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REMARQUES
SUR LA THEORIE GEOMETRIQUE

DES. AXES PERMANENTS DE ROTATION;

Pax G. GASCHEAU,

Ancien Eléve de Ecole Polytechnique, Tnspecteur de ’Académie d’Orléans.

1. Padopterai les définitions données par M. Ampere (tome V des
Nouveaux Mémoires de U’ Académie des Sciences , page 86):

Un axe permanent , relatif a un point de sa direction , est une droite
liée 2 un corps fixé en ce point, et telle que le mobile, ayant commencé
i tourner autour de cette droite, le mouvement continue comme si
elle était fixe, de sorte que les actions des forces centrifuges se détrui-
sent mutuellement ;

Le centre de rotation d’un axe permanent est le point de sa direction
qu’il suffit de fixer pour que le mouvement ait lieu autour de cette
droite, conformément a la condition précédente;

Un axe principal est un axe permanent relatif au centre de gravité ;

Un plan principal est un plan passant par deux axes principaux.

Dans un plan quelconque il existe un point tel que I'un des axes
permanents relatifs & ce point est perpendiculaire au plan. On peut
appeler le point dont il s ‘agit, centre de rotation du plan.

2. Quand on passe des propriétés mécaniques des axes permanents
aux caracteres analytiques qui servent a les déterminer , on arrive ordi-
nairement 4 une définition triple : je veux dire que Y'on trouve trois
conditions qui fixent les positions des tfois axes rectangulaires de-
mandés. Mais dans la question de dynamique a laquelle se rattache la
découverte des lignes dont il s’agit, il v a lieu de considérer I'un de ce,
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axes indépendamment des deux autres; il convient donc de pouvoir
séparer les définitions, ou d’en établir une qui convienne a un seul
axe permanent. I’emploierai la suivante, quia I'avantage de manifester
une propriété dont on ne trouve pas I’énoncé explicite dans les traités
de mécanique rationnelle. Cette définition conduit directement aux
équations des problémes qui proposent de trouver les axes permanents
d’un centre de rotation donné, ou le centre de rotation d’un axe per-
manent connu, ainsi que la condition nécessaire pour qu’une droite
soit un axe permanent, etc. _

3. Soit Oz un axe permanent relatif au point O; représentons par z
la distance du lieu d’un élément dm de la masse du corps au plan per-
pendiculaire & Oz mené par le point O. Par la droite Oz je méne deux
plans 4 volonté; soient % et A’ les distances de Félément din a ces deux

plans.
Si lon a les deux conditions
(1) , S[hzdm = o, [fWzdm = o,

ces intégrales définies étant étendues A toute la masse du corps, la
droite Oz sera un axe permanent relatif au point O.

4. La propriété citée n® 2 consiste en ce que, les deux équations (1)
étant satisfaites , si 'on méne un troisiéme plan quelconque par Oz, que
'on prenne comme ci-dessus la distance de 'élément dm a ce plan, et
que I'on multiplie aussi cette distance par zdm pour former un élément
différentiel analogue & hzdm, la nouvelle intégrale , que Uon obtiendra
comme les précédentes (1), sera également nulle.

En effet, soient Ox I'intersection de ce plan avec le plan perpendi-
culaire 4 Oz; Oy la perpendiculaire au plan 20 x menée par le point O
» et o’ les angles des deux premiers plans, conduits suivant Oz (n° 2)
avec le plan zOx; et enfin x, y, z les coordonnées de 1’élément dm
par rapport aux trois droites rectangulaires Ox, Oy, Oz. On aura

h= ycosw — xsinw, &I = ycosw — xsine’;
d’ou . ‘

hsine — A sine
H

sin (o' — )
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et par suite

sin o’ [ hzdm — sin o [ zdm

f‘yde = sin (w’ —w)

Le numérateur de cette derniére fraction est nul en vertu des rela-
tions (1); son dénominateur est différent de zéro; donc on a

[ yzdm =o. C. Q.F D.

5. Les problémes énoncés n® 2 ont leurs solutions renfermées dans
les équations de la question suivante :

Un corps étant rapporté a trois axes rectangulaires quelconques
Gx, Gy, Gz, trouver la direction d'un axe permanent de ce corps re-
latif @ un point O dont les coordonnées sont a, b, c.

Soient a, {3, y les angles de la droite cherchée avec les axes Ga, Gy,
Gz. Conformément i la définition du n° 3, il faut d’abord évaluer la
distance de Iélément dm au plan conduit par le point O perpendicu-
lairement 4 1a ligne cherchée; cette distance sera

(2) R=(xr—a)cosa 4 (y — b)cos B+ (z — ¢) cosy.

On aura ensuite a4 déterminer les distances du méme élément 4 deux
plans conduits & volonté par cette droite : je prendrai les deux plans qui
la projettent sur les plans coordonnés xGz et yGz: alors les dis-
tances en question seront exprimées par

(x — a) cosy — (8 — ¢)cos « (r—2b4)cosy —(z—ec)cosp
sin sin « :

Remplacant, dans les équations (1), £ et &’ par ces valeurs, et z par R,
on trouvera les formules

(3) SR(z—a)dm _ [R(y--bjdm _ [Rz— c)dm
A CcOoS a Ccos p - cosy ?

31..
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Si I'on y réunit la relation
(4) cos’a -+ cos?f3 + cos?y =1,

on aura la solution compléte du probléme.
6. Soient X, Y, Z les coordonnées d’un point de la droite, de sorte
qu’on ait

5) X—a _Y—b _Z—c,

cose ~ cosp ~  cosy

la ligne étant ainsi déterminée par I'un de ses points et par sa direc-
tion, si I'on élimine a, &, ¢, entre les équations (3) et (5), I'équation
finale exprimera la condition nécessaire pour qu’une droite donnée
soit un axe permanent. .

