The depth hierarchy results for monotone circuits of Raz and McKenzie [5] are extended to the case of monotone circuits of semi-unbounded fan-in. It follows that the inclusions are proper in the monotone setting, for every .
Keywords: monotone circuit, semi-unbounded fan-in, communication complexity, lower bound
@article{ITA_2001__35_3_277_0,
author = {Johannsen, Jan},
title = {Depth lower bounds for monotone semi-unbounded fan-in circuits},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {277--286},
year = {2001},
publisher = {EDP Sciences},
volume = {35},
number = {3},
mrnumber = {1869218},
zbl = {1052.68053},
language = {en},
url = {https://www.numdam.org/item/ITA_2001__35_3_277_0/}
}
TY - JOUR AU - Johannsen, Jan TI - Depth lower bounds for monotone semi-unbounded fan-in circuits JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2001 SP - 277 EP - 286 VL - 35 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/item/ITA_2001__35_3_277_0/ LA - en ID - ITA_2001__35_3_277_0 ER -
%0 Journal Article %A Johannsen, Jan %T Depth lower bounds for monotone semi-unbounded fan-in circuits %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2001 %P 277-286 %V 35 %N 3 %I EDP Sciences %U https://www.numdam.org/item/ITA_2001__35_3_277_0/ %G en %F ITA_2001__35_3_277_0
Johannsen, Jan. Depth lower bounds for monotone semi-unbounded fan-in circuits. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 3, pp. 277-286. https://www.numdam.org/item/ITA_2001__35_3_277_0/
[1] ,,, and, Two applications of inductive counting for complementation problems. SIAM J. Comput. 18 (1989) 559-578. | Zbl | MR
[2] and, Monotone complexity, in Boolean Function Complexity, edited by M.S. Paterson. Cambridge University Press (1992) 57-75. | Zbl | MR
[3] and, Monotone circuits for connectivity require super-logarithmic depth. SIAM J. Discrete Math. 3 (1990) 255-265. | Zbl | MR
[4] and, Communication Complexity. Cambridge University Press (1997). | Zbl | MR
[5] and, Separation of the monotone hierarchy. Combinatorica 19 (1999) 403-435. | Zbl | MR
[6] , Properties that characterize LOGCFL. J. Comput. System Sci. 43 (1991) 380-404. | Zbl | MR





