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DÉMONSTRATION 

D'un Théorème de M. CauchYj relatif aux racines 
imaginaires des Equations; 

PAR C. STURM ET J. LIOUVILLE. 

i. Soit /(z) = sm-f- A,ζ"-' + A,ζ"— + -f-A
m
_,z-{-A

m
 une 

fonction entière de ζ dans laquelle les coefficients A,, A,,..., A
m
_„ A

m 

sont des constantes quelconques réelles ou imaginaires. Si l'on remplace 
l'indéterminée ζ par χ + 7*\/—

J> f{z
) prendra aussi la forme 

Ρ + Q V/—» Ρ et Q étant des fonctions réelles de x, y, et si l'on 
peut trouver des valeurs réelles de χ et y qui annullent à la fois Ρ et 

Q, en substituant ces valeurs dans la formule χ -\-y \J— ι , on aura 
une racine de l'équation y(z)=o. On dit que la racine z=x 4-jV/—ι 
est simple quand on a f(z) — o, sans avoir en même temps f(z)=o : 
on dit que cette racine est double quand on a à la fois f(z) = o, 
f'(z) = o, sans avoir en même temps f"(z) — o; et en général elle est 
multiple de l'ordre η quand on a à la fois f[z) = ο, f'{z) = ο , , 
fo—O(z) — o, sans avoir en en même temps fw(z) = o. Nous regar-
derons toujours une racine double comme équivalente à deux racines 
égales entre elles; et ainsi de suite. Cette convention que les géomètres 
font ordinairement simplifiera beaucoup les énoncés de nos théorèmes. 

On peut regarder les deux quantités χ eïjr qui entrent dans une 
expression quelconque de la forme x~{~J~\/—ι , comme étant l'abs-
cisse et l'ordonnée d'un certain point M rapporté à des axes rectangu-

laires Ολ·, Ojr et situé dans le plan de ces axes : χ \/— ι devient 
réelle et le point M est placé sur l'axe des χ, quand on a j = o. A 
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chaque valeur de x-±-y\/"—1 répondra ainsi un point M ayant x 
pour abscisse, y pour ordonnée, et réciproquement à chaque point M 
dont les coordonnées sont x et y répondra une expression de la forme 

x-j-y y/— 1 ■ Parmi les points que l'on obtient en construisant ainsi 

la formule X -\-y V— x, on doit distinguer ceux pour lesquels 011 a 
à la fois Ρ = ο, Q = ο : ces points représentent en quelque sorte géo-
méti'iquement les racines de l'équation f(z) = o. 

2. Cela posé; si l'on trace dans le plan des xy un contour ferme 
quelconque ABC, 

r » iû 
0 

on peut se demander si, dans l'intérieur de ce contour, il y a de-
points pour lesquels Ρ et Q soient nuls en même temps, et combien il 
y en a ; ou plus brièvement, on peut se demander combien, dans l'in-
térieur du contour ABC, il y a de racines de l'équation y( *) = «. 
Or, pour résoudre cette question , M. Caucby a donné dans un de se.-
mémoires la règle que voici. 

Considérons le rapport ^ qui est une fonction réelle et rationnelle 

des coordonnées x, y: ce rapport pour chaque point du con-
tour ABC a une valeur déterminée, si toutefois on suppose qu i! 
n'y ait sur le contour même aucun point pour lequel Ρ et () 
soient nuls en même temps. Si l'on marche le long du contour 
ABC toujours dans le même sens ABC , en partant du point 
quelconque A jusqu'à ce qu'on revienne à ce point, la quantité 
- prendra successivement diverses valeurs, et pourra changer de signe, 
en passant par zéro si Ρ s'annulle et par l'infini si Q s'annulle. Soit 

36.. 
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/ le nombre de fois ou en s'évanouissant et changeant de signe passe 

du posit if au négatif, k le nombre de fois où ? en s'évanouissant et 

changeant de signe passe du négatif au positif, et Δ l'excès de i sur X ■ 
cet excès Δ ou i—k sera toujours double du nombre μ des racines 
égales ou inégales contenues dans le contour ABC. 

Le théorème de M. Caucby consiste, comme on voit, dans l'équa-
tion μ = ~ Δ , μ et Δ ayant la signification que nous venons de leur 
attribuer. 

Il est bien essentiel d'observer que , dans cet énoncé , on 11e tient 

nullement compte des changements de signe que ^ peut éprouver eu 

passant par l'infini : on ne fait non plus aucune attention aux cas oii 
ρ 
^ s'annullc sans changer de signe. 