7. Cette condition étant satisfaite, les équations (3) et (5) s’accorde-
ront pour donner les trois coordonnées a, b, ¢ du centre de rotation
de la ligne dont il s’agit.

8. L’équation de condition indiquée n® 6 et les équations (5) étant
homogenes par rapport aux cosinus, suffisent pour donner la relation
indépendante de ces lignes trigonométriques, qui démontre ce théo-
reme connu, que tous les axes permanents passant par un point
donné appartiennent a un céne du second degré, etc.

9. On pourrait déduire des équations (3), (4) et (5) toutes les propo-
sitions du Mémoire de M. Ampére. Je m’arréterai i celle du chapitre 111;
parce que I'on y considére une surface du troisiéme degré appartenant
a une famille dont la génération et I'équation aux différentielles par-
tielles se rapprochent, par leur simplicité, de celles que I'on présente
dans le Cours d’Analyse de I'Ecole Polytechnique et qui se rapportent

aux cylindres, aux cones, aux conoides et aux surfaces de révolution.

10. Déterminer la courbe contenant tous les centres de rotation des
axes permanents passant par un point donné.

Les équations (3) et (5) étant homogénes par rapport aux cosinus,
Iélimination des trois quantités &, {3, v entre ces quatre équations
donnera deux équations finales qui appartiendront aux coordonnées
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a, b, ¢ d’un point quelconque de la courbe cherchée. Pour simplifier
les calculs, je rapporte le corps au point donné et aux axes permanents
qui s’y croisent. Soient, dans cette hypotheése,

A, =f(f2+z2)dm, B, =f(x2 +z’)dm, C, =f(x’+j’)dm,

les moments d’inertie relatifs aux axes coordonnés, M la masse du
corps, et x,, 7,, %, les coordonnées de son centre de gravité: intro-
duisant ces valeurs dans les équations (3) et (5), ot I'on devra faire

X=0, Y=oy Z=o0,
Pélimination indiquée donnera les trois équations
(Ay — B)ab=M(a*+ b* + ) (yia — x,b) »

(6) (C,—A)ac=M(@® + b+ c*)(x,c — z,a),
(B, —C)bc =M(a*+ b*+¢*) (3,0 — y,¢),

dont I'une est la conséquence des deux autres.
L’élimination de M entre deux de ces équations donne la suivante

(7) (A' —_ B.) 2y ab -+ (C| -_ Aq)fq ac -+ (B| - C.) Xy bc = o,

qui appartient au cone cité n° 8.

La courbe demandée appartient donc aux quatre surfaces détermi-
nées par les équations (6) et (7), dans lesquelles a, b, ¢ représentent les
coordonnées des points de ces surfaces.

11. Pexaminerai le lieu géométrique de P'une des équations (6).
Supposons que I'on ait

A0>Bl>Cl7

et posons

A, — B,
=
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la premiére équation (6) pourra se mettre sous la forme

8 a4+ b ¢ _ abl? .
( ;| ? —— —_——=3
Vo b (ya—sb)yat b

si on fait, dans celle-ci, b=a tang o, afin d’avoir l'intersection de
la surface avec un plan conduit suivant 'axe des z, on trouvera

a*+ br*+ ¢2 _ 2 sin w cos ©

—— = - = constante.
\/a: b 1 €08 & — T, SIN w

Le premier membre est le quotient du carré du rayon vecteur d’un
point de I'intersection divisé par la projection de ce rayon vecteur sur
la trace du plan de cette ligne; et puisque le second membre est cons-
tant, il sensuit que la courbe est un cercle touchant 'axe des z a
I'origine, et dont le diamétre a pour valeur

{2sin w cos w

Y:1CO80— x,81Rw

En faisant varier I'angle o qui fixe la direction du plan coupant, on
obtiendra différents cercles dont les centres parcourront une courbe
située dans le plan des x y: le rayon vecteur du centre du cercle cor-
respondant & I'angle o étant égal 4 1a moitié de 'expression précédente,
on obtiendra facilement I’éqnation suivante pour représenter la courbe
des centres

9) Pab = a{a* + b*) (y,a — x,b).

Cette ligne est semblahle 4 I'intersection de la surface (8) aveo le plan
xy; le centre de similitude est a I'origine, et le rapport de similitude
est 2. Tous ces résultats sont faciles 4 interpréter.

Je conclus de ce qui précéde que la surface de Pequation (8) peut
étre engendrée par un cercle variable touchant constamment Uaxe
des z a lorigine, et dont le plan tourne autour de cet axe , tandis que
son centre parcourt la courbe (9) tracée dans le plan x y.

Lorsque le plan mobile atteint le centre de gravité, le rayon du
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cercle générateur devient infini, et ce cercle dégénére en une droite qui
n’est autre que I'axe des z. Le cercle variable se réduit % un point qui
n’est autre que P'origine quand son plan coincide avec I'un des plans
coordonnés.

La courbe demandée (n° 10) étant V'intersection du céne (7) avec ia
surface (8), dont les sections circulaires passent par le sommet du cone,
il s’ensuit que cette courbe pourra étre tracée facilement par les pro-
cédés de la géométrie descriptive.

12. Deux cercles quelconques de la surface représentée par 'équa-
tion (8), ayant une tangente commune, appartiennent a une méme
sphere : donc la surface dont il s'agit est Uenveloppe d’une sphére va-
riable passant constamment par Uorigine et dont le centre parcourt la
courbe du plan x y représentée par léquation (9).

