JOURNAL

ATHEMATIQUES

PURES ET APPLIQUEES

FONDE EN 1836 ET PUBLIE JUSQU'EN 1874

Par Joserns LIOUVILLE

C.STURM

J. LIOUVILLE

Démonstration d’un Théoréme de M. Cauchy, relatif aux

racines imaginaires des Equations

Journal de mathématiques pures et appliquées 1'° série, tome 1 (1836), p. 278-289.
<http://www.numdam.org/item?id=JMPA_1836_1_1_ 278_0>

gallica NUuMDAM

Article numérisé dans le cadre du programme
Gallica de la Bibliotheque nationale de France
http:// gallica.bnf.fr/

et catalogué par Mathdoc
dans le cadre du pole associé BnF/Mathdoc
http:// www.numdam.org/journals/ JMPA


http://www.numdam.org/item?id=JMPA_1836_1_1__278_0
http://gallica.bnf.fr/
http://www.numdam.org/
http://gallica.bnf.fr/
http://www.bnf.fr/
http://gallica.bnf.fr/
http://www.mathdoc.fr/
http://www.numdam.org/journals/JMPA

278 JOURNAL DE MATHEMATIQUES

DEMONSTRATION

D'un Théoreme de M. Cavucny, relatif aux racines
imaginaires des Equations;

Parn C. STURM kr J. LIOUVILLE.

1. Soit  f(e)=z "4 A" A" ... 4 A,._ 54 A, une
fonction entiere de zdans laquelle les coefficients A,, A,,...,A,_,, A,
sont des constantes quelconques réelles ou imaginaires. Si 'on remplace

indéterminée z par x - y\/— 1, f(3) prendra aussi la forme

P-4 QV—1, PetQ élant des fonctions réelles de x, 7, etst l'on
peut trouver des valeurs réelles de x et ¥ qui annullent i la fois P et

Q, en substituant ces valeurs dans la formule x 4y V=1, on aura
une racine de I'équation f(z)==0. On dit que la racine z=x4-y\/— 1
est simple quandon a f(z) = o, sans avoir en méme temps f'(z)=o0:
on dit que cette racine est double quand on a i la fois f(z)==o0,
JS'(z)=o, sans avoir en méme temps f"(z)==0; et en général elle est
multiple de 'ordre » quand on a alafois f(z) =0, f(z)=o0,....,
JS“=(z) = o, sans avoir en en méme temps ™ (z)=o. Nous regar-
derons toujours une racine double comme équivalente 4 deux racines
égales entre elles; et ainsi de suite. Cette convention que les géométres
font ordinairement simplifiera beaucoup les énoncés de nos théoremes.

On peut regarder les deux quantités x et y qui entrent dans une
expression quelconque de la forme x—+7v/—1, comme étant I'abs-
cisse et Pordonnée d’un certain point M rapporté 4 des axes rectangu-
laires Ox, Oy et situé dans le plan de ces axes: x -y \/—1 devient
réelle et le point M est placé sur l'axe des &, quand on a y==o0. A
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chaque valeur de x4y V—1 répondra ainsi un point M ayant x
pour abscisse, y pour ordonnée, et réciproquement a chaque point M
dont les coordonnées sont & et ¥ répondra une expression de la forme
x4y \/— 1. Parmi les points que I'on obtient en construisant ainsi
la formule £ + ¥ V/—1, on doit distinguer ceux pour lesquels on a
alafois P=o0, Q==0: ces points représentent en quelque sorte géo-
métriquement les racines de 'équation f(z)==o.

a. Cela posé; silon trace dans le plan des xy un contour ferme
quelconque ABC,

on peut se demander si, dans l'intérieur de ce contour, il y a de:
points pour lesquels P et Q soient nuls en méme temps, et combien il
y en a; ou plus briévement, on peut se demander combien, dans I'in-
térieur du contour ABC, il y a de racines de I'équation f(z) =o.
Or, pour résoudre cette question, M. Cauchy a donné dans vn de se:
mémoires la régle que voici.

e, P . . )
Considérons le rapport - qui est une fonction réelle et rationmelle

Q
des coordonnées x, y: ce rapport pour chaque point du con-
tour ABC a upe valeur déterminée, si toutefois on suppose qu'il
n’y ait sur le contour méme aucun point pour lequel P et o)
soient nuls en méme temps. Si T'on marche le long du COHtOu;
ABC toujours dans le méme sens ABC, en partant du point
quelconque A jusqu'a ce quon revienne & ce point, la quantite

P . .
3 prendra successivement diverses valeurs, et pourra changer de signe,

en passant par zéro si P s'annulle et par I'infini si Q sannulle. Soijt
36..
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. .. P s . . : .
i e nombre de fois ou  ©o scvanoussant et changeant de signe passe

4

e - . P , :
lu positif au négatif, £ le nombre de fois ou g N s'évanouissant et

changeant de signe passe du négatif au positif, et A Vexcés de i sur £ -
cet cxees A ou i— £ sera toujours double du nombre w des racines
¢gales on inégales contenues dans e contour ABC.

