ -
reserve de changer ce signe -~ en signe — quand i devra étre négatif.

. . . 1 1
8i 'on met ces valeurs, maintenant plus exactement appréciées, de T et de o dans la

/)

relation (18), elle se change en la suivante -

sinz” singsin(u—a' ) +sin 2/ cos £ sin (o)
: SIH¢ " ],

(14) cosz’ cos 2" —sin z’ sin 2" cos(o’—p”) = [ s 4 =W — oo

Cette relation peut se traduire par une construction géométrique 2 la surface de la
sphére. Nous menons par le centre d'une sphére les deux axes opligues et les deux nor-
males 4 Ponde ordinaire et 3 'onde extraordinaire; soient A, A’, 0, E, fg. 9, les inter-
sections de ces quatre lignes avec la surface. Le plan d’incidence coupe ainsi la sphére
suivant le grand cercle OF. Les arcs AO, A’0 sont u et u'; les arcs AE, A’E sont v, v’
Parc EO = (¢’ — ¢”); Parc AA’ = 2. La direction du mouvement dans Fonde ordi-
naire O est dans le plan bisecteur de Pangle AOA’ = 2; la section de la sphére par ce
plan est 00’. Si I'on construit EE/ de maniére & diviser en deux parties égales I'angle
AEA = 2£, et si 'on tire Fe perpendiculaire 4 EE’, Ee est la section de 1a sphére par
le plan dans lequel se fait le mouvement de 'onde extraordinaire E. Comme ces direc--
58.
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tions de mouvements sont perpendiculaires sur leurs normales respectives 0'ON = x’
et ¢EN = /. N désigne I'intersection de la sphére avec la normale a la surface réfrin-
gente.
A Vaide de cette construction je me suis convaincu de l'exactitude de la relation (14),
mais d'une maniére quelque peun pénible. La démonstration plus simple que voici m’a
été communiquée par M. le professeur Jacobi.

Sotent les angles EAO et EA’O désignés encore par « €t «, et soit EO = (¢ —9" ) =183
les triangles EAO et EA'O donnent les équations suivantes :

sin « cos u = cos (x"— k) cos (2’4 j) cos & — sin (x"— &) sin (z
, sin ocos u'= cos (x "+ &) cos (x'—j)cos & — sin (x"-+ &) sin (z'—J
(a) — sinzcos v = sin (z”-— &) sin (x'-4-j ) cOs A — cos(z”— k) cos (z
(='—J)

— sine’cos v = sin (" ) sin (z'—j)cos & — c08 (=" + k)cos (z'—

Si 'on multiplie les deux premiéres par sin 2", les deux derniéres par sin ', et qu'on

pose
cos k =  cos (x"—+ k) cos 2"+ sin (z”+ &) sinz”,
= cos(z"— &) cos 2"+ sin (z”— &) sinz”,
sinj = — sin (z'—J ) cosz’ + cos(z’ —Jj ysinz’,
— — cos (z’ +Jj) sin z' + sin (&' +j)cosz’,
on obtient
— ginxzcosusinz'= sin(z 4+ j)cosk— [sin (&' - j)cosx”+- cos ('+j)sinz” cosd]ecos (2" —4),
o sinoa/cosu'sinz’= 'sin(z’ —j)cosk— [sin (& — j )cos "+ cos (z'—j)sinx” cosA]eos (x”-+£),
o sine cosu sinz’'= cos(z’—k)sinj — [cos (z"—k)cos 2’ — sin (" —#)sinx’ cosA]sin (z'+/),
_—sin o/ cos v sin z'= — cos(z"4-F)sin j —[cos (z”4-F)cos &’ — sin (' +k)sin &’ cos Bsin (z'—j).
On a de plus
(e) — sin  sin & = sin A cos (x"— £), sin « sin v = sin (z/-- /) sin &,
— sin « sin & = sin A cos (2”4 &), sin &’sin v = sin(x’—j)sin A.

On déduit des équations (b) et (c)

L,
SIn & SIN% sinx"sin (w—u' )= cosk [cos(z”— k)sin (@' —=j)—cos(z "+ k)sin ('+4)]

sin A
+ 2cos(z"+k)cos(z"—k) sinj(cosz'cosz” —sinz’ sinz” cos 8),
sin « sin 2’ 7 sinfu v ) = —sin j{cos(z "—& S 7 4 Rsin (z'4-f
— si { = Jl Ysin(x —j)-—-COS(.Z‘ +K)sin (' +J)]
+ 2sin (#'—j)sin {z/+ /) cos & (cos 2’ cos 2" —sin Z’sin z”cos B),
et de la

-3 - 14
b'EST‘n—‘_Sl: - [sin " sinjsin (e —u') + sin ' cos &) sin (w-v")

= o{cos (2" +F) cos (2"~ k) sin?j + sin (2'+j ) sin (x'—j ) cos® k](cosx’cos 2’ —sinz’ sinx” cos A);
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d’on se déduit la relation obtenue.
On a, en effet,

© oS 27 — COS 1CoSs &’ - sin wsin u’ cos 2.j = cos (u—u') — 2 sinusin #'sin’ j,
e .. . .
COS 272 == €OS Y €08 v/ ~ sin u sin v’ cos 24 = cos{v + v') + 2sin vsin v’ sin’4.
Par conséquent
cos (t— ' }— cos (v +v') = 2 (sin & sin «"sin’j + sin v sin ' cos? &),

d’ott on déduit, d’aprés (c),

S,
ﬂg_“s%f_ [cos (u—u')— cos (v+’ )]== 2 [cos (2" —#) cos (" -k ) sin? j + sin (#'— j) sin (&'~ ) cos* £ ].
sin

Si I'on divise (d) par cette équation, on obtient
i

¢ sin z” sin j sin (w—u’) + sin 2’ cos & sin (v+-v')
() cos (u—u') — cos (v+v')

. v ” : ros ”
sinA —= cos £ ¢cos X’ — sInx sinx cosA,

laquelle est la relation qu'il s’agissait de prouver.

On déduit encore de'équation (a), d’une maniére semblable, quelques relations qui,
plus tard, nous seront utiles. Si I'on multiplie les deux premiéres équations (a) par
cos z” et les deux derniéres parsin z', on obtient

sin o 08 & c0s & = - sin  sin (& 4/ ) —cos (&”— &) [sin (2’ +/) sin 2" — cos (&' +j) cos 2” cos 2],
)

sin o/cos w'cos 2 = — sin & sin (' —j) —cos (2" + &) [sin (' —j )sin z” — cos (¢’ -+J) cos z” cos A},
—sinx cosv sin &/ ==  sinj cos(z”"—4) —sin (z' 4 j)[cos (#”—k)cosz’ — sin (z”— &) sin z’ cos A],
— sina/cosv'sin 2’ == — sin j cos (@ +4) —sin (&' — j)[cos (z"~+k)cos 2" — sin (2" &) sin 2’ cos A],

etdela
sine sine’

Y sin (u—u') cos &’ = sin & [sin (=’ —j)cos (z"—Fk) +sin (2’ +j)cos(z"+£))
— 2sin j cos (z"+-£) cos (&” —*) (cos 2’ sin z”~+- sinz’ cos z” cos 4),
ii&—:;lsli—n&i sin (v —u’)sin 2’ =sin j [cos (z” —k)sin (& — j )+ cos (z”4-&)sin(z'+/)]
— 2sin&sin (@'~ sin (z'— j) (cosz’sin z” +-sin 2’ eosz” cos A).
Par conséquent

sinesin o’

{® sin A

= — 2[sin?j cos (2" k) cos (2" —k) — sin*k sin (2/ -/ ) sin (2’ j )} cos &' sinz”+ cos z”sin #” cos a).

[sin (w—u') cos z” sin j — sin (v—v') sin 2’ sin &)

On a, en outre, par équation (e),

cos (u—u') — cos (v—v') = 2 (sin u sin &’ sin’ j - sin v sin v’ cos* £),
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et & cause de I'équation (e),

sin z sin ' . . . ;
A [cos (u—u') — cos (v —v')] = 2 [cos (" — #) cos (2" + &) sin® j — sin (x'—j ) sin (&' 4/ ) cos? .

En prenant cette équation pour diviseur de (g), on obtient

sin (u—u’) cos 2” sin j — sin (v—v’) sin 2'sin & _

{(h' —sina . . == cos z'sin " + cos x” sin 2/ cos .
cos (u—u’) — cos (v-—v’)

On obtient une autre relation utile de la maniére suivante. On multiplie les deux pre-
miéres ¢quations (a) par sin 2" et la troisiéme et la quatriéme par cos 2,

sinx cos u sinx” = — cosksin (2’ + /) + cos (x”—4&)[sin (' +j ) cosax” +-cos (2 4 )sina” cos A],
sine’ cos #'sinz” = — cos A sin (' — j) +- cos (z”++4)[sin (2" —j ) cos z” + cos (x' —j )sinz"cos A7,
— sifia cos v cosz’ == — cos j cos (& —k) +sin (2 +j)[cos(x”—4)sin &/ +- sin(z” —£)cosx’ cos A],
— Sin&’cosv’ o3&’ == — €08 j €08 ("~ k) 4= sin (&' — j) [cos (¢ +4) sin 2’ + sin (" +Fk) cosz’ cos 4].

D’ou résulte

—_ 1 s
__S;iﬂnizm_a sin #” sin (u~-u') = — cos & [sin (z'+- ) cos (" +4) + sin (&'—j) cos (2" — k)]
—+ 2 cos (x”—£) cos | x”+4) cos j(sinz’ cos 2"+ cos &’ sinx” cos 3),
. 3 ’
—-Sg—l—irila—:lr—li cos &' sin (v—+v') = — cos j[cos (2" — &) sin (2’ — )4 cos (2" #) sin (z' +)]
+ 28in (&'~ ) sin (' —;) cos  (cos x”sin &'+ cos &’ sinx” cos A).
Par conséquent
21 1 4
———bl—r.]-f—gzn—“ [sinz” cos jsin (z~+ ) — cos 2’ cos & cos (v 4’ )]
sin

== 2{cos (z"—k) cos (x”+ £) cos* j — sin (2 +-5) sin (2/ — j) cos? #] (cos = sin .’ +- sin " cos 27 cos A).
Dailleurs

sinzsino’

———[cos (+u") — cos (v )] = — 2 [cos* j cos (2" — k) cos(x"+k) — cos? ksin (z’ +j) sin (' — )];
Sin- £
par conséquent
: e il AN ! ’
(i sin a 0% €08/ S0 (4w ) — cos 2" cos k cos (u+v) = (cos " sin &’ 4 sin =" cos =’ cos A).

cos(u—l—u/)—cos(v—}—u’) ’

§ XVIL

Les equations d’od dépendent les intensités des rayons réfléchis et réfractés sont done
q P y
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les suivantes :
(S-+R.)sing =— 1D’ cos «" sin ¢’ -+ D” cos & sing”
(S—R,)cosp=—D cos 2’ cos ¢ + D" cos 2" cos ¢”
P-1-R, = D'sinz’ + D sina”,
(P—R,)sing cosg = D’ (sin z'sin ¢’ cos ¢’ — sin? ¢  tang ¢')
~+ D’(sin #”sin ¢”cos ¢” — sin? 9"tang ¢ ).
On déduit de 1a
. { R, = pP + 'S,
R, = p'P + 58§,

ou les coefficients p, p/, 5, s' ont les valeurs suivantes :
Np = cosz”sin (p-+3" )[sin 2’ sin (9—9" ) cos (p—+¢' ) + sin? ¢ tang ¢’ |

~+ cosz’ sin (p+¢' )[sin =" sin (p—¢” ) cos (¢-+9") + sin’ ¢” tang 7”1,
Ns = — cos 2’ sin (y—¢’ ) [sin 2" sin (p+9") cos (p—¢" ) — sin? " tang ¢”]

{2) — cos z”sin (p—g¢” )[sinz’ sin (p4o' ) cos (p—9’ ) — sin’¢/ tang ¢’ ],
Np'= — sin 24 cos 2’ cos z” sin {"—9"),
. sin z'sin #” sin (¢’ —¢” ) cos (¢' 49"
Ns = sin 2¢ ) x,,. ,l(?,?.} ,(?_*—,?) AR
—sma” sin*¢’ tang ¢’ sin sin’¢” tang ¢

N a pour valeur

cos 2" sin (p-+¢” ) [sin 2’ sin (p ¢’ ) 008 (p—p’ )— sin’ ¢’ tang ¢ ]

N = . . . ” ‘
' {—}— €os 2’ sin (-9’ ) [sin ”sin (p-+¢” ) cos (p—¢”) —sin? p"tang ¢”] |

Pourles vitesses dans les rayons réfractés, on trouve

2 "

ND' = asingcosp {P cos 2" sin (p-+9”) — S [sin 2" sin (9-+9") cos (9—gp” ) — sin 9" tang 4”11,
ND"= 2 siny cosg {Pcos & sin (p-1-¢’ ) + S [sin &’ sin (p-+9") cos (p—¢’ ) — sin* ¢’ tang ¢/ It

@ |

o
De Ia, on déduit les intensités de la lumiére dans les rayons réfractés ordinaire et ex-
traordinaire. Leurs valeurs sont respectivement D'2U’, D"2 )" ,

u sin ¢’ cos ¢’— sin 2’ sin? ¢’ tang ¢’
- sin g cos ¢
sin ¢” cos ¢” — sin & sin? 9" tang g”

5
4)
U =

sing cos 9

Employons ces formules, pour les faire mieux comprendre, aux trois cas trés-simples
que voici :

A. Quand le plan d’incidence divise en deux parties égales Uangle aigu des azes op-
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tiques, alors

4 1 14 14
u—u = 0, — — tangq =0, v v = 2.

0*0

En outre
sinz’ = o, cosz” — o0, cosz =F1,

urface réfringente est du coté de’axe = ou du coté de I'axe v,

selon que la normale alas
a commodité de la démon-

par rapport a la normale & Ponde réfractée, supposé, pour |
stration, que l’axe = est celui qui divise en deux parties égales Pangle aigu des deux axes
optiques. Dans les mémes conditions sin 2" == 1.
D’aprés les équations (1), (2), (3), on trouve p=o,5=0
/

__sin (p—¢') S

T Tsin(ey’) /
. ’ sin? "
[Sm (g—9") cos (g+9")E — ] P
By= sin® ¢”

sin (¢+9”) 008 (v—¢") F

= 2 sing cosg S

V=
- Snlyv)
s D= —+2singcosgP
- sin’ g
s (9" 05 (s—' ) F -
¢'E
U — sin ¢’ cosg’
= singcosg ’
S ¥
sin ¢ cos¢” ¢ S—mTL
U= e*E .

sin ¢ €0S ¢

2. Quand le plan Jincidence divise en deuz parties égales l'angle obtus des deux axes
optiques, ou, C€ qui est la méme chose, coincide avec le plan des axes p. et 45 alors
v+ = 180%
et, parsu e,
| " o__ I\ o ’
;—_tangq —o0, (e—u)= 180" — au/.
En outre
cosx’ = 0, sinx” =0,
et

> R /A
sinz’ ==k1, cosz’' =1,

selon que la normale au plan de réfringence est du coté de Paxe v ou du cote de T'axe
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¢ par rapport a la normale & 'onde réfractée. On trouve p =o0,5 =o.
R,=— Snl—e") S
sin (p+-¢")

) sin? o/
[t )cos(p) 222 ] 2

Rp= . sin? o !
sin (p+4') cos (p—9') = — -
(6) D — == asing cos ¢ P
) , . sin® ¢’
Sin (g-g') cos (p—3') 7 —
D" T+ 2singcosy S
sin (p+¢")
sin ¢’ cos ¢ o= i 3’ .
U — 0’0 U SiD ¢” cos cp”.
. sin g cos p ’ sin g cosy

5. Le plan d'incidence coincide avec le plan des deux axes optiques, Ici nous avons
deux cas A distinguer :
q o

- Les normales aux ondes réfractées sont dans l'angle obtus des axes optiques ,

sin z’ = o, coszx’=o0, j=o, k=o, = o,

=T

cosx’ =1, sing” =,

On doit prendre le signe supérieur ou le signe inférieur selon que la normale au plan
réfringent est située du coté de 'axe = ou du coté de 1'axe p par rapport a la normale i
Ponde réfractée. On trouve p = o, s —o.

sin (—¢') §
Ri=— el L0
sin (p+9')

T 2
[siﬂ (p—4") cos (y+¢”) = 07 ] Y

eE
RP: . sin*qa”
$in (p+¢") cos (p—g" ) p 20T
e¢'E
() D — ‘_*"_.leinq)co/s':ps’
sin (p4-¢')
D’ izsincpcos:p P
- . sin’g”’
sin (99" ) cos (p—9” ) = R
- v Sin? g”
U — sing’ cosg’ U e coset eE
VU T e pcosgq’ - sin g cos g

Tome VII. — Deceupre 1842. 59
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2. Les normales aux ondes réfractées sont situées dans Uangle aigu des axes op-

tiques ,

. ) ]
cosz' = o, sinx’=o0, 2j=180°, 2= 180°, =%
et

3 A . Ho e
sinz’ — 1, cosx’ =TT,

sclon que la normale au plan de réfringence est du cote de Paxe = ou du cote de Taxe u
par rapport & la normale & I'onde réfractée. On aencore p’ = 0,8’ = 0.

