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MEMOIRE

Sur le développement des fonctions ou parties de fonctions
en séries de sinus et de cosinus ;

Par Josern LIOUVILLE.

i. On connalt la méthode dont les géometres ont surtout fait
usage dans ces derniéres années, pour intégrer les équations aux
différences partielles anxquelles on ramene la solution de la plupart
des problémes physico-mathématiques. Cette méthode consiste, comme
on sait, a représenter I'intégrale compléte de I'équation aux différences
partielles par la somme d’'un nombre infini d'intégrales particuliéres
contenant chacune une ou plusieurs constantes arbitraires, et a dis-
poser ensuite de ces constantes de maniere a satisfaire aux conditions
définies propres 4 chaque cas. Ainsi, dans la Théorie de la chaleur
que nous prendrons pour exemple, si 'on veut déterminer, en fonc-
tion du temps ¢ et de l'abscisse x, la température 2 qui a lien en
chaque point d'une barre métallique homogene (recouverte d’'une
substance non conductrice) dont I'état initial est connu et dont les

deux bouts sont entretenus a la température fixe 0°, on aura d’abord
Iéquation aux différences partielles -:—;t =a % , a* étant le rapport
de la conductibilité intérieure de cette barre a sa chaleur spécifique.
En placant I'origine des coordonnées & I'une des extrémités de la barre,
et nommant / 'abscisse de l'autre extrémité, il faudra ensuite satis-
faire aux deux conditions définies «==o0 pour x =o0, u=0 pour x=|,
et i la condition dec I'état initial que l'on peut écrire ainsi u= f(x)
pour £==o0. Or, pour cela, on observera que V'intégrale complete de
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du . d'u
a a dz?
toire u= e ""(A, sinamx -+ B, cos amx), le signe X s’étendant 2
toutes les valeurs possibles des constantes m, A, B,. Pour que cette
valeur se réduise 2 zéro, quel que soit le temps #, lorsqu’on y pose
x=0 ou x==/[, il faut que l'on ait B,—o, et qu’en outre les va-
leurs de m satisfassent & I'équation sin aml=o, laquelle donnem=o,

I'équation peut étre représentée par 'expression somma-

T 2
m=zk -, m=tk E';’ ... Comme les termes de la valeur de u rela-
a

tifs & deux valeurs de m égales et de signes contraires, peuvent étre

groupés en un seul, et que le terme relatif 3 m = o disparait
ist .

. P . Y inx

de lui-méme, nous dcrirons simplemenl z = 3A; e 2*gin WT

2
ayant soin de remplacer A,, par A, pour la régularité de la notation. Et
actuellement Je signe = ne s'étendra plus qu'aux valeurs de ¢ comprises
dans la série des nombres entiers positifs 1, 2, 3,... 1l reste encore
a satisfaire 4 la condition relative a I’état initial, ou autrement dit, il
reste encore a trouver une fonction A, telle que V'on ait, entre les li-

mites x==0, x==1, I'égalité f(x)==3A,sin 1—7;35 Pour plus de com-
modité, je développe dans le second membre la série représentée
par lesigne =, et Jai

Jf(x) = A, sin '—f -+ A, sin 2—?-;5-]— . o= A; sin me -+ ..

Je multiplie les deux membres par sin li;fdx, et j'intégre par rap-
port & x entre les limites x==0, x==1. Cette intégration fait dispa-
raitre tous les coefliciens A, A,,... excepté A;, et 'on obtient sur-le-

2 . IZX
champ A‘=7/:, J(x)sin —~dx. En adoptant cette valeur de A,

‘on aura sans aucun doute S(x)=Z=A,sin ?, pourvu toutefois que
la fonction f(x) s’annulle anx deux limites x=o, x=1, comme la
série qui doit la représenter entre ces deux limites.

