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PURES ET APPLIQUÉES. a41 

REMARQUES 

SUR LA THÉORIE GÉOMÉTRIQUE 

DES AXES PERMANENTS DE ROTATION; 

PAR G. GASCHEATJ, 
Ancien Élève de l'École Polytechnique, Inspecteur de l'Académie d'Orléans. 

1. J'adopterai les définitions données par M. Ampère (tome V des 
Nouveaux Mémoires de VAcadémie des Sciences , page 86) : 

Un axe permanent, relatif à un point de sa direction, est une droite 
liée à un corps fixé en ce point, et telle que le mobile, ayant commencé 
à tourner autour de cette droite, le mouvement continue comme si 
elle était fixe, de sorte que les actions des forces centrifuges se détrui-
sent mutuellement ; 

Le centre de rotation d'un axe permanent est le point de sa direction 
qu'il suffit de fixer pour que le mouvement ait lieu autour de cette 
droite, conformément à la condition précédente; 

Un axe principal est un axe permanent relatif au centre de gravité ; 
Un plan principal est un plan passant par deux axes principaux. 
Dans un plan quelconque il existe un point tel que l'un des axes 

permanents relatifs à ce point est perpendiculaire au plan. On peut 
appeler le point dont il s'agit, centre de rotation du plan. 

2. Quand on passe des propriétés mécaniques des axes permanents 
aux caractères analytiques qui servent à les déterminer, on arrive ordi-
nairement à une définition triple : je veux dire que l'on trouve trois 
conditions qui fixent les positions des trois axes rectangulaires de-
mandés. Mais dans la question de dynamique à laquelle se rattache la 
découverte des lignes dont il s'agit, il y a lieu de considérer l'un de ces 
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axes indépendamment des deux autres; il convient donc de pouvoir 
séparer les définitions, ou d'en établir une qui convienne à un seul 
axe permanent. J'emploierai la suivante, quia l'avantage de manifester 
une propriété dont on ne trouve pas l'énoncé explicite dans les traités 
de mécanique rationnelle. Cette définition conduit directement aux 
équations des problèmes qui proposent de trouver les axes permanents 
d'un centre de rotation donné, ou le centre de rotation d'un axe per-
manent connu, ainsi que la condition nécessaire pour qu'une droite 
soit un axe permanent, etc. 

5. Soit Ο ζ un axe permanent relatif au point Ο ; représentons par ζ 
la distance du lieu d'un élément dm de la masse du corps au plan per-
pendiculaire à Οζ mené par le point O. Par la droite Oz je mène deux 
plans à volonté; soient h et h' les distances de l'élément dm à ces deux 
plans. 

Si ton a les deux conditions 

(i) fhzdm = o, fh'zdm = o, 

ces intégrales définies étant étendues à toute la masse du corps, la 
droite Oz sera un axe permanent relatif au point O. 

4. La propriété citée n° 2 consiste en ce que, les deux équations ( ι) 
étant satisfaites, si l'on mène un troisième plan quelconque par Oz, que 
l'on prenne comme ci-dessus la distance de l'élément dm à ce plan , et 
que l'on multiplie aussi cette distance par zdm pour former un élément 
différentiel analogue à hzdm, la nouvelle intégrale, que l'on obtiendra 
comme les précédentes (x), sera également nulle. 

En effet, soient Ox l'intersection de ce plan avec le plan perpendi-
culaire à Oz; Ojr la perpendicxilaire au plan zOx menée par le point O ; 
ω et ω' les angles des deux premiers plans, conduits suivant Oz (n°2) 
avec le plan z0.r ; et enfin χ, y, ζ les coordonnées de l'élément dm 
par rapport aux trois droites rectangulaires Oor, Oy, Oz. On aura 

h — y cos ox — χ sin ω, h' = y cos ω' — χ sin οχ' ; 

d'où 
A sin ω' — A'sin ω 

sin (ω' — ω) ' 
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et par suite 

/· » sin ω' Γ hzdm — sin ω Γ h' zdm 

Le numérateur de cette dernière fraction est nul en vertu des rela-
tions (ι) ; son dénominateur est différent de zéro ; donc on a 

f yzdm = o. C. Q. F. D. 

S. Les problèmes énoncés n° 2 ont leurs solutions renfermées dans 
les équations de la question suivante : 

Un corps étant rapporté à trois axes rectangulaires quelconques 
Gx, Gy, Gz, trouver la direction d'un axe permanent de ce corps re-
latij à un point Ο dont tes coordonnées sont a, b, c. 

Soient a, β, γ les angles de la droite cherchée avec les axes Gx, G y, 
Gz. Conformément à la définition du n° 3, il faut d'abord évaluer la 
distance de l'élément dm au plan conduit par le point Ο perpendicu-
lairement à la ligne cherchée ; cette distance sera 

(a) R = (χ — a) cos a -+- (y — b) cos β -+- (ζ — c) cos γ. 

On aura ensuite à déterminer les distances du même élément à deux 
plans conduits à volonté par cette droite : je prendrai les deux plans qui 
la projettent sur les plans coordonnés xGz et ^Gz: alors les dis-
tances en question seront exprimées par 

(x — a) cos γ — (ζ — c) cos α ^ (y — b) cos γ — (ζ — c) cos p 

Remplaçant, dans les équations (i), h et h' par ces valeurs, et ζ par R, 
on trouvera les formules 

,o\ R(j7—a)dm f&(y--b)dm /'R(î—c)dm 
^ cos α cos p cos7 ' 

:u.. 



a44 JOURNAL DE MATHÉMATIQUES 

Si l'on y réunit la relation 

(4) cos*α + cos3β -+- cos3γ = ι , 

on aura la solution complète du problème. 
6. Soient Χ, Y, Ζ les coordonnées d'un point de la droite, de sorte 

qu'on ait 

(5) x~a = Y~b = z~c· 

la ligne étant ainsi déterminée par l'un de ses points et par sa direc-
tion, si l'on élimine a, b, c, entre les équations (3) et (5), l'équation 
finale exprimera la condition nécessaire pour qu'une droite donnée 
soit un axe permanent. 