L théoreme de M. Cauchy consiste, comme on voit, dans I'équa-
tonp=2=A, u et A ayantla signification que nous venons de leur
attribucr.

[l cst bien essentiel d’ohserver que, dans cet €noncé , on ne tient

. P .
nullement compte des changements de signe que  peut éprouver cu

Q

passant par l'infini : on ne fait non plus aucane attention aux cas ou

P, .
o ° annulle sans changer de signe.

La démonstration que M. Cauchy a donnée de son théortme est fon-
dée sur lemploi des intégrales définies et du calcul des résidus. Celle que
nous allons exposer ici repose uniquement sur les premicrs prin~
cipzs de Algebre. Nous ne supposerons pas méme connue celte pro-
position fondamentale de I'analyse des équations , que toute équation
algébrique f(z)==o0 a au moins une racine de la Jorme. .. ...

0 b \/———1, nous proposant au contraire de déduire ce dernier
principe du théoreme de M. Cauchy dout il est, comme on le verra
et comme l'auteur lui-méme I'a observé, un simple corollaire.

3. Ce théoreme est évident pour un contour quelconque ABC, lors-
que dans l'intéricur de ce contour et sur le contour méme on n’a ja-
mais P =o : alors en effet les deux nombres w et A sont tous les deux
nuls ct par suite 'équation u =1 A est satisfaite.

Elle est satisfaite encore lorsque dans Vintérieur du contour ABC et
sur ce contour méme on n'a jamais Q=o0: le nombre u est alors
encore égal a zéro et je vais prouver que 'on a aussi A=o. En effet

la fraction -, quand on aura fait untourentier pour revenirau point de

P

Q ’
départ A, devra se retrouver en ce point affectée du méme signe que
d’abord elle possédait, quand le mouvement a commence : donc cette

fraction doit changer de signe un nombre pair de fois, toujours en
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s'¢vanouissant, puisque son numérateur seul peut devenir nul, et en
passant alternativement du positif au négatif et du négatif au positif :
donc enfin I'excés A du nombre de fois ou elle va du—4-au — sur le
nombre de fois ou elle va du — au 4~ en s’évanouissant, est ¢égal a
zéro, ce quil fallait prouver.

4. Considérons maintenant un point M pour lequel on ait a la fois
P =0, Q=o et qui réponde par conséquent & une racine simple ou
multiple deI'équation f(z)=o0. Tracons autour du point M un contour
convexe A,AA;A,. Si pour un point quelconque N de la courbe
ainst tracée, le rayon vecteur MN ou 1 est suffisamment petit, le theo-
reme de M. Cauchy aura lien pour ce contour A,AAA,. Cest ce que
nous allons prouver.

Soient @ et & les coordounées du point M. En nommant ¢ l'angle
que le rayon vecteur MN ou r fait avec 'axe des x, les coordonnces
du point Nseront x=a—-rcos ¢, y=~hb~rsing; et par suite, en
développant f(x -y V—1) et observant que f(a-}6y/—1)=o0,

on aura
) Sy V=)= LY o p -y =i sin )
+ Slla bV —, ":b?‘/—l) *{cos ¢ \/— 1sin @)Y+ ..

A TP =) o5 oy/sing)e.

Le terme général de ce développement est

i()(a—jb‘%::) ™ (cos @ V—1 sin @)*;

représentons par H, le module de S (la:b ‘i——l) , et par 2, un angle

convenable, en sorte que I'on ait

[0 (a Sa:'__l"i__'_'_) = H, (cos &, + V/—1sina,),

puis rappelons-nous la formule de Moivre (cos ¢ 4+ \/—1 sin @ )"
== cos n@-\/— 1 sin n@; ce terme général deviendra
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H,n[cos (np 4+ 2,) + \/—1 sin (np + a,)].