/ “ ”
R, = Snle—e)S
sin (p+7")
. sin? ¢’
sin (p—9') eos (p+¢' ) = —5 ] P
Ry= = - sinfel
. __sin’g
sin (p+¢') cos (p—¢') = —=55~
D — “+osingcosy P
) = Ty
‘ in (oo ) cos(p—¢' ) %
sin (90" ) cos(e—¢" )= — 3
D— ==2singcoseS
T sin(ye”)
. _sinzr?'
U= sing cos¢ + o
sing” cos ¢”
U//: ? ? .

: sin g €os »

Je démontrerai, dans le paragraphe suivant, que celles de ces formules qui se rap -
portent aux rayons réfléchis sont encore exactes pour le cas particulier, intermeédiaire
entre les deux cas 1° et 2°, oitla normale i Ponde réfractée coincide avee Paxe optique;

il suffit alors de poser ' = W'

§ XVIII.

Je vais actuellement appliquer les formules (1), (2), (3) du precédent paragraphe i un
cas plus difficile en appurence que celui de 1a double réfraction. au cas de la réfraction
conique. Je rechercherai les intensités de lumiére et la position des plans de polari-
sation pour diverses avétes du cone lumineux que forme le rayon incident en s'epa-
nowissant. Les formules (1), (2}, (3) devicnnent, dans ce cas, complétement indétes-

minées, puisque z’ et x”,j et A peuvent avoir toute valeur; elles prennent la nature

. . ) 0 . . P
des expressions qui deviennent o par des valeurs déterminces de deux quantités in-
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. . . (8]
dependantes 'une de Pautre. Dans des cas semblables, la signification du symbole 5

mérite un examen tout spécial. J'aurai recours i la fig. ro. Solent mencs par le
centre d'une sphére les deux axes optiques qui rencontrent sa surface en A et A’
par le méme centre faisons passer la normale au plan de réfringence, les normales aux
ondes ordinaire et extraordinaire, et le rayon incident correspondant; ces lignes
vencontrent la surface sphérique respectivement en B, O, E et S. Le plan d’inci-
dence est ainsi celni du grand cercle BEOS. J'ai supposé que la normale au plan de
réfringence se trouve situce dans le plan des axes optiques, et dans Pangle aigu de ces
axes; plus tard j'examinerai le cas général. Les mouvements de 'onde ordinaire O se
font dans le plan du cercle 00’ qui divise en deux parties égales angle AOA’; le rayon
ordinaire est en o, de maniére que langle 000’ soit un angle droit, et que la tan-

gente de Parc 00 = o et O étant pris avec la signification donnce, § XV, équa-

1
o0’
tions (5) et (4). Cela résulte des équations (), § XVI, et {18 b}, § XV. Dans l'onde ex-
traordinaire E le mouvement a lieu dans le plan du cercle EE/, hisecteur de Pangle
AEG; le rayon extraordinaire est en #, de maniére que ¢EE’ soit un angle droit, et
T 3
g Les angles AOA” et AEA’ sont ceux que nous avons déja
P
designés par 2.7 et 24, Vangle SEE” est notre 27, ¢t SO0’ notre x”.

que la tangente de ¢ B —

Tinaginons maintenani que le rayon incident se déplace successivement de S en 8
et en §”, mais de telle sorte que la normale 4 Ponde ordinaire sc meuve dans le cercle
AO pendant que le plan de réfringence B demeure invariable; O et E tombent toujours
trés-pres 'un de Pautre et ils coincident quand O est arrivé en A, 8 en $”. En suivant
les différentes positions des plans de polarisation de O et de E pendant le mouvement
de O suivant AQ vers A, nous voyons que lorsque Q ¢t E coincident P'un et I'autre en
A, ces plans de polarisation ont pris les positions Aa et Ab; Ab divise en deux parties
cgales angle A’AO et Aa divise semblablement angle OAS”. Nous avons ainsi i cette

limite
SAa—==2z", S'Ab=x".

[ angle
2j = 24 = BAD = 360° — 2z’ = 22" — 180",
et par conseéquent
z' " = 207,
Le rayon ordinaire relatif ala normale & 'onde A est situé en &, le rayon extraordi-
naire correspondanten a’. Je désignerai les arcs Ab’ et Aa’ par ¢’ et ¢”, ce qui donnera

4 ! it ol sin 27 sin x”
tang ¢’ — ——
B 7 020 29?2 ’
1 ? . . Ti— "
tang ¢ — —— = -sin 2z sinax” — — ———-sin 2ncos =
54 e*F 2v? ?

59..
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. . . I m—pt . .
car 0? = ¢* =1?, et dans la formule 0= T ¥ sin (w — «') sin j, Pangle &’ — o et
2
X 1 wi—pt , , .
# = 2n, que de méme dans — = - -sin (oo’ ) cos &, angle v'= o0 et v = 2r. S1,
E 2

de plus, nous posons
180° — 2’ =, (w=DIangle a’AS"),
il viendra

i

e sin 27 cos ».
v

4 14 7 ’ T 1 "
() tang ¢'= ——— sin2nsin w, tang ¢" =
En cerivant ces formules, on doit observer que larc ¢” est dans Pazimut o, pendant
que l'arc ¢’ est situé dans 'azimut w — go°; si 'on appelle cet azimut ', @ = o’ 4 go".
Cette valeur étant substituée a o dans tang ¢’, donne

e

L sin 27 cos o';
29*

tang ¢’ =

d’on résulte, pour o = ', ¢’ = q”.
La ligne AO peut étre inclinée d’un angle quelconque sur AA’, cest-d-dire
I'angle S"AO peut croitre de 0 3 -+ = et de 0 & —; en méme temps o, qui est

. ' N . . 1 I
toujours égal a la moiti¢ de S”AO, peut avoir toutes les valeurs entre -~ = et — ~ %,
2 2

Par conséquent les équations (1) représentent un cone dont les arctes figurent tous les
rayons qui correspondent & la normale A. Cest le méme cone auguel nous avons ¢té
conduits ci-dessus, § XV, équations (23), par d’antres considérations.

Les considérations actuelles font pénétrer d'une maniére plus précise dans sa nature
physique. On doit considérer le rayon incident §” comme un céone dont tous les cotés
ont été réunis & 'axe. Chaque coté du cdne, quoique tous aient maintenant la méme di-
rection, a produit deux rayons o' et b’ dont le lien est un cone elliptique autour de
V'axe A, lequel est coupé suivant un cercle par un plan perpendiculaire & A.

Jappelle les deux rayons a' ¢t &' rayons conjugués. Quand le rayon a’ est donné¢, on
trouve son conjugué b’ en menant par l'axe A et le rayon &’ un plan, ct un second plan
par A perpendiculairement au premier; ce sccond plan coupe le cone suivant lerayon &',
Les deux vayons conjugués sont polariscs perpendiculairement 'un & T'autre, et chacun
d’enx perpendiculairement au plan qui passe par sa direction et par A. Sil'on désigne
par I Yamplitude de la vibration dans le rayon incident, les deux rayons conjugués & &'

. .18 . . .
proviennent de la partie =, 27 representant la circonférence d'un cercle dont le
or

vavon est 1, ct § un ¢lément de cette circonférence, car on doit se représenter les edtes
du cone qui se confondent en $” comme doués tous de vitesses oscillatoires egales. Je
Qe QP

am

désignerai les vitesses dans les rayons &’ et @' par S et
. -

« Pour trouver I'expres-

' vl D | ' ey
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sion de leurs valeurs, nous avons & poser dans 'éq. (3), § XVII,

P=—, 5= —,

On trouve, d’apres cela,

N= —sin(p+¢) [Sin (o ~-9') cos(p—q’ ) — sin® ¢ sin 22 T
(2) { NQ'= —2singcosg {P sin (p—+q’ 1 sin w -4 8 [sin (p—+3') cos (p—¢') ___7_:__2—7{/— sin 2nsin“cp’J cos «,)} ,
NQ"= — 2singcosy %P sin (p-+-¢’) cosw — 8 [sin (p-+9') cos (g—7') — 7.--;;;;- sin 27 sin’ ¢’

sin r;)} 5

2
. . . . ™
sin g’ cos ¢’ — sin® wsin® ¢’ sin 27 5 f
v

U = ; y
sin ¢ cos g

2

"
o o?
T sin g cos 9 ’

sin g’ cos ¢'— cos? w sin’ ¢’ sin2n

La valeur de Q" appartient au rayon dont I'inclinaison sur 'axe A est ¢ et qui se
trouve dans I'azimut «. La valeur de Q" appartient au rayon dont inclinaison est ¢’ et
qui s¢ trouve dans 'azimut w — go°. Si & la place de » on introduit o’ = w —go®, on voit
que pour »'=1w, Q'=Q”. On peut, par conséquent, remplacer les deux ¢quations (2),
comme nous P’avons vu A I'occasion des deux équations (1), par une équation dans la-
quelle la vitesse est exprimée en fonction de I'azimut correspondant du rayon, par con-
séquent par la valeur de Q.

A ce propos on doit observer qu’alors chacune des arétes du cone doit étre regardée
comme double , comme représentant en premier lieu un rayon ordinaire, en second lieu
un rayon cxtraordinaire, quoique dans ces deux cas la méme vitesse et la méme direc-
tion appartiennent aux mouvements. On peut donc les ajouter, et obtenir la vitesse
correspondante & chaque cot¢ du céne, en multipliant Q” par 2. Je désignerai par 4
Iinclinaison d’un coté du cone sur PVaxe A dans Pazimut o, et par Q la vitesse dans le

rayon lumineux représenté par ce cGLé ; il viendra alors

mr—p?
- §In 272 COS w,
2v?

tang g =

U2 -
3) P sin{p+¢')cosw —8 [sin (9+9') cos (p—o’ ) — T—;—u— sin 22 sin? q:'] sin o
e
Q=1{singcos ¢

sin(p—+¢') [Siﬂ (9 +9") cos (p—¢’ ) — T ;f‘ sin 27 sin? ?’]
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Cette formule contient la toi ’aprés laquelle un rayon incident s'épanouit suivant les
avétes du come de réfraction, quand, polarisé primitivement dans Pazimut dont la tan-

P . o
sente est 3 il tombe sur un plan de réfringence dont la normale est situce dans Fangle

aigu des deux axes optigues.
1’intensite de la lumiére qui vient suivant Iaréte du cdne situee dans I'azimut e pav

rapport au plan des axes optiques est donnée par Iequation

sin ¢ cosy

Entre g et 9’ on a la relation
. .
v SIN “J — sin ¢

o' est ici I'inclinaison de la normale 2 la surface rofringente sur Paxe optique. St Fon
pose v = 0, cesl-i- dirc si on suppose que le plan suivant lequcl la lumiére penetre
dans le (nsml est perpendiculaire 4 Uaxe optique, on obtient

Q)= 4 {Pcosw» — Ssinm),

Qon Pon voit clairement que, suivant le coté du cone situe dans azimut de ja polarisa-
tion primitive, la lumicre est nulle, et qu'elle est un waximum suivant le edte dont
Pazimut est perpendiculaire au plan de polavisation primitif. T rapport sembiablc
A lien genéralements il est sculement modifi¢ par la réfraction des ondes, car on peut

roujours mettre U'équation {3} sous la forme
Q= Asin (B — o)

Mais, en realite, ce n'est pas un rayon qui tombe A la surface du milieu que nous con
sidérons , mais un faiscean cylindrique de rayons; celui-ci n'engendre pas un cone lu-
mineux simple, mais la lumiére rvefractée s'épanouit dans un espace qui est circonscrit
par lenveloppe d’une infinite de cones refractés. Tl résulte de 1 que Ja distribution de
I+ lumiére, aussi bien que la position de son plan de polarisation, se trouvent modifices

\vant de m’occuper de ces modifications, il est bon d’examiner ce yn'il advient dm
formules { 1} et (2), § XVIIL, pour la Tumiere réflicchie dans les cas particuliers ot Fonde
refractee est pe r')endlcul.m a Pun des axes optiques. Les vitesses réfléchies R, el K,
doivent ¢tre considerces comme composcts des vitesses refléchies qui appartiennent anx
rayons réfractes isolés dans les azimuts o7 et x5 les vitesses partielles reflechies. avantics

mémes divections, s 'l]mltcm et donnent en consequence

R,

R,
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Le signe f mdique une sommation par rapport a toutes les valeurs de =’ et =" de
0d ar.

Les quantités p, p’, s, s’ sont, en général, des fonctions de ces quantités. Mais on
trouve par les équations (2), § XVII,

2,2
== — sin (p-+¢') [sin (9—¢") cos (p+9') =4 sin® ¢’ sin 22 il p }L— ],
v

eI
7
~
f

2

et
{(4) < N = sin(p—y) [sin (9+¢') cos (p—g’) — sin’ ¢’ sin 27 — - ?F ],

i

r

S

il

Pl S
Z =

o 3
0o 2
d’ou il résulte que .

fpﬁ:er, fslB::xm:, fp’:o, fs’::o_

et que, siau lien de N on met sa valeur tirée de I’équation (2), on obtient

2y
sin (p—¢’) cos (945" ) -~ sin® ¢’ sin 22 TT)H
Ry = — >
[t ? .1 P ’ —_ I) —_—em?an 71-2—‘ IL?
G sin (p+¢) cos (p—g') — sin® ¢’ sin 2z ™
R *__Sill ((P—-qa')
LT sin(p 44

Ce sont exactement les formules que I'on déduit des équations (7) et (8), § XVII, quand
on y fait ¢’ == ¢”. La réfraction conique n'exerce donc aucune influence sur la ré-
flexion.

Les mouvements Q, donnés par Péquation (3}, se font perpendiculairement A P’azi-
mut o ; si l'on décompose ces mouvements suivant Pazimut oo ot 90°, et si Pon fait les
sommes des composantes correspondantes respectivement & ces deux azimuts, leurs va-
leurs doivent coincider avec celles de D et de D" déduites de Péquation {7) ou de 'équa--
tion (8) du § XVII, quand on y fait 9" =o"; on le trouve en effet.

Les composantes des vitesses dans 'azimut 0°, sont

— Qsin w E,
27
et dans azimut go°,

ﬁ
COs —
Q ” 27

._stinmgi et D[QCOS(’J;@;

Les sommes
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doivent donc étre égales aux valeurs de D’ et de D” des équations (7) et (8), § XVII,
ces sommes étant prises pour tous les cotés du rayon incident que nous nous sommes
imaginé comme un coéne lumincux rédnit & son axe. Nous devons rappeler que « esi
toujours la moiti¢ de 'angle S"AQ, je le désigne par «. Si I'on donne d = toutes les
valeurs entre - =, — =, on obtient les rayons réfractés qui correspondent & tous les
eités du rayon incident ; on peut en place de f éerive da.

Par [ la premiére somme se change en

. B + .1 du
— SN ) — =— — sin — % —
fQ 027.' f_n-Q 2 or’

1

ou encore

+ -7
. p 2 i ey
— | Qsin @ — == — Qsin w —.
o 2w 1 ~
o
De méme
]
- 3
* (5 2 dm
Qecuos o — —= Q cos o —
27 r It
-—_ - T
2

En substituant pour Q la valeur que lui assigne I'équation 3), on obtient

. .
. 28N w COS 98
‘fQSlnw-H-—z—————‘———?-,

- 1 P U
o sin (o 42"}

fQCOSru—Z?—: 2sinpcosg P

—t_ g
sin (949" ) cos (g—g' | — ‘——A—;E— sin 27 sin‘e’

2v°

Ce sont les valeurs que donnent, au § XVII, les formules (7) et (8) pour I et D”, quand
on fait ¢" = o”.