La démonstration que M. Caucby a donnée de son théorème est fon-
dée sur l'emploi des intégrales définies et du calcul des résidus. Celle que 
nous allons exposer ici repose uniquement sur les premiers prin-
cipes de l'Algèbre. Nous ne supposerons pas même connue celte pro-
position fondamentale de l'analyse des équations, que toute équation 
algébrique _f(z) = ο a au moins une racine de la jonne 
« -f- b \/~ , nous proposant au contraire de déduire ce dernier 
principe du théorème de M. Caucby dont il est, comme on le verra 
et comme l'auteur lui-même l'a observé, un simple corollaire. 

3. Ce théorème est évident pour un contour quelconque ABC, lors-
que dans l'intérieur de ce contour et sur le contour même on n'a ja-
mais Ρ = ο : alors en effet les deux nombres ft et Δ sont tous les deux 
nuls et par suite l'équation μ = j Δ est satisfaite. 

Elle est satisfaite encore lorsque dans l'intérieur du contour ABC et 
sur ce contour même on n'a jamais Q = o: le nombre μ est alors 
encore égal à zéro et je vais prouver que l'on a aussi Δ = υ. En effet 

la fraction quand on aura fait un tour entier pour revenirau point de 

départ A, devra se retrouver en ce point affectée du même signe que 
d'abord elle possédait, quand le mouvement a commencé : donc cette 
fraction doit changer désigné un nombre pair de fois, toujours en 
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s évanouissant, puisque son numérateur seul peut devenir nul, et en 
passant alternativement du positif au négatif et du négatif au positif : 
donc enfin l'excès Δ du nombre de fois où elle va du + au — sur le 
nombre de fois où elle va du — au en s'évanouissant, est égal à 
zéro, ce qu'il fallait prouver. 

i\. Considérons maintenant un point M pour lequel on ait à la fois 
Ρ = ο , Q=o et qui réponde par conséquent à une racine simple ou 
multiple del'équationy^(z)=o. Traçons autour du point M un contour 
convexe A,A

a
A3A4. Si pour un point quelconque IN de la courbe 

ainsi tracée , le rayon vecteur MN ou r est suffisamment petit, le théo-
rème de M. Cauchy aura lieu pour ce contour A,A

B
A

3
A4. C'est ce que 

nous allons prouver. 
Soient a et b les coordonnées du point M. En nommant φ l'angle 

que le rayon vecteur MN ou /· fait avec l'axe des χ , les coordonnées 
du point Ν seront χ— a —j— /'cos φ, J = A-f-rsincp; et par suite , en 
développant f{x-\-y V—1) et observant que f{a -f- b \f—r) = o

r 

011 aura 

( ι ) f{x +y V— ' ) — ^
 {β +y-~——. r(cos φ H- V

7 — ι sin φ) 

+ ~ · r'(c°s Φ +V7—■ 1 si« <p)J-r · · · 

"+" ̂  T.^.w ̂ φ +V— 1 si"Φ)"· 

Le terme général de ce développement est 

,.
2
...

 w
 ' (cos <p-f- \/—i sin (p)"; 

représentons par H» le module de ~ >
 et

 P
ar

 un angle 

convenable, en sorte que l'on ait 

~777h — H» (cos a' + V7— ι sin α.), 

puis rappelons-nous la formule de Moivre (cos φ -f- V
7
—

 1 sin φ )" 
= cos /i<p+ V7— ι sin n<p; ce terme général deviendra 
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If.r^cos (ηφ -f- a„) + y/—ι sin (n<p -f- «„)]. 

On a donc 

/(ï+rv'-i) = H,rcos(<p+a,) -f- V1— I sin (φ + α,)] 

+Η.Γ·[οο3(3φ+βΟ + V— ι sin (2φ—f—et«)j—f— 
+H„r" cos(mf+ct

m
)+ \/— ι sin (m<p+a»)] ; 

d'où résulte 

Ρ = H,rcos(<p -|-α·) + H,r*cos(2<p -$-«,) -f-·..+ H^cos^ip -+- α„), 
Q = H,rsin(<p+«,) -f- H/^sin^p -t-α,) -J-.. .-f- H^sinQntp-l-it,,). 

Si la racine a -j- b \/— ι est une racine simple, le coefficient H, sera 
essentiellement différent de zéro; ce. cas est celui qu'il convient d'exa-
miner en premier lieu. 