2. L’exemple précédent nous montre comment on est condujt &
développer une fonction f'(x) en série de sinus, sinon pour toutes
les valeurs réelles de 2, du moins pour les valeurs de cette variable
qui sont comprises entre deux limites données. D’apres la mianiere
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dont nous'avons été amenés a poser I'égalité f(axc)==ZA;sin on

ixX
7
voit a priori que cette egalité cst possible, entre les limites x=o,
x=I, quelle que soit la fonction f(ac,, ou du moins la possibilite
d'une telle équation parait une conséquence naturelle de ce fait évi-
dent, que le probleme de la détermination du mouvement de la chalcu:
dzns une barre homogene doit étre résoluble, quelle que soit la fonc-
tion f(ax) qui représente I'état initial des températures.
Mais au lieu de regarder les égalités de la forme

f(x) = ZA;sin m—r

comme le résullat de Pintégration d’une équation aux diflérences
partielles servant a résoudre un probleme physico-mathématique, on
sest aussi proposé de les considérer en elles-mémes, abstraction faite
des questions particuliéres ou elles se présentent ; et cette idée a donne
naissance 4 la belle théorie des séries périodiques que M. Poisson a
exposée d’abord dauns le 19° cahier du Journal de I'Ecole polytech-
nique, et qu'il a reproduite récemment dans son ouvrage sur la chaleur.

Cette théorie des séries périodiques, ainst traitée comme un point
J"analyse pure, en devient a la fois plus élégante et plus rigoureuse:
mais, telle que M. Poisson I'a donnée dans les mémoires cités, elle se
horne aux développemens des fonctions ou parties de fonctions d'une
variable o en séries de sinus et de cosinus des multiples entiers d’un
arc proportionnel a x; et elle ne s’étend en aucune maniére aux au-
tres séries de sinus et de cosinus que l'on rencontre aussi dans cer-
taines questions de la Theorie de la chaleur et dans lesquelles les
arcs successifs s'obtiennent en multipliant la variable o par les diverses
racines d’'une équation transcendante.

Je me propose ici de faire connaitre une meéthode au moyen de
laquelle on effectuera d’'une mamere directe les developpemens des
fonctions ou parties de fonctions en séries de sinus et de cosinus (*).
Pour trouver cette méthode, il m’a suffi de modifier légérement un
procédé fort ingénieux dont M. Poisson a fait usage dans ses deux pre-

(*) Dans ses Exercices mathématiques, M. Cauchy a traité la méme question par
une méthode fondée sur le calcul des résidus.
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miers Mémoires sur la Théorie de la chalewr. La modification dont jc
parle consiste surtout en ce que jai pris .pour point de départ la
formule

Sy = L[ "ds [ cos x(y—a) )y,

ou

fa=1 /:) " coszads / jm cos 2y /(¥ )y

+iﬂwsinzx({zflw sin 2./ ( y)dy,

par laquelle Fourler représente une fonction quelconque f(x) pow
toutcs les valeurs réelles de a, cest-i-dire depuis x=-—o jusqui
x=-oc. Cette formule, cn effet, renferme implicitement toutes fes
séries de sinus et de cosinus que les géométres ont imaginées pou
le développement des fonclions ou pattics de fonctions; ct il ne sugit
pour ainsi dire que de savoir lui donner successivement , par des traus-
lormations convenables, la forme propre a chacune de ces s¢rics.

5. Essayons de faire comprendre & priori par quelle raison méiu-
physique la formule de Fourier renferme implicitement toutes les
séries de sinus et de cosinus d'arcs proportionnels & & que 'on pourra
trouver pour développer, cntre certaines limites des valeurs de .
variable, une fonction f(x) arbitrairement donnée entre ces limites

\

Supposous pour cela que de x=1'% x=1, on ait

(A) JS(x) = Z(Acospx ~+ Bsin px),

\

le signe = s'étendant & un nombre infini de valeurs de p lides entre clle-
par une loi quelconque, assujctties par exemple & étre les diverses
racines positives d'une méme équation transcendaute [I{t)=o0; et
A, B, désignant des fonctions de ¢ convenablement choisics. Puisque
la fonction J{x) n'est dounée que depuis w=[l' jusqu'a =/, rien
ne nous empéche d’en disposer hors de ces limites, et d’attribuer i la
caractéristique f une signification telle que I'équation (A) subsiste
pour toutes les valeurs réelles de . Ce sera alors proprement I'équa-
tion (A) qui nous fera connaitre le sens que nous devons attacher i
cette caracicristique, et ce sens sera lel que I'équation dont il sagil ait
toujours lieude x=—w 2 =40,
Janvien 1836,

o
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Nous pouvons aussi remplacer la lettre p par une autre lettre z,
et supposer que lesigne =, relatifa z, g'étende non plus seulement 2
toutes les valeurs de cette lettre comprises dans les racines positives
de I'équation II(p)=0, mais bien a toutes les valeurs possibles qui
se succedent d’une maniére continue depuis z=o0 jusqu’a 2=,
pourvu toutefois que nous remplacions A et B par des fonctions U
et V de z telles que I'on ait en général U=0, V=0, lorsque z dif-
fere de p, et U=A, V=B, lorsque z=p, cest-a~dire lorsque z se
trouve égal i une des racines positives de 'équation IT{p)== o-

Mais, au lieu de U et V, il sera plus convenable d’écrire Udz, Vdz,
et de remplacer le signe = par le signe f'. On aura ainsi

S(x) _—_-fowcoszx.Udz +fowsinzx.de.