Jusqu’i présent jai admis que le plan de réfringence est perpendiculaire au plan des
axes optiques. Je considérerai présentement le cas général pour lequel le plan de re-
fringence a une position quelcongque.

Soit ¢’ I'angle de la normale & ce plan avec 'axe optique, et » 'angle que le plan
mene par cetic normale et 'axe optique, ¢’est-d-dire que le plan d'incidence fait avec le
plan des deux axes optiques. Cet angle ) est compté dans le méme sens que l'angle »
ci-dessus. Les plans de polarisation de deux rayons conjugués quelconques du cone el-
liptique sont situés dans les azimuts 2" et 2" ; ces deux lettres ont la méme signification
que dans les formules (1), (2}, (3), § XVIL

Soit

o = 180° — 2’ = " — go°,

«»' désigne ainsi Pazimut du rayon extraordinaire par rapport au plan d’incidence. Alors
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angle que précédemment nous avions désigné par o, cest-i-dire, I'azimut du rayon
extraordinaire par rapport au plan des axes optiques = o' =~ . On a, par conséquent,
d’aprés I'équation (1), § XVIII,

mi—p? .
tang ¢’ = 5 anon sin (w'+13),

2___ g2
tang ¢ = - f sin 27 cos {o'+1).
2v :

3

Fn introduisant «' & la place de z/ et de 2", et ces valeurs de tang ¢’ et tang ¢ dans

, . . Pp SP, . . . -,
Iéquation (3), § XVII, et en substituant ;‘E, ;E a Petd S, on obticent, sil'on désigne
" 4
Q8 Qe vitesses dans les d , conjugué
encore par ——, <~ es vitesses dans les deux rayons conjugucs,
™ T

— 2

|
xS

2 5in ¢ COS 9 {P sin (g9 )sin o’ 45 [cos o' sin (p-+9’ ) cos (p-¢' ) — - sin 27 5in¢’ cos (w’—i—)\)] }
X
Q = . ,

sin (p-+9') (sin (99" ) cos (p—¢') — — sin 27 sin’ ¢’ cos x]

2

2 sing cos ¢ %P sin (¢-+¢') cos 0’ — 8 [sin o' sin (g-+¢' )cos (-9 ) — N ; ¥ sin 2n sin? ' sin (w'_;-))J}

.

7,2
sin (p-+9¢) {sin (94 ¢ ) cos (g—9' ) — T 2 f sin 27z sin® 9’ cos}]
v

Les valeurs de ¢’ ¢t Q' appartiennent aux rayons qui sont dans lazimut o' — go“; si
'on introduit cet azimut dans les formules qui les expriment, ¢’est-i-dire si I'on rem-
place o' par'e’ +- go°, on trouve

TR I\
¢ =4q, U=0Q"
On peut donc encore ici considérer le rayon situé dans 'azimut »’ comme reésultant de
deux rayons, I'un ordinaire, Iautre extraordinzire, tous deux de méme vitesse et de
méme direction. On obtient, d'aprés cela, la vitesse dans un rayon situ¢ dans Pazimut
o en multipliant Q" par 2. Si donc on appelle Q la vitesse vibratoire d’'un rayon dans
Pazimut «, et ¢ son inclinaison sur 'axe optique, on a, en mettant a la place de o’ sa
valeur o —1,

7!'7—p,’ . L - )
SIN 272 5in* ¢’ Sin 6 s

4singcose {P sin(p-+9’ ) cos (w-})-S [sin (949" }cos (9-9' ) sin (w-2)-

')2

(6) Q=2Q"=

2,2
sin (p+¢') [Siﬂ (p+19') cos (g—9') — - o u-;H sin 27 sin® ¢’ cos )]

Si I'on pose == 0, on voit se reproduire le cas représenté par I'equation (3); mais
) :
3 = 180° représente le cas ot la normale au plan de réfringence est dans Pangle obtus

Tome V11, — Dicusre 1842. 6o
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des axes optiques; on obtient » dans ce cas,

1,2
4singcose {P sin (p+9' ) cos » — § [sin (p49") cos (9—q’) + ﬂ—,—y'
Q=— .\ id

sin 27 sin® o’ J sin o &

2

2—
sin (9~ ) | sin (p+o’) cos (p—o" Y+ %?i sin 27 sin’ zy’]
Y

Pour les rayons réfléchis, on obtient les vitesses en faisant les sommes des vitesses
partielles qui correspondent & chaque rayon réfracté du céne elliptique.

On a ainsi
R,=p [2P g [
T ar’
R, =P P—/@ -+ S R
¢ on 2w
On trouve
. . nt—p? . i
6 [sm (9—9") cos(p+9') + —~sin® ¢’ sin 22 cos )J
f;/): T e
sin (949" ) cos (p—o’) — — i sin® ¢’sin 27 cos %
[2, i)
Jo2r T sin(pq/)’
[1’ - 01
o2
T in ¢’sin 27 sin »
~;7 Sin2gsin¢'sin s

—
3=
N

o

mi— . . -
£ sin? o’ SIN 272 COS A
?

sin (p+3') [Siﬂ (p-+¢") cos (5—y') +

Pour obtenir ces mémes formules on pent se fonder sur des considérations totale-
ment indépendantes de la réfraction conique, en cherchant les valeurs dep, s, p’, s
pour un plan réfringent quelconque, quand le plan d’incidence passe par I'un des axes
optiques, et que le rayon est réfracté de telle manicre que 'onde réfractée soit perpen-
diculaire & I'axe optique, ce qui revient 2 poser, dans I'équation (2), § XVH,

1 5
x’ = 180“—!—-)\, x”:go"——)\,
2 2

e P‘I 2

, . N p wi—ut [N
lang ¢ = ——~sinansin - %, et tang ¢" = — L sinancos - .
2 7 .
29 2 2v 2

La refraciion conique n’exerce donc, en général, aucune sorte d’influence sur les phe-
nomenes de réflexion.

Il nous reste encore a examiner comment s'opere la distribution de la lumiére dans
le come elliptique, quand la lumiére incidente n’est pas polarisée. La lumiére naturelle
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doit étre regardée comme résultant d'une série de mouvements vibratoires exécutés suj-
vant des directions quelconques et avec une rapidité telle que dans un temps trés-court
on puisse en supposer un méme nombre dans toute direction.

Si dans Pexpression de Q on met pour P et S leurs valeurs P — Isinfi et $=1 cos B,
I* désignant I'intensité de la lumiére incidente, et 5 un azimut d’oscillation ; sil’on forme,

enoutre, le carré de Q, et si I'on multiplie ce carré par ;@, on obtiendra Pintensité de
T

d
la lumiére 1" dans un rayon quelconque du eéne en prenant Pintégrale de UQ? 5E de
T

27 (lf;
4 J— 2
I hfo QT

04 -4 2z, On a ainsi

c’est-A-dire

‘ cos? (m~)\;)sin2<\<p+(9') lsin(w—)\) sin (q)—i—(p'/\cos((?-q)') - T:_f sin2nsin® o cos s, | )
. 2y
I*=8Psin’gcos'y ¢ ... " "' Ty e Y TR G 53
[sin (p+9") cos {p—o’) — 2 2 f sin 27 sin’ ¢’ cos )] Sin’ (gt 5
v
wi—p? | .
sin g’ cos ¢’ — oy S 272008 (w—)) sint ¢’
2v
U= — T ——
$in g cos g

Si Pon néglige 7*—p?, on obtient comme premiére approximation ,

I P $in 2.¢ sin 2 ¢/ ,‘cos2 {w—2)
=20 1

o ————— — ~ Sin2 *—-))
SIn? (p-t-¢") " | cost (y—g') (v J ’

d’ott I'on voit que cest seulement lorsque le plan de réfringence est perpendiculaire
I"axe optique que la lumiére est uniformément répandue sur le cone. En général > Pin-
tensité de I lumiére a un maximam pour w=— 2, et un minimum POur o == — oo, Je
rapport du maximum au minimum est comme 1 est A cos? (9—¢'). Dans Jes observations
de M. Lloyd sur 'arragonite (Pogg. Ann., Bd. XXVI), cette différence Clait assez pe
tite pour échapper & 'observation, car (p-—¢") surpassait & peine g°.

En réalité nous n’avons pas affaire & un rayon de lumiére, mais i u, cylindre de
rayons. Soient, fig. 15, AA’ DD’ Pintersection du plan d’incidence avee Je faiscean cy-
lindrique incident, ABC et A'B'C les intersections du méme plan avee les surfaces ¢~
niques de réfraction qui appartiennent aux deux rayons incidents AD, AD'; AB et A’ B/
les directions des axes optiques. Les mouvements qui sont envovés vers un point quel-
conque ¥ émanent de tous [es points dela section AA’ du faiscean cylindrique incident par
le plan réfringent. si parce pointontire FG paralléle i 'axe optique, etsi, avee FG comue:
génératrice , on déerit le cdne FGE, ce cone sera coupé par le plan de réfringence, en
général , suivant une ellipse. La portion de cette ellipse comprise dans Pintérienr de Ia

bo.
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section AA’ de cylindre des rayons incidents par le plan de réfringence, conticnt tous
les points de cette section AA’ dont les mouvements atteignent en méme temps le point
¥. Ces mouvements n’ont pas lieu tous dans la méme direction, ils doivent étre d’abord
décomposés, puis ajoutés pour donner le mouvement de F. Cela conduit & des calculs
pénibles, etle résultat depend encore, dans les cas les plus simples, des transcendantes
elliptiques.

Je me bornerai & traiter la question dans un €as simple et tout particulier; le calcul
woffre pour ce cas aucune difficulté analytique, et il est uiile pour mettre le principe
dans tout son jour. Je supposeral (ue le plan refringent est perpendiculaire a laxe
optique, ct que les rayons incidents forment un cylindre droit. Soit ABC, fig. 11, Vin-
rersection de ce cylindre avec le plan de réfringence, le diamétre AB de cetie section
circulaire = 2p. Par un point quelconque D intéricur au cristal, et distant de « du plan
refringent, menons une ligne paraliéle a axe optique qui rencontre €n E, le plan ré-
fringent. Menons, en outre, par DE le plan des deux axes optiques dont la trace sur
ce méme plan refringent est EF. Sur cette ligne prenons

it .
EG = T gsinon =R,
2v°
et du point G comme centre, avec GE pour rayon, decrivons un cercle. Le cone deter-
miné par le point D et par ¢€ cercle est le cone de réfraction correspondantau point D.
Les mouvements du cylindre incident transmis vers D ¢manent des rayons qui coupent
le plan de réfringence suivant Parc de cercle HL. 1l est, d’aprés cela, facile de détermi-
ner sur le plan paralicle au plan de réfringence mené par D, quels sont les points qui
ont part au mouvement. Les limites de ces points sont telles que les cercles décrits par
les points E aux conditions données touchent le cercle ABC, telles, par conséquent,
que GN = R p. Siparle point E on méne la ligne EM paraliéle a GN, et la ligne BA
paralicle & EF,ona
A i— L
M = EG = ———& ginand.
2
Le point M est done indépendant de d quant i sa position , et ME est toujours Ja dis-
tance du point central N au centre G du cercle décrit par E. Aux points limites D qui
recoivent encore 1a lumiére de ABG, appartient donc la sévie des points E pour les-
quels ME = R p. Ces points sont ainsi compris entre deux cercles concentriques PQ
ot P'Q’ déerits du point M comme centre avec les rayons
t— P‘2 . , Tl .”’: .
MP = —— - dsm2n—¢p, et MP = "—-—dsin2n ¢

v* 2y
On 'a plus qu'a {aire passer par ces Jeux cercles deux cylindres droits pour obtenir
les points limites du plan paralléle an plan réfringent (men¢ par D), qui regoivent encore
les ravons du cylindre incident dont la base est ABC. SiR = p, le rayon du cercle inte-
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rieur ABC devient égal & o, 8i R < p, le rayon de ce cercle devient négatif, ce (u
veut dire quil devient, comme dans la Jfig. 12, tangent intérieurement au cercle ABC.
Mais ce cercle a encore ici une autre destination; il circonscrit tous les points E qui
sont tels que si des points G avec R comme rayon on décrit des cercles, ces cercles
ne coupent pas le cercle ABC. Vers les points D correspondants & ces points E ar-
rivent, par conséquent, tous les rayons d'un cone complet de réfraction. Dans I'anneau
compris entre AQP ct RQ'P’ se tronvent les points qui ne recoivent qu'une partie des
rayons de ce cone.

Soit la position du point D déterminée par sa distance R + z A I'axe optique mene
par M et par Vangle des deux plans menés Pun par l'axe optique et le peint D,
I’autre par ce méme axe et le point N, Cest-a-dire par I'angle PME == IL. Si 'on decrit
du point M comme centre et du rayon p le cercle abe, et du point E avec le rayon R
un cercle qui coupe le premicr aux points % et #, I'arc hi sera égal & HI et les rayons EZ,
Ei, EM seront inclinés sur PA d’un angle double de I'angle d’inclinaison des lignes EH,
EI, En; n désignant Pintersection de GN avec le cercle décrit du point G.

Soit ’angle MEA = MEi{ =z'; on a

1 pr—
sin? —z' = ————.
2 2R (R+x)
Supposons qu’un rayon Ev forme avec EM Vangle z, et que le point V dans l'intérieur
. > 1
du cercle ABC réponde & v, de telle sorte que EV forme avec Er Pangle — z. Soit dé-
2
signée par Q la vitesse du mouvement de V i E. Cette vitesse est une fonction de I'in-
clinaison de VE sur AB, cCest-i-dire de~ (T +2z), et elle est dirigée perpendiculairc-
2

ment & VE.
Si nous la décomposons suivant EN et perpendiculairement 4 cette direction, et s
nous nommons la premiére composante p’, la seconde s’, nous aurons

1 1
oy ! e M ’
== Qsin-z, s ' =Qcos— 2z
p’'=Qsin_z, Qcos
Si nous multiplions ces composantes par I'élément de Parc HI, ¢’est-a-dire par Rdz, et

si nous faisons une somme de composantes élémentaires semblables de — 2’ & 42/, nous
obticndrons les composantes p et s du mouvement envoyé en E par I'arc HI,

— R s’ .1 d 3z’ 1
pP= L Qsm;z z, $—R _Z,Qcos;zdz.
Si nous portons dans cette équation la valear de Q de I'équation (4), nous aurons
4R 1 . 1
oy P - (II o — in —
P P cosz( -+ z) Ssmz(H—i-z)] smzzdz,
4R 1 . N I
s = :;f[PCOSE(H+Z)—551n5<H+Z) cos;zdz,
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Ao
p = 4R Psinln—l—ScoIH / in z’
’ P = P 3 S (8" —sinz |
{10
‘ 4R 1 LI .
= — Pcos -1 — - ! r
{ $ Ty \Peos s Ssmzﬂ (z' 4-sinz’),
avec la condition
sin* L= L7 "
2R (R+ )

o <=« désigne la distance do point D ou du point E au bord intérieur, et p—x la dis
tance du méme point au bord extérieur de P'anncau i I'intérieur duquel sont placés tou-
les points qui recoivent I'ébranlement. Quand p? — 2 devient négatif le point détermine
en position par R ~+ 2, par I et par ¢ ne recoit plus aucun mouvement; mais quand

—a : : s S _

“op—e——=g 7= 1 00 2> 1, on doit substituer i z dans Péquation (10) la demi-circon-

2R (R + z)

férence d'un cercle dont le rayon est égal 4 1, c’est-a-dire =.
Dans ce cas on obtient

.1 1 4RaP

psin —H— scos— N = — ——n"

. 2 2 I~
R

1 . 4R=S

pceos — I+ ssin—Mf — — ———,

2 2 [~

Les quantites du premier membre sont les composantes des vitesses envoyées vers D,
perpendiculairement et paralléelement au plan des axes optiques, ainsi que P et S sont
les composantes correspondantes dans la lumiére incidente. Dans ce cas, le plan de po -
larisation demeure donc le méme pour la lumiére réfractéc et pour la lumiére inci-
dente. Ceei subsiste pour tous les rayons dont les points F sont situés dans lintérieur
du cercle APQ, fig. 12; & partir de 13, c’est-a-dive pour les points qui sont situés en
delhors de ce cerele, lejplan de polarisation tourne jusqu’a ce que les rayons qui éclairent
les points les plus extéricurs dans le cercle BP’Q’ soient polarisés perpendiculairement i
leur azimut, ¢’est-i-dire perpendiculairement i la ligne tirée du point B & chacun d’enx.