5. Pour mieux fixer alors le degré de petitesse du rayon vec-
teur r, désignons par Κ la somme des modules H,, H3, 

et posons à la fois r < i, r< > c'est-à-dire rendons r 

plus petit que le plus petit des deux nombres ι et En adop-

tant pour /· une valeur assujettie à la condition qui vient d'être 
énoncée, Ρ aura le même signe que son premier terme H

1
rcos(<p-j-a

I
) 

toutes les fois que la valeur absolue de cos(<p-f-a,) sera supérieure à 

^ , ce qui arrivera si l'angle est compris entre les limites 

^ ^, ou entre les limites de même le signe de Q sera celui 

de son premier terme H.rsin^-l-a,) toutes les fois que la valeur 

absolue de sin^-f-a,) sera supérieure , ce qui arrivera si l'angle 

φ-j-ct, est compris entre les limites 7, ou entre les limites 

Ce que nous venons de dire sur la manière dont les signes de Ρ et Q 
dépendent des signesde leurs premiers termes, est vrai non seulement 
le long du contour A,A

#
ASA4, mais encore dans son intérieuroù 
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l'on a a fortiori r<i, or, quand la valeur absolue de 

sin(<p-j-a,) est plus petite que , celle de cos(<p-j-a,) est plus grande 

que , et vice versa; donc, quel que soit φ et sauf le cas où r= o, 

une au moins des deux quantités P, Q est différente de zéro, et pos-
sède le même signe que son premier terme. Sur le contour A,A.A

3
A

4
, 

et dans son intérieur, il n'y a donc que le point M pour lequel on 
ait à la fois P = o, Q=o, et qui réponde à une racine de l'équation 
/(z) = °: 

Cela posé, pour parcourir le contour A,A.A
3
A4, nous désigne-

rons par A,, A,, A
3

, A4, les quatre points pour lesquels on a... 

φ4-α,= ̂ , φ-|-Λ,=^ρ et prenant le point A
t 

pour point de départ, nous irons successivement de A, en A,, de A, 
en A

3
, de A

3
 en A4, et de A

4
 en A,. D'après ce que l'on vient de 

dire, le polynome Q ne changera jamais de signe dans l'intervalle Α,Α» 
ni dans l'intervalle A

3
A

4
, et la même chose aura lieu pour le poly-

nome Ρ dans les deux intervalles A
a
A

3
, A4A,. 

Au point A, les deux polynômes Ρ et Q ont les mêmes signes que 

leurs premiers termes, tous deux égaux à c'est-à-dire le 

signe +; la fraction ^ est donc positive. Au point A
a
 ces deux 

polynômes ont encore les mêmes signes que leurs premiers termes qui 

sont —H,r. , H,r.— ; et la fraction ^ est négative. Quand on 

va du point A, au point A., la fraction - change donc de signe une 

ou plusieurs fois; et comme dans cet intervalle on n'a jamais Q=o, 
il en résulte qu'elle s'évanouit toujours au moment où elle change de 

signe. En vertu de ces changements de signe , la fraction ^ d'abord 

positive devient négative, puis redevient positive, et ainsi de suite. 
Mais comme finalement le signe -f- se trouve remplacé par le signe —, 

il: faut que le nombre de fois où la fraction Q passe du positif au négatif 
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l'emporte d ime unité sur le nombre de fois où elle passe du négatif au 

positif. 

Du point A, au point A
3
 la fraction change encore de signe ; mais 

>aus s'évanouir, puisque dans cet intervalle on a constamment 

Γ < ο. 

Du point _\j où la fraction ^ est positive jusqu'au point A
4

où elle 

est négative, les changements de signe n'ont lieu'que lorsque Ρ s'éva-
nouit. On arrive donc pour l'intervalle A

3
A

4
 au résultat fourni par 

l'intervalle A,A
a

, savoir que Q en s'évanouissant passe du positif au 

négatif une fois de plus que du négatif au positif. 
Enfin, dans l'intervalle A4A,, Ρ est toujours > o, et la fraction 

- ne peut jamais s évanouir. 

En résumé, nous trouvons donc pour le contour entier A,A,A
3
A

4 

i excès Δ égal à 2 ; d'un autre côté ce contour ne renferme dans sou 
intérieur qu'une seule racine. Le théorème de M. Cauchy est donc 
vrai pour le contour en question. 