Les deux lettres U et V désigneront alors des fonctions de z qui seront
généralement nulles excepté lorsque la variable z différera infiniment
peu d’'une des racines de I’équation [1(p)=o0, et qui au contraire de-
viendront infinies lorsqu’on aura z=p, en sorte que les élémens Udz,
Vdz (ou plutdt les intégrales fUdz, fVdz, prises entre des limites
infiniment resserrées) aient alors une valeur sensible.

Or la formule

f(x) =ﬁncoszx.Udz +4 [ Psin zx.Vdz,

o

ne peut s'accorder avec celle de Fourier qu'autant que 'on a

U= 1f;ncoszjf(y)dj, V= —;f:: sin zyf(r)dy-

=

Nous voyons par la, d'une part, que la formule de Fourier renferme
implicitement tous les développemens possibles des fonctions en $6-
ries de sinus et de cosinus d’arcs proportionnels 1 la variable ; et d’autre
part, que toutes les fois qu'il Sagira d’en transformer le second mem-
bre en sorte que Vintégrale relative & z soit remplacée par un signe Z
relatif aux diverses racines d'une équation transcendante N(p)=o, le

caractére auquel on reconnaitra que cette transformation peut s'effec-

. . . s +® :
tuer sera le suivant : savoir que les deux intégrales f . coszrf( )y »
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f :-m sinzyf( »)dy , soient généralement égales & zéro, excepté pour

les wvaleurs de z infiniment peu dlﬁ‘érentes de ¢, et au contraire
égales & Uinfini pour z = p; ce qui aura lieu si les intégrales

f_” e=rV=1 f(y)dy, f erV=1 f(y)dy, sont elles- mémes

nulles ou infinies , suivant que 'on a z différent de p ou z=r.
4. La formule

() f@)=1["ds [ cosa(y—a) f(2)r

servant de base 4 nos recherches, nous rappellerons ici Ja démonstra-
tion que Deflers en a donnée. Soit « la valeur du second membre de
Iéquation (1); il s'agit de prouver que I'on a u= f(x). Effectuons
d’abord lmtegratmn par rapport 3 z, non pas depuis z=0 jusqua
z==0 , mais depuis z==0 jusqu’d une valeur indéterminée de z que
nous traiterons comme infinie dans I'intégration relative a y. Nous au-
rons amSI

u o= “f+=o snely— x)f(f)dfa

@ J—x

6 . .
et en posant y=x~--, il nous viendra

= ‘/‘+°°sm9f( +* )dO

. s 0 .

Or, puisque z est une quantité infinie, on a f (x—-}— ;) = f(x), ex-
cepté pour les valeurs de § qui sont elles-mémes infinies, valeurs dont
on peut faire abstraction dans l'intégrale définie qui nous occupe,

parce que le facteur s'e—n rend infiniment petits et négligeables les élé-

mens qui leur correspondent. Il restera donc simplement

e sindl)
“=J—(£i)f_w = = JS);

¢e qui coincide avec la formule (1).
5. Maintenant, si I'on veut. déyelopper en série de sinus et de co-
sinus, entre deux limites /' et 7, une fonction f(x) donnée entre ces
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deux limites, rien n’empéchera de faire usage pour ce développe-
ment de la formule (1); et comme cette formule renferme les par-
ties de f(x) relatives aux valeurs de x plus petites que & et celles
relatives aux valeurs de & plus grandes que /, on pourra se donner
les unes et les autres arbitrairement. En disposant de diverses ma-
nieres de ces parties indéterminées de la fonction f(x), on sera con-
duit a diverses formules ot il sera aisé en général de réduire l'inté-
gration définic relative 2 z 4 une sommation finic relative aux
diverses racines d’une certaine équation transcendantc; d’ol1 naitront
tous les développemens connus de la fonction en séries de sinus e
de cosinus d’arcs multiples de .