La caractéristique de cette enveloppe est le cercle variable dont le
plan tourne autour de I'axe des z (n° 11).

13. Je me propose d’obtenir Uéquation générale des surfaces de-
Jinies n°° A1 et 12, quelle que soit la courbe tracée dans le plan x y quu
dirige le centre du cercle ou de la sphére variable.

Les conditions de cet énoncé exigent que la fraction

a2 +bz+c:
Vo b

conserve une valeur constante quand le rapport g reste invariable.

a® 4 b* +-¢?
s

mettre cette expression sous la forme

Donc il faut que

. . b
soit une fonction de -5 et comme on peut

a* 4 b - a*+ b

I ’
b \/ 14 (g)
Péquation demandée sera

{10) a’-+~b’+c’=aqp<b), ou a’+b’+c’=bq:(g),

a

» étant P'indice d’une fonction arbitraire.



248 JOURNAL DE MATHEMATIQUES

I’équation (8), étant mise sous la forme

pe

a’+b’+c’=a————‘;—,

fc_;xq

appartient évidemment & la famille comprise dans Iéquation (10).

14. Trouyver Uéquation aux différentielles partielles de la méme
classe des surfaces.

Soient a, et b, les coordonnées du centre d’'une sphére enveloppée
m® 12); I’équation de cette sphére sera

a? + b + ¢* = aa,a + ab,b.

Soient p et ¢ les coefficients différentiels de 'ordonnée ¢, pris en
regardant séparément les abscisses @ et b5 comme variables, de sorte
que l'on ait

__de _de
P= 2 9=

L’équation de la sphére enveloppée, étant différenciée successivement
par rapport aux deux variables indépendantes, donne

a+cp=a,, b+cq=25,;

et si 'on porte ces valeurs de a, et de &, dans I’équation précédente,
on aura I’équation aux différentielles partielles demandée

gt b:

. b _ L5
an | ap - 6q = ac ’
qui appartient aux spheres enveloppées et a leur enveloppe, indépen-
damment de toute condition a laquelle on pourrait assujétir le centre
de I'enveloppée.

15. 6i I'on différentie successivement, par rapport a2 chaque va-
riable indépendante, Iéquation (10), et que 'on élimine la fonction
arbitraire et sa dérivée, on trouvera I'équation différentielle {11).
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Réciproquement si I'on cherche, par la méthode connue, I’intégrale
de cette équation aux différentielles partielles, on obtiendra V'équation
finie (10). .

i16. M. Binet, dans le xvi® cahier du Journal de IEcole Po-
{ytechnigue , et M. Guibert, dans le xxv*, ont déterminé le centre de
rotation dont les axes permanents sont paralleles 4 ceux d’une origine
connue. On peut donner plus de généralité & cette question en se pro-
posant de trouver le point de Uespace ot les axes permanents sont pa-
ralléles a trois droites rectangulaires prises arbitrairement. Alors le
probléme n’est pas toujours possible ; etil estintéressant de chercher les
limites qui renferment les directions que doivent avoir les droites don-
nées pour que la solution soit réelle. En nous occupant de cette re-
cherche nous serons conduits a des propositions qui ne sont pas énon-
cées dans les Mémoires cités.

Pour traiter la question actuelle, il est nécessaire de rappeler les
propriétés de la courbe qui contient tous les centres de rotation dont
deux de® axes permanents correspondent 4 des moments d’inertie
égaux; de sorte que, en chacun de ces points, il y a une infinité d’axes
permanents situés dans un méme plan. La courbe dont il s’agit est
composée d’une ellipse et d’'une hyperbole, appelées par M. Chasles
(Aper¢u historigue , note 31) coniques focales ou excentriqgues d’un
systeme de surfaces du second degré. Ce systeme est ici celui des trois
espéces de surfaces & centre qui ont leurs axes principaux dirigés sur
les axes principaux du corps (n® 1). On saitqu’en un point commun
a trois de ces surfaces d’espéces différentes, les normales sont dirigées
suivant les trois axes permanents relatifs & ce point, etc. J’emploierai,
pour déterminer les coniques focales de ce systéme, une méthode
qui differe peu de celle de M. Binet, mais qui conduira & une pro-
priété de lellipsoide dont les carrés des demi-axes sont respective-
ment égaux aux moments d’inertie principaux divisés par la massc.

17. Je me propose d’abord de former Uéquation du troisieme degre
dont Uinconnue est le moment d’inertie du corps par rapport a Uun des
axes permanents qui se croisent en un point donné, en supposant
connus les axes et les moments d’inertic principaux relatifs au centre
de gravité.

Tome VI. — JuiLser 1841 . 32
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Le corps étant rapporté & ces axes, soient

A=f(r*+2)dm, B:f(;x’+z’)dm, C=/[(x*+ dln,

les moments d’inertie principaux, a, b, ¢ les coordonnées du point

donné, a les inclinaisons, sur les axes coordonnés, d’un axe per-
y Ly (29 ’ ’

manent relatif 4 ce point, et 1 le moment d’inertie inconnu. Je pose,

pour abréger,

I'=1-— M(a*+ b* + c?),
et

R" = acosa + bcos 8 + ccosy.

En introduisant ces expressions dans les équations (3), et en ayant
égard au choix des axes coordonnés, on obtiendra les relations

. o
“COSﬁ — bcosa =( B)M

MRI H
(C—A) cos a cosy
(12) € COSa — acosy = — MR
B—C s
| bcosy — ccosf =(_)T10$f5 sy

qui se réduisent 4 deux équations distinctes.
On a d’ailleurs, par un principe connu,

(13) I'=Acos?’a + Bcos® B+ Ccos?y — MR”.
Cette équation , combinée avec les précédentes, donne

‘ (' —A)cosa +~ MR'a = o,
(14) (' —B)cosf + MR’'bh = o,
. (I' —~C)cosy+ MR’ ¢ = o.