On a donc

Sl V—1) = H, cos(p+=,) -+ \/—Tx sin (@-a,)]
+H,r* cos(20+a,) + V— 1 sin(20+42,) .. ...
..... -+H,,r= cos(mp—+a,)+V/—1 sin (mcp—l—a,)] ;

d’ou résulte

P = H,rcos(¢+«,) + H,r*cos(2¢ +4-a,) 4. . .-+ Hor"cos(m@ + a,,),
Q = H,rsin(p+a,) 4 H,r*sin(29 +a,) +. ..+ H=sin(me +a,).

Si la racine a + & \/—1 est une racine simple, le coefficient H, sera
essentiellement différent de zéro; ce cas est celui qu’il convient d’exa-
miner en premier lieu.

5. Pour mieux fixer alors le degré de petitesse du rayon vec-
teur r, désignons par K la somme des modules H,, Hi,...H,,

HV 2

et posons a la fois r < 1, r< —K c'est-a-dire rendons r

plus petit que le plus petit des deux nombres 1 et EI_;_K_Z En adop-

tant pour r une valeur assujettie a la condition qui vient d’étre
énoncée, P aurale méme signe que son premier terme H,rcos(¢4-2,)
toutes les fois que la valeur absolue de cos(@--a,) sera supérieure a

2 - . . . . -
vV , ce qui arrivera si 'angle p+4-2, est compris entre les limites

2

3= 5 .. o . .
% »Z, ou entre les limites ijf’ 94—’; de méme le signe de Q sera celui
de son premier terme I, rsin(@+a,) toutes les fois que la valeur

absolue de sin(p-}-a,) sera supérieure a —22 , €€ qui arrivera si 'angle
T
4

Ce que nous venons de dire sur la maniére dont les signes de Pet Q
dépendent des signes de leurs premiers termes, est vrai non: seulement
le long du contour A,A,A,A;, mais encore dans son intérieurou

@, estcompris entre leslimites -, %f, ou entre les limites 5-43, 24’—'
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H V2
2K
sin(@-}-2,) est plus petite que ‘/72 , cellede cos(@-}-a,) est plus grande

Yon a a fortiori r<i, r< ; or, quand la valeur absolue de

2 . . \
que % » et vice versd; donc, quel que soit ¢ et sauf le cas ol r=0,

une au moins des deux quantités P, Q est différente de zéro, et pos-
seéde le méme signe que son premier terme. Sur le contour AAAA,,
et dans son intérieur, il n’y a donc que le point M pour lequel on
ait & la fois P=o0, Q==o0, et qui réponde & une racine de I'équation
SE=o, :

Cela posé, pour parcourir le contour A AAA,, nous désigne-~
rons par A, A,, A;, A, les quatre points pour lesquels on a. ..
P4, =2, (p+oc,=-3—2-r, <p+a,=§47—r, ota,= 7—4{; et prenant le point A,
pour point de départ, nous irons successivement de A, en A,, de A,
en A;, de A en A, et de A, en A,. D'aprés ce que lon vient de
dire, le polynome Q ne changera jamais de signe dans Vintervalle A A,
ui dans Tintervalle A;A,, et la méme chose aura lieu pour le poly-
nome P dans les deux intervalles A,A,, AA..

Au point A, les deux polynomes P et Q ont les mémes signes que

2

leurs premiers termes, tous deux égaux a H,r.—‘g— , cCest-a-dire le

. . P ore .
signe —+; la fraction - est donc positive. Au point A, ces deux

Q
polynomes ont encore les mémes signes que leurs premiers termes qui
V2 \/; . P ;.
sont —H,r. Pt H,r.—z—; et la fraction 9 est négative. Quand on

va du point A, au point A,, la fraction g change donc de signe une

ou plusieurs fois; et comme dans cet intervalle on n'a jamais Q=o,
il en résulte quelle s'évanouit toujours au moment ou elle change de

signe. En vertu de ces changements de signe, la fraction P @abord

Q

positive devient négative, puis redevient positive , et ainsi de suite.
Mais comme finalement le signe - se trouve remplacé par le signe —,

ik faut que le nombre de fois ou la fraction g passe du positif au négatif.
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I'emporte d’une unité surle nombre de fois ou elle passe du negatif au
positif.

. . . P . .

Du point A, au poiut A; la fraction o change encore de signe ; mais

saus 'évanouir, puisque dans cet intervalle on a constamment
P < o.