7. Cette condition étant satisfaite, les équations (3) et (5) s'accorde-
ront pour donner les trois coordonnées a, b, c du centre de rotation 
de la ligne dont il s'agit. 

8. L'équation de condition indiquée n° 6 et les équations (5) étant 
homogènes par rapport aux cosinus, suffisent pour donner la relation 
indépendante de ces lignes trigonométriques, qui démontre ce théo-
rème connu, que tous les axes permanents passant par un point 
donné appartiennent à un cône du second degré, etc. 

9. On pourrait déduire des équations (3), (4) et (5) toutes les propo-
sitions du Mémoire de M. Ampère. Je m'arrêterai à celle du chapitre III ; 
parce que l'on y considère une surface du troisième degré appartenant 
à une famille dont la génération et l'équation aux différentielles par-
tielles se rapprochent, par leur simplicité, de celles que l'on présente 

dans le Cours d'Analyse de l'École Polytechnique et qui se rapportent 
aux cylindres, aux cônes, aux conoïdes et aux surfaces de révolution. 

10. Déterminer la courbe contenant tous les centres de rotation des 
axes permanents passant par un point donné. 

Les équations(3) et (5) étant homogènes par rapport aux cosinus, 
l'élimination des trois quantités α, β, y entre ces quatre équations 
donnera deux équations finales qui appartiendront aux coordonnées 
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a, b, c d'un point quelconque de la courbe cherchée. Pour simplifier 
les calculs, je rapporte le corps au point donné et aux axes permanents 
qui s'y croisent. Soient, dans cette hypothèse, 

A, = f{y2 -+- ζ3)άτη, Β, = f (jc* -t-z2)dm,, G, = /(χ"-\-χΛ)άι», 

les moments d'inertie relatifs aux axes coordonnés, M la masse du 
corps, et x

t
,y,, z, les coordonnées de son centre de gravité: intro-

duisant ces valeurs dans les équations (3) et (5), où l'on devra faire 

X = ο, Y = o, Z=o, 

l'élimination indiquée donnera les trois équations 

f (A, — Bt) ab = M (a2 -4- b2 -t- a — x,b) > 
(6) < (C, — A

(
) ac — M (α2 -1- ôa -+- c2) [x

t
 c — ζ, a) , 

((B, — C ,)bc = M (a2 + èa + c2) (z, b —j,c) , 

dont l'une est la conséquence des deux autres. 
L'élimination de M entre deux de ces équations donne la suivante 

(7) (A, — B
t
)z,ab -I- (C, — A,) jr

t
ac H- (B, — C,).r,ic == o, 

qui appartient au cône cité n° 8. 
La courbe demandée appartient donc aux quatre surfaces détermi-

nées par les équations (6) et (7), dans lesquelles a, b, c représentent les 
coordonnées des points de ces surfaces. 

11. J'examinerai le lieu géométrique de l'une des équations (6). 
Supposons que l'on ait 

A, > B, > G,, 

et posons 

Ar — B
r
 » 

M — 1 ' 
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la première équation (6) pourra se mettre sous la forme 

ya'-l-é2 (ji« — xib) V^2 ■+* b* 

si l'on fait, dans celle-ci, b — a tang ω , afin d'avoir l'intersection de 
la surface avec un plan conduit suivant l'axe des z, on trouvera 

J a' bx y τcos ω — xi sin ω 

Le premier membre est le quotient du carré du rayon vecteur d'un 
point de l'intersection divisé par la projection de ce rayon vecteur sur 
la trace du plan de cette ligne ; et puisque le second membre est cons-
tant , il s'ensuit que la courbe est un cercle touchant l'axe des ζ à 
l'origine, et dont le diamètre a pour valeur 

I* sin ω cos ω 
y ι cos w — Χι sin ω " 

En faisant varier l'angle ω qui fixe la direction du plan coupant, on 
obtiendra différents cercles dont les centres parcourront une courbe 
située dans le plan des χ y : le rayon vecteur du centre du cercle cor-
respondant à l'angle ω étant égal à la moitié de l'expression précédente, 
on obtiendra facilement l'équation suivante pour représenter la courbe 
des centres 

9) t*ab = 2 (aa -+- è?) (y, a — x, b). 

Cette ligne est semblahle à l'intersection delà surface(8) aveo le plan 
χ γ ; le centre de similitude est à l'origine, et le rapport de similitude 
est 2. Tous ces résultats sont faciles à interpréter. 

Je conclus de ce qui précède que la surface de l'équation (8) peut 
être engendrée par un cercle variable touchant constamment l'axe 
des ζ à l'origine, et dont le plan tourne autour de cet axe, tandis que 
son centre parcourt la courbe (9) tracée dans le plan xy. 

l orsque le plan mobile atteint le centre de gravité, le rayon du 
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eercle générateur devient infini, et ce cercle dégénère en une droite qui 
n'est autre que l'axe des z. Le cercle variable se réduit à un point qui 
n'est autre que l'origine quand son plan coïncide avec l'un des plans 
coordonnés. 

La courbe demandée (n° 10) étant l'intersection du cône (η) avec la 
surface (8), dont les sections circulaires passent par le sommet du cône, 
il s'ensuit que cette courbe pourra être tracée facilement par les pro-
cédés de la géométrie descriptive. 