Ces trois équations, étant homogénes et linéaires par rapport aux cosi-
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nus, se pretent i élimination des lignes trigonométriques, et elles
conduisent 4 I’équation du troisitme degré demandée

/ LA T N
(15) 7—a tr—gti¢twy=0

18. Si Pon fait I’ = o dans Péquation précédente, elle devient

b? c* 1
BT CTw

a
T+
donc, en tout point de Uellipsoide dont les demi-axes sont, en grandeur
et en direction , les racines des moments dinertie principaux divisés
par la masse , le moment dinertie relatif & lun des axes perma-
nents est égal au produit de la masse par le carré de la distance de
ce point au centre de gravité.
Les deux autres moments d’inertie seront donc déterminés par une
équation du second degré.

19. Supposons que Fon ait A > B > C; on reconnaitra facile-
ment, par un principe de la résolution des équations numériques, que
G est compris entre la plus petite et la moyenne racine de I’é¢qua-
tion (15), et que B est compris entre la moyenne et la plus grande. Par
conséquent, dans ’hypothése admise, cette équation ne saurait avoir
ses trois racines égales; mais elle peut avoir deux racines égales a C
ou deux racines égales 4 B. Dans le premier cas, il faudra que 'on ait
les deux équations

. a? bz 1
(16) - =0 e tEseTw

et le second exige les deux relations

b a? c* i

17y =0, e — e =

Donc le lieu des points de Lespace oii deux axes permanents- co; res-
pondent a des moments d'inertie égaux, et ot , par consequent, le corps
admet une infinité daxes permanents, est le systéme des deuzx coniqucs

3a..
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représentées par les deux équations précédentes : une ellipse située dans
le plan du plus grand et du moyen moment principal, et une hyperbole
tracée dans le plan des dewx moments extrémes, ces deux courbes
ayant leurs axes principaux dans la méme direction, et chacune delles
ayant ses sommets aux foyers de lautre.

20. Quand on prendra un centre de rotation appartenant & I'une
de ces courbes, I'équation(15) réduite au premier degré fera connaitre le
moment d’inertie relatif au troisiéme axe permanent, Les équations (4]
et (14), dans lesquelles on introduira soit 'hypothese c=o0 et I'=C,
soitb=o0 et ' =B, laisseront 'un des angles entiérement indéterminé
(ce sera  dans le premier caset (3 dans le second); mais elles détermine-
rontle rapport des cosinus des deux autres; et, si 'on compare la va-
leur de ce rapport 4 I'équation de la courbe correspondante, (16) ou
(17), on reconnaitra que fous les axes permanents, relatifs a un
centre de rotation pris sur Uune de ces courbes et aui correspondent a
des moments égaux , appartiennent & un méme plan normal a la co-
nique, et que par conséquent le troisiéme axe permanent est dirige
suivant la tangente a cette courbe.

21. Les équations (12) exprimant que la droite, inclinée sur les
axes coordonnés des quantités angulaires «, f3, 7, est un axe perma-
nent relatif au point (@, b, c), il s'ensuit que si 'on y regarde a, £,
comme constantes, ces équations appartiendront au lieu géométrique
de tous les centres de rotation pour lesquels I'un des axes permanents
est parall¢le A la droite représentée par I'équation

a b c
(8) cosa cosfB ~ cosq’

Or les formules (12) donnent la suivante

. B—C C—A A—B
([9) c05aa+> _b+

cosp cosy © 0s

qui représente un plan passant par la droite (18). Donc tous les axes
permanents paralléles & une direction donnée sont dans un méme plan
passant par le centre de gravité.

22. La direction de la trace du plan (19) et celle de la projection de
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la droite (18) sur un méme plan principal sont liées par une relation
tres-simple. Soient, par exemple, A et d les tangentes trigonométriques
des angles que font, avec I'axe des x ou des a, celles de ces lignes qui
sont dans le plan des a, b, dé sorte que l'on ait

=BG o ot

C— A \cos x cos «’

on déduit de 13

(20) A __ B—C
§ < ic

Comme cette relation ne renferme que le rapport Z_%E’ il Sensuit que
si, dans un plan perpendiculaire & Uun des plans principauzx, on méne
tant de droites que U'on voudra, et que Lon détermine le plan qui con-
tient tous les axes permanents paralléles & Pune de ces droites, tous les
plans ainsi obtenus auront la méme trace sur le plan principal en
question.

23. Larelation (20) lie aussi la direction d’un diamétre de Vellipse
représentée par les équations (16) avec celle de la normale a I'extrémité
de ce diameétre. On conclut de la cette construction : Menez 4 Lellipse
Jocale (x6) une norimale paralléle & la projection de la droite donnde ;
joignez le centre de gravité au point ot cette normale rencontre la
courbe, et vous aurez la trace du plan qui contient tous les azxes per-
manents paralléles a la droite donnée.

La considération de I’hyperbole focale déterminée par I’équation (17)
fournirait des conséquences analogues; mais le moyen de construction
que I'on en déduirait deviendrait illusoire si la trace du plan cherché

~ ne devait pas rencontrer cette courbe.