Les formules (11} sont, au reste, les mémes que nous avons trouvées pour 1) ct N
au § XVII, ¢quations (7} et (8), quand nous avons posé

vsing==sin¢’ = sin¢” et o = o.

Quand R > p il v ala moiti¢ de 'espace APQ sans lumiére. Les rayons lumineux de
fa surface extérieure, aussi bien que ceux de la surface intérieure de I’anneau, sont de
polarisés perpendicnlairement a leur azimut, c’est-a-dire que les premiers sont pola-
rises perpendiculairement au plan qui serait mené par leur direction et Paxe optique
B, les derniers perpendiculairement au plan qui serait conduit par leur direction et

"axe optique A.
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Si Ia lumiére incidente W’était pas polarisée, nous déduirions de Iéquation (o)
= iRﬁ I'(z" —sinz’),
(T4)
s SR>

51 :m I* (2’ 4~ sin 2’y

Pour 2’ = o, c’est-i-dire z — ™, la lumiére est polarisée perpendiculairement 3
I 1 . 5 Ty
Vazimut ~ 11. Pour sin 7 — ¢ el z=== la lumiére est & Pétat naturel, Pour les autres
2

directions la lumiére est seulement polarisée en partie perpendiculairement 4 Pazimm
] - s . . .
5 11 et la portion polarisée est donnée par I'équation

5-2 2 1

s*—p 2zsinz

= 2E

$tp? 22 4-sin’z

§ XIX.

Te m'occuperai, dans ce paragraphe, de la recherche de langle de polarisation, e
d’abord des cas les plus simples pour lesquels le probleme permet une solution compléte.
Ce sontles trois cas o le plan d’incidence coincide avec I'un des trois plans rectangn-
laires déterminés par les axes d’élasticité pris deux A deux. Il suffit de poser, dans les

formules (5), (6), (7) et (8), § XvII, R, =o, et d’en tirer ¢. Cet angle ¢ est I'angle de
la polarisation compléte,

L. Le plan dincidence est bissecteur de | ‘angle de deux axes optiqucs ; on a, d’apres
P'équation (5), § XvII,

N 2
0= Ry = sin (y—3”) cos (y+¢" ) 4 sz,;‘o ,
e
(1) e
1_*: == ~~—2— — €08 S 2vu.

Si Fon appelle £ I'inclinaison de la normale de Ponde extraordinaie sur U'axe d’¢Jas-
ticité qui divise en deux parties égales I'angle aigu des deux axes optiques , on

sin 2v sin £ = sin an cos &, et cotang % = sin ¢ cotang n,

o I
ces valeurs, substituées dans B donnent

2 _ vz

1 7.‘.2_~ 2

E sin 2%,

. 3
€08? 72 5in 28 —

Substituant cette valeur dans la premiére des éq. (1), et observant en méme temps que
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St == sinTg, On obtient

ey

2 o = sin (p—y") COS (p-+9") +7

sin 2 sin? ».
2

D’aprés cela, on peut ¢liminer £ au moyen de linclinaison du plan réfléchissant sur
Paxe délasticité qui divise 'angle aigu des deux axes optiques. Soit o° —1Ila valeur de
cette inclinaison; on a

(3) E—o¢" =1, ou E+¢" =L

) . . i— !
selon que, dans I'équation (2}, le signe de

est additif ou soustractif; car, d’apres

I'équation (5), § XVII, on doit prendre le signe supérieur ou le signe inférieur, selon
que [<EouTI>E. Si T'on substitue la valeur de &, donnée par I'équation (3), on
peut réunir les deux équations en une seule qui réponde 4 la fois aux valeurs positives
et négatives de I, et ’on obtient

—_ 2
A v

4 0 = sin (3—¢") cos (g¢") — g

sin ¢ sin* (I —¢" ).
D'ailleurs entre g etg” a licu la relation

sin® ¢” = sin? ¢ [ p* + (=t — p?) sin? v},
qui, par I’élimination de v aumoyen de £ et del, se change en

2_1

2 2 2 B
; . . (i i T
{5 sin?g” = sin® g — cos2{I—s" ).
, > > f

Si Von développe les équations (4) et (5) par rapport A sin2g” et A cos 2¢”, on en
deduit facilement les valeurs suivantes :

(m*— Wi— (7' v?ysin’ qJ]iln’ g sin o1—sin2a(r —(r*—»7)sin’ g €08 a1}
[(m—")sin’g sinalp—4-[1— (m*—v") sin’¢ €08 2IF
[1—(=+ ) sin?g][1 —(r?—y%)8in’ g COS 2]+ (r?— »?) sin 2¢sin’y cos 21

[(m2—>")sin’¢ sin21 |+ [1—(7*— vi)sin? p cos 217" ’

sin 2" = — ’

"
cos 2¢ —

Silon ajounte les carres de ces deux équations , on trouve, aprés quelques réductions
pour I'anyle de polarisation cherché,
- . [ —v?) cos* I 4+ (1—77)sin’ L
6) sin®o = (—~)”~§-2—_.>—— .

) J]— 7y

2. Si le plan d’incidence est bissceteur de Uangle obtus des deux azes optiques, cl
perpendiculaire & leur plan, on a Pequation (6), § XVII, A traiter de la méme ma-
miere. 11 est facile d’ailleurs Jen avoir le résultat. Ce resultat peut aussi se déduire de
Péquation (6) en changeant =% en p?, Tcn T'; go°— 1 est Pinclinaison du plan réflecteur
sur I'axe d’élasticité qui divise en deux parties égales Pangle obtus des axes optiques.
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On a, par conséquent, dans ce cas,

(1—v)cos’ ¥ 4 (1—p?) sin? T’

b) in®p —
( sin® g —py

3. Sile plan d’incidence coincide avec le plar des axes optiques , on doit poser dans
les formules (7), § XVII, Rp = 0. Cette équation R, — o se change, par une introduc-
tion de £ et de I analogue A celle qu'on a faite dans équation (2) de ce paragraphe, en

’on . 7 7 mi— f“2 Y 7" L
(7 0 = sin (p—¢") cos (p-+-¢ ) — S sin’ (I—o")sin?q;

pour la relation entre ¢ et ¢” on obtient

i . . 2 2 S S
(8) sin? ¢” = sin’y [% - £ cos 2 (I— q;”)] )
d’ont I'on tire

(1—p?)cos* I 4 (1—m?)sin®1

— piw?

(9 sin? p —

Cette derniére équation fournit la solution de I'équation R,=o (8), § XVH, en
changeant p? en n* et z* en p?, et remplacant I par I'; I’ ayant la méme signification que
ci-dessus. Mais comme on a ici I 4+ I'— 90*, on voit que la formule {g) de Vangle de po-
larisation ne subit pas de changement par ces substitutions.

D’aprés les considérations qui, dans le § VIII, nous ont conduits 4 I'équation (3),
et qui peuvent s’adapter A tous les milieux réfléchissants cristallins, A quelque classe de
cristaux qu'ils appartiennent, I'angle de la polarisation compléte dépend aussi, dans ce
cas, en général de P'équation

{10) ps 4+ p's’ = o.
Je vais mettre cette ¢quation sous une forme plus simple. Si l'on pose
sinz” sin (9 —¢' ) cos (¢ + ¢/ ) =+ sin? ¢’ tang ¢’ = A,
sin z”sin (¢ — ") cos (g +¢" )+ sin* ¢ tang ¢” = A”
— sina’ sin (y+ ¢’ ) cos (p — ¢’ ) 4~ sin’ ¢’ tang ¢’ = B,
— sinx”sin (g4 ") cos (p — 4" )4~ sin® ¢"tang ¢” —= B”,

7

les formules pour p, p’, s, &, (2), § XVIL, se transforment dans les suivantes :
Np = A’ cos 2" sin (9+¢") 4 A” cos z’ sin (y+¢' ),
Ns = B cosx” sin (p—¢") + B” cos 2’ sin (3—¢'),
Ns' = A'B" — A"F,
Np'=— cosz' cos x” sin 29 sin (3’ — ¢").

Tome VII. — Decemsre 1842. - 61
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Ces expressions , substituées dans I'équation (10), donnent

[A cos 2” sin (944" ) + A” cos 2’ sin (p +¢')] [B’ cos z” sin {p—¢") + B cosx’'sin(o—¢' )1 | _
+ (A’B” — A"B') cos z’ cosz” sin 2.¢ sin (¢ —g¢") T

Si I'on développe les multiplications, on voit bientdt que cette équation peut s’écrire
sous la forme

[A’ cos z” sin (p—g”) + A” cos z” sin (p—¢’ )] [B’ cos z” sin (9 + ") + B” cosz’sin(g+¢')] = ©.

Des deux facteurs de cette équation, le premier contient seul les racines qui répon-
dent 4 la question; on peut s'en convaincre en posant la différence des deux axes
délasticité = o. L’angle de la polarisation compléte dépend donc seulement de

A’ cos z” sin (p— ¢”) -+ A” cos &’ sin (9 —¢') = 0,
ou, aprés remplacement des valeurs A’ et A”, de

; . in?g't i 7 sin’p” tang¢” cosz’
(11)  sinz’ cos 2" cos(p+¢') +sinz” cosz’ cos (p+9") + sin g 089 ::osx =t €9 ,, =0
sin (p—¢') sin (¢ — ")

Si pour tang ¢’ et tang ¢” on met leurs valeurs tirées des équations (2) et (5), § XVI,
R

sin?¢’  sin’y” o .
et pour —.—et —— la quantité sin* , on obtient
e

sinz’ cos z” cos (9-+9' ) +sinz " cosx’ cos (9 +¢")

sin jsin (u—u')cos =" | cos /rsin(u-i—u’)cosx'] il

in? - .
Rl q’[ sin (p—¢') sin (p— 9" ) 2

Je déduirai une expression approchée de sin ¢, en ayant seulement égard aux premiéres
puissances de la différence des axes délasticité, Dans le terme multiplié par =*—p* on
peut alors poser j = &, u = v et u’ =v’, sin &’ = — cos " et cos &’ = — sin x, et
enfin ¢/ = ¢”.
Si ’on pose d’ailleurs
cos (9-+¢") = cos (g=+¢) -+ sin (g-+¢) sin (#'—¢"),
on obtient
cos (p—+¢ ) -+ cos*z’sin (p-+9") sin (¢’ — §7)
2 2

w—p
2

. sin? [
sin’(p—9')

[cos j sin (w—+u') cos &" — sinj sin(z—«')sin =’ ]

Si I'on pose

. m? — p? sin u sin &’ sin?
sin(y —¢')= — = 1= T 2T
2 sin ¢’ cos ¢

~
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on obtient

[cos/sin(u~+u’) cos ' —sin j sin (w—u' )] sin 2’
sin (p—g’)

cosx’ sinu sin u’

— ¥

. ?
’ = . sin*
(12)  cos(p—+¢') sin (p-—¢') 9
sing’ cosg’

L . - e w— p?
Je désignerai par « la quantité multipliée par

» de sorte que

2 2

il
2

cos(p—¢') = «

2

i .
£ » On obtient

En neégligeant les puissances supérieures de

sin’g - sin?g’ = 1 — sin g cos ¢ « (r? — p?);

2 2 2 2
. R Tt -4 f -
€t comme sin? ¢/ — sin® cp[ £ £ cos (—u )] )
2 2

mt— P_z}

sin’ ¢ =

{x+ [cos (u—u’) sin? g — sin 24 o] P

2 2
i+ ¢

remettant pour « sa valeur

. 1
smg —m—

1+ i (7" +p?)
sin (p—4-9')sin 2y b
sin ¢ cos ¢/

[cosjsin (u+u' ) cos z” — sin j sin (#—w') sin 2’
f sin (g —¢')

cos (u—u') — sin & sin &’ cos® 2’ R
sin? ¢
2

PR

~—sin 2

On peut donner & cette formule plus de concision en posant
! I ! ’
cos’x' = — 4~ — cos 22/,
2 2
et en observant que la premiére approximation cos (¢ +¢') = o donne

sin (p+-¢’) sin 29 ”

- et sin (¢—o’) == — cos 2.
squ’ COSC‘D, (‘P ‘P) ¢

Elle devient

I

sin'e =

I N
iy g 2
(13) I+2(7r )

€08 # c0s &’ — sin u sin u’ cos 2.2’ t., m—p?
> g 14 . , .. M 1€ ST 0 .
-+ tang 2¢ [cos jsin(u—+-u')cos 2’ — sin ; sin (k') sinx’)

61.
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Dans cette expression de sin’ doivent étre placées, & la place de u, ', ¥, leurs valeurs
1

exprimées en fonction delavaleur approchée de sin* 9 = et des quan-

+I('z__*_ 2)
L (i

tités qui déterminent la position du plan réfléchissant et lazimut du plan de réflexion.
Supposons que la normale au plan réfléchissant forme avec les deux axes optiques
les angles Uet U’. Soit X Pazimut du plan de réflexion compté a partir du plan qui di-
vise en deux parties ¢gales I'angle que font entre cux les deux plans menés par la nor-
male au plan réfringent, et les deux axes optiques. Soit 2J cet angle lui-méme. On 2

cos u = cosg¢’ cos U — sin ¢’ sin U cos X+,

cosn’ = coss’ cos U’ +sin ¢ sin U’ cos X—13),

— cos &'+ j) sin 2 = sin ¢’ cos U — cos ¢’ sin U cos (X+J),

(14) — cos (x'—j)sin &’ = sin ¢’ cos U’ — cos ¢/ sin U’ cos (X —1J);
sin (z'~+j)sin u sin Usin (X + J),
sin (#'—)sin 2’ = sin U'sin X~—1.

Si 'on élimine, A laide de ces formules, «, w, z', j dans I'équation (13}, etqu’on
fasse dans la partic multipliée par =* —p’, ¢ = go° — v, on obtient, aprés quelques
réductions,

1

cos (X~J)cos(X+J) )] sin® y (*—p))

{ ‘e 1T
i = [COSU cosU'-sinUsinU (—l— sin (X~J)sin (X-+J)cos2g/ | €0s 250 2§

(15) sin* ¢ = ;
1St =’)
On peut éliminer J au moyen des relations
25in U sin U’ cos?§ = cos2n — cos (U-+U'),
— 2sinUsin Usin*J = cos2r — cos (U—T"),
et I'on obtient

1

sin? ¢ == ~—

1
o S ()

¢ { — % cos U cos U’ + [cos (U—TU’) — cos2r]cos’y } sintp ' — fﬁ}

— sinUsin U’ (cos* X + sin?Xcos2g) § cos 29 a2

et en substituant i sin? ¢ et cos’ ¢ leurs valeurs approchées,

1

sin’ ¢ =
i
r o (w )
7 2 2
(16) EET cosan . ) ’ : 2 1(7‘2_H2)
< d 1+ 2 i S cosUcosU' (1+ 7 +p')| 2 ]
p? 4 T2 —sinUsinU'cos2X p? - .

2 2
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Mais on peut, puisque nous avons négligé le carré de x> — p?, écrire

fI':z _i__ﬂ.:; -
——C0S 21 .
1 2 w?— & I
—— = . — -
I ) 2 qr)? P 2 Py
l—i——(p"—l—r‘) 1 ——M . m cos 2rn
2 2 ) B+t 2 T —
1+ -4 " ol
2 . 24 -+ 2
2
. . ~? 2 gyt
¢t cette formule se change, quand on substitue A cos 27 sa valeur %— , dans
. ™ —-y.
s Fa2+ 2
2
2 2A77 ’
I — I_L___‘__ﬂ- v?
2
de 14 on déduit enfin
P’Q —+ 2
] — — . . .
. 2 " c0s Ucos U’ (1+4-mi<4-p?) - sin Usin U’ cos 2X  n*—p?
sin ¢ — - ~ 1 : ) e
¢ Wl+(&“ \ (f‘z+rl>2 2
I o—— T — | ——
2 2

Les conséquences les plus remarquables qui dérivent immédiatement de cette expres-
sion approchée de I'angle de polarisation compléte sont les suivantes :

1. 1l existe pour tout plan réflecteur deux azimuts du plan d'incidence perpendi-
culaires Fun & T'autre, dans lesquels 1'angle de la polarisation compléte est un maxi-
mum et un minimum. Ces azimuts divisent symétriquement le systéme des angles
de polarisation, cest-A-dire que dans les deux plans d’incidence qui s'inclinent
¢galement sur le plan du maximum ou du minimum de I'angle de polarisation se
trouvent les angles de polarisation d’égale inclinaison. Les deux plans du plus petit
et du plus grand angle de polarisation sont paralléles au plus grand et au plus petit
rayon vecteur de la section déterminée dans la surface d’élasticité par le plan réflé-
chissant.