Pour présenter cette méthode de la maniére la plus géndrale, con-
cevons quapres s'étre donné a volonté une définition de la fouc-
tion f(x) qui permette de la calculer pour les valeurs de a2 non com-

prises entre I’ et [, lorsqu’elle est déja connue entre ces deux limites,
on pose

[ e fodr = [T M = 4,

% étant une constante réelle et positive, ou du moins une constante
dont la partie réelle soit positive. Concevons de plus que 'on soit par-
venu a mettre les valeurs de p et g sous la forme

_ ¥(h) _ H—=4
P=qm 1= g=mn

o(h) et ¥(h) étant des fonctions de % sans dénominateur, et tout-a-
fait détermindes a l'aide des seules valeurs de la fonction f(x) com-
prises entre les deux limites =1, x==1, pour lesquelles cettc
tonction cst donnée a priori.

Cela posé, je dis qu'il sera toujours facile, entre les limites 7' et £,
d’exprimer la fonction f(x) en série de la forme =(Acospx~-Bsinpax),
le signe = se rapportant a toutes les racines réelles et positives de
Péquation transcendante ¢(f’\/—- 1)=o0. On y parviendra, en effet,
en transformant convenablement la formule de Fourier, et en eli-

minant l’intégralef_tﬁ cos z( y—ux) f( y)dy, qu'elle contient, i 'aide
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d'une analyse tres singulicre que nous empruntons a peu pres tex-
tuellement au 19° cahier du Jowrnal de I'Licole polytechnique (*}.

6. Pour déduire des valeurs de p et g celle de lintégrale

-+ ~ . . ro- - ’ .
["mc“’ﬂ/—'f( ¥)dy, je désigne par g une quantité positive ue

Ton prendra aussi petite qu'on voudra; je fais A=g-5/-—1 dan
la valeur de p, et h=g—z\/—1 dans la valeur de 4; on sura

sV Tide) T

= =) T eV Ei—g)

et, d’apres les intégrales définies que représentent p et ¢, st l'on fuit
g = o dans la différence p—q, il est évident qu’clle se changera dans
Vintégrale demandée. Celte intégrale sera donc la limite de la valeur
de p—q par rapport & g; ainsi, en regardant g comme une quantite
infiniment petitec que Ton fera tout-a-fait nulle 2 la fin de caleul, on
aura

VT g W2V S i+g) +(zy/ =1—g)
() [T fndy=L Y o1¥8 | TRV I=s)

- o(zv —1+5)  o(zV —r—y)

Mais cette quantité s'évanouit en méme temps que g, excepté pour les

valeurs de z qui rendent nul le dénominateur o(z v/ —1); cette inte-
grale, et par suite celles de
N - ~ In -1 AN ~f an AN Aan
cos zy. f(p)dy, sinzy. fOMy, cos L y—a). f(y)r,
prises entre les mémes limites =20 sont done genéralement dgales a
zéro; el il n’y a d’exception quc pour certaines valeurs de z pour les-
quelles ces intégrales deviennent infinies. La nature de la quantit¢
+» . . . . ,
f_w cos z{ y—ux) f( y)dy étant ainsi connue, il s’agit présentement
deffectuer Vintégration relative a z qui se trouve indiquée dans l'ex-
pression de f(xc) donnée par la formule de Fourier.
7. Il sera nécessaire, pour cette opération, de conserver la quantité

~+o :
g dans la valeur de/'__qo cos 3( y—x) f( ¥)dy; nous ferons g=o, apres

(*) Foyez pages 31, 32, 33. Nous avons, sans aucun scrupule, cmpruntd lis
phrases mémes de M. Poisson, inventeur de la méthode,
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avoir achevé le calcul; jusque la nous traiterons seulement g comme
une quantité infiniment petite. Or il-est évident que les portions de
Vintégrale relative a z, qui répondent a des valeurs de cette variable
infiniment peu différentes des racines de I'équation ¢(z \V/—1) = o,
sont les seules qui pourront ne pas s’évanouir en méme temps que g;
st donc nous désignons par p 'une de ces racines, et que nous fassions
z==p—-7, il ne faudra donuer i la variable z' que des valeurs infini-
ment petites, positives ou négatives, et prendre successivement pour
p toutes les racines positives de P’équation ¢(p\/—1) = o0; on ne
prendra pas les racines négatives, parce que, dans Pintégration, la
variable z ne doit recevoir que des valeurs réelles et positives; et par
la méme raison, lorsque I'on prendra la racine p=o0, on ne donnera
a z’ que des valeurs positives. Faisons donc z=p+z', etsoit alors

