We prove that for each positive integer the finite commutative language possesses a test set of size at most Moreover, it is shown that each test set for has at least elements. The result is then generalized to commutative languages containing a word such that (i) and (ii) each symbol occurs at least twice in if it occurs at least twice in some word of : each such possesses a test set of size , where . The considerations rest on the analysis of some basic types of word equations.
@article{ITA_2001__35_5_453_0,
author = {Holub, \v{S}t\v{e}p\'an and Kortelainen, Juha},
title = {Linear size test sets for certain commutative languages},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {453--475},
year = {2001},
publisher = {EDP Sciences},
volume = {35},
number = {5},
mrnumber = {1908866},
zbl = {1010.68103},
language = {en},
url = {https://www.numdam.org/item/ITA_2001__35_5_453_0/}
}
TY - JOUR AU - Holub, Štěpán AU - Kortelainen, Juha TI - Linear size test sets for certain commutative languages JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2001 SP - 453 EP - 475 VL - 35 IS - 5 PB - EDP Sciences UR - https://www.numdam.org/item/ITA_2001__35_5_453_0/ LA - en ID - ITA_2001__35_5_453_0 ER -
%0 Journal Article %A Holub, Štěpán %A Kortelainen, Juha %T Linear size test sets for certain commutative languages %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2001 %P 453-475 %V 35 %N 5 %I EDP Sciences %U https://www.numdam.org/item/ITA_2001__35_5_453_0/ %G en %F ITA_2001__35_5_453_0
Holub, Štěpán; Kortelainen, Juha. Linear size test sets for certain commutative languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 5, pp. 453-475. https://www.numdam.org/item/ITA_2001__35_5_453_0/
[1] , On test sets, checking sets, maximal extensions and their effective constructions. Habilitationsschirft, Fakultät für Wirtschaftswissenschaften der Universität Karlsruhe (1968).
[2] and, A proof of Ehrenfeucht‘s Conjecture. Theoret. Comput. Sci. 41 (1985) 121-123. | Zbl
[3] and, Checking sets, test sets, rich languages and commutatively closed languages. J. Comput. System Sci. 26 (1983) 82-91. | Zbl | MR
[4] and, Combinatorics on words, in Handbook of Formal Languages, Vol. I, edited by G. Rosenberg and A. Salomaa. Springer-Verlag, Berlin (1997) 329-438. | MR
[5] , and, On binary equality sets and a solution to the test set conjecture in the binary case. J. Algebra 85 (1983) 76-85. | Zbl | MR
[6] and, A combinatorial problem in geometry. Compositio Math. 2 (1935) 464-470. | MR | JFM | Numdam
[7] , On word equations and the morphism equivqalence problem for loop languages. Academic dissertation, Faculty of Science, University of Oulu (1997). | Zbl | MR
[8] and, On the system of word equations in a free monoid. Theoret. Comput. Sci. 225 (1999) 149-161. | Zbl | MR
[9] and, Linear size test sets for commutative languages. RAIRO: Theoret. Informatics Appl. 31 (1997) 291-304. | Zbl | MR | Numdam
[10] and, Morphisms, in Handbook of Formal Languages, Vol. I, edited by G. Rosenberg and A. Salomaa. Springer-Verlag, Berlin (1997) 439-510. | Zbl | MR
[11] , Introduction to Formal Language Theory. Addison-Wesley, Reading, Reading Massachusetts (1978). | Zbl | MR
[12] , Local and global cyclicity in free monoids. Theoret. Comput. Sci. 262 (2001) 25-36. | Zbl | MR
[13] and, On the size of independent systems of equations in semigroups. Theoret. Comput. Sci. 168 (1996) 105-119. | Zbl | MR
[14] , On the system of word equations in a free monoid. J. Autom. Lang. Comb. 3 (1998) 43-57. | Zbl | MR
[15] , Combinatorics on Words. Addison-Wesley, Reading Massachusetts (1983). | Zbl | MR
[16] , The Ehrenfeucht conjecture: A proof for language theorists. Bull. EATCS 27 (1985) 71-82.





