[Une borne asymptotiquement optimale pour la constante de Davenport]
We prove that for every integer the Davenport constant is asymptotic to when tends to infinity. An extension of this theorem is also provided.
Nous prouvons que pour tout entier , la constante de Davenport est équivalente à lorsque tend vers l’infini. Nous proposons aussi une extension de ce théorème.
Accepté le :
Publié le :
DOI : 10.5802/jep.79
Keywords: Additive combinatorics, zero-sum sequences, Davenport constant, finite Abelian groups
Mots-clés : Combinatoire additive, suites de somme nulle, constante de Davenport, groupes abéliens finis
Girard, Benjamin 1
CC-BY-ND 4.0
@article{JEP_2018__5__605_0,
author = {Girard, Benjamin},
title = {An asymptotically tight bound for {the~Davenport} constant},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {605--611},
year = {2018},
publisher = {Ecole polytechnique},
volume = {5},
doi = {10.5802/jep.79},
mrnumber = {3852262},
zbl = {1401.05311},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.79/}
}
TY - JOUR AU - Girard, Benjamin TI - An asymptotically tight bound for the Davenport constant JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 605 EP - 611 VL - 5 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.79/ DO - 10.5802/jep.79 LA - en ID - JEP_2018__5__605_0 ER -
Girard, Benjamin. An asymptotically tight bound for the Davenport constant. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 605-611. doi: 10.5802/jep.79
[1] There are infinitely many Carmichael numbers, Ann. of Math. (2), Volume 139 (1994) no. 3, pp. 703-722 | MR | DOI | Zbl
[2] A lattice point problem and additive number theory, Combinatorica, Volume 15 (1995) no. 3, pp. 301-309 | MR | DOI | Zbl
[3] Regular subgraphs of almost regular graphs, J. Combin. Theory Ser. B, Volume 37 (1984) no. 1, pp. 79-91 | MR | DOI | Zbl
[4] The interplay of invariant theory with multiplicative ideal theory and with arithmetic combinatorics, Multiplicative ideal theory and factorization theory (Springer Proc. Math. Stat.), Volume 170, Springer, 2016, pp. 43-95 | MR | DOI | Zbl
[5] Zero-sum problems in finite abelian groups and affine caps, Q. J. Math., Volume 58 (2007) no. 2, pp. 159-186 | MR | DOI | Zbl
[6] The classification of the largest caps in , J. Combin. Theory Ser. A, Volume 99 (2002) no. 1, pp. 95-110 | MR | DOI | Zbl
[7] On large subsets of with no three-term arithmetic progression, Ann. of Math. (2), Volume 185 (2017) no. 1, pp. 339-343 | MR | DOI | Zbl
[8] A combinatorial problem on finite abelian groups. II (1969) no. ZW-007, 60 pages (Technical report) | MR | Zbl
[9] A combinatorial problem on finite abelian groups. III (1969) no. ZW-008 (Technical report) | Zbl
[10] Zero-sum problems and coverings by proper cosets, European J. Combin., Volume 24 (2003) no. 5, pp. 531-549 | MR | DOI | Zbl
[11] Zero-sum problems in finite abelian groups: a survey, Exposition. Math., Volume 24 (2006) no. 4, pp. 337-369 | MR | DOI | Zbl
[12] On short zero-sum subsequences. II, Integers, Volume 7 (2007) (article #A21) | MR | Zbl
[13] Additive group theory and non-unique factorizations, Combinatorial number theory and additive group theory (Adv. Courses Math. CRM Barcelona), Birkhäuser Verlag, Basel, 2009, pp. 1-86 | Zbl
[14] Non-unique factorizations. Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics, 278, Chapman & Hall/CRC, Boca Raton, FL, 2006 | Zbl
[15] On the Davenport constant and on the structure of extremal zero-sum free sequences, Period. Math. Hungar., Volume 64 (2012) no. 2, pp. 213-225 | MR | DOI | Zbl
[16] On Davenport’s constant, J. Combin. Theory Ser. A, Volume 61 (1992) no. 1, pp. 147-152 | MR | DOI | Zbl
[17] Ein Extremalproblem für Gitterpunkte, J. reine angew. Math., Volume 262/263 (1973), pp. 356-360 | MR | Zbl
[18] On the distribution of irreducible algebraic integers, Monatsh. Math., Volume 156 (2009) no. 1, pp. 47-71 | MR | Zbl
[19] A note on the growth of Davenport’s constant, Manuscripta Math., Volume 74 (1992) no. 3, pp. 229-235 | MR | DOI | Zbl
[20] An uncertainty inequality and zero subsums, Discrete Math., Volume 84 (1990) no. 2, pp. 197-200 | MR | Zbl
[21] Elementary and analytic theory of algebraic numbers, Springer Monographs in Math., Springer-Verlag, Berlin, 2004 | DOI | Zbl
[22] A combinatorial problem on finite Abelian groups. I, J. Number Theory, Volume 1 (1969), pp. 8-10 | DOI | Zbl
[23] A combinatorial problem on finite Abelian groups. II, J. Number Theory, Volume 1 (1969), pp. 195-199 | MR | DOI | Zbl
[24] The maximal order of the spherical cap in , Matematiche, Volume 25 (1971), pp. 149-157
[25] Maximal caps in , Des. Codes Cryptogr., Volume 46 (2008) no. 3, pp. 243-259 | MR | DOI | Zbl
[26] A combinatorial problem in Abelian groups, Math. Proc. Cambridge Philos. Soc., Volume 59 (1963), pp. 559-562 | MR | DOI | Zbl
Cité par Sources :