[V oMy = 2, [TTeVE findy = 7,
d'ou il résultera
f .-4: cos z( y—x) f(y)dy = i Z e~ ""V:'_Fé Zle—r+T V=

Substituant cette valeur dans I'équation (1), et négligeant la variable
2 en dehors de Z et Z’, il vient

flx) = ;I“-_ Z(e”v: [Zd7 + etV = fZ'dz'),

= indiquant une somme qui s'étend a toutes les valeurs positives de ¢,
y compris p==0.

Maintenant soit dz,—(—:l) == @'(h); mettons p~2' a la place de z dans

le second membre de I'équation (2); en traitant z’ et g comme des
quantités infiniment petites, on aura

(2 V—1==g)o'(rv/—1),
¥V —1),

o(zV :—le:g)
¥(z V—1zkg)

i

I
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et il en résultera
= 2tV =1)
T e (v =)’
si donc on prend une quantité positive J', et qu’on intégre depuis
= —J jusqu’a 2’ =4, on aura

f Zdi = &—-—‘/__l) arc tang 2
J o(sv/—1) g

et dans le cas de p==o0, lintégrale ne devant étre prise que depuis

=0 jusqu’d z's=+-d', sa valeur sera réduite 4 moitié. Faisons ac-

tuellement g=o; cette valeur de [Zd% deviendra

pas V)
f ¢ (pv/=1)

Ou en conclura celle de fZ'dz, en y changeant le signe de \/-—1, et
Fon aura

Zdd = I V=D
f & ¢(—eV —1)

d’ou I'on conclut

LR Ve — ol = —
) — ¢ ‘}'(_f_‘/—-l) e 1’(—‘9 l/—_[_)
S )“2[ V= T v 1

en se rappelant toutefois que dans la somme = on ne devra prendre
que la moitié du terme qui se rapporte 3 p=o.

Si l'on remplace maintenant les exponentielles imaginaires par leurs
valeurs en sinus et cosinus, la fonction f(x) se trouvera mise sous la
forme demandée

(=) + f(x) = Z(A cos px 4 Bsinpx),

A et B ayant les valeurs suivantes :

A = H(eV=1) | ¥(—ev/=0)
o TV T acosy
B = v:[*(CV-I — *P(-—g\/—Q .
\ elev=1)  g(—ev=r1) ]|’
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dans lesquelles pdésigne une juelconque des racines positives de l'equa -
tion transcendante @(p V—1) =0, maisqu'il faudra réduire a4 moati-
dans le cas particulier ot T'on aura p=o.

3. Admettons par excmple que pour déterminer la fonction J (¥
Lors des limites I ¢t [ que nous prendrons la premiere égale a zérc
¢t lu seconde quelconque, on se donne les deux conditions f{»
= f(—1), fU+r)=— f(l—y), lesquelles entrainent la condi-
tion particuliécre f([) = 0, que nous supposcrons remplie. St low.
wmultiplie par e™*d)" les deux membres de Véquation f(r)= f{—r"
et qu'on integre ensuite depuis y =0 jusqua y==<0, il viendra

[ f oy = f T e fl— )

v 0

.o piemier membhre est précisément égal i la quantité représentec -
£
- . e, s ) .
dessus par p (voyez n° 5), et il est aise de voir que le sccond e~
egala —qg; ona done d'abord p=—¢.
En multipliant de méme par e~y ctintégrant les deux memb: -

de Péquation fll-4))=— f'1—y), on obtient
(e pidy = = [T e frimy

on a daillcurs identiquement

[P gt dr = @ [p—= [l sira’;

[T e pimpydy =—e — [l f )
1 égalité précédente devient donc

o=l s )= [a=[Te f Xt ]

el ¢n ayant égard a I'équation p=—¢, et posant

/"(Uw—n — =) f(ply = F(R), et + M=ok,

. . +'h v(—h) .
+m en tire les valeurs de p et g sous la forme p= ¢—h—~ ,'q .-_-:é—‘:_—h— exi~
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gée pour le succes de notre méthode. D'aprés ces valeurs de Y(h),
¢{k), I'équation qui détermine les valeurs de p est cos pl =0, et I'on

3= 5=

en tire, en se bornant aux racines positives, p = 211, F=p P=27s-

On a de plus,

—_ Y
(p V=D)=2 V=1 sing(i—p) f()dr
¢’ (pV/—=1)=2l \V/—1 sin pl.
En observant que la quantité sin p(l—y) =sin pl cos Py —cosplsinp;

se l‘éduit E] Sil] Fl COSF‘)/" puisque Ccos Fl=07 ]a Va]eurde \P(,P \/;‘1“)
devient plus simplement

_— —_ 2
¥(p V—1) = 2\/-—lSln‘f’lfo cospy f(y)dy.