'i. Supposons en second lieu que la racine a -f- b \/ — 1 soit 
multiple de l'ordre n: on devra regarder alors le contour A, A» A3

 A4, 
dont les dimensions sont très petites, comme renfermant n racines 
égales entre elles, et l'on aura par suite μ — ιι \ pour que le théorème 
de M. Cauchy soit exact, il faut donc que l'excès Δ soit alors égal 
.1 2«. Or, quand la racine a + b \/ — 1 est multiple de l'ordre n, 
on a 11, = o, H, = o, .... H»_, = o ; les valeurs de Ρ et de Q sont 
par conséquent 

Ρ = H. r" cos (ηφ -f- α„) + H„ + , r" + ' cos [(« + 1) φ 4- α. ^ ,] 
r" cos (?ηφ -f- <*„) 

Q — H. r* sin (ηφ H„ ̂ .r-^'sin [(/1+ 1) φ + ] + · · 
Η- sin (ιηφ -f- a

m
). 

Pour fixer le degré de petitesse du rayon r, nous désignerons par 
Κ la somme H, ̂  , +H, + » +... .-+■ H

m
et nous prendrons r plus petit 

nine npf)f rip« nnmlirps r fit 
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pour r une valeur assujettie à cette condition', le signe de Ρ sera 
le même que celui de son premier terme H„ r"cos ( ηφ -f- α„ ) 
toutes les fois que la valeur absolue de cos («<p -f- a„) se trouvera 

supérieure à , comme cela arrive quand l are ηφ -f- α. est 
2 

compris entre les limites —■, j,oo entre les limites —■, ^ . 

et ainsi de suite jusqua ^ , ^ : de meme le signe 

de Q sera celui de son premier terme H
a
r" sin (η φ + α„) toutes les 

fois que la valeur absolue de sin (ηφ-\-α
η
) se trouvera supérieure a --- *, 

ce qui arrivera si l'arc ηφ-\-α
α

 est compris entre les limites ^ , ou 

entre les limites -y , , ou ennn entre les limites —1 ;——. 

On conclut aisément de là que, sur le contour Â,A,A
3
A

4
 et dans son 

intérieur il n'existe aucun point ( le point M excepté), pour lequel on 
ait à la foisP = o, Q —ο : c'est pourquoi l'on ά μ — η, comme nous 
l avons dit tout à l'heure. 

Cela posé, pour parcourir le contour A,A
2
A

3
A

4
, nous désignerons 

par A,, A„ A
3
,. . . A4. les points pour lesquels on a 

ηφ + α
α
=^, «φ+α

Β
=:-τ-, ηφ-+-α

Λ
 — ητ, ηφ-\~α^ 

et, prenant le point A, pour pointde départnous irons successivement 
de A, en A,, de A, en A

3
,.... de A

4
. en A, D'après ce que l'on vient 

de dire, le polynome Q ne changera jamais de signe, ni dans l'inter-
valle A,A

a
, ni dans l'intervalle A

3
A

4
,... ni dans l'intervalle A4„_,A4n ; 

et la même chose aura lieu pour le polynome Ρ dans les intervalles 
A,A

3
, A4A

5
,... .A4i,A,. Il est inutile de considérer ces derniers inter-

valles dans lesquels - ne peut pas s'évanouir : dans tous les autres au 

contraire, cette fraction s'évanouit et passe du positif au négatif. Ainsi, 
par exemple, au point A,, Ρ et Q ont les mêmes signes que leurs pre-

miers termes, tous deux égaux à H„r".— : la fraction - est donc po-

sitive : on peut s'assurer au contraire qu'en A
a
 elle est négative : donc 

Αουτ i83G. 
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dans l'intervalle A, A,, elle change de signe une fois ou un nombre im-
pair de fois en s'évanouissant et allant de + à —, puis de — à -f·,... 
puis finalement de -f- à —; le nombre des passages de + à — sur-
passe d'une unité le nombre des passages de — à -f-. Ce que nous di-
sons pour l'intervalle A,A

a
 a lieu pour les ara— ι autres intervalles 

A,A^, A5Ae,... A^.A^. L'excès Δ est donc égal [à ara, de sorte que le 
théorème de M. Cauchy est rigoureusement démontré pour le contour 
que nous considérons (*). 