24. Pour connaitre la nature de la courbe représentée par les équa-
tions (12), dans lesquelles a, @, ¥ sont constants (n° 21), j’ajoute ces
équations ¢levées au carré; aprés des réductions et des transforma-
tions faciles 4 saisir, on trouve

(21) RvVa® + 5 +c2 — R? ==,
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On a fait ici, pour abréger,

A—B}*cos?xzcos*f + (C—A)* cos*acos?*y + (B—C)*cos? f cos?
7 i
- " .

-~

Le radical ¥ a* + b* + ¢* — R’ exprime la longieur de la perpendi-
culaire abaissée d’un point de la courbe sur la droite de I'équation (18);
R’ (n° 17) représente la distance de Iorigine au pied de cette perpendi-
culaire; ces deux quantités sont donc les coordonnées rectangulaires
d’un point de la courbe dans son plan; et, puisque leur produit est
constant, il s'ensuit que le liew géometriqgue des centres de rotation
des axes permanents paralleles & une droite donnée est une hyperbole
equilatere située dans le plan déterminé n® 22, ayant son centre au
centre de gravité du corps, et pour asymptote une paralléle a la droite
donnée.

Pour abréger, on peut appeler cette courbe Fhyperbole équilatére
correspondante a la droite donnée.

Puisque la paralléele 4 la droite donnée qui passe par le centre de
gravité est 'asymptote de 'hyperbole correspondante, on voit que le
centre de rotation dune droite menée par le centre de gravité est a Uin-

Jini.

25. Si la droite donnée était paralléle a 'un des axes principaux,
les deux équations de ’hyperbole équilatére se réduiraient i celle du
plan perpendiculaire 4 cet axe. Donc, a tout point dun plan principal
il correspond un axe permanent perpendiculaire a ce plan. Cette pro-
position et ses conséquences sont développées dans la Note de M. Gui-
bert.

26. Supposons connu le point o une hyperbole équilatéredéterminée
parles équations(rg)et (2 ) rencontre le plan des @, b; comme, an méme
point, ily a un axe permanent perpendiculaire  ceplan principal (n°25),
et que la droite donnée est en général oblique a ce plan, il faut que le
point en question soit un des centres de rotation auxquels correspon-
dent (n° 19) une infinité d’axes permanents; donc ce point doit étre
sur Vellipse focale des équations (16). De 1a résulte Ja conséquence sui-
vante qui, réunie a la construction donnée n°® 23, sert 4 déterminer
complétement, par la régle et le compas, ’hyperbole équilatere dont
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il s’agit : Une hyperbole représentée par les équations (19) et (2 1) perce
le plan des a, b aux points oix la trace de son plan rencontre Lellipse
Jocale de U'équation (16).

Ainsi’'on connait les asymptotes et un point de cette courbe, la quan-
tité = (n® 24) peut donc étre obtenue par des opérations graphiques.

On conclut encore de ce qui précede que zoutes ces hyperboles équi-
lateres rencontrent le plan des a, b; aucune delles watteint le plan
des b, c; celles qui sont situdes dans les plans passant par les diamétres
transverses de Uhyperbole focale (17) coupent seules le plan des a, c.
Enfin les hyperboles équilatéres, situdes dans différents plans qui ont
une trace commune (n°22), rencontrent toutes aux mémes points le
plan principal qui contient cette trace. :

Ces propositions peuvent étre prouvées analytiquement au moyen
des équations (12). Ainsi, par exemple, si 'on cherche le lieu des
points de rencontre de toutes les hyperboles équilatéres qu’elles repré-
sentent avec le plan des @, b, on trouve une équation indépendante
des angles o, (3, y quin’est autre que celle de Vellipse focale (16), etc.

27. Puisque la direction de F'un des axes permanents est connue
quand le centre de rotation est pris sur Pune des hyperboles équilatéres
que nous considérons, il s’ensuit que la détermination des deux autres
axes permanents ne doit dépendre que de constructions exécutables
avec la regle et le compas. En effet, soient p et ¢ les coordonnées,
paralleles aux axes des a et des 4, du point ou 'un des axes perma-
nents cherchés rencontre le plan des ah; P et Q les coordonnées du
point analogue de P'axe permanent connu. On introduira ces expres-
sions dans les équations (12} au moyen des formules

cosa __ a-—p cosf  b—g

cosy ¢ cosy ¢

On obtiencra ainsi deux équations qui devront étre satisfaites parp =P
etg = Q. En ayant égard A cette condition, on trouvera, pour déter-
miner les inconnues, les deux relations

(A—B)pg+(B—C)bp — (A —C:ag = o,

Pp Qg __
icTE ¢cTw
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La seconde, qui est linéaire, étant comparée a I'équation (16), con-
duit & ce théoréme : Les points ou les trois axes permanents relatifs a
un méme centre de rotation rencontrent lUun des plans principaux,

© Jorment un triangle dont chaque sommet est le pble du coté opposé par
rapport < la conique focale située dans ce plan principal.

Ainsi, en construisantla polaire du point o1 I'axe permanent connu
rencontre le plan des ab, on aura une premiere ligne contenant les
deux points cherchés.. Ces deux points appartiennent aussi & I'hyper-
hole représentée par la premiére des équations ci-dessus. La solution
demandée n’a donc plus de difficulté.