La formule («) nous donne d’aprés cela

!
Sflx) = ;Ecos rxﬁ cos py f(y)dy,

ce qui est exact, en effet, entre les limites xr=o0, x=I, comme oun
peut s'en assurer par d’autres méthodes, pour une fonction f(x) as-
sujettie 2 la condition f(l)=o.

9- Supposons en second licu que pour déterminer la fonction f{y)
hors des limites ¢’ et / que nous prendrons égales et de signes contraire-
en sorte que l'on ait /=-—/, on se donae les deux conditions

S+ + fl—y) = o,
JS(—+7) + f(—l—y) = o;

lesquelles renferment implicitement ces deux conditions particulicres

Sf(D=o, JS(—=D=o.
On a identiquement
fow e f(lHy)ly = [ p —f: e F oy,
w !
fn e f(l—y)dy =-—e‘“[r1 —-f s (J'}u’)']-

Fasvien 1836. f
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Or, si 'on multiplie par e7dy, et si I'on integre entre les limites
y=o0, y=1, lesdeux membres de Féquation f (I4y)=—f(l—7),

il viendra

[Femfirndy = = [, e U=y

En remplacant ces deux intégrales définies par leurs valeurs, onaura

o — e = o [[Len oy —e [ Sy

Eu opérant d'une maniére semblable sur Végalité f(— I+ )
~+ f(—I—y)==o0, on trouvera de méme

mitp— g = e [Tl f(pidy — T SOy

équation qui du reste se déduit de la précédente, en y changeant [en
—_1. Ces deux équations ne renferment, outre p et ¢, que des quantités
connues, puisque la fonction f(r) est donnée entre les limites
y=—1, y=-1, et il est évident que lon en déduira les valeurs
¥(h) ¥(—h) . .
de pet g sous la forme p= o’ 1= 5=k’ on continuera ensuite

le calcul comme il a été dit n* 7.

/0. Mais sans nous arréter la-dessus davantage, passons a un autre
exemple beaucoup plus intéressant, et qui d'ailleurs comprend le pre-
cédent comme cas particulier. A cet effet, posons encore V=—1I, et
pour déterminer la fonction f( ) hors des limites y =—1, y=+1,
donnons-nous ces deux conditions

NG s Yt D) 4 efit —y) — L2 =0,

a ~
¢ fi—ity) — LG 61—+ ve=n—-,,

€ et €' étant deux constantes positives.
Ces deux conditions supposent que la fonction f(x) soit telle que
Pon ait
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42 g = o e =

d-;_(;"l — &' f(x) = o pour x = —;

et nous admettrons qu'en effet ces deux égalités ont lieu.

Cela posé, pour obtenir les valeurs de p et 7, rap;;elons-nous da-
bord que P'on a identiquement

ff eMfl + )y = & p— f :e""’f(f)df I
[T fi—pdy=—er[a— [ ef(r)dr ]

Mettons ensuite, avec M. Poisson (*), la premiére des équations (a)
sous la forme

e~V d[e7 f(l4y)] = 7 d[e™ f(b—r)];

multiplions ses deux membres par e~"dy, puis intégrons par par-~
ties; nous aurons

ot P ) A-E) e [l My = C + e f(I—)
+ (—E)f e fli—p)dy.