(*) On simplifiera beaucoup cette démonstration en admettant, comme on a au 
fond droit de le faire, que l'e'quation f (z) ■= ο n'a pas de racines égales. Si 
l'on adopte cette hypothèse , on pourra aussi se dispenser de recourir à la for-
mule de Moivre, en présentant le raisonnement de la manière suivante. Après 
avoir développé fÇx,r{· y V'—1) et obtenu la formule (1) du n° 4, on séparera 
dans cette formule le premier terme f'Ça -f- b j/ —i)r(cos φ -f- \/—1 sin φ) de 
tous les autres dont on représentera l'ensemble par \/—1, et après avoir 

mis f'Ça + b [/—i)r(cosp -f- l/—ι sin φ) sous la forme 
H,r[cos(p + «,) -f- V—1 sm(<? + ">)] » on aura 

fÇx +jr V—1 ) = H, r[costt> + *,) + \/~ 1 sin(? + m,)] 4. P, + Q, l/—1, 

qui donne PsHjrcosfo-f-eed+P,, Q=sH,rsin(p 4**·)-HQ·· Pour fixer le 
degré de petitesse du rayon r que nous prendrons d'abord <* 1 , représentons par 

H
n
r" le module du terme général — /'"(cos φ 4" y—isinç)" t le 

module de la somme P, + Q, \/—1 sera moindre que la somme des modules 
H.r' + Hsr3-!-. ·- + 1!«^ et à fortiori moindre que r'(H

a
 -f- H

s
 -f...4.H

m
). 

en posant H, . .+H
m
=K, on aura donc l/PJ+QJ < Kr*, ce qui exige 

que la valeur absolue de chacune des quantités P,, Q, soit aussi < Kr\ Cela posé. 

si l'on prend il est clair que le signe de P sera semblable au signe 

de son premier terme, et constamment négatif depuis le point A,, où.. 

cos(<p 4 «,) — — jusqu'au point A3 où l'on a encore cos(p-f-a,) = —Au 

contraire, le signe de P est constamment -f- depuis le point A4 où l'on a 

CO
s(ip + *,) = jusqu'au point A;, où l'on a aussi cos(i>4 "■<) — —2. De 

même la fonction Q est toujours positive dans l'intervalle A,A
a

, et toujours né-
gative dans l'intervalle A3A4. On achèvera ensuite la démonstration comme au 
n° 5, où les points A,, A,, As, A4 ont la inèine signification qu'ici. 
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7. Quand le théorème de M. Cauchy a lieu pour deux contours 
ABCA, ACDA qui ont une

 y
 ^ d 

partie commune AC, il a lieu 
e'galement pour le contour 4 ' j 
total ABCDA forme' par leur tf

 c 

réunion. En effet, l'excès Δ 
du nombre de fois où ^ en

 B
 _ 

s'évanouissant passe du -f- ° 
au —■ sur le nombre de fois 
où cette fraction en s'évanouissant passe du — au -f- est le même, 
soit qu'on parcoure le contour total ABCDA, soit qu'on parcoure 
successivement les deux contours ABCA, ACDA, puisqu'à chaque 
passage du -f- au — ou du — au -f- qui a lieu quand on va sur le côté 
AC de C en A répond un passage inverse du — au -f- ou du -f- au —· 
quand on va sur le même côté de A eu C. Or en supposant que le 
nombre des racines soit égal à μ' dans le contour ABCA et à μ!' dans le 
contour ACDA, on a Δ = 2μ pour le premier de ces contours et 
Δ = ιμ" pour le second, puisque le théorème de M. Cauchy est sup-
posé applicable à l'un et à l'autre : d'après ce que l'on vient de voir, il 
résulte de là que, pour le contour total ABCDA, on a Δ= ι(μ!-\-μ!'), 
équation qui ne diffère pas de l'équation Α = 2μ du n° 2 appliquée au 
contour ABCDA dans lequel il y a μ' -f- μ" racines. Le théorème de 
M. Cauchy est donc vrai pour le contour ABCDA, ce qu'il fallait 
démontrer. 

Si l'on considère un nombre quelconque de contours juxtaposés, 
pour chacun desquels ce théorème ait lieu, il aura lieu également pour 
le contour total formé par la réunion de ceux-là : c'est ce qu'on verra 
en réunissant ces contours successivement deux à deux, comme on 
peut le faire d'après ce qui vient d'être démontré. 