28. Par le centre de I'hyperbole équilatére correspondante a la
droite de I'équation (15), menons une perpendiculaire  son plan (19) :
la projection de cette droite sur le plan des ah fera avec I'axe des a
un angle avant pour tangente trigonométrique

o

08 «
os

>
a

ol
o

=

=

La relation (20) donnera l'inclinaison A’ de la trace du plan de I'hy-
perbole équilatére correspondante a cette nouvelle droite , savoir

, cos a
Y
Comparant cette valeur a celle de ¢ (n® 22), on voitquela premiere droite
donnée est perpendiculaire au plan de la seconde hyperbole; d’oti I'on
conclut que si lon méne une perpendiculaire au plan de Uhyperbole cor-
respondante a une droite donnée, cette perpendiculaire et la droite
donnée seront réciproquement telles que chacune d’elles sera perpendi-
culaire au plan de Uhyperbole qui correspond a lautre; et que par
conséquent ces deux hyperboles équilatéres auront une asymptote com-
mune dirigée suivant Uintersection de leurs plans.

29. Au point commun de ces deux hyperboles, point qui est a
V'infini sur leur asymptote commune, deux des axes permanents sont
paralleles aux deux autres asymptotes de ces courbes; donc le troisiéme
est dirigé suivant I'asymptote commune. On conclut de la que, si 'on
a la direction de I'une des droites données dont il est question dans le
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probléme énoncé aun® 16, ce probléme sera impossible dans les dewax
cas suwants :

10, Si les deux autres directions données sont les deux autres asymp-
totes des deux hyperboles équilateres dont la droite donnée est Uasymp-
tote commune : alors le point demande est a Uinfini sur la droite donnée ;

2°. Si Lune des deux autres directions données est la seconde asymp-
tote de Uhyperbole équilatére correspondante ¢ la droite donnée. Alors
le point cherché est & Uinfini de cette seconde asymptote.

On verra (n° 35) que ces directions, auxquelles répondent des va-
leurs infinies , sont les limites des solutions réelles et des résultats ima-
ginaires. -

30. En comparant les formules du n° 28 avec celles du n® 22, on
trouve

relation qui convient aux directions de deux diametres conjugués de
V’ellipse représentée par les équations (16). Donc les traces des plans de
deux hyperboles équilatéres ayant une asymptote commune forment
un systéme de diamétres conjugués de la conique jfocale située dans le
plan de ces traces.

31. La relation précédente et celles que 'on trouverait de la méme
maniére, en considérant les projections faites dans le plan des «, ¢,
suffisent pout déterminer tous les éléments de la seconde hyperbole
située dans un plan perpendiculaire 2 celui de la premiére et ayant une
asymptote commune avec celle-ci. Si Pon désigne par v la puissance de
cette seconde hyperbole analogue a la quantité t (n°® 24), par a’, #/, ¢’
les inclinaisons sur les axes coordonnés de la droite a laquelle elle cor-
respond. Les conditions du n” 28 donneront

cosa cosa’ cos fcosp’  cnsy cosy’

BGT T TClA T T Taw 7

d’ou Von conclura

Mz cosa’ = (A — C) cosffcosy, Mrcosfl’ = {C — A)cosa cosy,

Mz cosy’ = (A — B) cosa cos B, Mz cosx =(B— C)cosfi’cosy,

M7 cosf8 = (C — A)coso/cosy, M7 cosy=(A —B)cosa’'cosfs.
Tome Vi. -~ JuiLLer 1841, 33
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D’aprés ces relations on obtiendra 1’ de, cette maniére : Portez sur
chacun des trois axes principaux une longueur qui représente le quo-
tient de la différence des moments dinertie relatifs aux deux autres,
divisée par la masse; projetez chacune de ces longueurs sur la droite
donmée (18); faites le produit de ces trois projections que vous diviserez
part?, et le résultat sera la valeur de <’

32. La direction de Pasymptote commune aux deux hyperboles
équilatéres considérées (n° 28) est entiérement déterminée; on pourra
donc obtenir, en fonction des angles a, 3, v, la puissance t” de I'hy-
perbole correspondante i cette droite : -en comparant la valeur trouvée
aux expressions de t et de t/, on aura la relation

T = 1 4 12,

33. Sil'on désigne par x, y, z les coordonnées d’un point quel-
conque rapporté aux axes principaux, les équations des plans de deux
hyperboles équilatéres ayant une asymptote commune seront

B—C C:AJ+A_BZ:_—.0 (n® 21),

€oS o cos cos ¢

et

rcosa+ ycosfi +zcosy=o0 (n°2L8

Soient 2 et /&' la distance du lien de I’élément dm i chacun de.ces
plans; on formerait facilement les valeurs de ces quantités; et si 'on
multipliait leur produit par dm, on trouverait, en ayant égard i la
position des axes coordonnés, que Lintégrale [hi'dm, étendue & toute
la masse du corps, est egale a zéro.

34. Nous pouvons maintenant résoudre la question énoncée n® 16
Deéterminer le point de lespace o les trois axes permanents ont des
directions connues.

Une senle de ces directions est entiérement arbitraire , et la question
revient a chercher un centre de rotation qui ait deux axes permanents
paralléles & denx droites données perpendiculaires entre elles.
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Je place I'origine au centre de gravité G, et je prends les axes coor-
donnés '

Gz dirigé suivant I'une des deux droites données;

Gx suivant la seconde asymptote de I’hyperbole équilatere correspon-
dante a cette premiére droite donnée. Le plan des az sera donc
le plan de cette hyperbole dont la puissance sera représentée
par 7, comme au n° 24%;

Gy, le troisiéme axe coordonné, sera dirigé suivant la perpendicu-
laire au plan de cette hyperbole; et par conséquent le plan
des xy contiendra I'hyperbole équilatére correspondante 4 la
droite Gy. La puissance de cette seconde hyperbole sera repré-
sentée par T/, comme au n° 31.

Les positions des deux hyperboles dont il s’agit étant entierement dé-
terminées (n® 26 et 28), on pourra fixer le sens des nouvelles coor-
données de maniére que T et T soient positifs.