; . P - y . .
Du point A, ou la fraction 5 est positive jusquau point A ou elle

Q

est négative, les changements de signe n'ont liew que lorsque P s'éva-
nouit. On arrive donc pour Pintervalle AjA, au resultat fourni par

Uintervalle A A, savoir que = en s'évanoulssant passe du positif au

negatif une fois de plus que du négatif au positif.

Enfin, dans lintervalle A,A,, P est toujours > o, et la fraction
p . A ;
0 ne peut jamais sevanouir.

En résumé, nous trouvons donc pour le contour entier A,A,A,A,
i'exces A égal & 2; d’un autre coté ce contour ne renferme dans sou

intérieur qu'une seule racine. Le théoreme de M. Cauchy est donc
vral pour le contour en question.

(. Supposons cn second lieu que la racine a4 bV — 1 soit
multiple de l'ordre n: on devra regarder alors le contour A A, Az A,
Jdont les dimensions sont trés pelites, comme renfermant 2 racines
¢gales entre clles, et 'on aura parsuite g =n : pour que le théoreme
de M. Cauchy soit exact, il faut donc que Pexcés A soit alors égal
‘an. Or, quand la racine a + by — 1 est multiple de l'ordre n,
ona ll,=o0,H,=o0, .... H,_,=o0; les valeurs de P et de Q sont

par conscquent

P=H, rcos(ng +a)+H,, .7+ cos[(n=41)0 4 au . ]
~+-...<H, r™ cos (mp 4 a.)
Q=H, r sin (np+a,)+ H,,.rrsinf(n4+1)o4a,,.,]+ ..
o H, 7" sin (m@ ~ a,).
Pour fixer le degré de petitesse du rayon r, nous désignerons par
KlasommeH, , ,4H, . ,+....+4 Hyetoous prendrons 7 plus petit

que le plus petit des deux nombres 1 et _}.‘_'__‘I/T';. En adoptant
2
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pour r une valeur assujettie & cette condition, le signe de P sera
le méme que celui de son premier terme H, ricos(np ~+ a,)
toutes les fois que la valeur absolue de cos (n@ -+ a,) se trouvera

supérieure a K_Z, comme cela arrive quand larc n® - a, est
2

. .. 3 5 ..
compris entre les limites =, z?-r , ou entre les limites Z—’f , 94—” e

et ainsi de suite jusqu’a (8n—4— I)f, (8n-4!—- D7 . de méme le signe

de Q sera celui de son premier terme H,r"sin (n ¢ -~ a,) toutes les

. . - s . N 2
fois que la valeur absolue de sin (n @--a.) se trouverasupcrieure a -,

3
ce qui arrivera si I'arc n@—4-a, est compris eatre les limites ~4 zf, ou
8n —_
entre les hrmtec'. 4 4 , ou enfin entre les limites (———ﬁr, 8n 4-—')1.

4

On conclut aisément de la que, sar le contour A A,A;A, et dans son
;ntérieur il nexiste aucun poirt (le point M excepté), pour lequel on
ait & la fois P =0, Q=0 : c’est pourquoi 'on a p =rn, comme nous
Yavons dit tout a 'heure.

Cela posé , pour parcourir le contour A A AA,, nous désignerons
par A,, A, A,,. .. A, les points pour lesquels on a

3";
4 5
et, prenant le point A, pour pointde départnous irons successivement
de A,cn A,, de A,en A;,.... de A, en A, Dapres ce que I'on vient
de dire, le polynome Q ne changera jamais de signe, ni dans Vinter-
valle A,A,, ni dans lintervalle A;A,,. .. nidansl'intervalle A,,_ A, ;
et la méme chose aura lieu pour le polynome P dans les intervalles
AA,, AA;,....ALA,. Tl est inutile de considérer ces derniers iuter-

n<p+“n=Zr np—+ta,= '4_’ n¢+¢n-—4 PR n¢+“

P >’ -
valles dans lesquels - ne peut pas s'évanouir : dans tous les autres au

Q

contraire, cette fraction s'‘évanouit et passe du positif au négatif. Ainsi,
par exemple, au point A,, P et Q ont les mémes signes que leurs pre-

P
miers termes, tous deux égaux a H,r. Zz— la fraction 2 est donc po-

sitive : on peut s'assurer au contraire qu'en A, elle est négative : donc
Aour 1830. 37
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daos lintervalle A A,, elle change de signe une fois ou ununombre im-
pair de fois en’ s’évanouissant et allant de - 4 —, puis de — a ...
puis finalement de -f- 4 —; le nombre des passages de = & — sur-
passe d’une unité le nombre des passages de — & ~-. Ce que nous di~
sons pour l'intervalle A A, a lieu pour les an—1 autres intervalles
AA, AsAg,. . A An.Lexces A estdonc égal i ar, de sorte que le
théoréeme de M. Cauchy est rigoureusement démontré pour le contour
que nous considérons (*).