2. Si le plan réfléchissant est perpendiculaire 4 'un des axes optiques, auquel cas
U=0, oulU"=o, les angles de la polarisation compléte sont égaux dans tous les
azimuts,

Ces théorémes ont la plus grande analogie avec les théorémes que nous avons don-
nés pour les cristaux a un axe, et je présume qu'ils ne sont pas non plus ici approxi-
matifs, mais rigoureux.

§ XX.

Le plan de polarisation du rayon complétement polarisé par réflexion, forme avec
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le plan d’incidence, 'angle «, et pour la détermination de cet angle les considérations
du § VIII, dans le cas des cristaux i un axe, ont conservé toute leur valeur. On a donc
SV

1 tang &« = —.
1) g :
s" et s doivent étre exprimées au moyen des valeurs de ¢, ¢, 9’ déterminées par
I'angle de polarisation compléte correspondant, § XIX. Nous avons trouvé ci-dessus ,
§ XVII, equation (2),

(2) Ns' — sin 2?[ sin z’ sin z* sin (¢'—g” ) cos (¢'~+¢") ]

— sin®¢’ tang ¢’ sin 2” -+ sin’¢” tang ¢” sin z’

Pour s on tire de I'équation (2), § XVII, en éliminant tang ¢’ et tang ¢” au moyen
de l'équation (11), § XIX,

Ns= —sin2g[cosz’sin x”sin(y —¢’ ) + cos 2" sin " sin (g— 9"} ];
on a, par conséquent,

sin &’ sin x” sin (¢'—¢” ) cos (¢'+¢” ) — sin® ¢’ tang ¢’ sin 2" +-sin® ¢” tang ¢” sinx’
cos ' sin z” sin {9 —¢’ ) 4+ cos x” sinz’ sin(p—¢” )

(3) tnga = —

Si, d’aprés les équations (2) et (5), § XVI, on pose

tang ¢' = — tang 4" = —,
20’ e¢'E
<t d’apres 'équation (34), § XV,
I ?— P: . L 1 e ?
5= 2———sm(u——u’)smj, ﬁ-:THsm(u—a—u’)cosk,
et
sin? o’ sin*¢” .
- ¥ = ? = sin? 9
o et
et
L, om— sin®g’ — sin®y”
s1n- P - i 7
cos (v+v' ) — cos(u—u'
on obtient

PN s 7] 13 i
)sinjsinz”-sin(u+-v' Jcos ksine’ | ,
sin(y'+4")

\ sina’sin 27 cos ¢/ +-¢" [Sin (w-u
e (¢ +¢" )+

O A /\
(4)tangz:—smw"?”)% cos (u—u) = cos fortv')

cos .z’ sin 2” sin (9—¢’ ) + cos x” sin =’ sin (p—¢”

Numériquement on peut toujours calculer la déviation du plan de polarisation au
moyen de P'angle de la polarisation compléte, de I'azimut du plan d’incidence et des
quantités qui déterminent la position du plan réfléchissant ; mais on peut encore donner
a équation une forme plus convenable pour cet objet, L’élimination analytique com-
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pletede 2, 27, u, o/, v, v parait conduire a’des calculs trop longs ; je me conten-
terai, en conséquence, d’avoir égard dans cette élimination A la premiére puissance de
7*—p®, ou, ce qui revient au méme, de sin (¥"—+¢"). Sil’ons'en tient & cette approxima-
tion, on peut poser dans la formule 4)

w—=v, u =9, sinz” = — cos ', cosz” =—sinz’, k=—j,

et dans la partie multipli¢e par sin (¢'—¢”), ¢ =", on obtient

(5) tang o« — sin (¢'—¢”) {sin usin u’sin 227 cos 2¢'+[sin u cos u’ cos (x— )~-sin &’ cos usin (z—j)] sinag’ )
S == (p—9") 2sin « sin o' §

De I'équation (14) du précédent paragraphe on déduit

. . . . sinU cosU’sin(X+J) . . . .
SIn % cos u’sin (z—+ /)t sin w’ cos u sin (z—j) = [_’_ S0l cosT s;n gXiJ;J cosy’ -+ sin U sin U'sin 2X sin ¢/,
L sinU cosU'sin(X+J3)] ., . N ,
=— . . mn sinU sin U’sin 2X ens o',
SID &SN ' sin2.x [—l—-smU’cosUsm(X—J) S ¢ ~-51

Ces valeurs, substituées dans Péquation (5), donnent, aprés avoir posé
—sin(f—y’) _w—p simg

2sin wsin i 2 sinag’
T — pl sin? sin Usin U’ sin 2X cos ¢/
(6) tang 2 = . _R“._?_A_ ) . . ‘ ) b
2 sin2¢/sin (p—3") | 4 [sin (U~~U" )sin X cos J +- sin (U—U’) cos X sinJ]>< sin g

De tang @ = o on déduit N
(7)  sinUsinUsin 2X c0s ¢’ -+ [sin (U4 U )sin X cos T + sin (U—~1U’)cos X sin J] sin ¥ — o,

d’ott I'on déduira X aprés avoir posé pour ¢’ la valeur correspondante i l'angle de

polarisation. Examinons les cas les plus simples ou le plan réflecteur est paralléle i
Pun des axes d’élasticité.

1. U — U = 0. Ceci donne
(sin U cos ¢’ cos X + cos U cos T sin ¢’ )sin X == o.
La polarisation compléte sans déviation du plan de polarisation a lieu ainsi
(a) pour sin X = o,
(b) pour  cos X = — cotang U tang ¢’ cos J .
Ces conditions déterminent quatre azimuts de polarisation compléte sans déviation.

2. U + U’ = o nous donne

sin Usin X cos ¢’ 4+ cos U sin J sin o' ) cos X — o,
do P ?
ol

{c) cos X = o,
(d) sin X = — cotang U’ sin J tang ¢ .



488 JOURNAL DE MATHEMATIQUES
Quand le plan réfiéchissant est paralléle & I'axe moyen d’¢lasticite, il vient ou
I = o, ou J =go°. Nous avons, dans le premier cas ,
{ei sin X = o,
__sin sin (U +U") tang »' W
25in Usin U

f cos X =

et dans le second cas,

(g} cosX = o,
- sin(U—U’)tang »

h s]nX___L___>_’g_

S 2sin Usin U’

Il'y a donc, en général, dans ces derniers cas, outre la section principale, deux autres
azimuts ou la polarisation compléte a lien sans déviation de son plan. Ces azimuts fe-
ront I'objet d'un examen plus approfondi. Les équations (b) e t (d) peuvent étre com-
prises dans une méme équation.

Soit go® — & I'inclinaison du plan réfléchissant sur Paxe d’élasticité qui divise en
deux moitiés I'angle 2n des axes optiques, de sorte que

cos U — cos £ cosn,
- sin 7

sinJ] = —-

sin U

Ces valeurs, portées dans I’équation (b), donnent

. tang £ cos® #
8 cosX:-—tangcp’.-———z—b——f——Af——A

’ tang® £ - sin* #
L’équation (d) donne une équation toute semblable, & cette difference pres qua # on
substitue 7’ = go® — » et que ¥ ne désigne pas, comme dans I’équation (8), U'incli-
naison sur Paxe =, mais sur I'axe p. Les propriétés du plan réfléchissant exprimees

ar Pequation (8) se déduisent plus facilement de la méme équation quand on écrit
p q P q q

_ 1 tang ¢’ cos? 7 \/tang ¢’ cos'n
9) tang £ = — — —2L—— =+ —2 L ——— —sin*
R 8¢ 2 cos X 4 cos*X "

d'ott il résulte qu'a chaque valeur de cos X correspondent deux valeurs positives de
tang £, mais que cos ?X a un maximum qui ne peut étre dépassé. Nous distinguons
deux cas : 1°le maximum de cos X est réel.
La condition de realité est
{10) tang? ?’<4—t?¥:—£-
cos® n
Le maximum méme est

. tang ' cos® n
cos X — — (_b_f.______. s
2 sin 7

' [ER ] ' e
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etil a liew pour un plan défini par la condition
{rr; tang & = sin z.

La limite de possibilité de ce maximum est

fane? , 4 tang?n
8= "sn
Alors cos X = — 1; pour le plan réfléchissant reste tang £ = sin n,

2° Le maximum de cos X n’est pas réel, Ceci a lieu quand

4 tang® n
cos’ n

tang* ¢’ >

cos X devient ici — 1 pour

’ I i -
s tang & — 5 tang o’ cos®* n — 5 \/ tang? ¢’cos n — 4 sin? n>

{12) I et

1 , T - -
tang & = 5 tang g cos’ 7 -k —/ tang® gcos’ » — § sin® n,

Sur tous les plans réflecteurs compris entre les deux plans déterminés par & et £ il
0’y a que la section principale pour laquelle la polarisation compléte puisse avoir lieu
sans déviation du plan de polarisation. Entre & = & et ¥ — 0, et entre E-=—E" et
£ = go° paraissent, outre la section principale , deux nouveaux azimuts qui ont sem-
blable propriété.

Comme J’angle de polarisation ne varie pas beaucoup pour le méme cristal, ces ré-
sultats peuvent étre rendus plus sensibles par un exemple.

Soit I'angle de polarisation = 56°, ce qui donne pour ¢’ environ 34°. De Fequation
(10) on déduit

: “I '
SN — ¢
\ 2
tang® n > Tos—cpT’

f
¢' = 34° donue n > 17° o Quand donc l'angle des deux axes optiques, c'est-i-

dire 27, est compris entre 35 et 180° — 359, les azimuts sans déviation du plan de po-
larisation sont possibles aussi bien sur les plans qui sont paraliéles au plus grand des
axes d’élasticit¢ que sur les plans qui sont paralléles au plus petit. Si Iangle des axes
optiques est en dehors de ces limites, il n’y a plus gu'un senl systeme de plans réflec-
teurs qui présente des azimuts semblables.

Parrive aux plans réfléchissants, qui sont paralléles a I'axe moyen d’élasticité. Si I'on
désigne encore par £ leur inclinaison sur Paxe d’élasticité qui divise en deux parties

Tome V. —— Deéceyere 1842. 62
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cgales I'angle des deux axes optiques, on a & poser, dans Péquation ( f};

U=nr+ &,

U=nr—E&,
¢t dans ’équation (h),

U =n + &,

U=nr—2¢E

Comme dans 'équation ( h) l'angle X est compté & partir du plan perpendiculaire a la
section principale, je ferai correspondre son zéro a celui de X dans I'équation (f
ol cet angle est compté & partir de la scetion principale elle-méme ; dans I'équation
{hl, & la place de X je mettrai X — go°; par 12 les équations (f) et (h) rentrent dans
une méme équation

(13} cos X = — o0 2C0¢ E— tang ¢,

Y sin?§ — sin? »

Les azimuts X sans déviation forment done toujours un angle obtus avec Pazimut de
'axe optique le plus voisin, que la normale au plan reéfléchissant soit dans langle
aigu ou dans Pangle obtus des axes optiques. Si Pon renverse I'équation (13), on
peut Vecrire

 tang? o’ B tang 4’
. ey - _ g9
(4) tang 5 = \/4 cos' n cos* X + tang'n 2¢08* 7 cos X

ou cos X peut ¢tre positif oun négatif. On voit que cet azimut sans déviation ne subsiste
plus, o plutdt & cause des équations (e) et (g), qu'il n’y a de plan de polarisation sans
deviation qme lorsque le plan d'incidence coincide avec la section principale, de

t:';]—]‘gg ’ . tany o'
tang & = \/7 £ ¢ + tang*n — i 48

4 cosi n 2 cos? n

gy T T tangy
tang & = 7—‘——|—tang’n+——~.
4 cos'n 2 cos? n

En dehors de ces limites apparaissent de nouveaux azimuts sans déviation qui
croissent jusqu’a 9o’ limite qu'ils atteignent sur les plans perpendiculaires aux axes
d’elasticité. T’angle que forment entre eux les plans correspondants & £/ ct £”, a une
expression trés-simple que voici :

tang (E”—E’) = tang ¢’

Si l'on désigne par (¢”) et (4" ) en général deux valeurs de £ dans Péquation 14)
qgui correspondent a4 X et go° — X, on a

’
{15 tang (¢ — ¢/ )= —=L.
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Cest assurément un résultat inattendu que, relativement aux plans qui sont per-
pendiculaires aux axes optiques, il y ait pour chaque azimut , excepté poursinX — o,
une déviation du plan de polarisation, et que cette déviation ait lien malgré égalité
de Pangle de polarisation dans tous les azimuts, Cette déviation se déduit de Péqua-
tion (6) quand on y fait U=0, J = 0. On trouve

7 —— u? sin’psinnsin X
»” ang = =K S nnsin X
£ cosysinlp—y)

Sur chaque plan réfléchissant il Y a toujours au moins deux azimuts dans lesquels
la déviation du plan de polarisation est égale & 0, c’est-a-dire que Iéquation (7), qni
est du quatriéme degré bar rapportd X, a toujours au moins deux racines réelles.
Ceci résultera du paragraphe suivant.

Pour I'azimut de la plus grande déviation, en déduit de I'équation (6), en la diffe-
rentiant par rapport & X, et regardant 9, ¢/ comme constants, ce (ui est permis dans
un caleul approximatif,

2.c0s ¢’ sin U sin U’ cos 2 X - sin ' [sin (U+ U’ ) cos J cos X — sin (U—T"sinsin X == g

et sil'on désigne par m cet azimut maximum » on obtient

7 — p? sin?¢ 2sin Usin T’ ¢os ¢/ cos* K fsin (U1 cos
tngm = — % " L] 2500 S co T e - ot
% 2 sin2¢’sin(p—g )| sin X

§ XXI.

Dans le paragraphe précédent nous avons cherché la rotation du plan de polarisa-
tion par la réflexion sous Pangle de polarisation. Pour déterminer en genéral les
rotations des plans de polarisation par véflexion, nous ferons les conventions «ui
suivent.

1. Je désignerai par §, la rotation que fait éprouver la réflexion a un rayon primiti-
vement polarisé parallélement au plan d’incidence ;

2. Par go°—4d, la rofation que subit un rayon primitivement polarisc perpendi-
culairement au plan d'incidence ;

3. Par d, Vazimut de la polarisation primitive d’un rayon incident, tel que dans
le rayon réfléchi le plan de polarisation sojt paralléle au plan d'incidence ;

4 Et par go® — d, Pazimut de la polarisation primitive dans lequel le ravon re-
fléchi est polarisé perpendiculairement an plan d’incidence. On a

s S/ s(
tang ¢, — - tang dx—_—_;;

0) s ’
tang ¢, = > tang o, = —. -
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s, s', p, p' ont les valeurs données au § XVII, équations (2}, d'apres lesquelles ces
angles peuvent étre calculés dans chaque cas donne. La relation de ces angles entre eux
est générale et subsiste pour tout milieu réfléchissant.

Pexaminerai dans quelles circonstances ces angles 8, 9,y di dp disparaissent ; nous
avons en conséquence A étudier les ¢quations

pl—=o, et s/ =o,

jui deviennent, si Von y substitue les valeurs tirées des equations (2], § XVII,

() sin(zp’-—cp")cosx’cosz”:o,

sinx’ sin 2" sin (»'—¢” ycos (3’9" ) -+ sinz/sin’e” tangq — sinz” sin’ o' tang ¢'—o.
Je m’occuperai seulement de la premiere approximation de ces équations, et je ne-
gligerai ce qui dépend de la seconde puissance et des puissances supéricures de
sin (' — " ). Si I'on s’en tient 2 ce degré d’approximation, I’équation {w) se change en
sin 22’ = o, et cette équation, développée au moyen de I'équation {14), § XIX, donne

(=) o=siny'[sin(U 4-TU" Jeos I sin X - sin (U-U")sinJ cos X] -cosg’ sin Usin U’sin 2X.:

la seconde équation {s) donne la méme formule qui a ét¢ trouvée, ¢quation (1), § XX,
a cela prés que, dans I'équation actuelle, 9" ne se rapporte pas A I'angle de polarisation,
mais peut recevoir toute valeur. On a ainsi

(s') o=siny'[sin (U+TU')cosJsin X —+ sin(U-T’)sin Jeos X ] - cos o' sin UsinU’sin2X.