12. Deux cercles quelconques de la surface représentée par l'équa-
tion (8), ayant une tangente commune, appartiennent à une même 
sphère : donc In surface dont il s'agit est l'enveloppe d'une sphère va-
riable passant constamment par l'origine et dont le centre parcourt la 
courbe du plan χ y représentée par l équation (9). 

La caractéristique de cette enveloppe est le cercle variable dont le 
plan tourne autour de l'axe des ζ (n° 11). 

15. Je me propose d'obtenir l'équation générale des surfaces dé-
finies nos 11 et 12, quelle que soit la courbe tracée dans le plan χ y qui 
dirige le centre du cercle ou de la sphère variable. 

Les conditions de cet énoncé exigent que la fraction 

à1 -t- és-(- c* 
y'a1 H- 6® 

conserve une valeur constante quand le rapport ^ reste invariable. 

Donc il faut que +c soit une fonction de - ; et comme on peut 

mettre cette expression sous la forme 

a' + i'-t- c1 a* b* -i- c2 

V,+(:)* lf + (S) 

l'équation demandée sera 

(10) a% -4- b2 -+· c3 = αφ ou «2 -t- b2 H- c' = by > 

φ étant l'indice d'une fonction arbitraire. 
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L'équation (8), étant mise sous la forme 

a2 b2 c2 = a *— , 

appartient évidemment à la famille comprise dans l'équation (10). 
14. Trouver Véquation aux différentielles partielles de la même 

classe des surfaces. 
Soient a, et b

K
 les coordonnées du centre d'une sphère enveloppée 

; n0 12); l'équation de cette sphère sera 

a2 -+- b2 + c2 = a a, a -i- a b, b. 

Soient ρ et q les coefficients différentiels de l'ordonnée c, pris en 
regardant séparément les abscisses a et b comme variables, de sorte 
que l'on ait 

de de 
P~dâ' 1~db' 

L'équation de la sphère enveloppée, étant différenciée successivement 
par rapport aux deux variables indépendantes, donne 

a -+- cp = at, b -t- cq — b, ; 

et si l'on porte ces valeurs de a, et de b, dans l'équation précédente, 
on aura l'équation aux différentielles partielles demandée 

IV ap + hq = — , 

qui appartient aux sphères enveloppées et à leur enveloppe, indépen-
damment de toute condition à laquelle on pourrait assujétir le centre 
de l'enveloppée. 

15. 6i l'on différentie successivement, par rapport à chaque va-
riable indépendante, l'équation (io), et que l'on élimine la fonction 
arbitraire et sa dérivée, on trouvera l'équation différentielle ( 11). 
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Réciproquement si l'on cherche, par la méthode connue, l'intégrale 

de cette équation aux différentielles partielles, on obtiendra l'équation 
finie (10). 

16. M. Rinet, dans le xvie cahier du Journal de l'École Po-
lytechnique, et M. Guibert, dans le xxve, ont déterminé le centre de 
rotation dont les axes permanents sont parallèles à ceux d'une origine 
connue. On peut donner plus de généralité à cette question en se pro-
posant de trouver le point de l'espace où les axes permanents sont pa-
rallèles à trois droites rectangulaires prises arbitrairement. Alors le 
problème n'est pas toujours possible ; et il est intéressant de chercher les 
limites qui renferment les directions que doivent avoir les droites don-
nées pour que la solution soit réelle. En nous occupant de cette re-
cherche nous serons conduits à des propositions qui ne sont pas énon-
cées dans les Mémoires cités. 

Pour traiter la question actuelle, il est nécessaire de rappeler les 
propriétés de la courbe qui contient tous les centres de rotation dont 
deux deS" axes permanents correspondent à des moments d'inertie 
égaux; de sorte que, en chacun de ces points, il y a une infinité d'axes 
permanents situés dans un même plan. La courbe dont il s'agit est 
composée d'une ellipse et d'une hyperbole, appelées par M. Chasles 
[Àperçu historique, note 3i) coniques focales ou excentriques d'un 
système de surfaces du second degré. Ce système est ici celui des trois 
espèces de surfaces à centre qui ont leurs axes principaux dirigés sur 
les axes principaux du corps (n° 1). On sait qu'en un point commun 
à trois de ces surfaces d'espèces différentes, les normales sont dirigées 
suivant les trois axes permanents relatifs à ce point, etc. J'emploierai, 
pour déterminer les coniques focales de ce système, une méthode 
qui diffère peu de celle de M. Rinet, mais qui conduira à une pro-
priété de l'ellipsoïde dont les carrés des demi-axes sont respective-
ment égaux aux moments d'inertie principaux divisés par la masse. 

17. Je me propose d'abord de jarmer l'équation du troisième degré 
dont l'inconnue est le moment d'inertie du corps par rapport à l'un des 
axes permanents qui se croisent en un point donné, en supposant 
connus les axes et les moments d'inertie principaux relatifs au centre 
de gravité. 

Tome VI. — JULÎ.ET 1841. 02 
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Le corps étant rapporté à ces axes, soient 

A = f {y3 -4- z3) dm, Β = f (χ3 -+- z2) dm, G = f (χ3 -+- y3) dm , 

les moments d'inertie principaux, a, b, c les coordonnées du point 
donné, a, jS, γ les inclinaisons, sur les axes coordonnés, d'un axe per-
manent relatif à ce point, et I le moment d'inertie inconnu. Je pose, 
pour abréger, 

Γ = I - M(a' + iJ + c!), 
et 

R' = a cosa -+- bcosβ -4- c cosy. 

En introduisant ces expressions dans les équations (3), et en ayant 
égard au choix des axes coordonnés, on obtiendra les relations 

; ni (A—B) cosa cos β 

(12) < c cos a — a cosy = v 

\ b cos y — c cos/3 = v ', 

qui se réduisent à deux équations distinctes. 
On a d'ailleurs, par un principe connu, 

(ι3) I' = A cos2 α -4- B cos2 β ■+■ C cos2 γ — MR'2. 