(*) Journal de ¥ Ecole Polytechnique, 19 cahier, page Jo. Gette méthode con-
siste essentiellement a multiplier par e~ dy et A intégrer depuis ¥ = o jusqu’a
gy =oc les deux membres des équations (@), puis i exprimer toutes les inté-
grales en fonction de p, ¢ et de quantités connues. En observant que par des
da=F(y)

dz"
e* F (y)dy, on comprendra que ce procédé réussirait encore en geéneral et
fournirait les valeurs dep, ¢, si les équations (a) renfermaient, sous forme li-
néaire, outre la différentielle premiére df de la fonction désignée par la carac-
téristique f, les différentielles &*f, .... d"f d’un ordre quelconque multiplices
par des coefficients constants.
§..

intégrations par parties on raméne lintégrale de e™» dy & Vintégrale de
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Si les intégrales sont prises depuis y=o, la constante arbitraire G
sera égale & zéro, et si elles s'étendent jusqu’a y==, les termes qui
sont hors du sigue f s'évanoniront i cette seconde limite. On aurz
donc alors

46) [ e flly)dy = (=) [ e fl=y )y,

équation qui devient, en vertu des précédentes,
(h-€)etlp 4 (h—€)e=g = (h+-6)e” [ e fly)dy

+ (=G [ e )y

Par un procédé semblable on déduira de la scconde des équations (4
une autre relation entre p et ¢, qui s'obtient aussi en changeant dans
celle-ci € er — €’ et [ en —I, ce qui donne

(k= €)M 4= (b€ ey = (h—C)e= [~ e f(y)dy

+ (6) & [T firidy,

De ces deux équations on tircra les valeurs de p et ¢ sous la
forme demandée

+(h) __ ¥(=h)

= 17 =Wy

cn faisant pour abréger

(h+€)(k+€')ea% ‘e y)dy_(k—c:)(iz—c')e—n'f 0"’e—~r Sy
Hh—xpte)[ [l fity—[ e fdr ] = wih;.
(h4E)(h4-E€") et —(h—=E)h—E') e~ = o(h).

L’équation de laquelle dépendent les valeurs de p sera donc

"———(“/‘_/_:_’) = (66— ) sinapl + (€ + € peosapl = o.



PURES ET APPLIQUEES. e
{Un aura cn outre

10'(p V/—1)=[64- €' 20(66'— p*)] cOs L[ 24 2{(E +E) | pr1u 21,
et @'(—p V=1) =¢'(p V=—1). Quant aux valeurs de ¥(p \V/— 1},
¥(—¢ \V/—1), il est aisé de les former; toutefois, je me dispensera
de les écrire a cause de leur complication. Lorsqu’on les aura obte-
nues, les équations (€) du n® 7 nous donneront les coefficiens A, §;
ct la formule («) nous fournira ensuite le développement de f7x).
11. Les expressions de A et B conticnnent en dénominateur la ie-
rivée @’{p /—1); si donc deux des racines positives de I'équation
z (s V—1)==0 se trouvaient égales entre elles, ces cocfliciens de-
viendraient infinis. Mals pour que cette circonstance pht se presenter
dans l'exemple quc nous traitons, il faudrait que I'on ¢iit a la fos

(66" —¢*)sinzpl+ (€+4E€") peos 2pl =0,

(6464 20(66'— )] cos2pl—[2 - 2L(E4-E)] psin 2pl =0
égalant entre elles les deux valeurs de tang 2p/ fournies par ces deuax
équations, on aurait done

(68— ) [6 4§41 (€6'— )] -+ (E+€) [a2KE +E g =0,
ou bien
LG8 —7) - 2U(E € A E4-E) (€ p?) =05

or, cette dernitre égalité est absurde quand on a £§>o0, &' >0
(comme nous I'avons supposé n°® 10), puisque son premier membre
est la somme de trois quantités positives; et lorsqu'une des deux cons-
tantes €, €', est nulle, ou lersque toutes les deux le sont, clle ne peut

étre satisfaite qu'en posant p==o0. L'equation elp\N—i)=o0 na
donc pas de racines positives égaleslorsque les constantes €, €' sout > o;
il estaisé de s'assurer que ce théoreme subsiste encore sil’une seulement
de ces constantes est nulle, l'autre restant positive, car la racine nulle
que prend dans cette circonstance I'équation que nous discutuns est
évidemment une racine simple; il n'en est plus de mcéme quand on a a
la fois 6==0, 6 =o0: i1l y a alors une racinc triple égale 2 zéro;
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mais alors aussi les deux quantités ¥(%), @(h), possedent le facteur

commun %* que I'on doit supprimer pour réduire les fractions p, g,
a leur plus simple expression; cette réduction faite, F'équation

» (p \V—1)=o0 se trouvera débarrassée de deux de sesracines nulles
et n'aura plus que des racines toutes inégales entre elles. '

12. Nous avons vu précédemment (n° 10) que la fonction f(x)que
nous venons de développer dans la série Z(A cos px~t-Bsin px) doit
dtre regardée comme assujettie aux deux conditions particuliéres

%;i) + €f(x) = o pour x = |,

d '
%)— — €'f(x) = o pour x=—LI.