Ces équations représentent deux surfaces coniques intérieures au cristal : si T'on
prend les arétes de ces cones normales aux ondes, et si 'on construit les directions
(quelles prennent a la sortie du cristal, on obtient I'ensemble des directions suivant
lesquelles les rayons doivent tomber sur le plan du eristal pour que leur plan de
polarisation, primitivement paralléle ou perpendiculaire , n’éprouve pas de change-
ment par réflexion. Les deux surfaces coniques sont du troisieme ordre; elles sont
egales entre elles; elles ont commune la normale au plan reflecteur, mais I'une est
par rapport a Pautre tournée autour de cette ligne de 180°. Je n’ai donc qu'k exa-
miner avec attention le céne (). Ce cone nous sera trés-utile dans Uétude de la re-
fraction.

Comme tang ¢’ = 0, aussi bien quand sin X = o que lorsque cos X = o, deux
branches du cone doivent passer par la normale au plan de réfringence et se couper
a angle droit suivant cette normale. 81 X =1,

tang ¢’ = tang U’,
etsi X = — T,
tang ¢’ — tang U.
Le cone passe danc toujours par les deux axes optiques.
sin(U—1U")

Sitang X = — m tang J,

q)' et 90".

'
(L O I
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L’azimut X déterminé par cette équation est toujours négatif, puisque nous prenons
toujours U’ < U. Sinous Pappelons — X/, il vient

tang U sin (J —X') = tang U’ sin (J 4-X).

Soient N, U, U’ les intersections du plan réflecteur par sa normale et les deux axes
optiques; ces trois lignes étant ménées par le point O au-dessous de ce plan. Si P'on sup-
pose que la ligne NP divise I’angle UNU’ de maniére 4 donner

sin UNP: sin U NP = tang U’ : tang U,

NP scra une ligne paralléle au coté du cone.

Si I'on suppose, en outre, mené par N un plan perpendiculaire au plan des deux
axes optiques, la ligne d’intersection des deux plans OS est un c6té du céne. Cette der-
niérc¢ propri¢ic du cone (z”) se vérifie trés-facilement si Von considére N, U, U’ comme
les points de rencontre d’une sphére décrite du point O, avec la normale et les deux
axes optiques. On n’a plus qu’a mener par N un grand cercle perpendiculaire & TTY
et & démontrer que

NS—=4¢', SNU'==J —X et UNS=]J

satisfont & équation (=" ).

Nous avons donc pourle cone (=) cing cdtés déterminés et la position de deux plans
tangents. Ce céne coupera le plan réfléchissant, en général, suivant une courbe qui a
sensiblement la forme ANSU’NUB. Les lignes NH et NII' représentent les directions
du plus grand et du plus petit rayon vecteur de la section que le plan réflecteur déter-
minerait dans la surface d’élasticité.

Une propriéte générale de ce cone est digne d’attention : dans Pintérieur de I'angle
azimutal HNP il n’existe ; our ¢’ que des valeurs négatives, qui sont telles que la
polarisation primitivement perpendiculaire du rayon incident ne subit pas de modi-
fication par réflexion. Nous avons appel¢ X’ cet angle HNP, et nous P'avons déter-
miné par équation

tang Usin (J—X') = tang U’ sin (T X').
Dans la partie du cone NU'S ¢’ attcint un maximum. On déduit ce maximum de

) dg’ “ .
I'équation (n’) en faisant ;Z% = o : il a lieu dans Pazimut

sin(U—TU’)
(3) tang X = \/ tang J sin U-—{—U"’

sz valeur est

n , 25inUsin U’ \/[sm Jsin (U-U'))* T 4. [cosT sin(U~+ U )] o [stcosJ sin (U-U’ )sin U—1~U’ }*
{4) tange'=

v

ysin? (U—U")sin?J + sin® (U4+U' ) cos*J {[sm (U—U’")sin J]*¥ T [sin (U+U’ )cosJ17 }
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Lit valeur de ce maximum est importante pour la question des azimuts suivant lesquels
la polarisation primitive, paralléle ou perpendiculaire, n’est pas changée pour un angle
d"incidence donné o', Tant que la valeur de ¢’ correspondante a cette valeur de » n’est
pas plus petite que la valeur donnde, éq. (4), il existe toujours quatre azimuls qui
répondent A la question ; dans le cas contraire il n'y en a plus que deux. Ceci s’applique
a Péquation (7) du paragraphe précédent, qui cst la méme que celle notée (s’) dans ce
paragraphe, laquelle , comme on T'a déji remarqué, ne se distingue de (=') qu'en ce
que i chaque valeur de X doit correspondre une valeur négative de ¢’. Dans Péqua-
tion (7) ¢’ est 'angle de réfraction donné en fonction de l'angle de polarisation, et X
+st A déterminer.

Apres les considérations qui précédent, on peut toujours se représenter clairement la
position de la surface conique (="}, quel que soit le plan réfléchissant; mais nous men-
tionnerons encore les cas limites o ce plan est paralléle aux axes d’¢lasticité. Sile plan
reflecteur est paralléle au plus grand ou au plus petit des axes d’¢lasticité, on posera

U—U' =0 ou U-+TU = 180",

Pequation (='} se résout alors en deux facteurs dont Pun represente un plan, lantre un
cone du deuxi¢me ordre. Le plan passe toujours par la normale au plan réfléchissant
et est perpendiculaire & celni des axes d’élasticité qui est paralléle & cc dernier plan. Le
cone passe toujours par les deux axes optiques et par la normale au plan réfléchissant
qu’il coupe suivant un cerele. Quand le plan réfléchissant est perpendiculaire a Pun des
axes d’¢lasticité, (z”) représente deux plans qui se conpent A angle droit parall¢lement
aux deux autres axes d’¢lasticité. Quand le plan réflechissant est paralléle i 'axe moyen
d’élasticite, (77) représente paretllement un plan et un cone du deuxiéme ordre. Le
plan passe dans ce cas par les deux axes optiques, le cone par Ia normale au plan re-
flechissant qu'il rencontre suivant un cercle.

Seient, fg. 14, N, U, U les traces sur le plan reflecteur de fa normale ot des deus
axes optiques, ces trois lignes étant menées par le méme point 0; soit NS le cercle sui-
vant lequel le plan est coupé par le cone ;' la proportion harmonique suivante a lieu:

sin UON : sin U'ON’ = sin UON : sin U'ON.

Le cone est done le méme, quelle que soit celle des lignes ON ou ON’ qui soit normale
au plan de réfringence, et il existe toujours deux plans reéfléchissants correspondants
dans T'angle obtus et dans Pangle aign des deux axes optiques qui ont le méme cone
clliptique.Ce cone se change en une ligne droite quand le plan refléchissant est perpen-
diculaire & P'un des axes optiques.

L’azimut ¢ d’un rayon polarisé primitivement dans 'azimut « est, apres la réflexion,

£ tang @ +- tang 4,
s
tang ¢ —=

I+ tanga dp__'
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§ XXII.

Le cone (=), considére au paragraphe précédent , est important pPour Pétude ey
cas dans lesquels un des deux rayons réfractés disparaft, dans Phypothése ot la Iy-
miére incidente serajt primitivement polarisée parallélement oy perpendiculairemen;
au plan dincidence. §; la tumiére est polarisée perpendiculairement 4, plan d’inei-
dence, on a, par Uéquation (), § XvII,

D' :Dp”:: sin(<p+q>”)cosm” : sin (50-}—3&’)005&";

CoOsx"” — ¢ ou  cosax

Mais comme, en général , x/ est compte de telle manjere que si o' = 4

cosx” == —_ gin z’,

les deux angles sont racines d’'une méme équation, savoir, de sin 04/ 0, est-a-dire (e
Péquation (=’). Si Yon imagine,ﬁg. 13, une sphére décrite du point 0 commun § |,
normale et aux axes optiques OU et OU’, chaque ¢o1é Oy du céne (=’) pour lequel
Pangle ND/d — 90°, D'D étant bissectrice de Pangle UD'U’, est un rayon réfracté daprés
la loi du rayon ordinaire, issy d’up rayon incident quj » polarisé Perpendicnlairement
au plan d’incidence, n’a Pas produit de rayon extraordinaire. Chaque ¢ot6 op” pour
lequel ND” divise en deux parties égales angle UD” 7" o5t le rayon extraordinaire d'yy,
rayon incident qui, polarisé perpendiculairement gy plan d’incidence, ne produit pas
de rayon ordinaire, I] est facile de trouver, d’aprés celg les directions des rayons incj-
dents. Désignons dans le premier cas Pinclinaison de IV sur N Par ¢, dang Je seconq
cas linclinaison de p” sur N par ¢”, et les angles d’incidence correspondants i 4 of
& ¢” par £ et E”, il vient ’

sin E' = —-—:‘:;h___;_—__‘:-:: >
e ’
’?\ ‘~\COS (u—u }

% 2

: r
. " Sln(P
SIHE —\r\\_“__\_: .
n.?_'_‘Mz T:.Z_[LQ ,
\—\COS(IL—*—M)
2 2

I ny aura, dans un cag donné, aucupe difficulté 3 discuter pour quelle partie
du cone (=) cos 2/ — % et pour quelle partie sin 2" = 0. Dans [a fig. 13, par
exemple, pour la partie du céne UND'U, cos z” est partout — 0, tandis que pour les
deux parties U’ SND” et UB, c’est sin 4/ qui est nul. §jJe plan réfringent est paralléle 3
Paxe d’élasticité qui divise en deyx parties égales Tangle obtns des deqx axes optiques,
Cest-d-dire si U U’ — 0 €08 &' == 0 pour toys les ¢étés du cone elliptique pour les.
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quels ¢' < Us mais sin &’ = o pour tous les cOtés pour lesquels ¢/ > U et pour les
rayons qui suivent la section principale. Llinverse a lieu pour les surfaces refringentes
paralléles a Paxe d’élasticité qui divise cn deux parties égales Pangle aigu des axes op-
tiques , Cest-a-dire pour lequel U -+ U = 180°. Sile plan réfringent est parallele &
'axe moyen &élasticité , les rayons du cone elliptique satisfont 4 la condition cos »' = ©
quand la normale au plan refringent est située dans V'angle obtus des axes optiques, et
A la condition sin z’ = 0 quand elle est dans Pangle aigu. Pour les rayons incidents
dans la section principale compris dans Tangle obtus des axes optiques, sin x! est==0;
pour les rayons qui sont dans Iangle aigu , €05 % = o.

Quand les rayons incidents sont polarisés parall¢clement au plav d’incidence, on a.
dapres I'équation (3), § XVII,

D’ D’ = sin & sin (g4 ¢" ) cos{y— ¢
—sin’g” tangq” : sinx’sin (7 g ) cos(z— o) — sin’ ¢’ tang q.

Le rayon extraordinaire est donc tout pres de disparaitre,, car tang ¢ et tang " sont
seulement de petites quantités dépendantes de (¢ —¢")s quand sin x' = o, ctlerayon
ardinaire est & son tour dans le méme cas quand sin.z’ = o. Ces deux cas sont com-
pris encore dans sin 22" = 0, cest-a-dire dans I'équation (=)

Les cotes du cone, fig 13, pour lesquels sin £’ = o sont approximativement les
Airections réfractées d'apres la loi du rayon ordinaire que doit suivre un rayon polarise
parallélement au plan d’incidence pour que le rayon extraordinaire disparaisse, et les
ches pour lesquels cos z’ = o sont les rayons réfractés dapres la loi du rayon extraon’™
dinaire qui, polarisés parallélement au plan d'incidence, ne produisent pas de rayon
ordinaire. Aumoyen des valeurs approchces fournies par V'éq. {(="), ¢est-a-dire par
sin 2z’ =0, on calcule facilement des valeurs plus exactes

Gin 22’ = mt— sin®g cos z’ sin (e —w')smy
4 anls =7 lcos(p— )

dn 2z = Tt sin® g cos 7 sin o) 05
4 Sin(tp—*l*cy’)cos(q)——cp’) '

[.a relation qui doit exister entre la position du plan de polarisation du rayon in-
cident, son angle d'incidence et Vazimut du plan &Lincidence, pour que le rayon
ordinaire ou le rayon extraordinaire disparaisse résulte généralement de Vequa-
tion (3. § XVII. Quand I'angle &dincidence et Vazimut du plan d'incidence sont
donnés , on :mmédiatement , pour lazimut a’ du plan de polarisation primitif dans
lequel subsiste le rayon ordinaire seul,
sin’g’ tang g’

P 70
cos z sin(p +— %)

(1) tang a’ = — tang z’ cos (9 — ")

et pour Vazimut a” dans lequel un rayon extraordinaire seul parait,
gin?y” tangq”

ot v v A
2] tang o’ = -+ tangs cos(y — ") Tl 1)

T
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Quand les rayons incidents sont polarisés dans les azimuts 2’ ou a”, les expressions
des vitesses dans les rayons réfractés et réflcchis sont d'une simplicité remarquable.

1. Dans Vazimut «’, il vient

28in¢ coso

D/ = —
cosz’sin(p +¢’)
(3) R = - 3t —9)g
Y ' sin(p + /)"
R — sin x/ sin (y — ¢’} cos (9 + 9’)+Sin2?'tangl/’s
P - WA b

cos z° sin (p - /)
et pour 'azimut §” du plan de polarisation dans le rayon réfléchi,

cos(p+9’) 2 sin 29 sin’ ¢’ tang ¢’

tang ¢/ —= — tang a’ : - .
® c0s (p — ¢”) nga -+ sin 2(¢ —¢’)sin (3 + ¢’ ) cos x’

2. Dans l'azimut ¢”, on a

2 sing cos ¢

D" = e —
cosz” sin (g-+9") "’
R — _ Sin(p—g")
s = T Y
sin (¢ +¢”)
R — sin 2” sin (¢ —¢”) cos (p +¢” ) +- sin* ¢” tang ¢” S
r cos z” sin(p + ¢”) ’
et pour 'azimut §” du plan de polarisation du rayon réfléchi,
cos v 28in 2.9 sin? ¢” tang ¢”
tang 3’ = — tanga” 2@ 27) gsin’g” tang ¢

cos (p — zp”) " cosx” sin2(p — ¢”) sin (p 4 0"}
§ XXIII.

Je vais étudier actuellement I'émergence d’un rayon d’un eristal & deux axes. Je do-
signerai la vitesse dans le rayon ¢mergent selon que ce rayon est ordinaire ou extraor-
dinaire par D’ ou D", et les vitesses dans les deux rayons réfléchis, selon qu’ils provien-
nentde D’ ou de D, par R} et R ou R, et R). Je décompose le rayon émergent en
deux rayons, I'un polarisé parallélement au plan d’émergence , Pautre polarise perpen
diculairement & ce plan, et j’appelle les vitesses respectives S’ et P’ quand elles déri-
vent de D, 8” et P” quand elles dérivent de D”. Je désigne, en outre, les azimuts
des directions des vitesses D’ et D” par rapport au plan d’incidence, par y' et ¥

I et
je les compte de telle maniére que y’ — go® et y” — go®

soient les azimuts des
rayons correspondants a D’ et & D”. Ces angles y' — go° et y” — go* doivent tou-

Iy

Jours étre positifs et sont égaux a o, quand les rayons sont placés dans le plan d’inci-
dence, et font un plus grand angle avec la normale au plan de réfringence que les nor-

Tome VII. — DiceEnsee 1842. 63
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males des ondes planes qui leur correspondent; au contraire, si le rayon est placc
entre la normale & T'onde et la normale au plan de réfringence, y" —go® et y” — go*
doivent étre égaux i 180°. Solentz! et z” pour R et R, z/ et z/ pour R, et R, les
azimuts par rapport au plan d’incidence des directions des mouvements dans les rayons
réflechis a I'intérieur dn miliew. Ces angles sont calenlés de telle maniére qu’ils coinei-
dent respectivement avec les angles ¥ et y” quand le ravon ¢émergent est perpendicu-
laire au plan de réfringence. Soient encore b’ et-4” les angles que les normales aux
ondes de D" et de D font avec la normale au plan de réfringence; les angles des nor-
males aux ondes R}, R et R, R”, avec la méme normale, seront £/, €7, et &/, £V,

Je désigne par " 'inclinaison dn rayon ¢mergent sur la normale au plan réfringent
quand il derive de D', ot par ¢ quand il provient de D”. Jappelle enfin p’ et p” les
inclinaisons des rayons D’ ¢t D” sur la normale & I'onde qui leur appartient, et ~,

r! et r,, r, les inclinaisons des rayons R/, R’ et R, R’ sur les normales & leurs ondes

"
12,

négatifs quand les rayons R), R/ et R ne sont pas dans l'azimut z) — go®, 2/ — go° et
2] — go°, 7 — go® relativement au plan d’incidence, mais dans les azimuts z/ - 9o°,
z, -+ Qo° ¢t 7, 4 go°, 7 +- go”. Ces notations admises, on trouve. en désignant les
valcurs qui recoivent le mouvement des rayons incidents D’ et D7, dans les rayons re-
flechisR), R et R, R, ct dans les rayons réfractés P/, S et P”, S”, par Q', Q" ,

respectives. Les angles p” et pp” doivent étre toujours positifs, les angles 2/, 2/ et 2"

n? "

‘ " ’ ” ;o

Q,Q,Q,Q,T,T"
/ T/ = asint’ cost’,

T” = asint” cost”,

Q' = «(sind’cosd’ — sin*d’siny tangp’),
Q" == «(siny”cos$” — sin*y” sin y” tang p”},
t Q) — «(sin&’ cos&! + sin*f/ sinz tangr!),
Q' = z(sin£” cosE) + sin*E) sinz’ tang r’),
Q) = =«isin¥) cos&, + sin*f, sin z) tangr, ),
Q! = =« (sin ) cos¥, + sin?f) sin z, tangr)).