Pour former’équationde ’hyperbole correspondante Gz, je cherche
les coordonnées a, b, ¢ d’'un point ot I'un des axes permanents soit
parallele a cette droite Gz. La définition du n° 3 donne les deux équa-
tions

Jz— ¢c)(x—a)dn = o
et

S(z—c)(y—b)dm = o.

Mais le théoreme du n® 33 donne [ yzdm = o; ces deux équations
se réduisent donc a

fxzdm

M =1

(22) b=o, ac=—

On trouvera de méme les équations suivantes pour 'hyperbole équi-
latere correspondante a la droite Gy,

(23) c=o0, ab= _[xi\zﬂ:@ —

La seconde droite donnée devant étre perpendiculaire a la premiere
33..
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Gz, ses équations seront
(24) z=o0, y=dx.

Je cherche I’hyperbole correspondante a cette droite. Soient a, b, ¢
les coordonnées d’un centre de rotation O ou I'un des axes perma-
nents est paralléle 4 cette ligne: la distance de I'élément dm au plan
mené par le point O, perpendiculairement la droite des équations (24),
sera

Sy 4+x—(8b+a)
\/|+3’

Conformément 4 la définition du n°® 3, je meéne par le point O un
plan paralléle au plan xy et un autre paralléle 4 celui qui projette la
droite des équations (24); j’aurai ainsi deux plans passant par la paral-
lele & cette droite menée du point O. Les distances de I'élément dm
a chacun de ces plans seront

z — c,
et

y—208z—(b—3da),

yi+e ’

les conditions du n° 3 donneront donc ici

S8y +x — (b +a)]iz—c)dm = o,
Sr+x—(@b+a)]lyr —dx —(b—da)jdm = o.
Soient A,, B,, C, les moments d’inertie par rapport aux axes Gx, G,

Gz. En introduisant ces valeurs dans les deux équations précédentes,
elles deviendront, réduction faite,

@b + a)c =1,

(29) M@+ a)(b — da) = (1 — &) Mv' + & (B, — A,).

Ces deux équations appartiennent 4 une hyperbole équilatere situce

Vo s ! i 1 IR R R L LR R
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dans le plan représenté par I’équation

(26) M(b—da) _ (1— 5% Me' + 3B, — A.);

c T

la puissance de cette hyperbole, ou le produit constant des coordon-
nées de I'un de ses points, par rapport i la droite de I’équation (24) et
a sa perpendiculaire, est exprimée par

(27) VM‘([ + 827 +[{1 — o) Mo/ —|—8(B,—A,)]'.

M (1 +d?)

Maintenant le point cherché sera celui dont les coordonnées satisfe-
ront aux quatre équations (22) et (25). Or la premiere (25) est une con-
séquence des deux équations (22); donc les kyperboles équilatéres
correspordantes a deux droites perpendiculaires entre elies ont un dia-
métre commun réel ou idéal, dirigé suivant la droite d’intersection de
leurs plans. Le point demandé, qui est sur ces deux ‘courbes, pourra
donc étre construit géométriquement au moyen des principes précé-
dents.

La question n’a pas plus de deux solutions; et quand elles sont
réelles, les deux centres de rotation sont sur une droite passant au
centre de gravité et coupée en deux parties égales par ce point.

35. 1l résulte de la remarque du n° 29 que, pour discuter la solu-
tion précédente, il faut connaitre les asymptotes des deux hyberboles
équilateres dont la ligne donnée Gz serait 'asymptote commune. Or
ces deux droites sont dans le plan des x y, et la ligne des équations (24)
serait I'une d’elles si le plan de 'hyperbole équilatére qui lui corres-
pond passait par la droite Gz. Mais ce plan est représenté par I'équa-
tion (26), la condition dont il s’agit donnera donc

(28) (1 —d)MY +J(B, — A,) = o.

Les deux valeurs de ¢ tirées de cette équation détermineront deux
directions rectangulaires qui seront celles des asymptotes demandaées.
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Soient

¢’ la racine positive de I'équation précédente ;

Gx’ la droite dont la direction est déterminée par cette valeur, laquelle
est par conséquent un diametre transverse de I’hyperbole située
dans le plan x y et représentée par I'équation (23);

Gy’ l1a perpendiculaire & Ga’, de sorte que Gy’ ne rencontre pas la
méme hyperbole.

Cela posé, la solution de la question du n° 34, qui est renfermée dans
les formules (22) et (25 ), peut étre présentée de la maniére suivante :

b =o,
ac =71,
g2 — (A= B)I+ (B — ) M

Md

Silonintroduit, dansla valeur de a?, celle de ¢’ qui satisfait a I'équa-

tion (28), on trouve
al
a* =7 (I — 7) (é + d‘).

On voit d’abord que a est infini quand on a, soit & = o0, s0it ¢ = oo}
que a est nul, et par suite ¢ infini, quand on a, soit & = d’, soit

d=— T;—" Ces résultats ne sont que la reproduction des remarques du

n°® 29.
Puisque, dans la formule précédente, v et ¢’ sont positifs, on voit
que, la seconde droite donnée étant

dans Uangle xGx', la solution du probléme du n° 34 est imaginaire,
dans Uangle x'G y, la solution est réelle,

dans langle y G y', la solution est imaginaire,

dans le supplément de langle y'Gx, la solution est réelle.

36. Soit T la puissance de 'une des hyperboles équilateres corres-
pondantes aux droites Gx’ et G y’. Cette valeur sera donnée par la for-
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mule (27), dans laquelle on introduira la relation (28); et 'on aura -

T

T = .