Cette équation , combinée avec les précédentes, donne 

(Γ — Β) cos β -t- MR' b = ο, 

(Γ — Β) cos β -t- MR' b = ο, 

(Γ - C) cos 7 -4- MR' c = ο. 

Ces trois équations, étant homogènes et linéaires par rapport aux cosi-
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nus, se prêtent à l'élimination des lignes trigonométriques, et elles 
conduisent à l'équation du troisième degré demandée 

ι'_λ + r—β + r-c + M = °-

18. Si l'on fait I' = ο dans l'équation précédente, elle devient 

I + B + C ~ M' 

donc, en tout point de l'ellipsoïde dont les demi-axes sont, en grandeur 
et en direction, les racines des moments et inertie principaux divisés 
par la masse, le moment d'inertie relatif à l'un des axes perma-
nents est égal au produit de la masse par le carré de la distance de 
ce point au centre de gravité. 

Les deux autres moments d'inertie seront donc déterminés par une 
équation du second degré. 

19. Supposons que l'on ait A > Β > C ; on reconnaîtra facile-
ment, par un principe de la résolution des équations numériques, que 
C est compris entre la plus petite et la moyenne racine de l'équa-
tion (ι 5), et que Β est compris entre la moyenne et la plus grande. Par 
conséquent, dans l'hypothèse admise, cette équation ne saurait avoir 
ses trois racines égales ; mais elle peut avoir deux racines égales a C 
ou deux racines égales à B. Dans le premier cas, il faudra que l'on ait 
les deux équations 

( ) C — Ο, -H — M"' 

et le second exige les deux relations 

;i7) b = °> HT! - Â-c
 =

 Si-

Donc le lieu des points de l'espace où deux axes permanents COÎ res-
pondent à des moments d'inertie égaux, et où, par conséquent, le corps 

admet une inimité daxes permanents, est le système des deux coniques 

3a.. 
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représentées par les deux équations précédentes : une ellipse située dans 
le plan du plus grand et du moyen moment principal, et une hyperbole 
tracée dans le plan des deux moments extrêmes, ces deux courbes 
ayant leurs axes principaux dans la même direction, et chacune delles 
ayant ses sommets aux foyers de l'autre. 

20. Quand on prendra un centre de rotation appartenant à l'une 
de ces courbes, l'équation(i 5) réduite au premier degré fera connaître le 
moment d'inertie relatif au troisième axe permanent. Les équations (4) 
et (x4)? dans lesquelles on introduira soit l'hypothèse c = o et I' = C, 
soit b = ο et I' = B, laisseront l'un des angles entièrement indéterminé 
(ce sera y dans le premier cas et β dans le second) ; mais elles détermine-
ront le rapport des cosinus des deux autres ; et, si l'on compare la va-
leur de ce rapport à l'équation de la courbe correspondante, (16) ou 
(17), on reconnaîtra que tous les axes permanents, relatifs à un 
centre de rotation pris sur l'une de ces courbes et qui correspondent à 
des moments égaux, appartiennent à un même plan normal à la co-
nique, et que par conséquent le troisième axe permanent est dirigé 
suivant la tangente à cette courbe. 

21. Les équations ( ι a) exprimant que la droite, inclinée sur les 
axes coordonnés des quantités angulaires α, β, y, est un axe perma-
nent relatif au point (a, b, c"), il s'ensuit que si l'on y regarde α, β, y 
comme constantes, ces équations appartiendront au lieu géométrique 
de tous les centres de rotation pour lesquels l'un des axes permanents 
est parallèle à la droite représentée par l'équation 

x ' cos α cos ρ cos γ 

Or les formules ( ι a) donnent la suivante 

(iq) a -t b -t c = o, 

qui représente un plan passant par la droite (i 8). Donc tous les axes 
permanents parallèles à une direction donnée sont dans un même plan 
passant par le centre de gravité. 

22. La direction de la trace du plan (19) et celle de la projection de 
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la droite (i 8) sur un même plan principal sont liées par une relation 
très-simple. Soient, par exemple, Δ et ci les tangentes trigonométriques 
des angles que font, avec l'axe des χ ou des a, celles de ces lignes qui 
sont dans le plan des a, b, dè sorte que l'on ait 

C— A \COS α / cos « 

on déduit de là 

l'2o) » = ÂZ.C· 

Comme cette relation ne renferme que le rapport , j] s'ensuit que 

si, clans un plan perpendiculaire à l'un des plans principaux, on mène 
tant de droites que l'on voudra, et que l'on détermine le plan qui con-
tient tous les axes permanents parallèles à l'une de ces droites, tous les 
plans ainsi obtenus auront la même trace sur le plan principal en 
question. 

25. La relation (20) lie aussi la direction d'un diamètre de l'ellipse 
représentée par les équations (16) avec celle de la normale à l'extrémité 
de ce diamètre. On conclut de là cette construction : Menez à l'ellipse 
focale (16) une normale parallèle à la projection de la droite donnée; 
joignez le centre de gravité au point oà cette normale rencontre la 
courbe, et vous aurez la trace du plan qui contient tous les axes per-
manents parallèles à la droite donnée. 

La considération de l'hyperbole focale déterminée par l'équation (»7) 
fournirait des conséquences analogues; mais le moyen de construction 
que l'on en déduirait deviendrait illusoire si la trace du plan cherché 
ne devait pas rencontrer cette courbe. 