Les équations qui résultent du principe de la conservation des forces vives sont

1. Quand Vonde incidente est une onde ordinaire,
DQ =R *Q, +R*Q) + (P + 8T
2. Quand I'onde incidente est extraordinaire,
DQ" = R1Q, + RQ, + (P 81",

En remplacant dans ces équations les volumes par leurs valeurs tirées des equations{t),
nous obtenons, dans le premier cas,

D'*(siny’ cos 4" — sin?’sin y’ tang p')— R *(sin &, cos &’ —-sin’ £, sin 2z’ tang r’

| — R/°(sin £’ cos &’ - sin? £/ sin z” tang ») = (P'* + S")sin:’ cos ¢’ ;

4
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et dans le second cas,

{ D" (sin+)” cos P — stu? 4" sin " tang p ") —R, *sin ! cos £ —+sin: £ sinax! tang . )
— R2(sin " cos £, + sin?&” sin z,tang r7) — (P 48" sin 1 " cos o 7.

Quant aux angles ./, 17 7, YL B E E,E", on a pour les déterminer les relations
suivantes ;

a. sin“"‘l;' = osin? / —

= 2—{-77:1 e | 1 ,
[F & cos (1 ——a’)Jsm?L’,

2
2 K] 2 2 -
. . 1 73 ..
b, sin® El = o?sin?y’ — IV% — —— " cos (e, — ) sin®y’,
2
2 2 2 2 -
. . ™ T — . . ..
Co SIN* BT melgint,/ — [ﬁ‘_““ — — €0S (v, +- u,')J sin’ ¢’

2
. ks o N
@ Sin*” == ot gip? 7 [‘u — T cos o )| sin? t”,
o )

2
2 £l 2 b3
. s - T — . .
3. sinE = o, 8 = fC 0T T p COS (1, — m ) | sin® "
2 2 ) !

2 ES 2 2
. e e v wt—
7 SINPEY = o gint, " — [H !

cosfu, - 9 ) I sin?,”,
ol la signification de P 60,5 €5 0, ¢, est claire par elle-méme , et oy les inclinaisons
des normales aux ondcs b, D", R, R/, R, R sur les axes optiques sont respective -
ment désignées par «, o' L5y, vl w,- Ces angles sont détermines
par les relations suivantes. Soicnt U et U’ les inclinaisons de la normale 3 la surface
réfringente sur les deux axes optiques, et soit Je plan d’incidence situé dansg Pazimut X,
cet azimut étant compié 4 partir de la direction que suivrait le mouvement si le plan
réfringent était le plan de 'onde ordinaire, et tel que pour 4’ = o, X —~ r'. Soit 2
Pangle que les deux plans déterminés par la normale au plan de réfringence ot log deux
e q g ux
axes optiques forment entre €UX; solent 2/ et 24 |eg angles correspondants pour les
normales aux ondes TV et D”; et soient 2/ et 9.4/ ces angles pour les normales R’ et R/,
et 27" et 24” pour R’ ot R’ Les relations suivantes ont liey -

Cos & = cos U cos ¥ + sin U sin Y cos (X 4- I,

€08 &' == cos U'cos 4’ - sin |’ sin 4’ cos (X — I),

P sinu cos (3 i) = cos U sin g’ — sin U ¢og P cos (X1,

WL sin #’cos (' — i) = cos U'sin ¥ — sin U sin P cos (X — I,
simesin (3 4+ il =—sin U sin (X 1),

Sin &/sin { ¥' — i\ — gin T sin { X — 1);
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( cosw = cos U cos "+ sin U sin 4 cos (X +T),
cos v = cos U’cos '+ sin U'sin 4" cos (X —1),
sin v sin (y” —4) = cos U sin " — sin U cos §" cos (X+1I),
sin v’ sin (y” -+ &) == cos U’ sin §— sin U'cos 4" cos (X — 1),
_ sinvsin(y” —k)= sin Usin (X +1},
__ sinv'sin (y” -~ k) == sin U'sin (X —1).

On déduit facilement ces formules de trigonométrie sphérique de la fig. g, ot sont
indiquces les points de rencontre avec une sphére des normales aux ondes D, D des
axes optiques et de la normale au plan réfringent; toutes ces lignes ¢tant menees par
le centre de cette surface.

Au moyen des équations (5}, on peut exprimer z, W, y', i en fonction de langle
Qincidence ¥’ et des angles U, 1’ et X qui déterminent Ja position du plan réfringent et
la position du plan dincidence ; et comme ces deux plans sont donnés dans tous les cas,
on peut, au moyen de Téquation (5), exprimer les angles u, «’, y'yien fonction
de ¢/ Pareillement, les angles v, v/, ¥ ", & sont donnés par Péqnation (6) comme des
fonctions de angle 4”. T/angle I est déterminé par U et U’ et Pangle des deux axcs
optiques 27, On a, en effet,

cos 2n — cos U cos U/ 4+ sinU sin U’ cos 21.
On déduit des équations (5) et (6) deux systemes semblables en mettant pour ¥ et
—Eet—E,ala place de y” et de y” les angles z) etz), dla place de i et & les
angles i’ et &, ala place de « et i« les angles u, et «', etenfin A la place de v, v les
angles v, v, :
/ cos u, = cos U cosk, — sin U sin & cos (X +1),
cos & = cos Ucos £, — sin U’ sin &/ cos (X—1},

1
sin u, cos (3, -+~ 1') = cos U sin & -+ sin U cos &, cos (X-+1),
)

/
/ .
S/ sin 2, cos (z, — i) = cos U'sin &' + sin U’ cos £ cos (X—T1)
sin 2,08 (3, + i) = sin U sin (X +1},
sin sin (3, — ') = sin U sin (X—1);
’ cos v, = cos U cost! —sinU sin &7 cos (X—+—I),
. cos v, = cos U’ cos &/ — sin U’ sin g cos (X —1),
_ sinv, sin(z) — 4 )= cos U sin £/ —+sinU cos £" cos (X+1),

)
— sin v sin (20 + &) == cos U'sinE’ + sin 1’ cos £/ cos (X——I},
— sinv, sin (2} — ¥)=sin U sin (X +1},
— sin v sin(z; + &) =sin U'sin(X—1).

. . . ) , )
Enfin on obtient deux systemes de relations semblables pour &, 5 Vs Yy en
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changeant partout lindice inféricur , en
Je désigne ces relations par (g) et (10).

Si I’'on substitue, dans les équations(4), a, b, ¢, les valeurs de «, &', @, « , v, v ,o0n
obtient trois équations dont la premiére contient seulement <, , la seconde £ et la troi-
siéme £7. Tl est facile de s’assurer que toutes les trois, développées, condunisentila méme
équation du 4° degré, de telle sorte que ', E) et & sont trois racines de cette équa-
tion. La quatriéme racine, que je désignerai par § est I'inclinaison sur le plan réfrin-
gent de I'onde extraordinaire correspondant & ¢/. On trouve pareillement que ¢, £/ , &

Ty

sont trois racines d’une autre équation du quatriéme degré dont la quatriéme, J,, cst

,» €t en remplacant i’ et &’ par i” et A",

I'angle de réfraction de 'onde ordinaire correspondant 2:”. Quand " =", on a
V=4, V=¥ e §=¢, =g,

etde plus ¥/, 4", ) = &, E" ==& sont les quatre racines de la méme équation du

quatriéme degre.

1l existe certains cas particuliers, faciles & voir, oit ces équations du quatri¢me degreé
se laissent facilement'décomposeren deux équations du denxiéme degré. On peut aussi, en
général, recourir pour les résoudre & des méthodes d’approximation, et les relations
de (5) & (10) servent alors. Quand le rayon incident est un rayon ordinaire, et d’aprés
les équations {4), a, on détermine 'angle: au moyen de Iéquation (5); cctte valeur,
portée dans les équations (4), b, ¢, fournit pour £ et &) une premiére approximation
dans laquelle on néglige les carrés de = — p? quand on substitued’ 4 £} et &7 dans les
valeurs de «,, ! et v, v, dans les équations (7] et (8). 8i I'on porte, d’aprés cela, dans
les équations (1) et (8), les valeurs approchées trouvées ci-dessus pour £/ et €7, onob-
tient u,, ) etv,, v exactes jusqu’d la premiére puissance de x? —u*; de celles-ci on
forme les expressions de

cos (&' —u), cos{vy, 4+ v ),

quon porte dans Péquation (4), b, ¢, d’ott I'on déduit les valeurs de €] et &7 exactes
jusqu’a la seconde puissance de =* — p*. Ce degré d’approximation sera suffisant dans
tous les cas. Une route toute semblable conduit aux valeurs approchées de &/ et £7,
quand le rayon incident est un rayon extraordinaire, au moyen des équations (4),
a, B, 7, et des équations (5), (6}, (7), (9)s (10).

Je vais former maintenant les équations qui résultent du principe de Dégalité des
composantes. Je décompose encore les vitesses D/, D", R, R}, R]

', R suivant trois dj-
rections : 1° perpendiculairement au plan d’incidence ; 2° perpendiculairement au plan
réfringent; 3° parallélement au plan d’incidence et au plan de réfringence. Je présen-
terai dans le tableau suivant les cosinus des angles que les directions des vitesses D', D”,

R!,..., forment avec ces trois directions perpendiculaires entre elles.
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Pour les vitesses des rayons émergents décomposées suivant les trois mémes direc-
tions , nous avons, selon qu’elles dérivent de D’ ou de D”,

1. P’ ou P”,
(12) 2. — S87sin.’  ou — S$”cos.”,
5. — S7sint’  ou -~ 8” cosi”.

:

Par suite, le principe de I'égalité des composantes fournit les équations :
1. Pour un rayon ordinaire incident ,

P = D’siny’ -4 R’ sinz’ <4 R’sinz”
Y ’ ’ i r?
113) { — S'sin.’ = D’sin4’cos y' — R; sin& cosz -+ R} sin &) cos 2
f — S87cost/ = D cos Y’ cos ¥’ + R’ cos& cosz — R’ cos 2" cos 2.
N i ’ I ' [ 1 ¢

2. Pour un rayon extraordinaire incident,

P’ = D”sin y” + Risinz, + R sin z",
[/ — "o 4 A ’ > ? _" " g "o 4
(14) { — $"sint” = — D sing” cos )" — R sin§, cosz’ ~+ R, sin&’ cosz’
— 8%cost” = — D"cos " cos 3" + R cos £ cosz’ — R’ cos " cos 3"
" 1 " " " "

Il fant maintenant démontrer que les équations du deuxisme degré (2) et (3), se chan-
gent, au moyen des équations (13) et (14), en équations lindaires. Je m’occuperai d’a-
bhord des équations (2) et (13). Le produit des deux derniéres des équations (13) nous
donne
§7sint’ cost’ = D’ sin ' cos Y’ cos? y’ — R *sin %’ cos’z’

~— R)?sin £’ cos E” cos? z”
+ D'Rjsin (¢ — E')cosy’ cos 2
~ D'Rsin ({' — £")cos y’ cos z!
+ R Rlsin (£/ + £7)cos z, cos z!.
Ge produit, retranché de (2), donne
P’*sine’ cost’ = D’ (siny’ cos ¥ sin? y’ — sin?{’ sin y'tang p’)
— R *(sin g cos & sinz,* + sin® & sin 2’ tang »!)
— R} (sin&cos £'sin? £" 4 sin? §'sinz) tang r’) — D'R’sin (b'—E)cosy’ cosz’
+ DRlsin (' — &) cos 3 cosz’ — R RYsin (& —+ £7)cos ! cos z).
Cette équation, divisée par la premiére des €quations (13), donne
P’ sine’ cose’ = (sin<’ cos’ siny/ — sin? 4’ tang p’)
— R (sin&; cos &/ sin 2/ 4 sin? &’ tang 77 )—R/ (sin £/ cos £” sin 2+ sin*§) tang r’ ),
dans Phypothése ot les relations suivantes subsistent :

(sin &) cos &) — sin ¢/ cos ¢’ ) sin ¥ sin z

+ sin?E) tang 7’ siny’ o sin? §/ tang p” sin 2, = sin (47 — E') cos y/ cos 3,
(sin{/ cos§’ — sin £" cos &) sin y’ sinz"
— sin*§’ tang p’ sinz! — sin?g” tang 7} sin y’ = sin ({' — £/)cosy’ cosz”,

(sin&) cost’ 4 sin E) cos £ )sin z, cosz’
+ sin’§] tang 7} sinz! 4 sin*g” tang 7 sinz, = sin (£ + £)) cos z! cosz’,
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o, en écrivant un peu différemment ,

sin (§’ — & )[sin y’ sinz] cos (' + £} + cosy’ cosz, |
= sin*¥/ tang 7, siny’ - sin’{/ tang p'sinz,

sin (' — E7)[sin y' sinz] cos (' + E7) — cos y'cosz]]
— sin*E” tang 7/ siny’ +- sin*}’ tang p'sinz),
— sin(E -+ £/)[sin 2, sin z] cos (& — E!) — cos z; cos 2]

— 'Y ! . ‘/ M " 12 4 " . t
= sin?§) tang r, sin z, —+ S0 ' tang r smz, .

Je vais prouver la justesse de ces relations. Posons les valeurs

' I " 1 1
tang r — tang 7 — — - tang p/ — —.
b= 0'2 /, 5 ’ 6',2 E/, gl 020
1w ,
o= —— o sind, sin(w, — u,),
1 om i RE
ET T cosk,sin(v, + v,},
t wre—pt .
e sin i sin (& — u'}.
o - ( ;
Posous de plus,
sin® £” sin? &’ sin® 3§’ .
= = L= sin*t’,
l,’l 0, [
et enfin,
sinte’ _ sin (§'4+E) sin (§7 -+ &, o
sin [ - 0 — 0° Ty - [
H" :) r ¢ [cos(u—ll'j—COS(ll,——”,,‘f
sin® ¢’ _sin (Y +E7) sin (§/ + &) —
s M ’ Yy > Py —_— - 7
(v7) {sin ($" — & o' — ¢’ m— .
) ‘ : £ [cos (w — u') — cos (o, -+ . 1]
sin®¢’ __sin () —E7) sin (§) — &) .
sin (§ +E7) " ol —¢ T e ’s S
\ ’ ’ 5 feos (w,— &, — €08 (v, 4 4, ']

au moven de ces substitutions, les équations (16) se changent dans les suivantes :

; 1. sinj’sinz;cos(xp’—i—-E:)—cosy’cosz:

. [sin i’ sin y’ sin (¢, — «/ ) + sini sin 2, sin(u-——u’)] . .
_— — v Sl[l(-{.t “+ 2,
B cos (. — u,) — cos(u, —u,
2. siny’sinz" cos (Y’ +E7) — cos y’ cosz)
(18){ _ [eos# siny’sin (v + ') + sini sin z) sin (& — u')] sn (Y — )
o L cos (# — w,) — €08 (v, + v, ) tro =0
3. sinz, sin 3’ cos (§ — E)) — cos 2, €08z,
____ [sini’sin 2" sin (,— u} + cos &’ sinz, sin (v, + u:)] sin (& — £')
_ | cos (u,— u)) — cos (v, = v, e T
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La justesse de ces trois relations se voit par celles du § XVI, équations {f) et (h).
De la troisiéme, il résulte immédiatement qu’elle est pour les deux rayons réfléchis
R}, R}, ce qu'est la relation (f), § XVI, pour les deux rayons réfractés D’ et D5 seu-
lement, dans ces deux cas, les arcs (£) — £) de Péquation actuelle, et (3" — ") de
l'equation (f), ont une position inverse; par conséquent on doit poser ici
(E, — E") = — sinA.