(*) On simplifiera beaucoup cette démonstration en admettant , comme on a au
fond droit de le faire, que I'équation f(z) = o n’a pas de racines égales. Si
Yon adopte cette hypothése , on pourra aussi se dispenser de recourir a la for—
mule de Moivre, en présentant le raisonnement de la maniére suivante. Aprés
avoir développé flz4 7 V/=1) et obtenu la formule (1) du n° 4 , on séparera
dans cette formule le premier terme f'(a 4+ 6y —1)r{cos¢ + V' —1 sinp) de
tous les autres dont on représentera V'ensemble par P,4Q,y/'—1, et aprés avoir
mis f'(a 4 by =1)r(cosp + ¥/ —~1sing) sous la forme ............. e
H,{cos(p 4 «,) 4+ ¥/ —1 sin(¢ + «,)] , on aura

f(z 4+ry=1)=Hrcos(e +2) + V' —1sin(p 4 )]+ P, +Q.V/ =1,
qui donne P=Hrcos(p+4«)+P,, Q=H,rsin(p +4«,)+Q,. Pour fixer le
degré de petitesse du rayon r que nous prendrons d’abord < 1, représentons par

(m) Ny =1 —
1 f 1(2+ ):l/ ! (cos@ 4 ‘/—xsin¢)" : le
module de la somme P, 4- Q, V —1 sera moindre que la somme des modules
H,*+Hr'+.. .+ Hur™ et & fortior: moindre que r*(H, +Hy-. .. 4 H,).

en posant H, 4+ H,+4-...4+Hn=K, on aura donc VP < Kr*, ce qui exige
que la valeur absolue d_e chacune des quantités P,, Q, soit aussi << Kr*, Cela posé,

H,r" le module du terme généra

si Uon prend r<P—l;—%-—2, il est clair que le signe de P sera semblable aun signe

de son premier terme, et constamment négatif depuis le point A,, ou..

2, . )
cos(¢p 4 ) = — T]usqu’au point Az ot I'on a encore cos(p4-a,) = Y2 .4
2
contraire, le signe de P est constamment 4 depuis le point A, oi Von a
‘a . . . . 2
cos(p 4 2,) = !;- jusqu’au point A,, ou V'on 3 aussi cos(p+4-2,) = Y2 pe
2

méme la fonction Q est toujours positive dans Uintervalle A A, , et toujours né~
gative dans Vintervalle A;A,. On achévera ensuite la démonstration comme au
n° 5, oulespoints A, A,, As, A, ont la méme signification qu'ici.
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7. Quand le théoréeme de M. Cauchy a lieu pour deux contours
ABCA, ACDA qui ont une -,
partie commune AC, ilalien ‘
également pour le contour
total ABCDA formé par leur /

réunion. En effet, Pexcés A
. . P
du nombre de fois ou g 0 B

s’évanouissant passe du - ‘
au —sur le nombre de fois

ou cette fraction en s’évanouissant passe du — au ~}- est le méme,
soit qu'on parcoure le contour total ABCDA, soit qu’on parcoure
successivenient les deux contours ABCA, ACDA, puisqua chaque
passage du 4~ au — ou du — au - qui a lieu quand on va sur le cté
AC de Cen A répond un passage inverse du — au -+ ou du =+~ ay —
quand on va sur le méme coté de A en C. Or en supposant que le
nombre des racines soit égal a g’ dans le contour ALCA et 4 1" dans le
contour ACDA, on a A==2x pour le premier de ces contours et
A == 2p" pour le second, puaisque le théoreme de M. Cauchy est sup~
pos¢ applicable a 'un et a T'autre : d'aprés ce que on vient de voir, il
résulte de Ia que, pour le contour total ABCDA, ona A= a(p'-p"),
€quation qui ne differe pas de 'équation A =2y du n° 2 appliquée au
contour ABCDA dans lequel il y a '~ u" racines. Le théoreme de
M. Cauchy est donc vrai pour le contour ABCDA, ce qu’il fallait
démontrer.