24. Pour connaître la nature de la courbe représentée par les équa-
tions (12), dans lesquelles a, |3, y sont constants (n° 21), j'ajoute ces 
équations élevées au carré; après des réductions et des transforma-
tions faciles à saisir, on trouve 

(21) R' Vu2 -+- b2 r2 - R'2 = τ. 
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On a fait ici, pour abréger, 

V^A—Β )' cos1 a cos1 β -+- (C — A)1 cos1 α cos1 γ -+- (Β — C)1 cos1 β cos "γ 

Le radical a2 b* c2 — R'a exprime la longueur de la perpendi-
culaire abaissée d'un point de la courbe sur la droite de l'équation (18); 
R' Cn° 17) représente la distance de l'origine au pied de cette perpendi-
culaire; ces deux quantités sont donc les coordonnées rectangulaires 
d'un point de la courbe dans son plan; et, puisque leur produit est 
constant, il s'ensuit que le lieu géométrique des centres de rotation 
des axes permanents parallèles à une droite donnée est une hyperbole 
équilatère située dans le plan déterminé n° 22, ayant son centre au 
centre de gravité du corps, et. pour asymptote une parallèle à la droite 
donnée. 

Pour abréger, on peut appeler cette courbe l'hyperbole équilatère 
correspondante à la droite donnée. 

Puisque la parallèle à la droite donnée qui passe par le centre de 
gravité est l'asymptote de l'hyperbole correspondante, on voit que le 
centre de rotation dune droite menée par le centre de gravité est à l'in-

fini. 
25. Si la droite donnée était parallèle à l'un des axes principaux, 

les deux équations de l'hyperbole équilatère se réduiraient à celle du 
plan perpendiculaire à cet axe. Donc, à tout point dun plan principal, 
il correspond un axe permanent perpendiculaire à ce plan. Cette pro-
position et ses conséquences sont développées dans la Note de M. Gui-
bert. 

26. Supposons connu le point où une hyperbole équilatère déterminée 
parles équations ( 19) et (2 : ) rencontre le plan des a, b\ comme, au même 
point, il y a un axe permanent perpendiculaire à ce plan principal (n° 25), 
et que la droite donnée est en général oblique à ce plan, il faut que le 
point en question soit un des centres de rotation auxquels correspon-
dent (n° 19) une infinité d'axes permanents; donc ce point doit être 
sur l'ellipse focale des équations (16). De là résulte la conséquence sui-
vante qui, réunie à la construction donnée n° 23, sert à déterminer 
complètement, par la règle et le compas, l'hyperbole équilatère dont 
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il s'agit : Une hyperbole représentée par les équations (19) et (ai) perce 
le plan des a, b aux points où la trace de son plan rencontre l'ellipse 
jocale de l'équation (16). 

Ainsi l'on connaît les asymptotes et un point de cette courbe, la quan-
tité τ (n° 24) peut donc être obtenue par des opérations graphiques. 

On conclut encore de ce qui précède que toutes ces hyperboles e'qui-
latères rencontrent le plan des a, b ; aucune d'elles n'atteint le plan 
des b, c; celles qui sont situées dans les plans passant par les diamètres 
transverses de l'hyperbole jocale (17) coupent seules le plan des a, c. 
Enfin les hyperboles èquilatères, situées dans différents pleins qui ont 
une trace commune (n° 22), rencontrent toutes aux mêmes points le 
plan principal qui contient cette trace. 

Ces propositions peuvent être prouvées analytiquement au moyen 
des équations (12). Ainsi, par exemple, si l'on cherche le lieu des 
points de rencontre de toutes les hyperboles èquilatères qu'elles repré-
sentent avec Je plan des a, b, on trouve une équation indépendante 
des angles a, β, γ qui n'est autre que celle de l'ellipse focale (16), etc. 

27. Puisque la direction de l'un des axes permanents est connue 
quand le centre de rotation est pris sur l'une des hyperboles èquilatères 
que nous considérons, il s'ensuit, que la détermination des deux autres 
axes permanents ne doit dépendre que de constructions exécutables 
avec la règle et le compas. En effet, soient ρ et q les coordonnées, 
parallèles aux axes des a et des b, du point où Γιιη des axes perma-
nents cherchés rencontre le plan des ah ; Ρ et Q les coordonnées du 
point analogue de l'axe permanent connu. On introduira ces expres-
sions dans les équations (12) au moyen des formules 

cos α a — ρ cos ρ b — q 
cos y c ' cos 7 c 

On obtiendra ainsi deux équations qui devront être satisfaites par/? = Ρ 
et q = Q. En ayant égard à cette condition, on trouvera, pour déter-
miner les inconnues, les deux relations 

( A — H)pq A- (B — G) bp — (À — C aq = ο, 
pP , Q-7 __ ' 

A —C B —C M' 
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La seconde, qui est linéaire, étant comparée à l'équation (16), con-
duit à ce théorème : Les points où les trois axes permanents relatifs à 
un même centre de rotation rencontrent l'un des plans principaux, 
forment un triangle dont chaque sommet est le pôle du côté opposé par 
rapport à la conique focale située dans ce plan principal. 

Ainsi, en construisant la polaire du point où l'axe permanent connu 
rencontre le plan des ah , on aura une première ligne contenant les 
deux points cherchés. Ces deux points appartiennent aussi à l'hyper-
bole représentée par la première des équations ci-dessus. La solution 
demandée n'a donc plus de difficulté. 