8. Étant donné un contour quelconque ABC, on peut toujours le 
concevoir divisé i". en contours convexes tracés autour de chaque ra-
cine contenue dans l'intérieur de ABC et assujettis aux conditions 
énoncées n°6 : 2". en contours semblables à ceux dont on a parlé n° 3, 
c'est-à-dire pour lesquels on n'ait jamais à la fois Ρ = ο, Q = ο. Le 
théorème de M. Cauchy ayant lieu pour les diverses parties dans les-

3η.. 



288 JOURNAL DE MATHÉMATIQUES. 

quelles on divise ainsi le contour ABC aura lieu pour ce contour 
même ABC, dont la forme est arbitraire. 

Ce théorème est donc entièrement démontré. 
Toutefois nous excluons formellement le cas particulier où , pour 

quelque point de la courbe ABC, on aurait à la fois P=o, Q=o : 
ce cas particulier ne jouit d'aucune propriété régulière et ne peut 
donner lieu à aucun théorème; car dès qu'on l'admet, l'excès Δ peut 
varier avec la forme du contour sans que le nombre μ varie : de sorte 
qu'il n'existe alors entre μ et Δ aucune relation constante. 

g. De l'origine 0 des coordonnées comme centre et d'un rayon r 
très grand, traçons un cercle, et cherchons combien l'équation f(z)—o 
a de racines comprises dans l'intérieur de ce cercle. Soit φ l'angle qu'un 
rayon quelconque ON fait avec l'axe des oc : les coordonnées du point 
Ν seront ,a:=rcos<f>, y = rsin<p, et l'on aura 

f(x +y\/ — ι ) = r"(cos ηιφ -f- \/ — ι sin τηφ) 
-ί-A

i
rm_, [cos(?ra——isin(nt—ι )<pj 

. . . . 
-f-A

m
_, r (cos <p -f-\—-i sin<p)-f-A

e
. 

Soit H, le module de A,. .H
m
_, celui de Α

β
_,, H

ro
 celui de A

m
 et 

supposons que l'on ait 

A, = H, (cos a, hV— isina,), A, = H, (cos a, ι sin a,), etc. 

On aura 

f(oc-\-y\/ — i) =r"[cos ιηφ +\/—ι sin m<p\ 
+H

1
rm— cos[(m—ι )<?+«,],+ V—ι sin [(m—ι)<ρ4"αι)] 
. . . . . 
-f- H

m
(cos y/—ι siua

m
) ; 

ce qui donne 

Ps^cosmp-hH./^^cos^m—ι)φ-+-α,]-|-· - ·+Η. cosa
m

 , 
Q=r sin ηϊφ+Η,Γ" 1 sin[(7ra— ι · . · -+-H» sin a

m
. 

Prenons le rayon r à la fois > ι et Κ désignant la somme 
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des modules H,,. . . .H

m
_,, II

m
. Alors le signe de Ρ sera semblable à 

celui de son premier terme toutes les fois que la valeur absolue de 

cos τηφ sera supérieure à
 : de même le signe du polynome Q 

sera celui de son premier terme rmsin«2<p toutes les fois que la valeur 

absolue de sin m<p sera supérieure à ■ 

Nommons A,, A,, A3, A4m les points de la circonférence du cercle 
pour lesquels on a successivement 

τηφ — y, τηφ = -γ, ιηφ — τηφ = 

Il est aisé de voir par une discussion toute semblable à celle du n° 6 

que dans les intervalles A,A3, A
4
A

5
,. .. A

4m
A, la fraction ^ ne s'éva-

nouira jamais, et que dans chacun des intervalles Α,Α
4
, A3A4,.. A4in_,, 

où elle s'évanouira au contraire et ne deviendra jamais infinie, l'excès 
du nombre de fois où elle passera du -f- au — sur le nombre de fois 
où elle passera du — au + sera égal à l'unité. L'excès total Δ pour le 
contour entier ABC sera ainsi égal à 2m : la moitié m de cet excès 
donne le nombre des racines de l'équation f(z) = ο contenues dans le 
cercle A,A

a
,. .. . A4m

 dont le rayon est exprimé par un nombre quel-
conque plus grand que 1 et que Κ V 3· On voit par là que toute équa-
tion algébrique f(z) = 0 de degré m a m racines de la forme 
χ et η en a que m. Le plus grand des deux nombres 1 et 
Κ Va est une limite supérieure du module de toutes les racines : il se-
rait facile de trouver une limite plus simple (*). 

(*) 11 nous resteraità expliquer les moyens de trouver l'excès A pour un contour 
donné. Mais afin d'éviter un double emploi, uous renverrons cette recherche à la 
fin de l'article suivant. 