81 I'on considére un nombre quelconque de contours juxtaposés,
pour chacun desquels ce théoréme ait lieu, il aura lieu également pour
le contour total formé par la réunion de ceux-la : c’est ce quon verra
en réunissant ces contours successivement deux i deux, comme on
peut le faire d’aprés ce qui vient d’étre démontré,

8. Etant donné un contour quelconque ABC, on peut toujours le
concevoir divisé 1°. en contours convexes tracés autour de chaque ra-
cine contenue dans lintérieur de ABC et assujettis aux conditions
énoncées n°6 : 2°. en contours semblables a ceux dont on a parlén® 3,
c'est-a-dire pour lesquels on n’ait jamais 4 la fois P=—=o0, Q==o0. Le
théoréme de M. Cauchy ayant lieu pour les diverses parties dans les-

37..

D
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quelles on divise ainsi le contour ABC aura lieu pour ce contour
méme ABC, dont la forme est arbitraire.

Ce théoreme est donc enticrement démontré.

Toutefois nous excluons formeliement le cas particulier ou, pour
quelque point de la courbe ABC, on aurait & la fois P=o0, Q=o0:
ce cas particulier ne jouit d’aucune propriété régulicre et ne peut
donner licu 4 aucun théoréme; car des qu'on I'admet, 'exces A peut
varier avec la forme du contour sans que le nombre x varie: de sorte
qu'il n'existe alors entre & et A aucune relation constante.

g. De l'origine O des coordonnées comme centre et d'un rayon r
trés grand, tracons uncercle, et cherchons combien I'équation f(z)==0
a de racines comprises dans l'intérieur de ce cercle. Soit ¢ 'angle qu'un
rayon quelconque ON fait avec 'axe des x : les coordonnées du point
N seront x=rcos@, y=rsin@, etl'on aura

f(x 47\ —1) =r"(cosmp ~4-\/—1sin m@_
-+ A, [cos (m—-l)CP -+ \/—" Sin(m_‘)(”

~+ A, rcos <p+v-—1 sin <p)+A

Soit H, le module de A,,.. .H,_, celui de A._,, H, celui de A, et
supposons que l'on ait

A,=H, (cosz, +V—1sina,), A,=H,(cosa,{ \V— [ sina,), etc.

On aura

f (x-l-j\/ —1 ) =r"{cos mo +\/—1sin mo] L
+H,~~* cos[(m—1)p 42, ]+ V—1sin[(m—1)p +a.,)]

+H,,,(cos tn+ V—1sing,);
ce qui donne

P=r"cosmp+H,r'cos[(m—1)¢+a,]4. . .4+H, cose,,,
Q=r sinm@-4-H,r'sin[(m—1,0+2,]+. . . +Ha. sina,.

Prenonslerayonrala fois > ret > K V2, K désignant la somme
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des modules H,,....H,_,, H,. Alors le signe de P sera semblable a

celui de son premier terme toutes les fois que la valeur absoluc de

cos @ sera supérieure a Ve : de méme le signe du polynome Q
2

sera celul de son premier terme r™ sin m® toutes les fois que la valeur
1

. V2

absolue de sinmn@ sera supérieure a ~—.

Nommons A,, A,, A;, A, les points de la circonférence du cercle
pour lesquels on a successivement

s 3x 5x (Bm —1
me ='Z» Jﬂ@':?’ I?ZCP"—"‘Z—,...."I@: )ﬁt

1l est aisé de voir par une discussion toute semblable a celle du n° 6
que dans les intervalles A, A, AA;,. .. AA, la fraction PQ ne s'éva-

nouira jamais, et que dans chacun des intervalles A A,, AjA,,.. A, _,,
ou elle s'évanouira au contraire et ne deviendra jamais infinie, V'exces
du nombre de fois ot elle passera du -}~ au — sur le nombre de fois
ou elle passera du — au -} sera égal a I'unité. L’exces total A pour le
contour entier ABC sera ainsi égal a 2m : la moitié m de cet exces
dounne le nombre des racines de I'équation f(z)= o contenues dans le
cercle A,A,,. ...A,, dont le rayon est exprimé par un nombre quel-
conque plus graud que 1 et que K V2. On voit par la que toute équa-
tion algébrique f(z)=o de degré m a m racines de la forme
x4y V—1eten a que m. Le plus grand des deux nombres 1 et

K \/2 est une limite supérieure du module de toutes les racines: il se-
rait facile de trouver une limite plus simple (*).

(*) 11 nous resteraita expliquer les moyens de trouver I’excés A pour un contour
donné. Mais afin d’éviter un double emploi, nous renverrons cette recherche a la
fin de Particle suivant.