La scconde relation (18) correspond pareillement 4 Péquation (f), § XVI; on s’en as-
sure le plus facilement possible en construisant cette formule sur une surface spherique
comme on a fait § XVI; on voit alors que la formule (18, 2) est pour les rayons D
et R/, ce que la formule (f), § XVI, est pour les rayons D’ et D”, et que par consé-
quent on doit remplacer dans celle-civ, v/, 4, z”, parv,, v, &,z et (p'—u”), Cest.
a-dire Vangle que les deux normales D’ et D” font entre elles, par Pangle $/ + £ c’est-
a-dire I'angle que les deux normales D’ et R” font entre elles. La premiére relation (18)
correspond & celle en (h), § XVI. La relation (18, 1) est par rapport aux normales D’
et R} ce qu’est la relation (h), § XVI, par rapport aux normales D’ et D", dans la-
quelle v, v’, 4 sont remplaces par les angles o, wy, iy et (97 — o”) par Yo E
Quant a 'angle z” en ( h), § XVI, on doit considérer que si Uon désigne par z” Pangle qui
lui correspond relativement & la normale R',ona

" o o
3, — z, = 2709,

’

et que, par conséquent, x” doit étre remplacé par
q P ’ P

2] = 270° — 3z

.
Ces substitutions introduites en (h), § XVI, donnent Ia premiere des relations ( 17} de
ce paragraphe.

L’équation du second degré (2) peut donc étre remplacée par équation linéaire (15).
Cette équation (15) et les équations (13) contiennent par conséquent la solution com-
pléte du probléme de la réflexion et dela réfraction  I'intérieur d’un milien cristallise,
quand le rayon incident estun rayon ordinaire. :

Je vais maintenant montrer comment Péquation (3), 4 laide de I'équation f14),
peut étre pareillement remplacee par une équation lindaire. Te produit des denx der-
niéres équaiions (14) donne :

8" sin 1" cos -+ == D"*sin{” cus 4" cos® y  — R * sin £, cos &) cos'z)
— R, *sinE] cos &) cos? 2! — D”R, sin (" — £,) cos y” cos z,
=+ D"R} sin (4" —&;) cosz, -+ R, R sin (&, + £} cos 2/

. o
, Cos 2z,

Ce produit, retranché de I'¢quation (3), nous donne
P sine” cost” = D”* (sin " cos " sin® y” — sin? $"sin y " tang p” )
L ’ Pty T ' ’
— R,*(sin &, cos &, sin® z;, + sin’ 4, sin 2/ tang r’ )
Ha r.= " "o g 1 . noo.
— R (sin & cos &) sin’ z/ -4~ sin? 4, sin 2, tang ")
-+ D" R, sin (y" —E ) cos y "cos 5, — D" R sin (4" —£") cos " cos £
’ " : ’ " ’ "
— R, R sin (¥ 4+ E))cosz/, cosz” . )
Tome VIi. — Dicesere 1842. 64
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Cette équation, divisée par la premiére des équations (14), donne enfin
Psin¢” cos:” = D" (sin 4" cos §” siny”— sin* " tang p”
{19) — R/ (sin £ cos £/, sin z, -+ sin’ £, tang 7", )
— R’ (sin &/ cos £/ sin 2/, -+ sin® £ tang 7)) , .

car
cos y' cos 3 — sin y”sin z,, cos ($” - &)

sin® §” tang p” sin z) + sin® E/ tang ), sin y”
o sin ({/’ — &)

cos y” cos 2! - sin y” sin z,, cos (1.!)” 4 E")
sin® " tang p” sin z/, + sin” £, tang r, sin y

an (9 —%)

cos 2, cos 2" — sin z,, sin z), cos (£, + “”)

sm2 E , tang r/ sin z + sm‘ g tang r sm z,

"
Sln (E ” gﬂ)
Ces velations se changent, pav les substitutions (17) et semblables, dans les suivantes :

1. cos y" cosz, — sin y” sin 2/, cos (~1’/’-+— £)

cos 4 sin z,, sin (u-{—u ) =+ sin i” sin y “ sin (1, — -1, s
= sin (37 2, ),

cos(J—|—u)——cos( u)

2. cosy” cosz -+ siny” sin 3, cos («14 +E))
(20) c0s A sin z)sin (u + ') + cos /r” sin y “ sin(v, 4+ v,
“cos (s ') — cos (v, + ) T

sin (4" 4+ £,

5. cosz| cosz’ — sinz, sinz) cos(E, — &)
C " o. ’ L = ein (s o)
____sini”sinz, sin {w,—u) + cos k”sinz, sin(v, +v,) sin (£, — £7)
’ g ” "
“cos (u, — i) — cos (v, + )

L'exactitude de ces formules se déduirait, pour la premiére et la troisiéme, de I'équa-
tion (f), § XVI, et pour la seconde, de l’equatlon (1) du méme paragraphe. Si Yon
substitue, en effet, dans Iéquation (f), 2 «, #', x’, (¢' — ¢ "3 les angles 11”, w,, z,,

— (4" +4-E.), on obtientla premlere des relations (20], etsi aux angles v, v, 7, (o'-—3"},
on substitue les angles v, v, 7, — (&, — &), on obtient la troisi¢me. On peut d’ail-
Jeurs s'assurer facilement de Vexactitude de ces substitutions, La seconde relation (20) se
tire de I’ equauon (i ) § XVI, par la substitution des angles u” , vy — (P - E)) aux
angles u, o, (¢ —¢” ), et parla substitution de 270 — ) 2z’

On peat donc remplacer équation de la conservation des forces vives (3) par 'équa-

tion (1g).
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§ XXIV.

Les ¢quations complétes de la réflexion et de la réfraction dans lintérieur d’un mi-
lien cristallisé sont donc les suivantes :

P'sint’ cos ¢ == — IV (sin{’ cosy’ sin y’'— sin Y tang p’ )
— R (sink] cos&; sin z ~-sin*&’ tangr’ )
—R/(sin&] cos£) sinz” - sin?&" tang ),

(1] . . .
s = D'siny’ ~+ R sinz) —+R'sinz’,
a1 4 —_ / 7 <: ’ ’ s 4 " "o "
S’ sin ¢ = — D’ cos y’ sin 4 + R, cosz)sing’ — R, cosz/sink’,
8 cos ¢’ = — D’ cos ' cos — R cosz) cos¥, + R cosz! cosE”;
el
P’sine"cost” = D”(siny”cosy” sin ¥~ sin*” tang p ')
’ : I3 [ ? 2l ’
— R, (sin&’ cos £,sinz, 4-sin*g’ tang ')
"oos " e gl S
) ~— R, (sing/ cos¥,sin 7, - sin*§ tang r7),
Yy P = D”siny” + R sinz +R)sinz’,
§"sin¢” = D"cosy”siny" ~+R, cosz,sing! —R/cosz"sing",
§” cost” = D"cosy” cosd” — R, cosz/ cosE, + R cosz) cosE) .

On en deduit

R — — 1y 5 B = sin? " sin (2’ 4 £)) tang p’ cos 2, -+ sin? £” sin {t/ —- ') tang " cosgf’

sin (¢ —)sin (1 £/ )[cos (44" ) siny’ cos 2" + cos (z’——Ei’)cosy’ sinz! |

sin {4/ —i—'Ef’) Sin,,(“_,_ £))[cos (" — E ) sinz’ cos 3, 4 cos(t/ — EY)sinz! cos z‘f]
=+ sin* ] sin (' 4 g") tang 7’ cos z - sin’ £ sin (v + &/ ) tang 77 cos z|

$in (v — ) sin (o /+ &) [cos v/~ ¢/ ) sin 5 €05 2, — cos(/ — £’ )sinz’ cosy’]

-+ sin® sin (/4 &) tang p’ cos 2’ — sin? £ sin(t/ — /) tang '/ cos 5’

Ri=—1D { — _ : .
sin (LI*{—E?)SIH (a’ + & )[eos (i’ —- E!)sinz! cos z) - cos (' — E”) sin 3, cosz! |
-+ sing] sin (/4 £") tang r! cos 2 -4~ sin? E) sin (¢ - £)) tang 7" cos z

Csin (v — ) sin (0" £, )[cos(v” + 4 Ysiny ” cosz, — cos (1”"—E" )sin 2/ cos y” I
R — — D" ~+sin*4”sin(¢” 4+ £” ) tang p” cos 5" — sin*E) sin (1"— ") tang »" cosy”z

sin(e” 4+ & Vsin (" + £,)[cos («"—E! )sin z, €08 z, -+ cos (1" — £,)sinz, cosz’ ]
-+ sin® &) sin («” +£)) tang 7/, cosz” —+ sin? g, sin(¢” + & )cosz, tang "

"—4" )sin(e"4- £ ) [cos (2" — V") siny” cosz,, -+ cos (x "—§,)sinz, cos y” |
R D + sin* 4" sin (1"~ &) tang p " cos 2/, 4 sin® §,8in (" — ") tang » cosy”

=+ e ot it s - .
sin 2"+ &} sin (+ "4} ) [cos (:” — ') sin 2, €08 2, +cos (1" — £ ) sin 2" cos 2]
-+ sin? €] sin (1”7 + £") tang 7/, cos 2" - sin?£” sin»(z” +&,) cos z, tang r"

’

»
3
.

64..
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On obtient les valeurs de premiére approximation en négligeant completement la

différence des axes d’élasticitc, et en posant, en conscquence,

it "
& =&,
et
no_ . i L1 "o N N .
cos 2" = —sinz,, sinz = —CO8Z;
de plus
o g
E“H =l
et
v . e
cos 3/ = —sinz,, sinz, = — o8z,
On obtient alors
VAT ' s
s gr — cos (t° —+ . . . )
R = e , ,) cost / ’1,) sin -’ sinz’ 4 cosy cosz, |,
5 sin (v 4+ &) Leos v/ — &)
j
! ’ AN ’ ’ .
sin (¢ ~— Y cos (¢ - . , .
R = ! g — | ( - qJ,z sin y' cosz, — cosy’ sin z',J;
sin (' +£/) |cos (' —§))
3 ot '/I [~ " "’
/ sin (¢t — cos (L —+ . s
s R = - %,, +2,,)) s ,, 4;,,)) sin y “cos 2, — cos y "sin z) |,
sin (¢ cos{t” —
v " - "
6)
O y sin (1" —y" ) [eos (" 4=4") L " "
R = — D it | i T 4 siny”sinz) 4+ cosy“cosz, |.
. sin (" 4§, ) Lcos (¢ —¢,)

Si I'on multiplie la premiére des ¢quations (1) par sin y ' et la seconde par
sin ¥’ cos &' sin y' — sin® ¢’ tang p’,

et si on ajoute les deux équations, on obtient, en ayant égard aux relations (16),
§ XXIII, P’ sous une forme qui convient aux calculs approximatifs de sa valeur. On

obtient aussi d'une manicre analogue 8§/, P” et 8”.

_ {D(2sind cosP'sin y - sin*y’ tang p’ jsiny '~ [R, cosz, sin (' £')-Rcoszsin (V- Jeos y’)
| sin (/4= ¢') cos (o — /) sin y' — sin? Y tang p’ ’

yox f ’ ’ ' o ’ ’ " "o 1 "
2D siny cosy cos y” K covsl sin (9 — &) Rl cos s SRIP =Bl

sin (z’ 4

(R4

” e A e it i o [ N R - - L R
. %D {2sin " cosy”sin y “~sin™V" tang p” )siny -[R cos z,sin{} -5, R, cosz, sin(y"-E, )

sin (74 ") cos (t”—P"Ysiny” — sin® " tang p”

Y7 " R o r 7. R ’ " " LY "o
2D sin ¢ cos 4" cos " — K, cos 2} sin (3 — ) + K cos 2,sin (¥~ <,) J

/P//
S// - ' i
- sin (L C 4 'Jg”)

Si I'on ne veunt conserver dans ces valeurs que la premicre puissance de ia difference

’

des axes d’¢lasticité, on devra mettre pour R, R/, R, R} leurs valeurs approchées
déduites des équations (5) et (6).
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Les formules de (3) a (8) deviennent imaginaires quand les angles d’incidence sont
compris dans les limites de la réflexion totale. On peut, dans ce cas, déterminer les
mtensités réfléchies , comme on Ia fait dans le cas des cristaux & un seul axe.

Jappliquerai encore les formules () et (8) an cas du passage de la lumiére A tra-
vers un milieu compris entre deux plans paralléles; car ces formules sont impor-
tantes pour la théorie des couleurs que présentent les lames minces dans la lomicre
polarisée. Alors D" et D” sont deux rayons conjugués qui sont dérivés d’un méme
rayon incident, et leurs valeurs sont données par les formules (2}, § XVII. Alors aussi

;o " P K A ;o
o= A =, V=, yo=x,
— —_ "o u "o
=%, pP=q9, p=2q9% E =§,

" ” ' ' " "
Er g” ? z2, = zrr 3 B, = z" 4

je désignerailes angles £/, £7, 2/, z) par B/, E" 27, 2",
Ces substitutions faites , on obtient .

P D'(2sing’ cos go’sinx’—siy’ ' tang ¢’ sin x’ —[R: cosz, sin (¢/-£! - R’ cosz!sin o'~ £ )] cos.z’ % ,
o sin (p + ¢’ ) cos (¢ — ¢’ ) sin #’ — sin? o/ tang ¢
) s r r I : ’ L .
9/ g _._ [ 2D’'sing’cos ¢’ cos z’ + R} cos 2, sin (¢ — £') — R’ cos 27 sin (p' — E:’)] .
S sin (g + ¢')
pr—  §D7(25in¢"cos g sinz”-sin’y” tang ¢”) - [R;, cos z, sin (4" £" )+ R' cosz"sin (5"~ £ Neosz” é ,
sin (3 +¢”) c0s (9 — ¢” ) sin x” — sin? ¢” tang ¢ ”

. : ! n" " 7 LA
& — 2 D" sin " cos 9" cos 2" — R cos z, sin (p” — £ ) + R) cosz)sin (g ~£,):| 7
. sin (g + ¢”)
ot pour I et D” on doit mettre les valeurs tirées de I'équation (2), § XVIL

Si I'on veut seulement avoir égard 2 la premiére puissance de =* — p? dans les équa-
tions (g) et (ro0), on doit poser

cos (g 4+ ¢ . .
54 - cos 2’ cosz’ 4 sin 2’ sin 2z’ |.

R, = -D

— o 4 -
R =~—1 sm(/q; v) LOS({‘D-}—?,) sin x’sinz’+cos.r’cosz’],
- ’ sin (¢ + £7) | cos (5 — ') 1
(11)
y o , N
R =+ am (('P_'_ ;/?)[FZZE?A_;«) sin ' cos z' — cos &’ sin 2’ ‘;
sin ( cos (g — -
[ » SN ?—(P,) ' :
R,=-+D 27) | oos (o I
) :
)

)
{
[LOS i\ +§,; cos z’ sin z’ — sin 2’ cos z”
[ )
)

Mais, en négligeant, dans les équations (g) et (10), tout ce qui dépend de la diffe-
rence des axes d’élasticité, on conserve seulement le terme qui dépend de leur posi-
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tion, on obticat, en remplacant D’ et D par leurs valeurs,

, sin2g sin2¢’ Psinz’ S,
P= -— : - ———Scosz’ | sinx’,
sin*(p +¢') cos(3—¢') Leos (p—¢') )

, in 20 sin2¢’ [ Psina’ A
8 = — an, ? S ? z ~—Scosx'| cosz’,
sin? (¢ +¢) | cos (3 —¢) ]
in2gsin 2¢” I~ Pcosx’ .
P= - ? ? v 5 —+—Ssmx'j cosz’,
sin*(p -+ ") cos (y—9) |_cos (g — ') ]
, in2ysin 2¢” P cos =’ N
S'= + Sl. ? ,(P [ — + Ssinx’| sin 2.
sin® (p+¢’) | cos(p —9") ,

Ce sont les mémes formules approchées que jai déduites de cousidérations directes
dans un Mémoire sur les couleurs des eristaux A deux axes dans la lumiére polarisce
[Pogg. Ann. de Ph., Bd. XXXII, page 271j.