28. Par le centre de l'hyperbole équilatère correspondante à la 
droite de l'équation (i8), menons une perpendiculaire à son plan (*9): 

la projection de cette droite sur le plan des ah fera avec l'axe des a 
un angle ayant pour tangente trigonométrique 

k, C A cos α 
Β — C cos p" 

La relation (20) donnera l'inclinaison Δ' de la trace du plan de l'hy-
perbole équilatère correspondante à cette nouvelle droite, savoir 

cos α 
cos ρ 

Comparant cette valeur à celleded(n°22), on voit que la première droite 
donnée est perpendiculaire au plan de la seconde hyperbole ; d'où l'on 
conclut que si l'on mène une perpendiculaire au plan de l'hyperbole cor-
respondante à une droite donnée, cette perpendiculaire et la droite 
donnée seront réciproquement telles que chacune d'elles sera perpendi-
culaire au plan de l'hyperbole qui correspond à l'autre; et que par 
conséquent ces deux hyperboles équilatères auront une asymptote com-
mune dirigée suivant l'intersection de leurs plans. 

29. Au point commun de ces deux hyperboles, point qui est à 
l'infini sur leur asymptote commune, deux des axes permanents sont 
parallèles aux deux autres asymptotes de ces courbes ; donc le troisième 
est dirigé suivant l'asymptote commune. On conclut de là que, si l'on 
a la direction de l'une des droites données dont il est question dans le 
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problème énoncé au n° 16 , ce problème sera impossible dans les deux 
cas suivants : 

i°. Si les deux autres directions données sont les deux autres asymp-
totes des deux hyperboles équilatères dont la droite donnée est l'asymp-
tote commune : alors le point demandé est à l'infini sur la droite donfiée ; 

20. Si l'une des deux autres directions données est la seconde asymp-
tote de l'hyperbole équilatère correspondante à la droite donnée. Alors 
le point cherché est à l'infini de cette seconde asymptote. 

On verra (n° 55 ) que ces directions, auxquelles répondent des va-
leurs infinies, sont les limites des solutions réelles et des résultats ima-
ginaires. 

50. En comparant les formules du n° 28 avec celles du n° 22, 011 
trouve 

ΔΔ' = -5=5, 

relation qui convient aux directions de deux diamètres conjugués de 
l'ellipse représentée par les équations (16). Donc les traces^ des plans de 
deux hyperboles équilatères ayant une asymptote commune forment 
un système de diamètres conjugués de la conique focale située dans le 
plan de ces traces. 

51. La relation précédente et celles que l'on trouverait delà même 
manière, en considérant les projections faites dans le plan des a, c, 
suffisent pouf déterminer tous les éléments de la seconde hyperbole 
située dans un plan perpendiculaire à celui de la première et ayant une 
asymptote commune avec celle-ci. Si l'on désigne par r7 la puissance de 
cette seconde hyperbole analogue à la quantité τ (n° 24), par ex.', β', y ' 
les inclinaisons sur les axes coordonnés de la droite à laquelle elle cor-
respond. Les conditions du n° 28 donneront 

cos α cos α' cos β cos β' cosy cosy' 
Β —G "C- A = A—Β ' 

d'où l'on conclura 

Mr cosa' = (A — C) cosjS cosy, Mr cosjS' = (C — A) cosa cosy, 
Mr cosy' = (A — Β) cosa cos β, Mr' cosa = (Β — C) cos Ρ'cos y', 
Mr7 cos/3 = (C — A) cosa'cosy', Mr'cosy = (A —Bjcosa'cosp'. 

Tome VI. — JUILLET 184». 33 
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D'après ces relations on obtiendra τ' de^ cette manière : Portez sur 
chacun des trois axes principaux une longueur qui représente le quo-
tient de la différence des moments d'inertie relatifs aux deux autres, 
divisée par la masse; projetez chacune de ces longueurs sur la droite 
donnée ( 18) ; faites le produit de ces trois projections que vous diviserez 
par τ2, et le résultat sera la valeur de τ'. 

32. La direction de l'asymptote commune aux deux hyperboles 
équilatères considérées (n° 28)"est entièrement déterminée; on pourra 
donc obtenir, en fonction des angles α, β, γ, la puissance τ" de l'hy-
perbole correspondante à cette droite : en comparant la valeur trouvée 
aux expressions de τ et de τ', on aura la relation 

τ"3 = τ3 -+- τ". 

33. Si l'on désigne par x, jr, ζ les coordonnées d'un point quel-
conque rapporté aux axes principaux, les équations des plans de deux 
hyperboles çquilatères ayant une asymptote commune seront 

cos α cos ρ ^ cos y x ' 

et 

χ cos α -+- γ cos β -t ζ cos y = ο (n° 28^. 

Soient Λ et h' la distance du lieu de l'élément dm à chacun de .ces 
plans; on formerait facilement les valeurs de ces quantités; et si l'on 
multipliait leur produit par dm, on trouverait, en ayant égard à la 
position des axes coordonnés, que l'intégrale fhh'dm, étendue à toute 
la masse du corps, est égale à zéro. 

34. Nous pouvons maintenant résoudre la question énoncée n° 16 : 
Déterminer le point de l'espace où les trois axes permanents ont des 
directions connues. 

Une seule de ces directions est entièrement arbitraire, et la question 
revient à chercher un centre de rotation qui ait deux axes permanents 
parallèles à deux droites données perpendiculaires entre elles. 
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Je place l'origine au centre de gravité G, et je prends les axes coor-

donnés 

Gz dirigé suivant l'une des deux droites données; 
Gx suivant la seconde asymptote de l'hyperbole équilatère correspon-

dante à cette première droite donnée. Le plan des xz sera donc 
le plan de cette hyperbole dont la puissance sera représentée 
par τ, comme au n° 24 ; 

Gy, le troisième axe coordonné, sera dirigé suivant la perpendicu-
laire au plan de cette hyperbole; et par conséquent le plan 
des xy contiendra l'hyperbole équilatère correspondante à la 
droite G y. La puissance de cette seconde hyperbole sera repré-
sentée par T', comme au n° 31. 