Ces deux conditions devront étre satisfaites si Fon remplace f(x)
par sa valeur =(A cos px 4-Bsinpx) ; mais il est assez remarquable que
chaque terme A cospxr—+B sin px de la série satisfasse isolément a cette
relation, en sorte que si 'on pose v=A cos px=Bsin px, on aura
dv

dv _ _
e + Ev=o pour x=1[, et o

— E'v=0 pour x=—1(*).

Les divers termes de la série Z(A cospx +DBsin px), jouissent de
plusieurs autres propriétés remarquables qui sont connues depuis
long-temps. Soient par exemple ¢ et ¢’ deux termes de la série repon-

. - opr Y , +
danta deux racines différentes p etp’; je disquel'onaura f , w'dx = o.

2 dr

‘ .. . )
En effet, des deux équations ?13:12: — Py g = p*v', qui ont
évidemment lieu, on déduit

, azv’ dv
(pr—p*) = ¢ 75 — v

en intégrant il vient donc

(*) Pour la démonstration de ce théoréme nous renverrons aux calculs dé-
veloppés a la page 37 du 19° cahier du Journal de I'Ecole Polytechnigue.
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v’

s o' Lov'de = o W g
(pr—p™) f'dx = v Z— '

Si maintenant on prend —/ et 4 pour les deux limites de I'intégrale,

je dis que le second membve se réduit a zéro. Pour le montrer, j'ob-
dv av’ . \

serve que pour x=1lon a -+ Ev=o0, =+ €'v'—=o0; or, siapreés

avoir multiplié la premiére de ces deux égalités par o' et la seconde

. , av’ dv
par v, on les retranche, il en résulte ¢ T ~—v’ﬂ = o pour x = {;
dv dv' . .
pour x=—1Iona - —E'v=o0, o — €y =0, dou Von tire de
@’ , dv

méme ¢ - — ¢ - = o. On conclut de la que le produit

+L . . . .
(p*—rp") f_z v'dx est constamment égal i zéro; et par suite, si les

. oo +1
deux racines p et p’ sont différentes, on a f , WWdx = o.

. . N . , ., f
On sait comment M. Poisson s'est servi de Iégalité j , vwdr = o

pour prouverla réalité de toutes lesracines de 'équation @(p \/—1 )= ;
nous ne rapporterons pas ici sa démonstration qui est connue de tous
les géomeétres, et qui d’ailleurs est de pure curiosité dans notre théorie,
puisque nous n'avons hesoin que des racines positives de cette équa-
tion, en sorte qu’il nous importe peu qu’elle ait ou n'ait pas de ra-
cines imaginaires,

13. 1l nous serait aisé de donner beaucoup d'autres développemens
de la fonction f(x) en séries de sinus et de cosinus ; nous pourrions,
par exemple, déterminer la fonction f( y) hors des limites —1, ¢,
en employant, au lieu des équations (@), dautres équations aux diffe-
rences mélées qui contiendraient les différentielles de S(») dun
ordre supérieur au premier. Mais il serait fort inutile de généraliser
ainsi les résultats que nous avons obtenus dans ce Mémoire. Nous
n’avons eu pour but que de développer avec soin et de présenter sous
un nouveau jour une méthode trés ingénieuse 2 laquelle les géome-
tres n'avaient pas fait assez attention. Plus tard nous reviendrons sur
ce sujet, et en partant d’un autre principe nous montrerous comment
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on peut arriver d'une maniere i la fois directe et rigourcuse, nou-
seulement aux développemens des fonctions en séries de sinus et de
cusinus, mais encore i ces développemens plus compliqués formés de
suites infinies dont chaque terme est I'intégrale d’une équation différen-
tielle du second ordre, ct qui se présentent en analyse quand on cherche
- déterminer les lois du mouvement de la chaleur dans une barre héte-
rogene primitivement échauffée d'une maniere quelconque (*).

(*) Lc Mémoire que j'annonce ici et qui roule sur les développemens des fone—
tions ou parties de fonctions en séries dont les divers termes sont assujettis asatis=
faire @ unc méme équation diffirentielle du second ordre conlenant un paramruz
sariable , 3 ¢té présenté le 30 novembre dernter & VAcadémic des Sciences.