Vito:

Si donc on représente par w l'angle xGx', on aura, pour T, deux
valeurs exprimées par

Tcosw et Tsinw,

Donc si l'on a dewx hyperboles équilatéres dont les plans se coupent
suivant leur asymptote commune (n° 28), et que Uon fasse passer par
cette droite le plan de Uhyperbole qui lui correspond (n° 24); si, dans
ce plan, on construit une surface égale a la puissance de Ukyperbole
quil contient, les puissances des deux premiéres seront respectivement
égales aux projections jaites dans leurs plans de la puissance de la
troisiéme. ’

La relation trouvée n°® 32 est une conséquence de ce théoreme.

37. Les questions résolues n° 21, 23, 24 et 26 donnent immédia-
tement la solution de ce probleme : Déterminer le centre de rotation
d’un plan donné.

En effet, le point cherché est a la rencontre du plan donné avec I’hy-

Y

perbole équilatére correspondante i une droite perpendiculaire a ce
plan. v

Ce probléme n’aura généralement qu’une solution, parce que le plan
donné est paralléle & 'une des asymptotes de I'hyperbole. Le point
demandé serait 3 Uinfini si le plan donné passait par le centre de gra-
vité. La question serait indéterminée si ce plan coincidait avec 'un des
plans principaux.

38. En traitant par I'analyse la question précédente, on est conduit
A considérer une surface du cinquiéme degré qui peut étre engendrée
d’une maniére assez simple par le mouvement d’une section conique.

Je place l'origine en un point du plan donné, et je dirige les axes
coordonnés suivant les axes permanents relatifs & cette origine. e
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plan donné sera représenté par I’équation
x cose + ycosf3+ zcosy = o,

dans laquelle a, 3, y sont les inclinaisons de la perpendiculaire a ce
plan sur les axes coordonnés. Je reprends les notations du n°® 10, et je
pose, en outre,

x, coso -4 y,cosf3 + z,cosy = R,,

de sorte que R, représentera la distance du centre de gravité au plan
donné. Si 'on appelle a, b, cles coordonnées de son centre de rotation,
on aura d’abord

{29) acosa+ bcosfB + ccosy= o;

ensuite les coordonnéesa, b, ¢ doivent satisfaire aux équations (3},
puisque'un des axes permanents relatifs 4 ce point fait, avec les axes
coordonnés, les angles a, 3, 7; écrivant donc cette condition , on trouve,
réduction faite,

(A, — B,) cos 2 cos 8 = MR, (b cos « — a cos f3),
(€. — A,)cosacosy = MR, (acosy — ¢ cosa),
(B, — C,)cos f3cosy = MR, (ccos 8 — b cosy).

Ces équations, qui se réduisent & deux, étant réunies a I'équation (2g),

_ composent un systéme du premier degré qui résout la question.

En introduisant la quantité auxiliaire
I=A,cos?a -+ B, cos® 8+ C, cos?y,
les valeurs des coordonnées deviennent

| 30) a="2cosa b—ltl—;icosﬁ e =0
{ - MR, ? - MR, ? - MR, 08 7-
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Ces formules confirment le résultat de la discussion du n® 37.

39. Les relations (29) et (30) étant homogénes par rapport aux co-
sinus, donneront deux équations finales par I’élimination de ces trois
lignes trigonométriques, savoir :

M z,a My, b Mz,e
i—a, tiE Ti¢c ="

(31)
a* b* c*

i—x, Tiom i =~

Si I'on élimine T entre ces deux dernieres, on aura Uéquation de la
surface qui contient les centres de rotation de tous les p?ans passant par
un point donné. Pour exécuter cette opération on pourra amener les
équations (31) & étre du premier degré en I par une transformation qui
donnera

_ Ma[(B, — C,)2.bc + (C; — A,) yac + (A, — By)z,ab ]

L— A, (B: — C;) be — M (@* + b* 4~ ¢*) (2.6 — y.c) '
I — B . Mb [(Bx ——Cx)«rxbc+(Cx—-A:)J’,ac—i—(A,—B,)z,ab]
T (C, — A;)ac — M (a* + b* 4 ¢*) (x,¢ — 3,a) ’
I C — Mc[(B, —C;)x.bec + (C, — A,) y.ac + (A, + B,) z,ab ]
—-C, =

(A, —B.)ab— M (a* + b* + ¢*) (y.a — z,b)

I.’élimination de 1 entre ces équations, qui se réduisent a deux dis-
tinctes, conduira 4 une équation du cinquiéme degré appartenant a
la surface demandée.

40. Mais, au lieu de cette équation unique, on peui employer les
deux équations (31) pour représenter la surface dont il s'agit. La se-
conde appartient 4 un coéne dont les axes principaux sont dirigés sui-
vant les axes coordonnés; et si 'on a, comme au n° 11,

A, > B, > G,

les deux lignes focales de ce cone, situées dans le plan xz, font avec

Tome VI — Jurueer (841, 34
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I'axe des z des angles dont les tangentes trignométriques sont

A—B A—B
o2, et — \/__
+ Vi—¢’ B—¢’

quantités indépendantes du paramétre variable 1. Si, en outre, on fait
attention a la forme de la premiére équation (31), on arrive a la con-
séquence suivante : Construisez a volonté un céne dont les axes prin-
cipaux soient dirigés suivant les axes permanents qui se croisent au
point donné et dont les directions des lignes focales soient déterminées
par les valeurs ci-dessus ; construisez aussi le plan représenté par la
premiére céquation (31) et qui est paralléle au plan polaire du centre de
gravité par rapport au cone; Uintersection du céne et du plan ainsi
ohtenus appartiendra a la surface demandee.