Les positions des deux hyperboles dont il s'agit étant entièrement dé-
terminées (n0s 26 et 28), on pourra fixer le sens des nouvelles coor-
données de manière que Τ et T' soient positifs. 

Pour former l'équation de l'hyperbole correspondante à Gz, je cherche 
les coordonnées a, b, c d'un point où l'un des axes permanents soit 
parallèle à cette droite Gz. La définition du n° 3 donne les deux équa-
tions 

/ (ζ — c){x — a) dm = υ 
et 

f (ζ — c){y — b) dm — o. 

Mais le théorème du n° 35 donne f yzdm — o; ces deux équations 
se réduisent donc à 

(22) b = o, ac — - =T. 

On trouvera de même les équations suivantes pour l'hyperbole équi-
latère correspondante à la droite G y, 

(23) c = 0, ab= = T'. 

La seconde droite donnée devant être perpendiculaire à la premiere 
33.. 
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G ζ, ses équations seront 

(24) ζ = ο, y — àx. 

Je cherche l'hyperbole correspondante à cette droite. Soient a, b, c 
les coordonnées d'un centre de rotation Ο où l'un des axes perma-
nents est parallèle à cette ligne: la distance de l'élément dm au plan 
mené par le point O, perpendiculairement à la droite des équations (24). 
sera 

S jr +r — (Sb a) 

Conformément à la définition du n° 3, je mène par le point Ο un 
plan parallèle au plan χ y et un autre parallèle à celui qui projette la 
droite des équations (24) ; j'aurai ainsi deux plans passant par la paral-
lèle à cette droite menée du point O. Les distances de l'élément dm 
à chacun de ces plans seront 

ζ — c, 
et 

y — Sx — (6 — Sa) 
v/i + tf1 ' 

les conditions du n° 3 donneront donc ici 

f\dy -+- x — [àb -+- α)] (ζ — c) dm = o, 

S [àJ" -+-·£■ — {db -H <2)] [y — âx — (b — âa) ] dm = o. 

Soient A4, B,, C, les moments d'inertie par rapport aux axes Gx, G y, 
Gz. En introduisant ces valeurs dans les deux équations précédentes, 
elles deviendront, réduction faite, 

a)c —"lTz-ÄTa 
( M(*A + a)(£ — A») = (1 - d·) Μτ'-h tî (B, - A,). 

Ces deux équations appartiennent à une hyperbole équilatère située 
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dans le plan représenté par l'équation 

,'26) M (b — Sa) _ (1 — + — A,). 

la puissance de cette hyperbole, ou le produit constant des coordon-
nées de l'un de ses points, par rapport à la droite de l'équation (24) et 
à sa perpendiculaire, est exprimée par 

(r>n^ v/M^' +[(1 — S') Mt' -f- ί(Β,— A,)]* 

Maintenant le point cherché sera celui dont les coordonnées satisfe-
ront aux quatre équations (22) et (25). Or la première (25) est une con-
séquence des deux équations (22); donc les hyperboles équilatères 
correspondantes à deux droites perpendiculaires entre elles ont un dia-
mètre commun réel ou idéaldirigé suivant la droite d'intersection de 
leurs plans. Le point demandé, qui est sur ces deux 'courbes, pourra 
donc être construit géométriquement au moyen des principes précé-
dents. 

La question n'a pas plus de deux solutions; et quand elles sont 
réelles, les deux centres de rotation sont sur une droite passant au 
centre de gravité et coupée en deux parties égales par ce point. 

35. Il résulte de la remarque du n° 29 que , pour discuter la solu-
tion précédente, il faut connaître les asymptotes des deux hyberboles 
équilatères dont la ligne donnée G ζ serait l'asymptote commune. Or 
ces deux droites sont dans le plan des xj, et la ligne des équations (24) 
serait l'une d'elles si le plan de l'hyperbole équilatère qui lui corres-
pond passait par la droite Gz. Mais ce plan est représenté par l'équa-
tion (26), la condition dont il s'agit donnera donc 

(28) (1 - c?2) Mt' -U <?(B, - A,) = o. 

Les deux valeurs de â tirées de cette équation détermineront deux 
directions rectangulaires qui seront celles des asymptotes demandées. 
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Soient 

la racine positive de l'équation précédente ; 
Gx' la droite dont la direction est déterminée par cette valeur, laquelle 

est par conséquent un diamètre transverse de l'hyperbole située 
dans le plan χ y et représentée par l'équation (a 3); 

G y' la perpendiculaire à Gx', de sorte que Gy' ne rencontre pas la 
même hyperbole. 

Cela posé, la solution de la question du n° 34, qui est renfermée dans 
les formules (aa) et (a5 ), peut être présentée de la manière suivante : 

b = o, 
ac — τ, 

ΛΪ _ (At — B,)5+(<î» — .)ΜτΓ 

Si l'on introduit, dansla valeur de a2, celle de d1' qui satisfait à l'équa-
tion (a8), on trouve 

*2
 =

τ/
(
Ι
-τ)(?

 + ί
)· 

On voit d'abord que a est infini quand on a, soit ά = ο, soit <? = αο ; 
que a est nul, et par suite c infini, quand on a, soit & = d', soit 

ci = — ψ. Ces résultats ne sont que la reproduction des remarques du 

n° 2il. 
Puisque, dansla formule précédente, et d" sont positifs, on voit 

que, la seconde droite donnée étant 

dans l'angle xGx', la solution du problème du n° 34 est imaginaire, 
dans l'angle x'Gy, la solution est réelle, 
dans l'angle y G y', la solution est imaginaire, 
dans le supplément de l'angle jéGx, la solution est réelle. 

36. Soit Τ la puissance de l'une des hyperboles équilatères corres-
pondantes aux droites Gx' et Gy'. Cette valeur sera donnée par la for-
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mule (27), dans laquelle on introduira la relation (28) ; et l'on aura 

T= r^=-· 

Si donc on représente par ω l'anglexGx', on aura, pour T, deux 
valeurs exprimées par 

r cos ω et r sin ω. 

Donc si l'on a deux hyperboles e'quilatères dont les plans se coupent 
suivant leur asymptote commune (n° 28), et que l'on fasse passer par 
cette droite le plan de l'hyperbole qui lui correspond (n° 24) ; si, dans 
ce plan

}
 on construit une surface égale à la puissance de l'hyperbole 

qu il contient, les puissances des deux premières seront respectivement 
égales aux projections faites dans leurs plans de la puissance de la 
troisième. 

La relation trouvée n° 52 est une conséquence de ce théorème. 
57. Les questions résolues ηos 21, 25, 24 et 26 donnent immédia-

tement la solution de ce problème : Déterminer le centre de rotation 
d'un plan donné. 

En effet, le point cherché est à la rencontre du plan donné avec l'hy-
perbole équilatère correspondante à une droite perpendiculaire à ce 
plan. 

Ce problème n'aura généralement qu'une solution, parce que le plan 
donné est parallèle à l'une des asymptotes de l'hyperbole. Le point 
demandé serait à l'infini si le plan donné passait par le centre de gra-
vité La question serait indéterminée si ce plan coïncidait avec l'un des 
plans principaux. 

58. En traitant par l'analyse la question précédente, on est conduit 
à considérer une surface du cinquième degré qui peut être engendrée 
d'une manière assez simple par le mouvement d'une section conique. 

Je place l'origine en un point du plan donné, et je dirige les axes 
coordonnés suivant les axes permanents relatifs à cette origine. !.e 
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plan donné sera représenté par l'équation 

χ cos α ■+■ y cos β -+- ζ cos γ = ο, 

dans laquelle α, β, γ sont les inclinaisons de la perpendiculaire à ce 
plan sur les axes coordonnés. Je reprends les notations du n° 10, et je 
pose, en outre, 

x
K
 cos α -+- jr, cos β -h ζ, cos γ = R,, 

de sorte que R, représentera la distance du centre de gravité au plan 
donné. Si l'on appelle a, b. des coordonnées de son centre de rotation, 
on aura d'abord 

i 29) a cos α + b cos β c cos γ = ο ; 

ensuite les coordonnées a, b, c doivent satisfaire aux équations (3), 
puisque l'un des axes permanents relatifs à ce point fait, avec les axes 
coordonnés, les angles a, β, y; écrivant donc cette condition, on trouve, 
réduction faite, 

(A, — B,) cos α cos β = MR, (b cos α — a cos β), 
(C, — A,) cos α cos y = MR, (α cos y — c cos α), 
(Β, — C,) cos /3 cosy = MR, (c cos β — b cosy). 

Ces équations, qui se réduisent à deux, étant réunies à l'équation (29), 
composent un système du premier degré qui résout la question. 

En introduisant la quantité auxiliaire 

I = A, cosa α -+■ B, cosa β C, cosJ y, 

les valeurs des coordonnées deviennent 

l3o> rt=MRTcosa' ~ MR7COSβ' c =~MR7COSV· 
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Ces formules confirment le résultat de la discussion du n° 57. 
39. Les relations (29) et (3o) étant homogènes par rapport aux co-

sinus, donneront deux équations finales par l'élimination de ces trois 
lignes trigonométriques, savoir: 

î=Î + ra: ~~ 1 ' 

I—A, + I—Β, + I—G, = °' 

Si l'on élimine I entre ces deux dernières, on aura l'équation île la 
surface qui contient les centres de rotation de tous les plans passant par 
un point donné. Pour exécuter cette opération on pourra amener les 
équations (3i) à être du premier degré en I par une transformation qui 
donnera 

. . Ma[(B, — C,) xé>c -1- (C,— + (A, — 
* (Β, — G,) be — M (a' -4- b' c1) {zj> — y,cj ' 

, _ M6[(B,—C,)a\6c -I- (C, — A
t
)y,ac -4-(A,— Bt)z,ab J 

' — (C, — A,) ac — M(a'-i-b* + c') (jf.c — z
t
a) ' 

J ρ Me [(Β, —C,).r.fec-f- (C, —A,) ytac + (A. B,) ztab ] 
1 (A,—B

T
) ab — M (a2 -4- b' -f- e1) (y,a—x

t
b) 

L'élimination de I entre ces équations, qui se réduisent à deux dis-
tinctes, conduira à une équation du cinquième degré appartenant a 
la surface demandée. 

40. Mais, au lieu de cette équation unique, 011 peut employer les 
deux équations (31) pour représenter la surface dont il s'agit. La se-
conde appartient à un cône dont les axes principaux sont dirigés sui-
vant les axes coordonnés; et si l'on a, comme au n" 41, 

A, > B, > C,, 

les deux lignes focales de ce cône, situées dans le plan scz, font avec 
Tome \ l —JUILLET 34 
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l'axe des ζ des angles dont les tangentes trignométriques sont 

+ \j-—?, et — »/è—?, 

quantités indépendantes du paramètre variable 1. S», en outre, on fait 
attention à la forme de la première équation (3i), on arrive à la con-
séquence suivante : Construisez à volonté un cone dont les axes prin-
cipaux soient dirigés suivant, les axes permanents qui se croisent au 
point donné et dont les directions des lignes focales soient déterminées 
par les valeurs ci-dessus; construisez aussi le plan représenté par la 
première équation (31 ) et qui est parallèle au plan polaire du centre de 
gravité par rapport au cône; Γintersection du cône et du plan ainsi 
obtenus appartiendra à la surface demandée. 


